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Abstract—We study network optimization that considers en-
ergy minimization as an objective. Studies have shown that
mechanisms such asspeed scaling can significantly reduce the
power consumption of telecommunication networks by matching
the consumption of each network element to the amount of
processing required for its carried traffic. Most existing research
on speed scaling focuses on a single network element in isolation.
We aim for a network-wide optimization.

Specifically, we study a routing problem with the objective
of provisioning guaranteed speed/bandwidth for a given demand
matrix while minimizing energy consumption. Optimizing the
routes critically relies on the characteristic of the energy curve
f(s), which is how energy is consumed as a function of the
processing speeds. If f is superadditive, we show that there is
no bounded approximation in general for integral routing, i.e.,
each traffic demand follows a single path. This contrasts with the
well-known logarithmic approximation for subadditive fun ctions.
However, for common energy curves such as polynomialsf(s) =
µsα, we are able to show a constant approximation via a simple
scheme of randomized rounding.

The scenario is quite different when a non-zero startup costσ

appears in the energy curve, e.g.f(s) =



0 if s = 0
σ + µsα if s > 0

.

For this case a constant approximation is no longer feasible. In
fact, for any α > 1, we show an Ω(log

1

4 N) hardness result
under a common complexity assumption. (HereN is the size of
the network.) On the positive side we presentO((σ/µ)1/α) and
O(K) approximations, where K is the number of demands.

I. I NTRODUCTION

Energy conservation is emerging as a key issue in com-
puting and networking as the ICT sector (Information and
Communications Technologies) significantly steps up the en-
ergy efficiency of its products and services, in response to
growing energy bills, government mandates, as well as societal
pressures to minimize the carbon emissions by the sector
[5], [30]. Many methods for avoiding waste and improving
energy efficiency are being developed. One opportunity to reap
significant potential saving in data networking is achieving
energy proportionality[12]. Energy proportionality refers to a
goal in which the amount of energy consumed by a network
element in proportion to the carried traffic load. We use
network element as a generic term that represents a computing
and communication resource such as a router, switch, CPU or
a link connecting this equipment.

As indicated in a study conducted by the US Department
of Energy [4], the current network elements and telecommu-
nication networks are not designed with energy optimization
as an objective or a constraint. They are often designed for

peak traffic, for reasons such as accommodating future growth,
planned maintenance or unexpected failures, or quality-of-
service guarantees. At the same time, the energy consumption
of network elements is often defined by the peak profile and
varies little for typical traffic, which can be a small fraction
of the peak. By a conservative estimate in the same study, at
least 40% of the total consumption by network elements such
as switches and routers can be saved if energy proportionality
is achieved. This translates to a saving of 24 billion kWh per
year attributed to data networking [4].

Two popular methods for effectively matching power con-
sumption to traffic load are viaspeed scalingor powering
down. The former refers to setting the processing speed of a
network element according to traffic load, and the latter refers
to turning off the element. Both methods are the subject of
active research, though most of the work focuses on optimizing
an individual element in isolation [26], [21], [37], [31], [11],
[16], [27], [28], [25]. In addition, enabling sleep modes and
sizing power to traffic are also features in some commercial
products such as the Intel pentium processors [3], standards
like ADSL2 and ADSL2+ [22], or proposals to the IEEE
802.3az task forces [20], [34]. Our goal is to examine the
optimization problems that arise in a network consisting of
multiple network elements.

We focus on the speed scaling model in this paper, and study
the power down model in a separate effort [7]. We assume
each network elemente has the speed scaling capability,
characterized by an energy curvefe(s), which is how e
consumes energy as a function of its processing speeds. We
propose a routing problem with the objective of provisioning
for a long-timescale traffic matrix and minimizing the total
energy consumption by the network elements over the entire
network. Routing determines the traffic load on each network
element and this in turn determines the energy consumption
specified by the energy curvefe(·).

The algorithmic aspect of this routing problem critically
relies on the nature of the energy curvefe(s). For example,
if the curve should be linearfe(s) = µs, then shortest path
routing is optimal. Unfortunately, situations in reality are far
more complex. For example, several preliminary studies on
Ethernet links, edge routers, e.g. [15], [24] and the well-
accepted understanding of optical links and equipment suggest
that the energy consumption for network elements as such may
growsubadditivelywith the speed. That is, doubling speed less
than doubles the energy, or more formallyfe(s1) + fe(s2) ≥
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fe(s1+s2). In this case, the routing problem corresponds to the
well-studied problem of buy-at-bulk network design (BAB),
e.g. [10], [17], [18], [6]. BAB has a logarithmic approximation
and almost matching logarithmic hardness.

On the other hand, the energy consumption of a micropro-
cessor growssuperadditivelywith the speed. That is, doubling
the speed more than doubles the energy consumption, or
more formallyfe(s1) + fe(s2) ≤ fe(s1 + s2). Furthermore,
the energy curve is often modeled by a polynomial function
fe(s) = µes

α where µe and α are parameters associated
with the device. (Whileα has been usually assumed to be
around 3 [14], it has been recently estimated to be much
smaller. In particular its value is 1.11, 1.66, and 1.62 for
the Intel PXA 270, a TCP offload engine, and the Pentium
M 770, respectively [36].) Note that iffractional routes are
allowed, i.e. a demand may be carried on multiple paths
between its source and destination, then the problem falls into
the realm of convex optimization sinceµsα is convex, and
therefore is solvable in polynomial time [13]. However, for
integer routeswhere each demand must be carried on one
single path, the problem has to the best of our knowledge
not received much attention before. Integral routing can be
important for a number of reasons, e.g. if we wish to avoid
problems associated with packet reordering.

In addition, a more accurate but more complex en-
ergy curve for a microprocessor may befe(s) =
{

0 if s = 0
σe + µes

α if s > 0
where σe represents the non-

negligible power consumption by leakage currents, see e.g.[3].
This energy function is neither superadditive nor subadditive,
and little is known about routing optimization subject to such
functions. For the rest of the paper we explore these two well-
motivated energy functions by showing how to approximate
the optimal solution as well as the limit to which approxima-
tion can be accomplished.

Previous Work: Speed scaling has been widely studied
to save energy at the single element level. Yao et al. [37]
were the first to study speed scaling in processors, in the form
of task scheduling problems. They assumed that the energy
to run a processor at a speeds grows superlinearly withs,
and explored the problem of scheduling a set of tasks with
the smallest amount of energy. Speed scaling has also been
combined with powering down in the same context of power-
efficient task scheduling [27]. (The survey of Irani and Pruhs
[26] reviews results and open problems under the speed scaling
and powerdown models for processors.) In networks, most
effort has been invested in reducing the consumption at the
edge of the Internet (edge links and routers). For instance,
Gunaratne et al. [24] have proposed a Markovian model to
optimize single Ethernet link usage with speed scaling.

To the best of our knowledge, only a few papers study
energy saving at a global wired network level. For instance,
Nedevschi et al. [33] explore both speed scaling and power-
down as techniques to globally reduce energy consumption.
When using speed scaling, they consider two alternative mod-
els, one in which only the frequency of the transmission can

be scaled, and one in which also the operational voltage can
be scaled. The authors propose heuristics for these models,
that are evaluated empirically. While energy saving has al-
ways been a concern in wireless networks [29] (since mobile
devices work on limited-energy batteries), they are intrinsically
different from wireline networks, and are not considered here.

II. M ODEL AND RESULTS

We are given a network modeled by an undirected graph
G and a set of demands. Each demandi requestsdi integer
units of bandwidth between a source nodesi and a destination
node ti. We are also given a cost functionfe(s) on each
link1 e that represents the energy consumption for routing
s units of demand through linke. Our aim is to route all
of the demands on integral routes with minimum cost. Not
surprisingly, the routing problem is NP hard for most functions
fe(·). We therefore consider approximation algorithms. A
polynomial-time algorithm is aβ-approximation if for all
instances it returns a solution at mostβ times the optimal.
A problem has noβ-approximation if no polynomial-time
algorithm can guarantee aβ-approximation for all instances
under complexity assumptions such asP 6= NP .

Formally, the min-energy routing problem can be formu-
lated as the following program. Let binary variableyi,e indi-
cate whether demandi passes through linke andxe be the total
load one. Our route optimization problem can be formulated
as follows.

(P1) min
∑

e

fe(xe)

subject to

xe =
∑

i

yi,edi ∀e

yi,e ∈ {0, 1} ∀i, e
yi,e : flow conservation

Let Ii(v) and Oi(v) be the amount of demandi entering
and leaving nodev, respectively, andFi(v) = Oi(v) − Ii(v).
Flow conservation means thatFi(si) = di, Fi(ti) = −di,
and Fi(v) = 0 for any other nodev. As mentioned in the
Introduction, if the cost functionfe(·) is subadditive then this
corresponds to the well-studied buy-at-bulk network design
problem. The following summarizes the main results for buy-
at-bulk.

Theorem 1 (BAB). For subadditive cost functionsfe(·), (P1)
has O(log N)2 approximation ratio [10] andΩ(log1/4 N)
hardness bound [6] iffe(·) is uniform over alle; (P1) has
O(log3 N) approximation ratio andΩ(log1/2 N) hardness
bound if fe(·) is different from edge to edge. HereN is the
size of the network.

In this paper we are interested in less studied functions such
as superadditive, and mixed sub and superadditivefe(·). To
provide a contrast with subadditive functions, we first show

1Cost functions for other network elements is left for futurestudy.
2All logarithms are to the base 2.
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via a simple reduction that extremely simple superadditive
functions, such asfe(x) = max{0, x−1}, lend to unbounded
approximations.

Lemma 2. If a monotone functionfe(·) satisfiesfe(1) = 0
and fe(2) > 0 for all e, then there is no polynomial time
algorithm to the min-energy routing problem with any finite
approximation ratio unless P=NP.

Proof: The reduction is from the edge-disjoint path (EDP)
problem, which is known to be NP-hard. Given a network
and a set of demand, EDP decides if all demands can be
routed along edge-disjoint paths. If EDP has a solution, then
the resulting load on each edge is at most 1, which implies
a solution of cost0 for the min-energy problem. In contrast,
if EDP has no solution, in any solution some link must have
load at least 2, which implies an optimal min-energy solution
of cost at leastf(2) > 0. Hence, a bound-approximation to
the min-energy problem would return a zero solution iff EDP
has a solution.

We focus on two non-subadditive functions in this paper,
both because they do not have the issue stated in Lemma 2
and because they closely model energy consumption of certain
network elements, as discussed earlier. We state the following
main results.

• In Section III we consider polynomial functions of the
form fe(s) = µes

α. For uniform demands wheredi is
the same for alli, we prove aγ-approximation where
γ only depends onα. Since, as mentioned before,α is
very small in practice (less than 2), we consider this to
be a constant approximation. This result generalizes to
an approximation that is logarithmic onD = maxi di for
nonuniform demands.

• In Section IV we consider polynomial functions with

a startup cost,fe(s) =

{

0 if s = 0
σe + µes

α if s > 0
. In

contrast to polynomial cost functions whereσe = 0,
we show that there is noO(log

1

4 N)-approximation al-
gorithm under a common complexity assumption. This
lower bound even holds when alldi = 1 and the cost
functionsfe(·) are identical for alle.
On the positive side, we present anO(K) approximation
for unit demands, whereK is the number of demands. We
also show anO((maxe{σe/µe})1/α + 1)-approximation,
independent ofK, for uniform demands. Again, for
nonuniform demands, an additional factor logarithmic in
D appears in the approximation ratios.

• In Section V we evaluate our proposed approximation
algorithms via simulations. For polynomials without a
startup cost, randomized rounding performs superbly.
When the startup is large, both approximations from
Section IV are less than satisfactory. However, we present
a heuristic that appears to rectify the situation.

III. A PPROXIMATION FORPOLYNOMIAL COST FUNCTIONS

In this section we use randomized rounding on the convex
program(P1) to approximate the optimal cost for polynomial

cost functionsfe(s) = µes
α.

We first relax the binary constraint on flow variablesyi,e ∈
{0, 1} to yi,e ∈ [0, 1]. As a result, for polynomial cost func-
tionsfe(·), the routing problem is convex programming and is
optimally solvable [13]. From the optimal fractional routing,
we round the fractional flow in the Raghavan-Thompson man-
ner [35] as follows. We first decompose the fractional solution
defined byyi,e into weighted flow paths for each demandi
via the following standard procedure. We repeatedly extract
paths connecting the source and destination nodes of demand
i from the subgraph defined by linkse for which yi,e > 0. If p
is extracted, then the weight ofp is wp = mine∈p yi,e and the
yi,e value of every link alongp is reduced bywp. The flow
conservation constraint onyi,e guarantees that when the last
path is extracted for demandi, everyyi,e is zero. Following
the flow decomposition, we randomly choose one path from
the potentially multiple paths for each demand, using the path
weight as the probability. At the end of the rounding, every
demand follows one single path.

Obviously, the fractional optimal solution is a lower bound
of the integral optimal solution. If we could bound the differ-
ence between the rounded solution and the fractional optimal,
we would have bounded the difference between the rounded
solution and the integral optimal. Unfortunately, the direct
application of randomized rounding as described above does
not guarantee a good approximation. For example, consider a
network with two nodesu, v andm parallel links connecting
them, one unit-demand with sourceu and destinationv, and
a uniform cost functionfe(x) = xα. The optimal fractional
solution to(P1) distributes the demand evenly among them
links, resulting in a cost ofm · fe(1/m) = 1/mα−1. The
optimal integral solution has to send the demand along one of
the edges, resulting in costfe(1) = 1. Hence, the integrality
gap is mα−1. However, we now show how to adapt this
procedure in order to overcome this difficulty.

A. Uniform Demands

The essence of the previous example stems from the be-
havior of fe(·) in the interval[0, 1]. We observe that, in fact,
for x ∈ [0, 1] we can use the cost functionfe(x) = µx since
µx andµxα agree onx = 0 andx = 1. More importantly, if
we do this the integrality gap in the aforementioned example
disappears. Formally, for unit demands, i.e.di = 1, we define
the cost function

ge(x) = µe max{x, xα}. (1)

Note that minimizing
∑

e ge(xe) has the same integral optimal
as the original program(P1) since fe(·) and ge(·) agree
on all integral values. In addition, the optimal fractional
solution with respect toge(·) can still be obtained by convex
programming asge(·) is still convex after linearizingfe(·)
in the interval [0, 1]. We use this observation to show that
randomized rounding gives a constant factor approximation
for unit demands. Letx∗

e be the flow on linke under the
optimal fractional routing and let̂xe be the resulting rounded
flow. We show,
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Lemma 3. For unit demands, randomized rounding the op-
timal fractional solutionx∗

e with respect to the cost function
ge(x) guarantees thatE[ge(x̂e)] = E[fe(x̂e)] ≤ γge(x

∗
e), for

some constantγ and all linkse.

Proof: Observe thatE[x̂e] = x∗
e. We consider two cases

x∗
e ≤ 1 andx∗

e > 1.

Case 1:x∗
e ≤ 1. We show thatE[fe(x̂e)] ≤ γ1ge(x

∗
e) for

some constantγ1. We partition the possible values ofx̂e into
the ranges[0, 1), [1, 2), [2, 4), . . . . We have,

E[fe(x̂e)] ≤ fe(x̂e = 0)Pr[x̂e < 1] +
∑

j≥0

fe(x̂e = 2j+1)Pr[x̂e ≥ 2j]

≤ 0 +
∑

j≥0

µe(2
j+1)α







e
2

j

x∗
e
−1

( 2j

x∗

e

)
2j

x∗
e







x∗

e

= µex
∗
e

∑

j≥0

2α(j+1)

x∗
e

x∗
e
2j

ex∗

e

( e

2j

)2j

≤ ge(x
∗
e)
∑

j≥0

2α(j+1)−2j(j−lg e). (2)

The first inequality follows from the definition of expectation.
The second follows from a Chernoff bound [32, Theorem
4.4(1)]. We obtain the third inequality via algebraic manipula-
tion and the fact that0 ≤ x∗

e ≤ 1. Let j0 = ⌈2 lg(α+4)⌉. Via
further algebraic manipulation we can show that all the terms
in (2) for whichj ≥ j0 add up to at most 1. Hence, there is a
constantγ1 (dependent onα) such thatE[fe(x̂e)] ≤ γ1ge(x

∗
e).

Case 2:x∗
e > 1. We partition the possible values ofxe into

the ranges[0, x∗
e), [x∗

e, 2x∗
e), [2x∗

e , 4x∗
e), . . . . By the definition

of expectation, we have

E[fe(x̂e)] ≤ fe(x̂e = x∗
e)Pr[x̂e ≥ 0] +

∑

j≥0

fe(x̂e = 2j+1x∗
e)Pr[x̂e ≥ 2jx∗

e ]

≤ ge(x
∗
e) +

∑

j≥0

2α(j+1)ge(x
∗
e)

(

e2j−1

(2j)2j

)x∗

e

≤ ge(x
∗
e)



1 +
∑

j≥0

2α(j+1)−(j−lg e)2j−lg e



 ,

where the second inequality follows from a Chernoff bound
[32, Theorem 4.4(1)], and the third inequality follows from
x∗

e > 1. The summation forj ≥ 2 can be bounded similar to
the one in Eq (2). Hence, there is a constantγ2 (dependent
on α) such thatE[fe(x̂e)] ≤ γ2ge(x

∗
e). Combining both cases

we have that, forγ = max{γ1, γ2} > 0, every linke satisfies
that E[fe(x̂e)] ≤ γge(x

∗
e).

It is easy to see that Lemma 3 for unit demands also applies
to uniform demands in whichdi = d for all demandsi. By
linearizing fe(·) in the range of[0, d] instead of[0, 1], we
define

ge(x) = µe max{dα−1x, xα}. (3)

By randomized rounding the fractional optimal solution with
respect toge(·), we can easily derive the following parallel to
Lemma 3.

Corollary 4. For uniform demands,E[fe(x̂e)] ≤ γge(x
∗
e) for

all e wherege(·) is defined in (3).

The previous results only examine the expected value of the
solution. We now show how to convert this into a result that
holds with high probability.

Theorem 5. For uniform demands in which alldi are equal,
randomized rounding guarantees aγ-approximation in the
expected value of the total energy cost, whereγ is the
constant in Lemma 3. Further, For any constantc, randomized
rounding guarantees acγ-approximation with probability at
least1− 1/c.

Proof: The expected total cost after randomized rounding
is E[

∑

e fe(x̂e)] =
∑

e E[fe(x̂e)] ≤ γ
∑

e ge(x
∗
e) ≤ γOpt,

where Opt is the integral solution to(P1). By Markov’s
inequality, the probability that a rounded solution is morethan
cγ ·Opt is upper bounded by1/c.

B. Non-uniform Demands

We now prove anO(logα−1 D) approximation for non-
uniform demands with cost functionfe(x) = µex

α, where
D = maxi di is the maximum demand bandwidth. Note that in
the application of interest,fe(·) represents the energy curve for
which the typical value ofα is under 3. Hence, the logarithmic
approximation ratio has a small exponent.

Theorem 6. For nonuniform demands, randomized rounding
can be used to achieve aO(logα−1 D)-approximation, where
D = maxi di.

Proof: We partition the demands intolog D groups, where
groupj ≥ 0 consists of demands whosedi is in the range of
[2j, 2j+1). We treat each group separately. For groupj, we
assume each demand requests bandwidth of exactly2j+1 and
invoke the randomized rounding algorithm for those demands.
Let x

(j)∗
e be the load on linke due to the optimal fractional

solution, and let̂x(j)
e be the load after the rounding. Bothx(j)∗

e

and x̂
(j)
e are calculated with respect to demand bandwidth

rounded up to2j+1. Let Opt(j) be the optimal solution with
respect to demands in groupj, andOpt be the optimal solution
with respect to demands in all groups. Note that bothOpt(j)

andOpt are with respect to actual demand bandwidth.
We have

∑

e

E



fe(
∑

j

x̂(j)
e )



 ≤
∑

e

E



(log D)α−1
∑

j

fe(x̂
(j)
e )





≤
∑

e

(log D)α−1γ
∑

j

g(j)
e (x(j)∗

e )

≤ (log D)α−1γ
∑

j

2αOpt(j)

≤ (log D)α−1γ2αOpt
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The first inequality is due to the convexity offe(x) = µex
α,

namely f(
∑log D

j=0 x
(j)
e ) ≤ (log D)α−1

∑

j f(x
(j)
e ). In the

second inequalityg(j)
e (·) refers to (3) for d = 2j+1, the

linearization of the functionfe(·) for demand bandwidth
2j+1. The second inequality is due to Corollary 4. The third
inequality holds since as before

∑

e ge(x
∗
e) is a lower bound on

the optimal integral solution and each demand bandwidth has
been rounded up by a factor of at most 2. The last inequality
holds due to the superadditive nature offe(·).

Finally, we note that
∑

e E
[

f(
∑

j x̂
(j)
e )
]

upperbounds the

expected total cost sincêx(j)
e is calculated based on bandwidth

that is rounded up. This completes the proof.

IV. POLYNOMIAL FUNCTIONS WITH STARTUP COST

We now turn our attention to energy curves that are poly-
nomials with a startup cost. These functions have the form

fe(x) =

{

0 if x = 0
σe + µex

α if x > 0
. Note that forα ≤ 1,

such a function is concave and Theorem 1 summarizes its
approximability. Whenα > 1, the function is neither convex
nor concave, and therefore convex programming cannot obtain
an optimal fractional solution to(P1).

In Section IV-A we provide two approximations. The first
one is based on rounding a newly formed convex program
defined in(P2). The resulting approximation ratio depends on
the number of demands. The second one replaces the neither
convex nor concave functionfe(·) with a convex function
he(·) that “resembles”fe(·), and then uses randomized round-
ing on the problem(P1) with objective functionhe(·). The
resulting ratio depends on the parametersσe andµe.

It remains a challenge to come up with approximations that
are independent of the demands and cost functions and are
small with respect to the network size. In Section IV-B, we
first discuss why existing techniques for buy-at-bulk (in which
α ≤ 1) can only guarantee approximation ratios polynomial
in the size of the network whenα > 1. We then turn to the
intrinsic hardness. In particular, for everyα > 1, we show
there is a functionfe(·) uniform over all linkse for which no
algorithms and no techniques can guarantee anO(log1/4 N)
approximation. Due to space limitation, we present a proof
sketch.

A. Approximation results

1) Approximation with Respect to the Number of Demands:
The following is a natural formulation that handles polynomial
functions with a startup cost.

(P2) min
∑

e

σeze + ge(xe)

subject to

xe =
∑

i

yi,e · di

yi,e ≤ ze

yi,e, ze ∈ {0, 1}
yi,e : flow conservation,

where in the integer formulationze represents whether or not
the startup cost on linke is paid for, i.e. whether or not we
route any demand on it. The second constraint enforces the
condition that we cannot route any demand on a link unless
its startup cost is paid for. In the objective functionge(xe) is
a linearization ofµxα as in Section III. For example,ge(xe)
is defined as in (3) for uniform demands. Again, the optimal
integral solution to(P2) is the same as to the objective of
minimizing

∑

e σeze + fe(xe), and its continuos relaxation is
convex.

Theorem 7. For uniform demands, randomized rounding of
the optimal fractional solution to(P2) guarantees an(K+γ)-
approximation to the optimal integral solution in expectation,
whereK is the number of demands andγ is the constant in
Corollary 3.

(We remark that this ratio can be better than the naive
ratio that would be obtained by simply routing each demand
along the minimum hop path since that solution could route
all demands along a single edge whereas the optimum solution
might route all demands along separate edges. Using this fact
it is easy to construct examples where the cost of minimum
hop is a factorO(Kα−1) away from optimal.)

Proof: Let z∗, y∗ andx∗ be the optimal fractional solution
and letẑ, ŷ andx̂ be the solutions that we get from the round-
ing. From Lemma 3 we have thatE[ge(x̂e)] ≤ γge(x

∗
e) for

some constantγ. It remains to relate
∑

e σez
∗
e and

∑

e σeẑe.
We have,

E[ẑe] = Pr(ẑe = 1) = 1− Pr(ŷi,e = 0 for all i)

= 1−Πi(1 − y∗
i,e) ≤

∑

i

y∗
i,e ≤ Kz∗e .

The last inequality comes from the fact that in the fractional
solution, eachy∗

i,e is constrained to be at mostz∗e . Putting
everything together, we have that the rounded solution has
expected value at most(K +γ) times higher than the optimal
solution.

The theorem above can be generalized to non-uniform
demands. Combining the analysis for Theorems 6 and 7 we
have the following.

Theorem 8. For nonuniform demands, randomized rounding
can be used to achieve aO(K + logα−1 D)-approximation.

2) Approximation with Respect toσe and µe: For the
second approximation, we use a convex functionhe(·) in place
of fe(·) and randomized rounding on the optimal fractional
solution with respect tohe(·). To obtain an approximation
ratio, we need to bound the difference between frational and
integral solutions, and the difference betweenhe(·) andfe(·).
It is intuitive that we woud likehe(·) to be close tofe(·).

The functionhe(·) starts with a line through the origin and
switches to befe(·) at some point. Let(se, fe(se)) be the
point at which the line tangent to the curvefe(·) goes through
the origin. If se ≤ 1 then he(·) begins with the straight line
through origin to(1, fe(1)) and continues onfe(·), as shown
in Figure 1 (left). Otherwise,he(·) begins with the tangent line
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up to the tangent point(se, fe(se)) and continues onfe(·), as
shown in Figure 1 (right).

More formally, let se = (σe/((α − 1)µe))
1/α. We define

the parameterβe and the functionhe(x), for each edgee, as
follows.

βe =

{

σe + µe if se < 1,
αµe(σe/((α− 1)µe))

1−1/α if se ≥ 1.

he(x) =

{

βex if x ∈ [0, max(1, se)),
σe + µex

α if x ≥ max(1, se).

It can be observed that the functionhe(x) is continuous,
convex, and satisfieshe(x) ≤ fe(x), for all integralx ≥ 0.
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Fig. 1. fe(·) and its approximationhe(·). (Left) se ≤ 1. (Right) se > 1.

Theorem 9. For unit demands, applying randomized rounding
to the fractional solution obtained from the convex program
(P1) minimizing

∑

e he(xe), guaranteesE[fe(x̂e)] ≤ O(1 +
(σe/µe)

1/α) · he(x
∗
e), for each linke.

Proof: Let us fix an edgee. We break the proof in three
cases,x∗

e ≤ 1, x∗
e ≥ max(1, se), andx∗

e ∈ (1, se).
Case 1:x∗

e ≤ 1. We partition the possible values of̂xe

into the ranges[0, 1), [1, 2), [2, 4), . . . . By the definition of
expectation, we have

E[fe(x̂e)] ≤ fe(x̂e = 0)Pr[x̂e < 1] +
∑

j≥0

fe(x̂e = 2j+1)Pr[x̂e ≥ 2j ]

≤ 0 +
∑

j≥0

(σe + µe(2
j+1)α)Pr[x̂e ≥ 2j]

≤ βex
∗
e

σe + µe

βe

∑

j≥0

2α(j+1)

x∗
e

x∗
e
2j

ex∗

e

( e

2j

)2j

where the last inequality follows from a Chernoff bound. The
sum was shown in the proof of Lemma 3 to be bounded by a
constantγ1. If se < 1, thenβe = σe +µe and henceσe+µe

βe
=

1. Otherwise,se ≥ 1, and thenβe = Θ(µ
1/α
e σ

1−1/α
e ). Since

se = Θ((σe/µe)
1/α), thenµe/σe = O(1). In either case, we

get
σe + µe

βe
= O(1 + (σe/µe)

1/α), (4)

and then,E[fe(x̂e)] ≤ O(1 + (σe/µe)
1/α) · he(x

∗
e).

Case 2:x∗
e ≥ max(1, se). In this case we haveE[fe(x̂e)] ≤

γ2 · he(x
∗
e), from a proof identical to case 2 in Lemma 3.

Case 3:x∗
e ∈ (1, se). Note that this case can only occur ifse ≥

1. We partition the possible values ofx̂e into the ranges[0, x∗
e),

[x∗
e, 2x∗

e), [2x∗
e , 4x∗

e), . . . . By the definition of expectation, we
have

E[fe(x̂e)]

≤ fe(x̂e = x∗
e)Pr[x̂e ≥ 0] +

∑

j≥0

fe(x̂e = 2j+1x∗
e)Pr[x̂e ≥ 2jx∗

e]

≤ βex
∗
e

(

σe + µe(x
∗
e)

α

βex∗
e

+

∑

j≥0

σe + µe(2
j+1x∗

e)
α

βex∗
e

Pr[x̂e ≥ 2jx∗
e ]

)

≤ he(x
∗
e)

σe + µe

βe
·



1 +
∑

j≥0

2α(j+1)Pr[x̂e ≥ 2jx∗
e]





where the third inequality follows from the fact thatσe+µexα

βex

is non-increasing forx ∈ (1, se). From Eq. 4,σe+µe

βe
= O(1+

(σe/µe)
1/α), and the other factor ofhe(x

∗
e) was shown in the

proof of Lemma 3 to be bounded by a constantγ2. Therefore,
E[fe(x̂e)] ≤ O(1 + (σe/µe)

1/α) · he(x
∗
e).

The approximation above also applies to uniform demands.
Similar to Theorem 6, we also have the following for nonuni-
form demands.

Theorem 10. For polynomial functions with startup costs,
randomized rounding can be used to achieve aO(1 +
(maxe{σe/µe})1/α)(log D)α−1-approximation, whereD =
maxi di.

B. Hardness of Approximation

The results of the previous section work well whenσe or
K are small but give less good bounds when these parameters
are large. Recall from Theorem 1 that we have a range of
techniques that guarantee a poly-logarithmic approximation
for the Buy-at-Bulk problem (i.e. the problem where the cost
functions are subadditive, e,g, whenα ≤ 1). We briefly com-
ment on why these techniques cannot produce approximation
ratios better than polynomial in the network size whenα > 1.
In fact all these techniques fail on an example similar to the
one at the beginning of Section III. Let us revisit the example:
the network has 2 nodesu and v, m parallel links, andm
unit demands betweenu andv. Suppose the cost function is
fe(x) = m+x2 for x > 0 for all e. It is easy to compute that
the optimal solution routes over

√
m links each carrying

√
m

demands. The optimal cost is
√

m(m +
√

m
2
) = 2m

√
m.

One technique for uniform-cost buy-at-bulk is due to Awer-
buch and Azar [10] and always returns a solution in which
the routes form a tree. (In particular, the tree is taken froma
distribution that approximates the underlying distance metric.)
If the solution in the above example is restricted to a tree, i.e.
a single link, the cost would bef(m) = m + m2, which is
Ω(
√

m) times the optimal. Therefore, restricting a solution to
a tree sets a lower bound of

√
N in approximation ratio where

N is the network size.
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The second technique of buy-at-bulk involves rounding a
linear relaxation of a problem formulation in the spirit of(P2),
e.g. [23], [18]. The optimal fractional solution to the above
example setsze = 1/m for all e and therefore the total is
m(1/m+1) = 1+m. This yields an integrality gap ofΘ(

√
m).

Hence, rounding cannot be expected to give better than
√

N
approximations.

The third approach by Charikar and Karagiozova [17] does
not always produce a tree and their analysis does not compare
against the optimal fractional solution. Their solution operates
by first ordering the demands in a random order and then
for eachm greedily routingm/i times theith demand, each
along the path that incurs the least extra cost. In our example,
it is less expensive for a demand to use a link with a load
in [1, m/2) than to start a new link. The particular scaling of
the Charikar-Karagiozova algorithm routesm+m/2+m/3+
· · · ≈ m log m units of demands and therefore useslog m
links. Therefore, the total cost is at leastm2/ logm, which
again creates a polynomial gap from the optimal.

So far we have shown that known techniques cannot give an
approximation ratio better than polynomial. It is an intriguing
open problem whether or not there exists a polylogarithmic
approximation ratio. However, we now show that we cannot
hope for better than a polylogarithmic ratio, since we have the
following intrinsic hardness result.

Theorem 11. For any α > 1, there is a uniform polyno-
mial cost function with startup cost such that no algorithm
can guarantee anO(log1/4 N) approximation unlessNP ⊆
ZPTIME(npolylogn).

Recall thatZPTIME(npolylog n) is the class of languages
for which there is a randomized algorithm that always gives the
correct answer and whose expected running time isnpolylogn.
The proof of the theorem is motivated by the hardness for buy-
at-bulk [6], [8]. The construction of the hardness reduction and
its analysis are somewhat lengthy. Hence, instead of presenting
a self-contained proof here, we give a high-level sketch.

We start with a 3CNF(5) formulaφ which is a boolean
formula in conjunctive normal form in which each clause
contains exactly 3 literals and each variable appears in exactly
5 clauses. The Probabilistically Checkable Proof (PCP) theo-
rem [9], [19] implies that there is a constantε such that it is
NP-hard to distinguish between the case whereφ is satisfiable
and the case where at most a(1 − ε)-fraction of the clauses
can be simultaneously satisfied.

Fromφ we can use results of [6], [8] to construct a routing
instance such that ifφ is a yes-instance, namely more than
(1−ε)-fraction of the clauses can be satisfied, then the optimal
routing cost is at most a low value ofℓ. Otherwise,φ is a no-
instance, and the optimal routing cost is at least a high value
of h with high probability. If we should be able to approximate
the routing instance to better thanh/ℓ, we would then be able
to tell a yes-instance from a no-instance. This contradictsthe
PCP theorem. However, our reduction is not polynomial. In
fact the size of the routing instance isnpolylogn and therefore
the complexity assumption ofNP 6⊆ ZPTIME(npolylogn).

V. EXPERIMENTAL RESULTS

In this section, we provide the detailed experimental find-
ings. We associate cost functions like those previously pre-
sented to the links of real networks, implement the approx-
imation algorithms presented in Sections III and IV, and
compare the approximate solutions against both the optimal
and the straight-forward shortest-paths solution. The reason
for comparing against the latter is to show that routing without
energy in mind can be wasteful. As we shall see, we observe
a consistent savings of 10% or more over shortest-paths.
This gives initial evidence that a non-negligible percentage
of energy saving could come from global network planning
such as routing.

We obtain the optimal integral solutions by solving the
relevant integer programs use CPLEX solver [1]. For our
approximation algorithms, we use the CVX solver [2] to obtain
the optimal fractional solutions before applying randomized
rounding. Most of our experiments are conducted on the
Abilene Research network which consists of 10 nodes and
13 links, and the NSF Network which consists of 14 nodes
and 20 links. See Figure 2. We also test scalability on larger
networks.

Fig. 2. (a) Abilene Research network and (b) NSF network

A. Polynomial cost function without startup:fe(x) = µex
α

We use a quadratic functionfe(x) = x2 for our experi-
ments. For each network, we perform the routing algorithm
with different number of demands, where the number ranges
from twice the number of nodes to six times the number of
nodes. The source and sink nodes of each demand are chosen
uniformly at random. We concentrate on unit demands. For
each routing instance, we compare 4 values of interest, the
optimal integral solution from CPLEX, the optimal fractional
solution from CVX, the rounded integral solution and the
short-paths solution. The four curves in Figure 3 (a) and (b)
correspond to the ratio of these 4 values all normalized by the
optimal integral. We observe the following.

i) The optimal fractional values are very close to the
integral optimal. The difference is at most 0.84% in the
Abilene Research network and at most 1.2% in the NSF
network. This suggests that optimal fractional solution (which
is polynomially obtainable) can be a good lower bound in the
absence of optimal integral solution (which is NP hard).

ii) The randomized rounding solutions are within 4% of the
integral optimal in the Abilene Research network and within
0.5% in the NSF network. This suggests that randomized
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rounding performs even better in practice than the approxi-
mation ratio analyzed in Lemma 3.

iii) The randomized rounding solutions are consistently at
least 10% better than the shortest-path solutions.

To explain these findings, we examine thelink load, which
is the total demand flow going throughe. We observe that
the maximum link load as a result of the integral optimal,
fractional optimal and randomized rounding are quite closeto
one another. However, the maximum load of the shortest-path
solutions is often significantly higher, as shortest-path routing
does not intend to balance the link load and therefore incurs
high cost.

Fig. 3. From top to bottom, values due to shortest-paths, randomized
rounding, integral optimal and fractional optimal, all normalized by the
integral optimal. (a) Abilene Research network and (b) NSF network

B. Polynomial function with startup:fe(x) = σe + µex
α

We use fe(x) = σ + x2 as the cost function, where
σ ∈ {4, 16, 64, 256, 1024}. Again the number of demands
varies from twice the number of nodes to six times the number
of nodes. We compare a number of routing strategies here.
Two of the strategies correspond to theO(K)-approximation
and O(

√
σ)-approximation, as shown in Theorems 7 and 9.

Not surprisingly theO(
√

σ)-approximation performs poorly
for largeσ, as the approximate functionge(·) deviates signifi-
cantly fromfe(·) for largeσ. TheO(K) approximation is also
less than satisfactory for largeσ. The difficulty for the large
startup cost is that a largeσ encourages aggregating traffic to
minimize the number ofactive links, namely those carrying
non-zero traffic. On the other hand, the convex nature ofx2

encourages load balancing traffic to avoid paying quadratic
cost on high loads. The balance between these contradicting
objectives is challenging.

We offer a heuristic GreedyActiveLinks (see Figure 4) that
helps to shrink the set of active links. Initially, we assume
every link is active, namely the active link setE′ = E.
We minimize

∑

e∈E′ x2
e to a value, sayS′. (We know from

the previous findings that randomized rounding performs ex-
tremely well formin

∑

e∈E′ x2
e.) The total cost

∑

e∈E fe(xe)
is thereforeS′ + σ|E′|. Note that the routes may not use
every link E, but we nevertheless payσ for all. During
each subsequent iteration, we aim to remove one link from
the active set so that total cost is reduced. Again, for the
current active setE′ we minimize

∑

e∈E′ x2
e. The process

Greedy ActiveLinks( G = (V, E) ):
Let E′ ← E, E′′ ← ∅, andS ←∞
while (true):

For e ∈ E′ begin:
1. If E′′ = ∅, thenE′′ ← E′, o.w. E′′ ← E′/{e}
2. Let S′ = min

∑

e∈E′′ x2
e

via randomized rounding onG(V, E′′)
3. If S′ + σ|E′′| < S,

thenE′ ← E′′, S ← S′ + σ|E′′| and break
end
If no improvement for alle ∈ E′, break

end

Fig. 4. Pseudocode for the GreedyActiveLinks heuristic.

stops when we can no longer shrink the active set, either due
to disconnectivity or increasing cost.

We refer to the solution from the above GreedyActiveLinks
heuristic asGreedy RR, where RR refers to randomized
rounding. From Table I, we observe that GreedyRR improves
a great deal over theO(K) and O(

√
σ) approximations

for large σ; whereas for smallσ, the O(K) and O(
√

σ)
approximations continue to have an advantage. We therefore
have aCombinedstrategy which is to run all three strategies
for each instance and keep the best.

Again, we compare against the shortest-paths solution (SP).
Like the case in whichσ = 0, shortest-paths is worse off
than theO(K) and O(

√
σ) approximation for smallσ. For

largeσ, all three strategies perform poorly. If we combine the
greedy heuristic combine with shortest-paths, specifically by
running shortest paths in line 2 of GreedyActiveLinks, the
improvement of the resulting solutionGreedy SP is less than
satisfactory.

Due to space consideration we only present numbers for the
NSF network in Table I. Again, all the values are normalized
by the optimal integral values.

NSF Network Startup costσ
Solutions dem. 4 16 64 256 1024

SP 28 1.107 1.053 1.137 1.314 1.389
Greedy SP 28 1.107 1.053 1.123 1.259 1.247
K-approx 28 1.017 1.120 1.270 1.434 1.516√

σ-approx 28 1.005 1.022 1.142 1.292 1.382
Greedy RR 28 1.129 1.071 1.071 1.133 1.099
Combined 28 1.005 1.022 1.071 1.133 1.099
SP 56 1.091 1.074 1.046 1.152 1.380
Greedy SP 56 1.091 1.074 1.046 1.130 1.252
K-approx 56 1.001 1.004 1.143 1.271 1.479√

σ-approx 56 1.001 1.005 1.020 1.146 1.371
Greedy RR 56 1.167 1.124 1.056 1.064 1.162
Combined 56 1.001 1.004 1.020 1.064 1.162
SP 84 1.077 1.065 1.038 1.103 1.249
Greedy SP 84 1.077 1.064 1.038 1.103 1.212
K-approx 84 1.001 1.001 1.012 1.212 1.374√

σ-approx 84 1.002 1.002 1.003 1.084 1.260
Greedy RR 84 1.175 1.141 1.074 1.068 1.091
Combined 84 1.001 1.001 1.003 1.068 1.091

TABLE I
NSFNETWORK.
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C. Running time and larger networks

The average running time for the CVX solver is around
2-3 seconds for obtaining optimal fractional solutions to all
the instances presented so far. The CPLEX solver is also fast
for obtaining the integral optimal to all the instances with
small startup values, namelyσ = 0, 4, . . . , 64. The running
times vary from 30 seconds to 3 minutes. However, for larger
startup costσ = 256, 1024, CPLEX takes significantly longer.
For example whenσ = 1024 and the number of demand pairs
is 6 times the number of nodes, it took CPLEX longer than
17 hours to get a solution with relative error within 2.1% on
the NSF network. For larger networks with at least 25 nodes,
CPLEX has trouble even forσ = 0.

We repeated our experiments on random sparse networks
with 100 nodes and expected node degree of 4. Although we
cannot obtain optimal integral solutions, our findings of the
performance of other algorithms and heuristics are consistent
with our findings on the Abilene Research network and the
NSF network.

VI. CONCLUSION

In this paper we consider a min-cost integer routing problem
where the cost function represents the energy curve of a
network element. Subadditive cost functions are well stud-
ied. We focus on the less-studied polynomial functions and
polynomials with a startup cost. The problem is interestingfor
two reasons. First, the cost function closely models the energy
consumption of some network elements and network-wide
optimization is a well-motivated but under-explored direction
for energy minimization. Second, it brings light to a challeng-
ing combinatorial optimization problem. We have presented
positive and negative results for polynomial functions and
polynomial functions with startup cost. For the latter, tech-
niques to accomplish better-than-polynomial approximation
ratios independent of demands and cost function remains a
challenging problem.
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