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ABSTRACT

This paper presents Detection Studio, an open source tool
for evaluation of deep learning neural network models for ob-
ject detection on images. The evaluation provides the common
objective performance metrics like mean average precision
and mean inference time. Some of the most famous object
detection datasets are supported and additionally the most
used deep learning frameworks are also supported. Models
with different architectures or programmed using different
middlewares can be compared.

A set of tools is provided to work with and manipulate
datasets and the different models. These tools include the visu-
alization of the dataset or its conversion between the different
formats available. Additionally, new detection datasets can be
created using Detection Studio from videos and webcams. The
application can be accessed via command line or via graphical
interface.

Index Terms—Object detection, open source, software tools,
model evaluation.

I. INTRODUCTION

T HERE is an increase in application areas for deep learn-
ing networks. One of those areas is the detection of

objects on images using computer vision, which thanks to the
great variety of free access quality datasets focused on this
topic presented in the past years, has experimented a great
development. This has also make it possible to develop deep
learning networks models with an outstanding performance
that have became famous overtime. These object detection
datasets and deep neural networks models are improved con-
stantly, reaching better performances each time and showing
the current importance of this problem in research and indus-
try.

The typical workflow of developing a deep neural network
involves some trial and error, changing some parameters in
the network and retraining it again and again to improve its
performance. This situation brings the problem of how to
compare objectively the performance of those trained neural
networks models so a developer can quickly understand which
model is better. The tool presented in this paper, Detection
Studio, tries to help developers testing object detection neural
networks using objective performance metrics so the user
can easily compare different networks and see which one
performs better. A set of different tools are presented inside

Detection Studio, giving each one of them some important
feature to help comparing objectively different neural net-
works models for object detection. Accessible via: https://git
hub.com/JdeRobot/DetectionStudio

II. STATE OF THE ART

In this section, a review of the state of the art in object
detection with deep learning is conducted.

A. Datasets

The emergence of free access image datasets along with the
competitions that many of them are related to have boosted the
fast pace development in object detection and computer vision
in general. Some of them, supported in Detection Studio, are
the following:

• ImageNet [1]: ImageNet is the largest public collec-
tion of images, containing 14,197,122 images, where
1,034,908 images have been annotated with bounding
boxes, ideal for training and evaluating object detection
models.

• Pascal VOC [2] Pascal VOC’s 2012 release contains
11,530 images in training and validation datasets, span-
ning accross 20 classes. These have contain a total of
27,450 bounding box annotated objects.

• Princeton RGB dataset [3] This dataset contains 100
RGB-D videos of high diversity meant to design and
compare various tracking algorithms. It is similar to
Spinello and also uses a Depth Sensor to capture images.

• Spinello dataset [4] Spinello is a dataset containing
3000+ RGB-D images captured using a Microsoft Kinect,
containing people and is meant for person detection and
tracking in 3D space.

• COCO [5] COCO (Common Objects in Context) is
designed for both object detection and segmentation. It
contains around 330,000 images of which 200,000 are
labelled containing 1.5 million object instances in total.

B. Frameworks

The object detection models are implemented using differ-
ent deep learning frameworks instead of building everything
from scratch. They have common deep learning pre-built
components, ready to use and optimized for performance,
making it easier for a programmer to built the model. Since
there is a limited range of deep learning frameworks, this
situation makes it easier for other researchers or programmers

https://github.com/JdeRobot/DetectionStudio
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to understand the models, considering that they use a common
and known framework. Some of the most common deep
learning frameworks are the following, which all are supported
in Detection Studio:

• TensorFlow [6].
• Caffe [7].
• Darknet [8].
• Keras [9].
• Pytorch [10].

C. Performance metrics

Evaluating the performance of the different approaches in
this field is key. Differences between models are nowadays
small, so a set of performance metrics is needed to determine
which model outperforms. The performance of a model also
depends on its purpose, so a model with a slightly worse
performance but faster than the rest, could be more useful
in a real time scenario. These are the metrics that Detection
Studio considers when evaluating a model:

• Average Precision (AP). Fraction of the total amount of
detections retrieves that are correct. Range from 0 to 1.

• Average Recall (AR). Fraction of the total amount of
detections that are actually detected. Range from 0 to
1.

• Mean average precision (mAP). A range of Intersection
over Union (IoU) values is consider, usually from 0.5 to
0.95. The IoU metric compares the ground truth bounding
box with the detected ground truth and retrieves a value
between 0 and 1 indicating how close the detected BB
is to the ground truth. The higher the value of IoU the
closes to the ground truth BB. Here the mean AP for IoU
values from 0.5 to 0.95 is calculated (IoU=0.5:0.95).

• Mean inference time. In milliseconds, the importance of
this metrics depends on the scenario where the model is
applied. If the scenario implies giving fast and precise
answers, this metric is key.

D. Network models

There are two main groups in the classification of object
detection network models, Region Proposal-Based Framework
and Regression/Classification-Based Framework, as divided in
[11]. In the first one, a chain of correlated steps is conducted.
These differentiated steps usually lead to a bottleneck in
real-time. In the second group, the techniques are based on
regression and only involve one global step, improving the
computation time.

A brief explanation of three of the most successful network
models is introduced, having Faster Regional-CNN (Faster
R-CNN) in the Region Proposal-Based Framework group
and Single Shot MultiBox Detector (SSD) and You Only
Look Once (YOLO) in the Regression/Classification-Based
Framework group.

1) Faster Regional-CNN [12]: Faster R-CNN is a multi-
component detector comprising of a Region Proposal Net-
work (RPN) which generates highly probable regions and are
later fed into further layers which classify this region and a

bounding box regressor which reduces the localization error in
predicting bounding boxes. Faster R-CNN is an improvement
upon R-CNN and Fast R-CNN to make it more real time
and robust. Faster R-CNN also generates much less region
proposals as compared to R-CNN and Fast-RCNN leading
to reduced detection time while simultaneously maintaining
detection accuracy.

Stages in Faster R-CNN:
a) Anchor generation: Anchors are basically regions

which may contain a class. So, anchor generation must be
as through as possible, because if a particular region is mixed
then there is no way that it would be detected in the succeeding
layers. These anchors are later refined using bounding box
regressor to reduce the localization error, in order to better lo-
calize errors. Anchor Generation uses sophisticated algorithms
to cover all of the image, like selective search which is later
fed into the Region Proposal Network (RPN).

b) Region Proposal Network: The job of this component
of the network is to output regions with high probability of
containing objects. It takes anchors as input and outputs highly
probable regions. Again, if a region containing an object isn’t
proposed then there is no way that it would be detected in the
succeeding layers. Also, number of regions should be as low
as possible so as to reduce detection time and as thorough as
possible so as to reduce false negatives.

c) Classifier and bounding box regressor: The final
component of the network classifies proposals from RPN
into an object class or background i.e negative or no object
present. Classification occurs first and then it’s results are
better localized to reduce the localization error or to accurately
place the bounding box on the object being classified.
This regressor basically regresses 4 parameters, namely x, y,
w and h, where x and y are the top left coordinates and w and
h are the width and height of the bounding box.

2) Single Shot MultiBox Detector [13]: SSD proposes a
more unified approach towards object detection as compared
to Faster R-CNN in which detections can be generated in
a single forward propagation of a unified network. It uses
different techniques to propose regions and the whole work-
ing including Region Proposal, classification, bounding box
regressor (for reducing localization loss) is part of a single
unified network, which significantly increases it’s detection
speed.

The given image is divided in grids which can be 8x8 or
4x4. For each box present in the grid, SSD predicts the offsets
for the bounding box present in that grid, and the confidence
score (probability of each class in the particular region) for all
object categories. Then each box is matched to a single class,
and the final results are used to compute loss, including both
classification and localization loss.

3) You Only Look Once (YOLO) [14]: This network was
first proposed by Joseph Redmon and team, a PhD student
at University of Washington, and was inspired by the idea of
SSD’s Unified Detection. It also uses a similar system as SSD
to propose regions for further classification and regression.

Figure 2 describes in detail how regions are proposed for
further classification and regression.
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Fig. 1. SSD uses 8x8 and 4x4 feature maps, in which each grid is a possible
region and is used by the classifier, to classify probabilities of all the possible
classes.

Similar to SSD, YOLO also divides the input image in a
grid, and the grid size is variable i.e it depends on the dataset
and the type of problem it’s being used for. Let’s assume a
grid size of SxS, and for each grid cell B bounding boxes
are generated, where B is also a variable and depends on
the dataset and the type of problem it is being used for. For
instance, B = 2 for Pascal VOC dataset. After generation,
these bounding boxes are sent for classification and regression,
to output final bounding boxes. Additionally, YOLO also has
a very creative loss function, which takes care of both the
classification and localization error, i.e a single combined
loss function is used to minimize both classification and
localization error. The prime selling point of YOLO was real
time detection which was made possible by using a unified
network. The accuracy for YOLO is great, in certain cases
lower than other network models but the speed is high, making
it possible for real time use.

From this initial release, several improvements have been
applied to YOLO until the last version available, YOLOv4
[15]. For example in YOLOv3 [16], bounding boxes using
dimension clusters as anchor boxes are included , proposed in
[17] or an hybrid feature extractor approach between YOLOv2
and residual networks. YOLOv4 follows the same idea of
incremental improvements taking different ideas that have
been proven to work and making YOLO more efficient.

Fig. 2. Yolo uses a SxS grid in which B bounding boxes are predicted for
each grid cell.

III. DETECTION STUDIO TOOL

Detection Studio is a multi-platform graphical user interface
(GUI) and command line application that provides several
tools to compare deep learning neural network models for
object detection images. Its GUI is based on Qt (see Figure
3) and written in C++. The application is both supported in
Linux and macOS. The tool accepts neural networks models
trained in different frameworks. These supported frameworks
are TensorFlow, Keras, Caffe, Pytorch and Darknet, which
need to be installed in order to be used in the platfor. This
feature provides a broader spectre of applicability for the
application. Additionally, Detection Studio provides support
for a wide variety of dataset formats, having YOLO, COCO,
ImageNet and Pascal VOC supported.

The general application architecture, where all the different
functionality is offered, is divided in two separated groups
(see Figure 4). In the first groups, the general workflow tools
are provided. In the second group, additional tool that can
be used in parallel to the main ones are found. In the figure,
this two groups are shown. The main workflow group in the
connected part drawn on the diagram on the left hand side.
The additional tools are unconnected from the main core of
the application, displayed on the right hand side, providing
another functionality that is not used in the main workflow.

Fig. 3. Detection Studio GUI.

The core Detection Studio workflow contains four different
tools: Viewer, Detector, Evaluator and Deployer. These tools
shape the connected part of the architecture because they
can be used combined by a user comparing different neural
networks models for object detection and are part of what
could be a common workflow when using the application. This
workflow would include as an example, running Detector over
different networks to generate the detection datasets and then
running Evaluator to evaluate the different generated detection
datasets. The different tools presented below are provided in
the GUI as separated tabs and are completely independent
when used, giving flexibility to the different users possible
use cases. This philosophy is shared in the whole project,
providing each functionality as a different and independent
tool.
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Fig. 4. General Detection Studio architecture.

In the first group, where the connected part is found, the
tools are the following:

A. Viewer

Viewer is used to view annotated datasets. It reads the
input images and the annotations files and it displays the
images with the objects highlighted with their class name on it.
This tool supports several dataset implementations like COCO,
Imagenet, Pascal VOC, Princeton or Spinello. It also supports
displaying and labelling depth images (for the datasets that
give support to this feature) by converting them into a human
readable depth map.

Images are displayed one by one, showing the image with its
corresponding detected objects with a bounding box and a tag
label naming the class group it belongs to. This bounding box
and label has a different color depending on its detection. The
final annotated images that Viewer displays can be further fil-
tered based on some specific classes i.e. only particular classes
will be labelled and only images containing those specific
classes will be displayed. This option can be interesting when
looking for images that contains objects belonging to a specific
class.

This functionality requires an input dataset, the object’s
class names supported and the dataset implementation type as
input. It can be observed in the Figure 4 that this functionality
is connected to a dataset (input images and annotations).

This input information is captured by the tool and then
a dataset reader is created depending on the specific dataset
provided. It reads the whole images dataset and objects anno-
tations and displays each image with the annotations on it. The
user can then navigate the whole dataset using the keyboard.

B. Detector

This tool provides the ability to create a new annotated
dataset with generated labels using different neural networks
models. It takes a dataset of images from a specific dataset
implementation and a specific neural network as input and
then generates a annotated detection dataset with the generated
object labels for every image in the dataset provided. This

generated annotated dataset contains the images with the
detected objects, their position in the image and probabilities
for those predictions. Detector takes as input parameters the
given neural network weights, the inferencer implementation
(TensorFlow, Keras, Darknet, Caffe or PyTorch), the network
configuration in case it is needed by the specific framework
and the object class names in order to generate the detection.
Support for detection over depth images is also provided for
the datasets supporting this feature.

The detection is run over the full input dataset and the
output is written into a specific selected folder, provided before
starting running the tool, where the annotations are written in
a JSON format file. Two windows are displayed while running
this tool (see Figure 6), one with the image and groud truth
annotations and and another one with the same image and the
objects detected inside bounding boxes with their class written
over it.

Fig. 5. Detector output example.

The console also provides log information about the exe-
cution. This information shows for each image the detected
objects classes with their probabilities sorted. Additionally,
information about the mean amount of time spent inferencing
the images is shown, one of the most interesting and used
metrics in object detection field.

One of the most interesting features provided by Detection
studio tool set is the combination of this tool and Evaluator.

C. Evaluator

As the name suggests, Evaluator can evaluate two annotated
datasets with the same dataset format considering one as the
ground truth and other as the generated detections dataset (it
could be generated by Detector tool). Evaluator supports mAP
and mAR as described in the state of the art section of this
paper or in more detail in COCO dataset paper [5]. It outputs
mAP and mAR performance metric for each class and for
different IoU thresholds.

Every object detection in an image will be evaluated,
comparing the detection in both datasets. Since the evaluation
procedure in the application is written in C++, it provides a
faster performance than the original COCO toolbox which is
written in Python.

The evaluation can be further filtered by a specific object
class from the detected dataset, so only the classes selected
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will be considered during the evaluation. Several other options
can be selected to give the user more control of the evaluation
process. There are two types of IoU available in Evaluator:
bounding boxes and masks. Additionally, the different person
classes available in some of the dataset class names can be
merged into just one person class that contains all the different
ones.

In addition to the already introduced Evaluator output
information, it also generates a csv format report with that
information and performance information about each object
class.

This tool and Detector can be used combined to generate
different dataset of generated annotations using some object
detection neural networks and then compare them with the
Evaluator functionality. Detector is run over a dataset using
different neural networks models with different parameters. It
creates several outputs with different characteristics and then
Evaluator can be used to compare then objectively, creating
a series of metrics that provide information about the perfor-
mance of each neural network model over a certain dataset.
With this information about the performance a user can select
which neural network is better for a specific problem.

This workflow is discusses further in the fourth section,
where two experiments that use Detection Studio are ex-
plained.

D. Deployer

Deployer tool functionality is similar to Detector. It takes
as input images that can be fetch from different sources:
a video camera (webcam), a video or a ROS/ICE stream
and runs inferences in real time over those images using a
given object detection neural network, with its configuration
file if needed, class names and inferencer implementation
(information needed by the application). The main difference
between Detector and Deployer is that Detector works with
datasets of image files and Deployer accepts a broader variety
of input sources.

Once the desired network model and framework for infer-
encing have been chosen, the tool displays a video player that
plays the input while displaying the objects detected with their
class names in real time. If the input is a video file, two video
players are displayed, one of then with the raw video and the
other one with the video and detected objects, in a similar
manner as Detector. This video player offers flexibility to
pause and play it again or go back and forward in the playback
frame by frame. Another feature provided by Deployer is the
confidence threshold (minimum value to consider a detection)
that can be adjusted to different values to show the differences
in the inferences in real time. This will affect the real time
detections in the video, since if the threshold is set to a high
value the number of objects that will be found in a frame will
probably be lower and the other way around. While the video
plays, the console outputs the detected objects for each frame
of the video with the percentage of confidence and the time
spent on inferencing.

The predicted labels can be saved to an output file if needed,
setting an output folder in the GUI, which for example can

be used to create new images datasets with annotations from
a video record or webcam output.

In the group of tools that are used in parallel to the main
workflow, three tools are found: AutoEvaluator (command line
interface), Converter and Labelling. Each one is also provided
in a separated tab. They provide additional functionality to the
core of the application.

E. Command line interface (AutoEvaluator and Splitter)

In addition to the GUI offered by Detection Studio, it
also supports some command line based applications giving
the user flexibility when using the functionalities. To a user
with experience with the platform or used to work with
the command line it can be easier using the command line
applications directly instead of inserting the parameters in
the GUI. To use this functionality, a configuration file is
provided to the command line application instead of providing
the information directly via the GUI. In this configuration
file, the selected tool parameters are described. The core of
the different tools provided by the GUI application or the
command line application is the same.

The available applications are the same offered in the GUI
application except Deployer (Viewer, Detector, Evaluator and
Converter and available) and additionally AutoEvaluator and
Splitter.

AutoEvaluator is a tool based on Detector and Evaluator
functionality but it gives more power to the user since it can
evaluate multiple networks on a single or multiple datasets
in a single run, accelerating the experiments development
time. In the configuration file, the datasets and the networks
models to evaluate are defined. The results are then written
in an output file in csv format with the evaluation metrics
generated (same behaviour as the normal Evaluator tool). The
difference with the GUI provided functionality here is that
this functionality can evaluate multiple networks on multiple
datasets at the same time, only providing one file describing
the configuration. In the GUI, this operation is completed in
two different steps, which are separated.

Splitter is another tool offered using command line. It is
actually part of Converter functionality. It can split an input
dataset in two separated parts, train and test. To do so, Splitter
needs an input dataset, its implementation format, its object
class names, a ratio of separation and a directory to write
the new separated parts. The ratio sets the percentage of the
dataset that goes to the train set, leaving the remaining part to
the test set.

F. Converter

The datasets formats can differ from one specific imple-
mentation to another, so the purpose of this tool is to convert
a certain dataset format to another one. This tool receives as
input a dataset with the objects class names that are supported
by it and the type of dataset format it implements. It needs
the type of dataset as input to create a reader, a tool that
understands the format for a specific dataset. The format
implementation of the wanted converted dataset is also needed,
so Detection Studio creates a writer, another tool that knows
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how to write on a specific dataset format. Converter also gives
the opportunity of filtering by object classes if its provided
with a set of class names, so a user can select which object
classes to consider in the output dataset or even map the object
classes to writer classes in the output dataset. This means
that the in the case that the object class names in the input
and output dataset are different, the application tries to map
from the input class names to the output ones, considering the
common class name connection between the common datasets
and also considering synonyms.

The converted dataset can be splitted into test and train
parts. To do so, a train ratio is provided to the tool and it
divides the dataset in two separated parts. This option can be
useful to create divisions of the converted dataset.

After the conversion is completed, Viewer functionality can
be used to display the converted dataset and make sure the
process completed successfully or it also can be used with the
different tools provided by Detection Studio.

G. Labelling

Detection Studio provides the user with different tools
related with labelling a dataset. This functionality is offered
within Deployer tool, complementing it. This means that this
functionality is provided in the video player created when
using Deployer.

• The first feature is the possibility of adjust the bounding
boxes generated. The user can adjust the size and position
of a certain detection bounding box stopping the video
when the error is found and then adjusting the distribution
of the box to the object.

• The second feature is changing the class name for every
detected object. This means that a user can select a
detected bounding box in the video image and change
the class name in real time to one of the class names
provided or to a completely different one, also having
the chance of adjusting the probability of the selection.

• The third feature is related with the previous ones and
is adding new detections. The user can draw a new
bounding box in a stopped frame and then give this a
class name and probability.

H. Deployer as a ROS Node

Detection Studio Deployer tool functionality is also pro-
vided as a ROS Node, an extension application that com-
plements the ROS core. It can be used in a decoupled ROS
application easily. This node also needs a configuration file
with the same detailed information as the Deployer tool offered
in Detection Studio. Having that file, the node takes the input
stream and outputs the objects detected in each frame using
the object detection model specified in the configuration file.
This output is then written on real time, while live images
arrive. For each image, each object detected is specified with
its position in the image (bounding box) and the probabilities
for each prediction.

The Deployer as a ROS Node functionality makes it easier
for software developers to add the functionality offered in
Deployer to other projects where the core is ROS. An example

would be a project with ROS as core that uses live video
stream, detects the objects on the video and does something
based on the detected objects. The first experiment presented
in section IV could be an example of use for this functionality
in the future.

IV. OBJECTIVE COMPARISON

This section is dedicated to present real experiments con-
ducted using Detection Studio, showing its value in the
comparison of neural networks models and datasets. Two
experiments are described as examples. On the first one, a
traffic monitoring application (Smart-Traffic-Sensor), uses it
to compare networks and in the second one a comparison of
famous networks is conducted.

A. Smart-Traffic-Sensor evaluation

Smart-Traffic-Sensor is an application that monitors road
traffic using computer vision. This application receives an im-
age as input and generates as output an image with the objects
detected on it (see Figure 6) and some statistics. On a first
version called Traffic Monitor [18], traditional computer vision
techniques were used to evaluate the real camera video and
track the different vehicles on the image. After this version, a
new development approach was followed in [19], using state of
the art deep learning techniques in order to compare how the
performance improves from the previous approach to the new
one. In this new version, several deep neural networks were
trained using different frameworks (TensorFlow, Darknet and
Keras)in the task of detection and classification of vehicles
with different conditions, and then they were compared using
Detection Studio. In Table 1, the comparison of the different
networks used for the project is showed. The metrics used to
compare the performance of the networks were mAP, mAR
and the mean inference time in milliseconds. A value of
0.5 was considered as IoU threshold to consider a prediction
as having enough quality to be considered. In each row, a
different neural network is considered and in the columns the
output statistics are displayed. The experiment was conducted
on a computer without GPU. An other important remark to
consider is that all the experiments were conducted using the
same dataset created for this concrete application from traffic
images.

Fig. 6. Smart-Traffic-Sensor output.

Six neural networks are considered in the experiment,
divided in pairs that have been trained using a different frame-
work. For each pair of networks, one of then is a pretained
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Network mAP
(Overall)
(IoU=
0.5:0.95)

mAR
(Overall)
(IoU=
0.5:0.95)

Mean
inference
time (ms)

Keras SSD
VVG-16

0 0 0

Yolov3 0 0 14162
TensorFlow
SSD
MobileNet v2

0.0035 0.0373 142

Keras SSD
VVG-16
Pretrained

0.6709 0.7082 3194

Yolov3
Pretraine

0.8641 0.9385 16894

TensorFlow
SSD
MobileNet v2
Pretrained

0.3283 0.4231 76

Table 1. Comparison of networks using Detection Studio. Table extracted
from [19].

network and the second one is the same pretrained network
but trained again on the dataset created for the experiment.

In the case of TensorFlow framework, the pretrained net-
work is a SSD MobileNet v2 [20] trained with COCO dataset
. The Keras trained architecture is a SSD VGG-16 [21] and
a pretrained YOLO v3 [22] with Darknet network is also
considered in this comparison.

This experiment results show that the best performing neural
network (NN) is the YOLO network trained in the application
dataset, which is considered the top performing when using
the tool and is used as reference. Its performance is higher,
but the mean inference time is also higher, which could mean
that its more complex or deeper. The results also show that
the pretained networks performance is completely incorrect,
but a retrain on the collected dataset results on a great rise
in performance, resulting on networks which performance is
quite high, having the YOLOv3 network as the best perform-
ing one. The high mean inference time could be associated
with the use of a CPU instead of a GPU.

In this project, Detection Studio was used for a second type
of experiment. In the second experiment, Detection Studio
toolbox was used to compare the performance of the previous
version of the project (Traffic-Monitor) against the new version
(Smart-Traffic-Sensor). The dataset is divided in three different
slots for this experiment: the first one contains the high-
quality videos, the second one the videos where the weather
is bad and the third one the low quality videos. These slots
are the input for the best version of Smart-Traffic-Sensor,
Traffic-Monitor and the best performing network (YOLO,
as shown in the previous experiment), and the performance
results obtained by each system using Detection Studio are
compared. In Table 2 this experiment is displayed, with the
measures provided by application. The best performance is
obtained by Smart-Traffic-Sensor, which is quite better than
the previous version of the application and some points better
than the best performing NN alone.

System type mAP mAR
Smart-Traffic-
Sensor

0.8926 0.9009

Traffic-
Monitor

0.4374 0.5940

Best
perfoming
NN (YOLO)

0.8316 0.8966

Table 2. Comparison of systems in hight-quality videos using Detection
Studio. Table extracted from [19].

B. Comparison of well-known networks results using Detec-
tion Studio

In this second experiment, four different pretrained object
detection networks are evaluated using Detection Studio. The
network selection consider different popular object detection
methods [11]: SSD, Faster RCNN and YOLOv3. In the
process, Detector and Evaluator are the tools involved. The
results obtained are compared between them and with the ones
provided by the developers.

In this experiment, the dataset evaluated is COCO minival.
The experiments are run on a Nvidia GeForce GTX 1080 GPU.
The expected results are a mean inference time close to the one
provided by the developers and a mAP approximately equal
to that reported by developers.

The selected networks are an implementation of SSD Incep-
tion v2, Faster RCNN Resnet 101, YOLOv3 and Faster RCNN
Resnet 50 FPN. The first and second are downloaded from
the TensorFlow detection model zoo [23]. It offers a broad
variety of pretrained networks with metrics. For YOLOv3 the
configuration and weights are downloaded from the official
documentation and the fourth is included in PyTorch vision
model zoo [24]. With this set of different networks, the wide
variety of frameworks supported is shown in a real world
example. Involving in this experiment TensorFlow, PyTorch
and Yolo-OpenCV module.

In table 3, the results obtained are displayed. The mean
inference time is slightly higher for the experiments conducted
with the tool. This is probably due to the different GPU used.
TensorFlow’s pretrained networks and YoloV3 official results
were obtained using a Nvidia GeForce GTX TITAN X card
and PyTorch’s pretrained network using V100 GPUs.

Detection Studio considers both AP and AR in the evalu-
ation, providing these metrics to the user from a IOU of 0.5
to 0.95 and the mean of each metric for that range. The mAP
results are close in every experiment, having YOLOv3 as the
best performing network, as expected.

With this experiment, the use of Detection Studio for
validation of official neural network results is shown and the
broad variety of application for the tool box.

V. CONCLUSIONS

Detection Studio, an open source software application for
evaluation of object detection models has been presented in
this paper. The different tools included in the application for
working with object detection networks and datasets have
been described in detail and both the possibility of using its
GUI or command line application. With the two experiments
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Network mAP
(Overall)
(IoU=
0.5:0.95)

mAR
(Overall)
(IoU=
0.5:0.95)

Mean
inference
time (ms)

SSD
inceptionv2
pretrained
using Detec-
tionStudio

0.27 0.31 44

SSD
inceptionv2
pretrained

0.24 x 42

Yolov3 using
DetectionStu-
dio

0.47
(IoU=0.5)

0.5 (IoU=0.5) 31

Yolov3 0.55
(IoU=0.5)

x 29

Faster RCNN
resnet101
pretrained
using Detec-
tionStudio

0.37 0.43 122

Faster RCNN
resnet101
pretrained

0.32 x 106

Faster RCNN
resnet50 FPN
pretrained
using Detec-
tionStudio

0.35 0.46 102

Faster RCNN
resnet50 FPN
pretrained

37.0 x 59

Table 3. Comparison of networks using Detection Studio. The result x is
used when the official results do not give that information.

conducted, its applicability in real world scenarios has been
demonstrated. The application and source code is available at:
https://github.com/JdeRobot/DetectionStudio
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