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Recognition of Standard Platform RoboCup Goals
José M. Cañas, Eduardo Perdices, Tomás González and Domenec Puig

Abstract—RoboCup provides a common research framework
where a wide range of problems closely related to robotics
and artificial intelligence must be addressed. The main focus
of the RoboCup activities is competitive soccer. Thus, the visual
identification of players and play-field components is a necessary
task to be performed. In particular, goals are some of the key
elements that should be identified by each player (robot). In this
way, this paper introduces a fast and robust methodology based
on Artificial Vision techniques for the recognition of the goals
utilized in the RoboCup Standard Platform League. First, 2D
images captured by the front camera mounted in the head of a
Nao robot are used to recognize the goals through a color based
geometrical segmentation method. Afterwards, the position of
the robot with respect to the goal is calculated exploiting 3D
geometric properties. The proposed system is validated with real
images corresponding to the RoboCup2009 competition.

Index Terms—RoboCup and soccer robots, Artificial Vision
and Robotics, Nao humanoid, Goal Detection, Color Segmenta-
tion, 3D geometry.

I. INTRODUCTION

ROBOCUP 1 is an international robotics competition that
aims to develop autonomous soccer robots with the

intention of promoting research in the fields of Robotics
and Artificial Intelligence. It offers soccer as a dynamic,
competitive and cooperative benchmark for testing the robotics
technology and pushing it forward. Its long term goal is
to build a soccer team of robots able to beat the human
world champion team by mid-21st century. Maybe this is the
equivalent to the long tearm milestone of AI community with
artificial chess players, and Deep Blue defeated Gary Kasparov
in 1997. The current state of the robotics technology is far
from such ambitious goal, but progress has been made since
the first RoboCup was celebrated in 1997.

In the last years several public challenges and competitions
have arisen around robotics. For instance DARPA Grand
Challenge and Urban Challenge have contributed to foster
the research in robotics, providing proofs of concept about
the feasibility of autonomous robot on real transportation
missions.

RoboCup has worldwide scope and in the last years has
included new categories beyond soccer: Junior, Rescue and
Home. The last ones trying to reduce the gap between the
contest and real applications. Several new leagues have also
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Domenec Puig and Tomás González are with the Rovira i Virgili
University. E-mail: domenec.puig@urv.cat

This work has been partially funded by projects RoboCity2030 (ref.S-
0505/DPI/0176) of the Comunidad de Madrid, and by the Spanish Ministries
of Education and Science under projects DPI2007-66556-C03-03 and
DPI2007-66556-C03-01.

1www.robocup.org

appeared around the soccer category, depending on the robot
size and shape: small size, middle size, humanoid and standard
platform league (SPL). Maybe the most appealing one is the
SPL as the hardware is exactly the same for all participants.
The behavior quality and performance differences lie com-
pletely in the software. In addition, the code of the robots
must be publicly described, so the knowledge sharing pushes
the overall quality. Until 2007 the hardware platform was the
Sony Aibo. Since 2008 the SPL hardware platform is the
Aldebaran Nao humanoid (Fig.1). Its main sensors are two
non-stereo cameras and with it the teams have been exposed
to the complexity of biped movement.

Figure 1. Nao humanoid and Webots simulator

In SPL, the robot players must be completely autonomous.
In order to build a soccer robot player many different habilities
must be programmed, both perceptive and motion or control
oriented. For instance the goto ball behavior, the follow-
ball behavior, the ball detection, the kicking, self-localization,
standing up in case of fall, etc.

This work is focused in the goal detection, based on the
camera images of the Nao. The goal detection helps the robot
to decide whether to kick the ball towards the opponent’s goal
or just turn to clear the ball out of its own goal. It can also
provide good information to self-localization inside the game
field.

The rest of this paper is organized as follows. Section II
reviews the state of the art in artificial vision systems in the
RoboCup. In section III several solutions to the same problem
of goal detection in the images are proposed. Section IV
proposes a technique for obtaining spatial information from
the previously detected goals. Section V shows experiments
with proposed techniques. Finally, conclusions and further
improvements in given in section VI.

II. VISION BASED SYSTEMS IN THE ROBOCUP

Over the last years, considerable effort has been devoted to
the development of Artificial Vision systems for the RoboCup
soccer leagues. In this way, the increasing competitiveness and
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evolution of the RoboCup leagues has conducted to vision sys-
tems with high performance, which are addressing a variety of
typical problems [12], such as perception of natural landmarks
without geometrical and color restrictions, obstacle avoidance,
pose independent detection and recognition of teammates and
opponents, among others.

Several constraints in the RoboCup domain make difficult
the development of such vision systems. First, the robots
always have limitated processing power. For instance, in the
Nao humanoid a single AMD Geode 500Mhz CPU performs
all the onboard computations and the Naoqi middleware con-
sumes most of that capacity. Second, the robot cameras use to
have poor quality. In the Aibos the camera was of 416x320
pixels and the colors were not optimal. Third, the camera is
constantly in motion, not stable in height as the robot moves
through the field.

A. Background

A number of initiatives for developing vision systems
conceived to give solutions to the aforementioned typical
problems have been carried out in recent years. In this line,
early work by Bandlow et al. [8] developed a fast and robust
color image segmentation method yielding significant regions
in the context of the RoboCup. The edges among adjacent
regions are used to localize objects like the ball or other robots
on the play field. Besides, Jamzad et al. [10] presented several
novel initiatives on robot vision using the idea of searching on
a few jump points in a perspective view of robot. Thus, they
performed a fast method for reliable object shape estimation
without the necessity of previously segmenting the images.

On the other hand, the work by Hoffmann et al. [11]
introduced an obstacle avoidance system that is able to detect
unknown obstacles and reliably avoid them while advancing
toward a target on the play field of known color. A radial
model is constructed from the detected obstacles giving the
robot a representation of its surroundings that integrates both
current and recent vision information.

Further vision systems include visual detection of robots.
In this sense, Kaufmann et al. [13] proposed a methodology
that consists of two steps: first, the detection of possible robot
areas in an image is conducted and, then, a robot recognition
task is performed with two combined multi-layer perceptrons.
Moreover, an interesting method presented by Loncomilla
and Ruiz-del-Solar in [12] describes an object recognition
system applied to robot detection, based on the wide-baseline
matching between a pattern image and a test image where the
object is searched. The wide-baseline matching is implemented
using local interest points and invariant descriptors.

Furthermore, recent work proposed by Volioti and
Lagoudakis [14] presented a uniform approach for recognizing
the key objects in the RoboCup This method proceeds by
identifying large colored areas through a finite state machine,
clustering of colored areas through histograms, formation of
a bounding boxes indicating possible presence of objects, and
customized filtering for removing unlikely classifications.

B. Related work on visual goal detection

In general, the aforementioned research has been oriented
to solve visual tasks in the environment of the RoboCup.
However, some of those works have specifically proposed
solutions to the problem of goal detection.

In this regard, one of the earliest approaches was given by
Cassinis and Rizzi [9] that performed a color segmentation
method using a region-growing algorithm. The goal posts are
then detected selecting the boundary pixels between the goal
color and the white field walls. After that, image geometry is
used to distinguish between the left and the right goal post.

The aforementioned work described in [8] has been also
applied to the detection of the goals in the RoboCup leagues.
In this way, they detect goals by the size of the regions
obtained after applying the color based image segmentation
mentioned above. Moreover, [14] aims at recognizing the
vertical goal posts and the goal crossbar separately. Both
horizontal and vertical goal indications and confidence levels
are derived from the horizontal and vertical scanning of the
images, according to the amount of lines detected. Afterwards,
it is decided whether the previously obtained indications can
be combined to offer a single goal indication and, finally,
different filters are used to reject unlikely goal indications.

III. GOAL DETECTION IN 2D

Two different approaches oriented to the detection of the
goals that appear in the 2D images are described in the
next two subsections. The first one puts the emphasis on the
geometric relations that must be found between the different
parts that compose a goal, while the second is focused on edge
detection strategies and specifically in the recognition of pixels
belonging to the four vertices of a goal: Pix1, Pix2, Pix3 and
Pix4 as shown in Fig.2.

A. Detection Based on Geometrical Relations

The first proposed method is intended to be robust and fast
in order to overcome some of the usual drawbacks of the vision
systems in the RoboCup, such as the excessive dependency of
the illumination and the play field conditions, the difficulty
in the detection of the goal posts depending on geometrical
aspects (rotations, scale,. . . ) of the images captured by the
robots, or the excessive computational cost of robust solutions
based on classical Artificial Vision techniques. The proposed
approach can be decomposed into different stages that are
described in the next subsections.

1) Color calibration: The first stage of the proposed
method consists of a color calibration process. Thus, a set
of YUV images acquired from the front camera of the Nao
robot is segmented into regions representing one color class
each.

Fig.2 shows an example image captured by the Nao robot
containing a blue goal.

The segmentation process is performed by using a k-means
clustering algorithm, but considering all the available centroids
as initial seeds. Thus, in fact, seven centroids are utilized,
corresponding to the colors of the ball (orange), goals (yellow
and blue), field (green), robots (red and blue) and lines (white).
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Figure 2. Example of original image from a RoboCup competition

Figure 3. Color segmentation

The range between the minimum and the maximum YUV
values in the regions obtained after that clustering stage are
considered as the actual prototype values that characterize
each color class of interest. Fig.3 depicts the color image
segmentation produced by applying the range of color values
automatically obtained through the calibration to the example
image in Fig.2. The good segmentation results in Fig.3 indicate
that the prototype values for each color of interest have been
correctly determined during the calibration process.

2) Geometral and Horizon Planes Detection: The next step
consists of the estimation of the geometral and horizon planes
according to the robot head position. In order to do this, firstly,
the pitch and yaw angles that indicate the relative position of
the robot head with respect to the play field are calculated. On
the one hand, the geometral plane is defined as the horizontal
projection plane where the observer is located. On the other
hand, the horizon plane is parallel to the geometral plane and
indicates the level above which there is no useful information.

Figure 4. Intersection of geometral and horizon plane with image plane

Thus, the position matrix of the robot head is used for de-
termining the horizontal inclination of the image with respect
to the play field. Then, a grid composed of series of paral-
lel vertical lines perpendicular to the horizontal inclination
previously mentioned is calculated. The intersection between
the grid and the green play field produces a set of points.

The line across these points is the intersection line between
the geometral plane and the image plane. In fact, the goal
posts will be searched above this line. Fig.4 (left) displays the
intersection between the geometral plane and the image plane
corresponding to the example image in Fig.2.

Furthermore, intersections among the grid and the top blue
or yellow pixels in the image are detected (taking into account
the inclination of the image). The line across those points
constitutes the intersection among the horizon plane and the
image plane. It is expected not to find useful information in the
images above this line. Fig.4 (write) displays the intersection
between the horizon plane and the image plane in the example
image in Fig.2. Note that, by definition, the geometral and the
horizon planes are parallel and delimit the region where the
goals are expected to be found.

3) Goal Posts Detection: The overall aim of this process
is to extract the goal posts and other interesting features that
could reinforce the detection of goals in the play field.

First of all, the color prototypes obtained as explained in
Section III.A1 are used to segment the blue and yellow goal
posts and crossbars. In order to do this, not all the image
pixels are analyzed, but a high resolution sampling grid is
utilized in order to detect blue or yellow lines in the image.
Fig.5 depicts the detected lines corresponding to a blue goal
(long lines correspond to the posts and short blue lines to the
crossbar) corresponding to the example image in Fig.2.

Figure 5. Interest points and goal blobs

In addition, a process to detect interest points is performed.
The same grid mentioned before is utilized to detect crossings
between blue or yellow lines (belonging to the goal posts)
and white lines in the play field (goal lines). Also, crossings
among green pixels (belonging to the play field) and white
lines that delimit the play field are identified. If those interest
points are detected close to the blue or yellow lines, previously
sampled, they reinforce the belief that those lines belong to the
goal posts. Red circles in Fig.5 (left) enclose interest points
identified in the original image shown in Fig.2.

4) Goal Recognition: Once a set of pixels distributed into
parallel lines corresponding to the goal posts and crossbar have
been identified according to the procedure described in the
previous section, the last step consists of a recognition process
that finally locates the gravity center of the goal.

In order to perform such task, the aforementioned lines are
grouped into blobs. A blob is composed of neighbor lines with
similar aspect ratio (an example is shown in Fig.5 (right)).
Finally, the blobs identified in this way are grouped into a
perceptual unit that can be considered as a pre-attentive goal.
Then, we apply an intelligent case reasoning strategy to bind
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that unit into a coherent goal. Fig.5 (right) illustrates the blobs
that configure the goal that appears in Fig.2 after it has been
recognized by the proposed technique. The geometric center of
the goal is also indicated according to the recognition method.

B. Detection based on color, edges and Hough transformation

We have also developed a second simple method to detect
goals in 2D images. It follows four steps in pipeline. First, a
color filter in HSV color space selects goal pixels and maybe
some outliers. Second, an edge filter obtains the goal contour
pixels. Third, a Hough transformation gets the goal segments.
And fourth, some proximity conditions are checked on the
vertices of such segments, finding the goal vertices Pix1, Pix2,
Pix3 and Pix4. All the steps can be shown at Fig.6.

Figure 6. Goal detection based on color, edges and Hough transformation

IV. GOAL DETECTION IN 3D

Once the goal has been properly detected in the image,
spatial information can be obtained from that goal using
geometric 3D computations. Let Pix1, Pix2, Pix3 and Pix4
be the pixels of the goal vertices in the image, which are
calculated with the algorithms of section III. The position and
orientation of the goal relative to the camera can be inferred,
that is, the 3D points P1, P2, P3 and P4 corresponding to the
goal vertices. Because the absolute positions of both goals are
known (AP1,AP2,AP3,AP4) that information can be reversed
to compute the camera position relative to the goal, and so,
the absolute location of the camera (and the robot) in the field.

In order to perform such 3D geometric computation the
robot camera must be calibrated. Its intrinsic parameters are
required to deal with the projective transformation the camera
does over objects in 3D world when it obtains the image. The
pinhole camera model has been used, with the focal distance,
optical center and skew as its main parameters. In addition,
two different 3D coordinates are used: the absolute field based
reference system and the system tied to the robot itself, to its
camera.

We have developed two different algorithms to estimate
the 3D location of the perceived goal in the image. They

exploit different geometric properties and use different image
primitives: line segments and points.

A. Line segments and thorus

Our first algorithm works with line segments. This algorithm
works in the absolute reference system and finds the absolute
camera position computing some restrictions coming from the
pixels where the goal appears in the image.

There are three line segments in the goal detected in the
image: two goalposts and the crossbar. Taking into considera-
tion only one of the posts (for instance GP1 at Fig.2) the way
in which it appears in the image imposes some restrictions
to the camera location. As we will explain later, a 3D thorus
contains all the camera locations from which that goalpost is
seen with that length in pixels (Fig.8). It also includes the two
corresponding goalpost vertices. A new 3D thorus is computed
considering the second goalpost (for instance GP2 at Fig.2),
and a third one considering the crossbar. The real camera
location belongs to the three thorus, so it can be computed
as the intersection of them.

Nevertheless the analytical solution to the intersection of
three 3D thorus is not simple. A numerical algorithm could
be used. Instead of that, we assume that the height of the
camera above the floor is known. The thorus coming from
the crossbar is not needed anymore and it is replaced by a
horizontal plane, at h meters above the ground. Then, the
intersection between three thorus becomes the intersection
between two parallel thorus and a plane. The thorus coming
from the left goalpost becomes a circle in that horizontal plane,
centered at the goalpost intersection with the plane. The thorus
coming from the right goalpost also becomes a circle. The
intersection of both circles gives the camera location. Usually,
due to simmetry, two different solutions are valid. Only the
position inside the field is selected.

To compute the thorus coming from one post, we take its
two vertices in the image. Using projective geometry and the
intrisinc parameters of the camera, a 3D projection ray can be
computed that traverses the focus of the camera and the top
vertex pixel. The same can be computed for the bottom vertex.
The angle α between these two rays in 3D is calculated using
the dot product.

α

α

α

CIRCLE

GOALPOST

α

Figure 7. Circle containing plausible camera positions

Let’s now consider one post at its absolute coordinates and a
vertical plane that contains it. Inside that plane only the points
in a given circle see the post segment with an angle α. The
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thorus is generated rotating such circle around the axis of the
goalpost. Such thorus contains all the camera 3D locations
from which that post is seen with a angle α, regardless its
orientation. In other words, all the camera positions from
which that post is seen with such pixel length.

Figure 8. Thorus containing all plausible camera positions

B. Points and projection rays

The second algorithm works in the reference system tied
to the camera. It uses three goal vertex pixels Pix1, Pix2 and
Pix3. For Pix1, using the pinhole camera model, a projection
ray R1 can be drawn which traverses the camera focus and
contains all the 3D points which project into such Pix1. R2
and R3 rays are computed in a similar way, as seen in Fig.9.
The problem is to locate the P1, P2 and P3 points into their
corresponding projection rays.

Assuming that we know the position of P1 in R1 then only
a reduced set of points in R2 and R3 are compatible with
the real goal size. Because the distance between P1 and P2 is
known (D12), P2 must be in R2 and the sphere centered at P1
with D12 radius, named S2 (Fig.9). The general intersection
between R2 and S2 yields two candidate points: P2’ and P2”
(there can also be no interesection at all or only one single
point). Following the same development and the distance D13
between P1 and P3, two more candidate points are computed:
P3’ and P3”.

Combining those points we have several candidate tu-
ples (P1, P2′, P3′), (P1, P2′′, P3′), (P1, P2′, P3′′) and
(P1, P2′′, P3′′) All of them contain points located at the
projection rays and all of them hold the right distance between
P1 and the rest of points, but the distance between P2 and
P3 may not be correct. Only the real solution provides good
distances between all of its points. A cost function can be
associated to choose the best solution tuple. We used the error
in distance between P2 and P3, compared to the good distance
D23.

In fact, the P1 position in R1 is not known, so a search
is performed for all the possible P1 values. The algorithm
starts placing P1 at λ distance from the camera location. All
the candidate solution tuples are calculated and their costs
computed. For each λ the cost of its best tuple is stored. The
search algorithm explores R1 increasing λ at regular intervals

Figure 9. Projection rays for the four goal corners

of 10cm, starting close to the camera location and up to
the field size, as can be seen at Fig.10. The tuple with the
minimum cost is chosen as the right P1, P2 and P3 values.
P4 is directly computed from them. They are the relative 3D
position of the goal in the camera reference system.

Figure 10. Cost function for different λ values

Finally, the absolute 3D camera position can be com-
puted from (P1, P2, P3, P4). Because the absolute posi-
tions of the goal in the field reference system are known
(AP1, AP2, AP3, AP4), we can find a rotation and trans-
lation matrix RT that fits the transformation of P1 into AP1,
P2 into AP2, etc. We have used the algorithm in [1] for that.
The estimated translation represents the absolute position of
the camera in the fied based reference system.

V. EXPERIMENTS

Several experiments have been carried out to validate our
algorithms, both in simulation and with real images. For
simulated images we have used Webots (Fig.1) and for real
ones a benchmark of images collected from the Nao’s camera
at the RoboCup2008 and RoboCup2009, placing the robot at
different field locations.

The first set of results presented in this section correspond
to the 2D goal detection strategy presented in Section III-
A. In particular, Fig.11, Fig.12, Fig.13 and Fig.14 display
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Figure 11. Experiment1: Goal detected with method described at Section
III-A

Figure 12. Experiment2: Goal detected with method described at Section
III-A

four examples corresponding to real RoboCup images and the
results produced by the different steps of the proposed method.
These experiments have been run on a Pentium IV at 3.2 GHz
and the average computation time is 9ms. The left images in
the first row of each figure depict the original color image
including a green line that represents the intersection between
the geometral plane and the image plane. The right images in
the first row show the color segmentation. Every left image
in the second row of each figure displays a grid composed
of series of parallel lines perpendicular to the horizontal
inclination of the image (red circles enclose interest points).
Finally, right images in the second row depict the recognized
goal and its gravity center for each example image. As it can
be appreciated, the proposed strategy is able to recognize goals
even in situations involving certain difficulties, such as when
only a small part of a goal appears in the image, or if the play
field is not visible in the image, or when the goal is seen from
a side in the play field.

Figure 13. Experiment3: Goal detected with method described at Section
III-A

Figure 14. Experiment4: Goal detected with method described at Section
III-A

A second set of results produced by the technique ex-
plained in section IV are shown in Fig.15. The input im-
ages are displayed at the right side. The output of the 2D
detection is overlapped as red squares at the goal vertices
(Pix1,Pix2,Pix3,Pix4). In the left side of the figure the field
lines and goals are drawn, and the estimated camera position
is also displayed as a 3D arrow.

In order to measure the accuracy of the goal detection
algorithm in 3D, the robot has been placed at 15 different
field locations and the estimated relative distances in XY plane
between the goal and the robot have been compared to the real
ones, as shown in the table I. In this table all the positions and
errors are in centimeters, and the goal is centered at (0,200).
The mean error is below 13cm for the thorus based method
(presented at section IV-A) and below 20cm for the projective
ray method (described in section IV-B). This error includes
the effect of the non ideal calibration of the Nao camera, both
in its intrinsic parameters and its height. Another interesting
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Figure 15. 3D position from the goal detected in the image

result is that error increases as the distance to the goal grows,
as expected, but a good estimation is achieved even from the
furthest side of the field as can be seen in Fig.16 (P3, P4 and
P9 points).

Figure 16. 3D goal detection from a far point (P9)

The experiments presented in this paper have been obtained
both processing the images in the onboard Nao’s computer
and processing the real images offline in a 3 GHz Pentium-
IV machine. The time consumption corresponding to both 2D
and 3D proposed techniques are shown in table II, where
the algorithms have been evaluated in both the Pentium (PC
column) and the Nao’s computer (Nao column). In particular,
times for each of the processing steps to detect the goal in 3D
are shown. As it can be seen, the 3D algorithm is the fastest.
The projection rays method is slower than the thorus method,
maybe because it is a search algorithm. For edge filter and
Hough transformation we have used OpenCV library.

The algorithm performs well both with the ideal images
coming from the Webots simulator and the real images from
the Nao at RoboCup-2008 and RoboCup-2009. In the case of
the 2D goal detection at section III-B the color filter must
be properly tuned for each scenario. The 3D techniques are

Point (X,Y) Error with thorus Error with pro-
jective rays

centimeters
P1 (100,400) 9.4 10.5
P2 (250,400) 10.3 11.6
P3 (450,400) 20.1 15.8
P4 (450,200) 19.5 38.7
P5 (250,200) 13.2 27.5
P6 (180,200) 6.2 19.7

P7 (100,0) 9.1 9.6
P8 (250,0) 10.8 17.8
P9 (450,0) 19.4 33.5

P10 (180,350) 1.2 15.2
P11 (250,350) 11.3 9.2
P12 (180,50) 8.4 15.7
P13 (250,50) 15.4 18.3
P14 (300,140) 4.8 26.7
P15 (300,260) 11.5 21.3

Mean Error 13.1 19.4
Typ. deviation 5.5 8.8

Table I
ACCURACY

Processing step PC Nao
2D detection based on Hough transformation 13’2ms 250ms
Thorus based 3D detection 1ms 1ms
Projective rays 3D detection 2ms 33ms

Table II
TIME CONSUMPTION

Figure 17. 3D goal detection with a partial occlusion of the goal

robust to partial occlusions of the goal in the image as long
as the four corners are properly detected, as shown in Fig. 17.

VI. CONCLUSION

Vision is the most important sensor of the autonomous
robots competing at the RoboCup. Goal detection is one of
the main perceptive habilities required for such autonomous
soccer player. For instance, if the humanoid had the opponent’s
goal just ahead it should kick the ball towards it. If the goal
in front of the robot was its own goal, then it should turn or
clear the ball away. In this paper two different algorithms have
been proposed to detect the goal in the images coming from
the robot’s camera. The first one is based on geometral and
horizon planes. The second one uses an HSV color filter, an
edge filter and Hough transformation to detect the post and
crossbar lines.
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In addition, two new methods have been described which
estimate the 3D position of the camera and the goal from the
goal perceived inside the image. The first one uses the line
length of the posts and intersects two thorus to compute the
absolute 3D camera position in the field. The second one uses
the projection lines from the vertice pixels and searches in the
space of possible 3D locations. They locate the goal in 3D
with an error below 13 and 20 cm respectively. Both are fast
enough to be used on line inside the humanoid’s computer.
This 3D perception is useful to the self-localization of the
robot into the field.

All the algorithms have been implemented as a proof of
concept. Experiments have been carried out that validate them
and the results seem promising as shown in Section V.

We are working on performing more experiments onboard
the robot, with its limited computer. We intend to optimize the
implementation to reach even better real time performance, in
order to free more computing power to other robot algorithms
like navigation, ball perception, etc. required for proper au-
tonomous operation.

The proposed 3D algorithms assume the complete goal
appears in the image, but this is not the general case. The
second future line is to expand the 3D geometry algebra to
use the field lines and incompletely perceived goals as source
of information. For instance the corners and field lines convey
useful self-localization information too.
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