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Abstract—Artificial vision provides a remarkable good sensor
when developing applications for intelligent spaces. Cameras are
passive sensors that supply a great amount of information and
are quite cheap. This paper presents an application for elderly
care that detects falls or faints and automatically triggers the
health alarm. It promotes the independent lifestyle of elder
people at their homes as the monitoring application will call
for timely health assistance when needed. The system extracts
3D information from several cameras and performs 3D tracking
of the people in the intelligent space. Two evolutive multimodal
algorithms have been developed to continuously estimate the 3D
position in real time, one based on 3D points and another one
based on 3D prisms. Both learn the visual appearance of the
persons and use color and movement as tracking cues. The
system has been validated with some experiments in different
real environments.

I. INTRODUCTION

Over one-third of elders 65-years-old fall each year [8].
The falls usually result in serious injuries like hip fracture,
head traumas, etc. The rapid health assistance in case of fall
may reduce the severity of the injuries. The care of elderly
implies a continuous monitoring of their daily tasks. In many
cases their own families or the social services are in charge
of their care at their own homes or in specialized institutions.
But even counting with the necessary amount of caregivers, it
is impossible to watch these patients continuously in order to
detect any incident as fast as possible. The problem worsens
for people who live alone at home, as they need much more
this type of assistance in case of emergency.

In the context of fall detection and prevention there are
several technological products in the market. First, traditional
monitoring systems as pendants or wristbands worn by the
patients [6], who must activate such devices when needed,
usually pressing a button. The system sends an emergency call
to the appropriate health service. These traditional systems
require human intervention to report an alarm or ask for
help, and user’s potential non-compliance (both intended and
unintended) is a potential problem. In certain situations, for
instance a faint that causes a fall to the floor, it will not be
possible for the patient to activate the device, and that can
be dangerous as the severity of the damage may increase with
the time at the floor without health assistance. A second group

of wearable systems relies on accelerometers and tilt sensors
to automatically detect the falls [9]. Carrying this devices
continuously may become a nuisance for the users.

Other solutions are embedded in the environment, they
use external monitoring devices and then, the user’s compli-
ance is not required. There are systems which are based on
floor-vibrations [12], on infrared array detectors [11] and on
cameras. Several vision based systems use omni-directional
cameras [10], [7]. In particular [7] looks for activity patterns,
models the patient’s behavior and detecting abnormal activ-
ities. Other works use optic flow as the main visual feature
[14] or the motion history and human shape variation [13].

In this article we introduce a system with a set of regular
cameras that monitors the patient movement automatically.
When it watches some anomalous patient behavior such as
a falling to the floor, the system automatically can send an
emergency call for immediate health assistance. The system
extracts the three-dimensional position of people at the scene
and tracks them from the video streams of several cameras.
Two evolutive multimodal tracking algorithms have been de-
veloped to continuously estimate the 3D position in real time.
The first one uses 3D points and it is described in detail in
section III. The second one is based on 3D prisms and it is
explained in section IV. Some experiments in real scenarios
are presented in section V, and a brief discussion ends the
paper.

II. FALL DETECTION APPLICATION BASED ON 3D
POSITION

For monitoring applications, a great part of the useful
information in the work space is mainly three-dimensional,
like the relative position of an object opposed to another or
the movement of a person. One of the main problems in the
identification of dangerous situations using vision sensors is
their two dimension nature. For instance, when using a flat
image to detect whether a person is near to an ignited oven, a
window, a door, etc or not, there is ambiguity in the estimation
of the distance, so we could easily make a mistake. High risk
situtions are better described, and in a more simple way, in
3D spatial terms.



Fig. 1. Block diagram of the developed application

We have built an application, named eldercare, whose main
blocks are depicted at Fig. 1. First, the image capture block is
responsible of getting the frames from several camera sensors
along the monitored area. Analog cameras, wireless cameras,
firewire and regular USB cameras are supported. Second, the
visual 3D people tracking block extracts three-dimensional
information in real time from the images, tracking the 3D
position of every person at the monitored zone. It provides
the current 3D position of every person at the area to the fall
detection block. This third block defines a set of alarm rules
which take into account 3D position and time conditions to
trigger a health assistance alarm. For instance, if the position
of a person is close to the floor (less than 20 cm) for a minute
or more then the fall condition is triggered and an alarm is
signaled to the communications block. This fourth block is
responsible of sending such alarm to the health services via
SMS, MMS, automatic phone call, etc.

In addition, a graphical interface has been developed, but
only for debugging purposes. The system itself presents no
window at operation time and records no single image to keep
privacy of the monitored people. It has been implemented with
a set of low cost cameras and a conventional PC. Two related
3D estimation techniques have been carefully designed to run
at real time on commodity hardware, they will be described
in detail in sections III and IV.

III. EVOLUTIVE ALGORITHM FOR 3D PEOPLE TRACKING
WITH 3D POINTS

An evolutive multimodal algorithm has been developed
to track the 3D people position in real time. The system
needs several (two, three of four) calibrated cameras along
the monitored area and uses simple visual features like color
and motion to keep track of the persons.

The evolutive algorithm manages a population of hundreds
of individuals, which are possible person locations (X,Y, Z).
Each individual is a 3D hypothesis and has a fitness associated
which indicates its likelihood of being a good hypothesis, that
is, a real 3D person location. Such fitness is computed from
the images using color and motion in the frames, as shown in
section III-C.

The algorithm starts with a random population of individu-
als scattered along the 3D monitored volume. Then repeatedly

runs two steps until the populations converge to the problem
solutions. The first step is the fitness computation. Individuals
with high fitness value have more chances of passing to
the next generation. The second step is the generation of a
new population using genetic operators as random mutation,
elitism, thermal noise, crossover and abduction from current
images. Hopefully the evolution and the improvement of the
population achieve new generations that are increasingly closer
to the problem solution, that is, that better capture the 3D
people locations.

The algorithm resembles the particle filters applied in other
vision-based tracking systems [3], [4], but does not hold the
Bayes and MonteCarlo probabilistic requirements and so it
does not have the convergence assured. Instead of particles
we have individuals, instead of posterior probability the indi-
viduals have fitness. The algorithm can be seen as a search
algorithm in 3D euclidean space, and has the flexibility of
the evolutive algorithms where ad-hoc operators and fitness
functions can be developed to improve the performance of the
system. In constrast with many works in the visual tracking
literature, the proposed system does not track the persons in
the images neither merges the 2D estimations into a 3D one. It
looks for people directly in 3D, and the images are used only
as observations which feed and validate the 3D hypothesis.
This way the 2D clustering is avoided.

A. Exploration race

The whole population of the evolutive algorithm is divided
into an exploration race and several tracking races. The
exploration race looks for persons in the monitored area
performing the coarse-grained search, and each tracking race
follows one single person, performing the exploitation or fine-
grained search of the algorithm.

The explorer race consists of 400 3D individuals which
search for movement in the whole space covered by cameras.
At each iteration of the algorithm a new explorer population
is generated through random mutation and abduction genetic
operators. Random mutation creates hypothesis sampling a
uniform probability distribution between the Xmin and Xmax,
Ymin and Ymax, Zmin and Zmax of the work space.

As can be seen in Figure 2, abduction operator puts new
individuals in 3D areas in the projection line of pixels where
image motions has been detected. First, images are filtered
looking for pixels with motion, as it will be explained at
section III-C, mainly using background substraction. These
motion pixels are sampled, and for each selected one the 3D
ray which projects into such pixel is computed using known
extrinsic and intrinsic parameters of the corresponding camera.
Several new explorer individuals are located in 3D along
that ray, sampling a uniform distribution between 0 and the
maximum depth of the ray (it depends on the work space). This
way the explorer search is not so blind, and its convergence
to interesting 3D areas is speeded up.

In the case of detecting a 3D area with significant motion,
a new tracking race will be created around that location if no
current tracking race covers it. The explorer individuals are



Fig. 2. Abduction operator generates individuals in the 3D backprojection
ray of pixels where motion has been detected

evaluated using the motion fitness defined at section III-C and
only those above a fitness threshold are allowed to generate
a new tracking race. In addition, those explorers close to the
3D position of an existing tracking race are inserted into such
race if their fitness is better than the worst current individual
of such race. This way new races are created only in areas
found by the explorers that are not covered by any current
tracking race.

B. Tracking races

Each race is dedicated to the 3D tracking of a single person
and it is composed of around 50 3D individuals. The algorithm
achieves multimodality using one tracking race per person, so
in the case of four people at the room, the algorithm will
create four races, as in Figure 3. Each one learns the visual
appearance of the person it is following, as will be explained
at III-D. It also accounts for the spatial movements of such
person and its 3D hypothesis follow such displacements. All
the individuals of a race are continuously validated in all
the cameras computing their fitness. They are projected into
the camera images and the algorithm checks whether such
projecting pixel lies in a patch with the race color or not
and checks whether it lies in a patch where motion has been
detected. The individuals are ordered by fitness and the race
3D position is computed as the weighted sum using the fitness
as weight. This way only the individuals which compatible
with the images define the 3D person position estimation,
without bias of the bad individuals.

New generations of the tracking races are generated by
elitism and thermal noise operators. By elitism, the best
individuals directly pass without change to the next generation
as they are good estimations of person position so far. Thermal
noise operator adds gaussian 3D noise in X-Y-Z coordinates
to the position of the individuals and generates new ones
in the vicinity. This operator is useful to follow the person
movement, as it will generate individuals in the new position
of the person as she moves in the monitored area. It will

Fig. 3. One tracking race is generated per person in the monitored area

also generate new hypothesis in bad positions around the
current one, but these will be descarded as they will not get
enough fitness to survive. The particular number of individuals
generated by elitism and by thermal noise on each iteration is
a parameter of the system, and must be tuned.

The races are born from the most promising explorers, as
previously seen, but they have to gather enough fitness to
survive. If the best individual of a tracking race does not
reach a fitness threshold that means that it has lost its person,
and such race disappears. This way, the number of tracking
races is dynamic, and so the number of total individuals in
each generation. There always be one exploration race (400
individuals) and the number of tracking races (50 individuals
each) depends on the number of persons in the monitored area.
At the beginning there is no one but as soon as a person shows
up in the scene the algorithm will create a new race to track
her 3D position.

C. Fitness function from images

Fitness computing is composed of motion fitness and color
fitness. The explorer quality is calculated based only on motion
information. In contrast, once a tracker race has been initiated,
the system learns automatically the color of its person and its
clothes. Then, a color fitness is also computed for each of the
individuals of the tracking race, and both visual clues, motion
and color, are taken into account.

1) Motion fitness and motion detection: For each explorer
individual i its fitness hi is defined in equation (1), where
the summatory extends to all the cameras of the system and
P (movi|imgm) is computed as follows. The 3D individual i =
(X,Y, Z) is projected on camera m and so, Pixi is computed.
The number of pixels k with motion in a 5x5 neighborhood
around Pixi is calculated and then the equation (2) applied.

hi =
∑

P (movi | imgm) (1)

P (movi|imgm) =
max(1, k)

25
(2)



Fig. 4. Input image from one of the cameras (left) and computed motion
image (right).

A motion image is computed at every iteration of the
algorithm to compute this motion fitness. When an object is
in movement, some pixels change their values. The system
detects these changes through comparison of consecutive
frames and through comparison with the learned background.
The background is estimated for each camera of the system
as a weighted sum of frames at defined intervals (see equation
3), where α is in range [0,1] (0.2 in our settings) and β
indicates time interval for background updating (4 minutes in
our settings). Frame comparison is just the absolute difference
between two consecutive images. If a pixel difference is
above a predefined threshold, that pixel passes the motion
filter as it has a significant difference with regard to previous
frame or background image. Figure 4 displays an example of
motion image computed comparing the current frame with the
previous one and the learned background image.

backgrd(t) = α backgrd(t− β) + (1− α)frame(t) (3)

2) Color fitness: Now let be i the individual of a tracking
race, its fitness hi is calculated following the equation (4).
P (movi | imgm) is computed in the same way as for explorers
and P (colori | imgm) is computed as follows. The i 3D
individual is projected on camera m and so, Pixi is computed.
The number of pixels c inside a 5x5 neighborhood around
Pixi that matches the color filter for that tracking race is
calculated and then equation (5) applied.

hi =
1
2
(
∑

P (movi | imgm) +
∑

P (colori | imgm)) (4)

P (colori|imgm) =
max(1, c)

25
(5)

Figure 5 shows an input image filtered with the color of one
of the tracking races. This filtered image will serve to compute
the color fitness of all the individuals of that race. Each race
has its own color description in the HSV color space, as it
will be detailed in section III-D.

Fig. 5. Input image (left) and image filtered with the color of one tracking
race (right).

D. Learning of color

People tracking based only on movement detection does not
solve the problem when the person stops and remains still.
Eldercare system learns object color to keep the track in this
situation, because people usually sit down for a long time in
their daily lives and they must not disappear in the monitoring
application.

Fig. 6. Color learning based on H histogram

The representative color of a race is stored in Hue-
Saturation-Value (HSV) color space, as Hrace, Srace and Vrace

plus one tolerance on each color channel. The system uses
motion filter to learn the person color at the very beginning.
When the new race is created, the system takes all the pixels
passing the motion filter as samples for building a HSV
histogram, which is associated to the tracking race. The bins
of the HSV histogram with enough samples are taken as the
definition of the race color. For instance, Figure 6 shows the
part of an input image where most of the explorers project,
and how their color mainly fall in the blue bin. That is the
only bin with a percentage above the threshold (35%), and so,
the only one that defines the color of that race, which will
cover the blue T-shirt of the person.

To cope with changing lightning conditions the color of a
race is periodically redefined from the 3D individuals of the
race with highest fitness, using again the method described
above.

IV. EVOLUTIVE ALGORITHM FOR 3D PEOPLE TRACKING
WITH 3D PRISMS

A second algorithm has been also developed for 3D people
tracking. It is very similar to the previous one, but uses 3D



prisms instead of 3D points as individuals of the evolutive
algorithm, and so, the genetic operators and fitness function
are quite different. The color learning and the computation of
movement in the images is exactly the same as in the previous
algorithm.

Fig. 7. Each person in the monitored area is tracked with a 3D prism

The individuals of this second algorithm are square prisms
in 3D, like those in Figure 7. Each individual is defined by the
tuple (X,Y, h, s), where (X,Y ) stand for its position in the
ground, h stands for its height and s for the size of its square
base. For instance, the thermal noise operator used now in the
tracking races adds 3D noise in all the values (X,Y, h, s) of
each individual to generate a new one in its vicinity.

A. Exploration race

Unlike in the 3D points algorithm, there is no random
mutation operator here. Only the abduction genetic operator
generates the individuals of the exploration race at each
iteration of the evolutive algorithm.

It creates new tentative prisms which are compatible with
some of the motion pixels detected in the image. For each
selected pixel with motion in the image the 3D ray containing
all the 3D points that project into that pixel is computed
(Figure 8). That ray is randomly sampled in depth, selecting
some 3D points along it. Each of those point is projected into
the floor getting (X,Y ) coordinates. Several tentative prisms
are generated using that position (X,Y ) and random samples
for their h and s.

B. Fitness function from images

The computation of the fitness for a given prism uses the
projection of the 3D prism into the images and measures the
number of motion pixels and pixels of the race color that such
projection contains inside.

First, as can be seen in Figure 9, the 3D prism (let’s
name it the A prism) is projected into the image and the
rectangular convex hull is computed. The pixels of the color
race inside that convex hull and their density on that rectangle

Fig. 8. Abduction generates 3D prisms that are compatible with the images

(densityA
color) are counted. The pixels with motion inside that

convex hull and their density on that rectangle (densityA
motion)

are also counted. Good prisms show high scores on these two
densities.

Fig. 9. Fitness is computed counting the number of colored pixels and motion
pixels inside the projection of the 3D prisms in the images

Second, the 3D prism is expanded a 30% in height and
size around the same (X,Y ) location, obtaining a bigger
3D prism (say the B prism). This one is also projected into
images and its color and motion pixels density computed
(densityB

color and densityB
motion respectively). The difference

between densityA
motion and densityB

motion is very interesting
as it is expected to be highest when the A prism is the
smaller one that includes the tracked person (Equation 6).
The same happens with the difference between densityA

color

and densityB
color (Equation 7). They are both included in the

fitness computation.

diffAB
motion = densityA

motion − densityB
motion (6)

diffAB
color = densityA

color − densityB
color (7)

The fitness takes into account four criteria with different
weights, which have been experimentally tuned: densityA

color

(30%), densityA
motion (35%), diffAB

motion (20%) and diffAB
color

(15%).



V. EXPERIMENTS

Several experiments have been carried out to validate the
proposed system in real scenarios. The first set of experiments
was run in a Pentium IV at 2.6 GHz, with 512 MB of RAM
memory. The Robotics Lab at the Universidad Rey Juan Carlos
(7m x 4m x 3m) was equipped with four iSight cameras close
to the ceiling, one at each corner, as shown in Figure 2. They
provide 320x240 pixel images at 15 fps. One of them was
connected to the main computer directly through the local
firewire bus and the other three through ethernet, using three
video servers at the same room.

Fig. 10. Two races and their color description learned.

Figure 10 shows one of the input images (left), the color
filters learned (center) and the 3D individuals of the two
tracking races generated to track the two persons in the room
(right). There is no problem in both persons wearing similar
clothes as long as they are in separated positions, their color
descriptions are learned independently. If both persons walk
together, side by side, the system will treat them as a single
person but as soon as they split again a new race is created
and they are tracked as two different persons.

In the experiment shown at Figure 11 the system tracked
three people simultaneously and their 3D trajectories are
displayed. People entered into the lab at different times and
the system incorporated them as soon as they showed up.
Trajectories and 3D individuals are displayed in the learned
color for the corresponding person. The system tracked them
without difficulty keeping 12 iterations per second for the
evolutive algorithm, fast enough to follow the people 3D
movements in real time. The 3D skeleton of the environment
must be given to the application, which uses it for visualization
purposes in the debugging graphical interface, to let the human
easily understand the generated 3D trajectory data.

The system was succesfully tested on a technological fair at
the Centro Nacional de Tecnologías de Accesibilidad (León,
Spain) using the 3D point algorithm. The space for the demo
was equipped with four Axis network cameras connected
through ethernet to a MiniMac computer. In Figure 12, the
system has detected that one person wearing a red T-shirt
has fallen to the floor and the alarm has been triggered (red
label on the left). His trajectory in 3D is also displayed (in
the learned color, red) in the left part of the figure, together
with the 3D skeleton of the room. The person fall can also be
observed in that trajectory.

Several experiments have also been carried out with the
3D prism algorithm for people tracking. Figure 13 shows the

Fig. 11. Typical execution, 3D tracking of several people.

Fig. 12. Person lying on the floor, the fall has been detected.

three prisms that the algorithm creates when tracking the three
persons moving through the laboratory in the test. Each prism
is displayed in the color learnt by the system, according to
the person clothes. The accuary of this algorithm is similar to
that obtained with the 3D point algorithm. In addition, each
prism estimates the person height, and does it succesfully in
most cases but not in all of them.

This 3D prism algorithm is more computer intensive than
the 3D point one. The number of individuals per tracking race
was reduced to 12 in order to keep the real time operation
when many people are in the monitored area.

VI. CONCLUSION

We have presented a system, named eldercare, that automat-
ically detects falls of elder people in an intelligent space and



Fig. 13. Three people tracked in 3D using prisms.

triggers emergency alarm. It may be useful for elderly living
alone at their homes, who may enjoy both the independent
lifestyle and the safety of immediate health assistance in case
of a fall or faint. In contrast with other traditional fall detection
systems, like pendants or wristbands, eldercare is passive and
doen’t require any user action or wearing specific devices. It
consists of several regular cameras and a commodity personal
computer that runs the image processing software. No single
image is stored to preserve the user privacy.

The proposed evolutive multitarget tracking algorithm uses
color and motion as the main visual clues in its fitness
function, and continuously estimates the 3D position of people
in the monitored area. The fall situation is defined in terms
of 3D positions close to the floor and time conditions. The
individuals of the evolutive algorithm are 3D points organized
in an exploration race and several tracking races, one per
person.

The proposed algorithms have been validated building a
prototype and performing real experiments in two different real
scenarios. The system is able to properly track the 3D position
of several people in real time using any of the two proposed
tracking algorithms, as seen in section V. In the experiments,
the error in the 3D position estimation has always been below
15 centimeters, good enough for this fall detection application.

We are working to introduce new visual features like SIFT,
SURF etc. into the tracking algorithm. They hopefully will be
more robust than color descriptions of the tracked persons. We
also intend to expand the system with more cameras to cover
more than one room, and to detect other dangerous situations
like proximity of Alzheimer patients to risky areas (the exit
door, the windows, etc).
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