
Dynamic Schema Hierarchies for an
Autonomous Robot

José M. Cañas1 and Vicente Matellán1

Universidad Rey Juan Carlos, 28933 Móstoles (Spain)
{jmplaza,vmo}@gsyc.escet.urjc.es

Abstract. This paper proposes a behavior based architecture for robot
control which uses dynamic hierarchies of small schemas to generate au-
tonomous behavior. Each schema is a flow of execution with a target, can
be turned on and off, and has several parameters which tune its behavior.
Low level schemas are woken up and modulated by upper level schemas,
forming a hierarchy for a given behavior. At any time there are several
awake schemas per level, running concurrently, but only one of them
is activated by environment perception. When none or more than one
schema wants to be activated then upper level schema is called for arbi-
tration.This paper also describes an implementation of the architecture
and its use on a real robot.

1 Introduction

It is not science fiction to see a mobile robot guiding through a museum1, navi-
gating in an office environment, serving as a pet2, or even playing soccer3. Today
we’ve got best sensors and actuators ever. But how are they combined to gen-
erate behaviors? The hardware improvements have made clear the importance
of a good control architecture, making it a critical factor to obtain the goal of
autonomous behavior.

Robot control architecture can be defined as the organization of robot sen-
sory, actuation and computing capabilities in order to generate a wide set of
intelligent behaviors in certain environment. Architectures answer to a main
question: what to do next? (action selection), as well as another questions like
what is interesting in the environment? (attention), etc. Advances in architecture
will lead to even more complex behaviors and increasing reliable autonomy.

In next section main proposals in robot control architectures will be reviewed.
Section 3 presents our approach, Dynamic Schema Hierarchies, including its
action selection mechanism, its reconfiguration abilities and how perception is
organized in this proposal. The software architecture developed to implement
DSH is commented on section 4. Some conclusions and future lines end the
paper.
1 Minerva: http://www.cs.cmu.edu/∼minerva
2 Aibo:http://www.aibo.com
3 Robocup: http://www.robocup.org/



2 José M. Cañas et al.

2 Robot Control Architectures

2.1 Deliberative Architectures

Symbolic AI has influenced on mobile robotics from its beginnings, resulting in
the deliberative approach. This makes emphasis on world modeling and planning
as deliberation for robot action. In mid eighties this was the main paradigm for
behavior generation. The control architecture was seen as an infinite information
loop: Sense-Model-Plan-Act (SMPA). In modeling step sensor data are fused into
a central world representation, which stores all data about environment, maybe
in a symbolic form. Most robot intelligence lie in the planning step, where a
planner searched in the state space and found a sequence operators to reach
some target state from the current one. Act were seen as a mere plan execution.

There was a single execution flow and a functional decomposition of the
problem, where the modules called functions from other modules (vision module,
path planning module).

2.2 Behavior Based Architectures

Rooted in connectionist theories in mid eighties new approaches which exhibited
impressive demos on real robots were proposed. The common factor of such works
was the distribution of control in several basic behavior units, called levels of
competence, schemas, agents, etc.

Each behavior unit is a fast loop from sensor to action, with its own partial
target. There is no central representation, each behavior processes its own sen-
sory information. Additionally, there are no explicit symbols about the environ-
ment. The emphasis is put in real world robots (embodiment) and in interaction
with the environment (situated).

Distribution of control poses the additional problem of behavior coordina-
tion. Each behavior has its own goal, but usually enters in contradiction with
another one. How is the final actuation calculated (action selection)?. There are
two major paradigms: arbitration and command fusion. Arbitration establishes a
competition for control among all the behaviors and only the winning one deter-
mines the final actuation. Priorities, activation networks from Pattie Maes [13]
and state based arbitration [3] fall in this category. Command fusion techniques
merge all the relevant outputs in a global one that take into account all behavior
preferences. Relevant approaches in command fusion include superposition[2],
fuzzy blending [15] and voting [14]. Coordination is always a difficult issue.

We will present here in more detail two foundational works leaving apart
extensions and refinements. They contain main relevant ideas of the approach.

Brook’s subsumption In 1986 Rodney Brooks proposed a layered decompo-
sition of behavior in competence levels [6]. Since then many robots have been
developed using this paradigm (Herbert, Toto), showing a great proficiency in
low level tasks such as trash cans collecting, local navigation, etc. A competence
level is an informal specification of a desired class of behaviors for a robot. Each



Dynamic Schema Hierarchies for an Autonomous Robot 3

level is implemented by a net of Finite State Machines (FSM), which have low
bandwidth communication channels to exchange signals and small variables.

Low levels provide basic behaviors, i.e. avoid obstacles, wander, etc.. More
refined behaviors are generated building additional levels over the existing ones.
All levels run concurrently, and upper levels can suppress lower level outputs
and replace their inputs. This is called subsumption and gives name to the
architecture. This action selection mechanism uses fixed priorities hardwired in
the FSM net.

Arkin’ schemas Following Arbib ideas [1], Ronald Arkin proposed a decompo-
sition of behavior in schemas [2]. His architecture, named AuRA, contains two
types of units: motor schemas and perceptive ones. “Each motor schema has an
embedded perceptual schema to provide the necessary sensor information” [2].

For instance, the output of a navigation motor schema is a vector with the de-
sired velocity and orientation to advance. The navigation behavior was obtained
by the combination of avoid-moving-obstacles, avoid-static-obstacles, stay-on-
path and move-to-goal schemas. Each schema can be implemented as a poten-
tial field, delivering a force vector for each location in the environment. The
commanded movement is the superposition of all fields [2].

Extensions to Arkin’s approach include the sequencing of several complex
behaviors. A Finite State Acceptor is used for arbitration, where each state
means the concurrent activation of certain schemas and triggering events are
defined to jump among states [3].

2.3 Hybrid approaches

The trend in last years is an evolution to hybrid architectures that combine
the strengths of both paradigms. For instance, planning capabilities and fast
reactivity, because they both are important for complex tasks on real reliable
robots.

A successful approach is the layered 3T-architecture [5], based on Firby’s
RAP [9]. The control is distributed in a fixed hierarchy of three abstraction levels
that run concurrently and asynchronously. Upper layer includes deliberation over
symbolic representations and makes plans composed of tasks. The intermediate
level, called sequencer, receives such tasks and has a library of task recipes
describing how to achieve them. It activates and deactivates sets of skills to
accomplish the tasks. Skills compose the reactive layer. Each one is a continuous
routine that achieve or maintain certain goal in a given context (it is situated).

3 Dynamic Schema Hierarchies

We propose an approach named Dynamic Schema Hierarchies (DSH) that is
strongly rooted in Arbib [1] and Arkin ideas [2]. The basic unit of behavior is
called schema. Control is distributed among a hierarchy of schemas.



4 José M. Cañas et al.

An schema is a flow of execution with a target. It can be turned on and
off, and accepts several input parameters which tune its own behavior. There
are perceptual schemas and motor schemas. Perceptual ones produce pieces of
information that can be read by other schemas. These data usually are sensor
observations or relevant stimuli in current environment, and they are the input
for motor schemas. Motor schemas access to such data and generate their out-
puts, which are the activation signal for other low level schemas (perceptual or
motor) and their modulation parameters.

All schemas are iterative processes, they perform their mission in iterations
which are executed periodically. Actually, the period of such iterations is a main
modulation parameter of the schema itself. Digital controllers are an example of
such paradigm, they deliver a corrective action each control cycle. Schemas are
also suspendable, they can be deactivated at the end on one iteration and they
will not produce any output until they are resumed again.

A perceptual schema can be in only two states: slept or active. When
active the schema is updating the stimuli variables it is in charge of. When
slept the variables themselves exist, but they are outdated. The change from
slept to active or vice versa is determined by upper level schemas.

For motor schemas things are a little bit more tricky, they can be in four
states: slept, checking, ready and active. A motor schema has precon-
ditions, which must be satisfied in order to be active. checking means the
schema is awake and actively checking its preconditions, but they don’t match
to current situation. When they do, the schema passes to ready and tries to
win action selection competition against other ready motor schemas in the same
level and so become active. Only active schemas deliver activation signals and
modulation parameters to lower level schemas.

Schemas can be implemented with many different techniques: simple rules
from sensor data, fuzzy controllers, planners, finite state machines, etc. The
only requirement is to be iterative and suspendable. In the case of a planner, the
plan is enforced to be considered a resource, an internalized plan [14] instead
of a symbolic one. This is because the schema has to deliver an action proposal
each iteration.

3.1 Hierarchy

Schemas are organized in hierarchies. These hierarchies are dynamically built.
For instance, if an active motor schema needs some information to accomplish
its target then it activates relevant perceptual schemas (square boxes in figure
1) in order to collect, search, build and update such information. It may also
awake a set of low level motor schemas (circles) that can be useful for its purpose
because implement right reactions to stimuli in the environment. It modulates
them to behave according to its own target and put them in checking state.
Not only the one convenient for current situation, but also all the lower motor
schemas which deal with plausible situations. This way low level schemas are
recursively woken up and modulated by upper level schemas, forming a unique
hierarchy for a given global behavior.



Dynamic Schema Hierarchies for an Autonomous Robot 5

At any time there are several checking motor schemas running concurrently
per level, displayed as solid circles in figure 1 (i.e. schemas 5, 6 and 7). Only one
of them per level is activated by environment perception or by explicit parent
arbitration, as we will see on 3.2. The active schemas are shown as filled circles
in figure 1 (1, 6 and 15). For instance motor schema 6 in figure 1 is the winner of
control competition at the level. It awakes perceptual schemas 11, 16 and motor
schemas 14, 15, and sets their modulation parameters.

Fig. 1. Schema hierarchy and pool of slept schemas

Schemas unused for current task rest in a pool of schemas, suspended in
slept state, but ready for activation at any time. They appear as dashed squares
and circles in figure 1 (schemas 8, 9, 10, 12, 13, 17, 18, etc.). Actually, schemas
10, 12, and 13 are one step away from activation, they will be awaken if schema
5 passed to active in its level.

Sequence of behaviors can be implemented with DSH using a motor schema
coded as a finite state machine. Each state corresponds to one step in the se-
quence, and makes a different set of lower schemas to be awaken. It also activates
the perceptual schemas needed to detect triggering events that change its inter-
nal state.

3.2 DSH Action Selection

At any time the active perceptual schemas draw a perceptual subspace (atten-
tion subspace) that corresponds to all plausible values of relevant stimuli for each
level (displayed as white areas in figure 2). It is a subset of all possible stimuli,
because it doesn’t include the stimuli produced by slept perceptual schemas
(shadowed area in figure 2). This subspace is partitioned into activation regions,
which are defined as the areas where the preconditions of a motor schema are
satisfied. Parent schema sets its child motor schemas activation regions to be
more or less non overlapping.

A given situation corresponds to one point in such subspace, and may lie in
the activation region of one motor schema or another. Only the corresponding
motor schema will be activated, so situation activates only one schema per level
among checking ones. This is a coarse grained arbitration based on activation
regions.



6 José M. Cañas et al.

Fig. 2. Perceptual space, attention subspace and activation regions

Despite such coarse grained arbitration may appear situations where more
than one motor schema for a level satisfy their preconditions (activation regions
overlap in figure 2). Even situations where none of them are ready for activation,
that is, not covered by any activation region (absence of control). Child schemas
detect such control failures checking their brothers’ state, and then parent is
called for fine grained arbitration. Parent can change children parameters or
just select one of them as the winner of control competition is its level. This is
similar to context dependent blending [15], the parent schema knows the context
for that arbitration, and so it can be very behavior specific.

The action selection mechanism in DSH has a distributed nature. There is no
central arbiter as in DAMN [11], just parent and children. There is a competition
per level, that occurs once every child iteration. This allows fast reconfiguration
if situation changed.

It is a commitment between purposiveness top-down and reactive motiva-
tions. Only schemas awaken from upper level are allowed to gain control, but
finally perceived situation chooses one and only one winner among them per
level. The winner schema has double motivation, task-oriented and situation-
oriented. Schemas without any of them don’t add enough motivation for their
activation and remain silent, checking or slept. Activation flows top-down in
the hierarchy, similar to architecture proposed by Tinbergen and Lorenz [12] for
instinctive behavior in animals. Addition of motivation and lateral inhibition
among same level nodes also appear in such ethological architectures.

3.3 Perception

In DSH motor schemas make their decisions over information produced by per-
ceptual schemas. Perception is distributed in perceptual schemas, each one may
produce several pieces of such information. They exist because at least one mo-
tor schema eventually needs the information they produce. It can be sensor data
that the schema collects, or more complex stimuli about environment or the
robot itself built by the schema (for instance a map, a door, etc.). All the events
or stimuli that we want to take into account in the behavior require a computa-
tional effort to detect and perceive them. DSH includes them in the architecture
as perceptual schemas, each one searches for and describes its stimulus when
present, updating internal variables.



Dynamic Schema Hierarchies for an Autonomous Robot 7

Due to hierarchical activation in DSH, perception is situated, and context
dependent. Perceptual schemas can be activated at will. The active ones fo-
cus only on stimuli which are relevant to current situation or global behavior
(attention). This filters out huge amounts of useless data from the sensors, i.e.
shadowed area in figure 2. It makes the system more efficient because no com-
putational resource is devoted to stimuli not interesting in current context.

There can be symbolic stimuli if they are convenient for the behavior at
hand. These abstract stimuli must be grounded, with clear building and updating
algorithms from sensor data or other lower level stimuli. Actually, different levels
in perceptual schemas allow for abstraction and compounded stimuli: perceptual
schemas can have as input the output of other perceptual schemas.

3.4 Reconfiguration

For a given task certain hierarchy generates the right robot behavior. The net
of schemas builds relevant stimuli from sensor data and reacts accordingly to
environment state. If the situation changes slightly, currently active schemas
can deal with it and maybe generate a slightly different motor commands. If the
situation changes a little bit more maybe one active schema is not appropriate
anymore and the environment itself activates another checking motor schema,
that was ready to react to such change.

In the case of bigger changes they cause a control conflict at a certain level.
In that case, the parent is called for arbitration and may decide to sleep useless
schemas, wake up another relevant ones, change its children modulation, or prop-
agate the conflict upwards forcing a hierarchy reconfiguration from upper level.
The mechanism to solve conflicts may vary from one schema to another (fuzzy
logic, simple rules, etc.). This reconfiguration may add new levels or reduce the
number of them. This can be seen as a dynamic controller, composed of several
controllers running in parallel and triggering events that change completely the
controllers net. Each event requires a corresponding perceptual schema to detect
it. This is similar to discrete state arbitration from [3], but accounts for hierarchy
of schemas not only for a single level.

The levels are not static but task dependent as in TCA task trees [16]. These
changes must be designed to work properly. Schemas don’t belong to any level
in particular. They can be located in a different level, probably with other pa-
rameters, for another global behavior. This way the schemas can be reused in
different levels depending on the desired final behavior.

4 Implementation issues

We have used a small indoor robot, composed of a pioneer platform, and a off-
the-shelf laptop under Linux OS (figure 3). The robot is endowed with a 16 sonar
belt, bumpers, and two wheel encoders for position estimation. We have added a
cheap webcam connected through USB to the computer. Two DC motors allow
robot movements.



8 José M. Cañas et al.

Fig. 3. Supercoco, our robot and Saphira c© simulator

A software architecture has been developed to test the cognitive architec-
ture proposed. All our code is written in ANSI-C. We have developed two
socket servers which make available camera images, motor commands, raw sonar,
bumper, and encoder data to client programs through message protocol. These
servers can be connected both to robot simulator (Saphira environment [10]) or
real platform, so the same control program can run seamlessly on real robot or
on the simulator (without vision). The use of a simulator is very convenient for
debugging. Additionally, the laptop is wireless connected, so the control program
for real robot could run on-board, or in any other computer.

The DSH control program is a single client process, but with many kernel
threads inside. Each schema is implemented as a thread (we use standard Posix
threads on Linux) which periodically executes an iteration function. Communi-
cation between different threads is done through regular variables, because all
the threads share virtual memory space. Motor schemas read variables updated
by perceptual schemas, and low level schemas read their own parameters set by
a higher level schema.

To implement slept state we have used pthread condition variables.
Each schema has an associated condition variable, so it can sleep on it when
needed consuming no CPU cycles. Any schema may ask another one to be halted
writing on a shared variable. The next time that recipient schema executes its
iteration it will be suspended on its condition variable. The schema can be
resumed when another thread signal on its condition variable. Typically the
parent schema sets the child parameters and then wakes it up signalling on its
condition variable.

Activation regions and arbitration are implemented as callback functions.
Every iteration the motor schema calls its activation region function to check
whether current situation matches its preconditions or not. Parent schema de-
fines the activation region functions for each of its children. Additionally on each
iteration the motor schema also checks the state of its brothers in the level to
detect control overlaps or control absences. In such case, arbitration functions
are invoked to solve the conflict.



Dynamic Schema Hierarchies for an Autonomous Robot 9

4.1 Example

As an example we describe the gotopoint behavior developed using DSH: the
robot reaches its destination point in the local environment and makes detours
around obstacles if needed. It has been implemented as a parent motor schema
that activates two perceptual schemas and three motor ones: stop, followwall
and advance.

Stop schema stops the robot if obstacles are too close. This is the default
schema in case of control absence. Followwall schema accepts sonar data and
moves the robot parallel to closest obstacle. Advance schema moves it in certain
orientation, faster if there are no obstacle in such angle, and turning to get
it if needed. Activation regions are set in parent schema: if there is an obstacle
closer than 100 cm in goal angle then followwall schema is activated, otherwise
advance schema sends its motor commands. If a sudden obstacle gets closer than
20 cm then stop schema wins control competition.

First perceptual schema collects sonar and encoder data, and second one
calculates distance to closest obstacle in goal angle. Actually it can calculate
such distance in any orientation, but parent schema modulates it to do it in
goal one. Parent schema read encoder data and computes relative distance and
orientation to destination from current robot location. When detects the robot
is over the target point it suspends all its child schemas.

Followwall schema alone makes the robot to follow walls. So this is an
example of schema reusing. Used with a different activation region an together
with other schemas can help to achieve another global behavior.

5 Conclusions

A new architecture named DSH has been presented, which is based on dynamic
hierarchies of schemas. Perception and control are distributed in schemas, and
grouped in abstraction levels. These levels are not general but task dependent
which allow greater flexibility than fixed hierarchies. Perceptual schemas build
relevant information pieces and motor schemas take actuation decisions over
them in continuous loops.

It shares features with both deliberative and behavior based approaches.
It may use symbolic stimuli when needed, directly grounded on sensor data or
even on other stimuli, growing in abstraction. Also the absence of a central world
model overcomes the SMPA bottleneck and avoids the need for such complete
model before starting to act. The perception is task oriented, which avoid useless
computation on non interesting data.

Timely reactions to environment changes are favored by low level loops and
fast arbitration and reconfiguration capabilities. Deliberative schemas can be
used too, but they are enforced to deliver an action recommendation each itera-
tion. This prevents the use of plans as programs and enforces its use as resources
for action.

A distributed arbitration is used for schema coordination. Each schema is
the arbiter for its children, defining non overlapping activation regions. This



10 José M. Cañas et al.

combines top down (target oriented) and bottom up (environment oriented)
motivations for action selection.

The architecture is extensible. Adding a new schema is quite easy, it requires
to define the schema parameters and its iteration, arbitration functions. Also all
previous schemas can be reused as building blocks for new behaviors.

We are working to perceive more abstract stimuli, specially vision based (in
particular doors) and to extend the schema repertoire with more abstract ones,
as narrow door traversal.

References

1. Arbib, M.A., Liaw, J.S.: Sensorimotor transformations in the worlds of frogs and
robots. Artificial Intelligence, 72 (1995) 53–79

2. Arkin, R.C.: Motor Schema-Based Mobile Robot Navigation. The International
Journal of Robotics Research, 8(4) (1989) 92–112

3. Arkin, R.C., Balch, T.: AuRA: Principles and Practice in Review. Journal of Ex-
perimental and Theoretical Artificial Intelligence, 9(2-3) (1997) 175–188

4. Ali, K.S., Arkin, R.C.: Implementing Schema-theoretic Models of Animal Behavior
in Robotic Systems. Proceedings of the 5th International Workshop on Advanced
Motion Control, AMC’98. IEEE, Coimbra (Portugal) (1998) 246–253

5. Bonasso, R.P., Firby, R.J., Gat, E., Kortenkamp, D., Miller, D.P., Slack, M.G.:
Experiences with an Architecture for Intelligent, Reactive Agents. Journal of Ex-
perimental and Theoretical Artificial Intelligence, 9(2) (1997) 237–256

6. Brooks, R.A.: A Robust Layered Control System for a Mobile Robot. IEEE Journal
of Robotics and Automation, 2(1) (1986) 14-23

7. Corbacho, F.J., Arbib, M.A.: Learning to Detour. Adaptive Behavior, 5(4) (1995)
419–468

8. Firby, R.J.: Building Symbolic Primitives with Continuous Control Routines. Pro-
ceedings of the 1st International Conference on AI Planning Systems AIPS’92.
(1992) 62–69

9. Firby, R.J.: Task Networks for Controlling Continuous Processes. Proceedings of
the 2nd International Conference on AI Planning Systems AIPS’94. AAAI (1994)
49–54

10. Konolige, Kurt: Saphira Software Manual. SRI International, 2001
11. Langer, D., Rosenblatt, J.K., Hebert, M.: A Behavior-Based System for Off-Road

Navigation. IEEE Journal of Robotics and Automation, 10(6) (1994) 776-782
12. Lorenz, K.: Foundations of Ethology. Springer Verlag (1981)
13. Maes, P.: How to Do the Right Thing. Connection Science Journal (Special Issue

on Hybrid Systems), 1(3) (1989) 291–323
14. Payton, D.W., Rosenblatt, J.K., Keirsey, D.M.: Plan Guided Reaction. IEEE

Transactions on Systems Man and Cybernetics, 20(6) (1990) 1370–1382
15. Saffiotti, A.: The uses of fuzzy logic in autonomous robot navigation. Soft Com-

puting, 1 (1997) 180–197
16. Simmons, R.G.: Structured Control for Autonomous Robots. IEEE Transactions

on Robotics and Automation, 10(1) (1994) 34–43
17. Tyrrell, T.: The Use of Hierarchies for Action Selection. Journal of Adaptive Be-

havior, 1(4) (1993) 387–420


