
JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, SEPTEMBER 2007 1

Jde-neoc: Component Oriented Software
Architecture for Robotics

José M. Cañas, Jesús Ruı́z-Ayúcar, Carlos Agüero, Francisco Martı́n
Universidad Rey Juan Carlos

Abstract—In this paper we present our software framework for
robotic applications, jde-neoc. This is the second implementation
of our cognitive behavior-based architecture JDE, and it is aimed
to overcome some of the limitations observed in three years using
the first one. jde-neoc uses schemas as the basic component of
robot applications, which are combined in dynamic hierarchies
to unfold the global behavior. Each schema is built separatedly
into a plugin and dynamically linked to the framework when
needed. It keeps its own graphical user interface. Some tools like
a hierarchy oscilloscope and a 3D sensors-and-motors GUI have
been created and added to the framework.

Index Terms—Robot programming, Intelligent robots, Pro-
gramming environments, Mobile robots.

I. INTRODUCTION

BEYOND the sensor and motor capabilities, the intelli-
gence of a robot lies on its software. For simple behaviors

almost any software organization works. If we want the robot
to unfold complex behaviors or integrate several functionalities
in the same system then good organization principles and a
good software architecture make the difference.

Robot programmers have to deal with heterogeneous hard-
ware and software. There is no widely accepted software stan-
dards to develop robot applications. In the last years, several
frameworks and middleware have been created to help in that
task. Robot manufacturers and private companies provide their
own development kits. ARIA from ActivMedia, ERSP from
Evolution Robotics, Open-R from Sony and Microsoft Robotic
Studio are just a few examples. Many universities and research
centers have also created their own frameworks. For instance,
Player/Stage [9][12][22], Carmen [16], Marie [10], Miro [20],
CLARAty [17], etc.

Each framework encapsulates functionality in different
ways, providing different abstraction levels and making easier
the generation of complex behavior. Modern middlewares
provide methods to reuse code or behaviors in order to
increase productivity. They impose several constraints to the
organization of the robot software and split functionality into
small building blocks or components that are amenable to
reuse.

Traditionally the organization of the robot capabilities to
unfold autonomous behavior has been the focus of robotics
research. Reactive, behavior-based, deliberative and hybrid
paradigms are the most relevant schools. The cognitive archi-
tectures provide valuable guiding principles to organize the

Corresponding author e-mail: josemaria.plaza@urjc.es

robot software. In addition, as any other computer science
area, robot programming can also take advantage of the most
advanced techniques and tools from the software engineering
(object orientation, design patterns...).

Cognitive basis are interesting as they propose a method-
ology to face robot behavior generation. They also provide
abstractions easy to understand. This is important in academic
environments with high programmer rotation, like ours, where
the learning curve must be minimized. For all these reasons
we developed the jde-neoc framework following our JDE
cognitive architecture. After using jdec for three years we
have found several limitations of this framework so we started
the jde-neoc framework development. In this new platform we
solved various drawbacks of jdec.

In the second section the cognitive architecture JDE under-
lying jde-neoc is briefly presented. It provides the schema and
hierarchy concepts that will be used in the rest of the paper.
Third section describes jdec, the first implementation of JDE,
its features and limitations to develop robotic applications.
Fourth section describes the jde-neoc framework, the new
component-oriented implementation of JDE. Finally, some
conclusions summarize the lessons learnt and current state of
the project.

II. JDE COGNITIVE ARCHITECTURE FOR ROBOT
APPLICATIONS

The idea of hierarchy has been widely used to cope with
complexity in robotics. Hybrid cognitive architectures have
successfully been used in the last years. Their ability to
combine deliberation and reactiveness is very convenient for
robotic applications. The behavior-based architectures are an-
other approach to the idea of hierarchy that have received
support in several works [2][18][21][5]. They have also proved
useful in game AI to generate the behaviors of artificial virtual
creatures [3][14].

Our software frameworks are all based on JDE, an ethology
inspired and behavior-based cognitive architecture [8]. The
goal of this architecture is to reduce the overall system com-
plexity with a divide and conquer approach, similar to some
hierarchies proposed by ethologist to explain the behavior
generation in animals.

A. Schema as the behavior unit

The JDE main component and building block is the schema
[1]. A schema is a task-oriented piece of software that is exe-
cuted independently. At any time there can be several schemas



2 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, SEPTEMBER 2007

in execution. Each one is built to complete a particular task
or to achieve some goal or mission. A schema in JDE: (1) is
tunable, it continuously accepts some parameters to modulate
its behavior; (2) is an iterative process that makes its work by
periodical iterations, providing an output at the end of each
one; and (3) can be stopped or resumed at the end of any
iteration.

To generate autonomous behavior in a robot perception
and control must be faced. They both are complex and their
fragmentation into smaller units reduces the complexity of
the subproblems faced in each fragment and makes easier
their reutilization. Accordingly, there are perceptive schemas
and motor schemas. Perceptual ones transform sensor data or
simple information into more complex stimuli that can be used
by other schemas. Motor schemas access to perceptual data
and generate control outputs which can be motor commands
or activation signals for other low level schemas (perceptual
or motor) and their modulation parameters.

Each schema has an associated state. The state defines the
current schema’s activation level. For example, a perceptive
schema can be in any of SLEPT or WINNER states. Motor
schemas have preconditions, they can be in four different
states: SLEPT, CHECKING preconditions, READY or WINNER.
Those states are closely related to how action selection is made
in JDE.

B. Combination in dynamic hierarchy

Hierarchy appears because a schema can take advantage
of the functionality of others to perform its mission. This is
implemented in JDE by means of coactivation and continuous
modulation. This coactivation can be recursively repeated, so
various levels appear, where the low level schemas are awaken
and modulated by the higher ones.

The hierarchy that JDE proposes is not the classical one
based on direct function invocation, where the father activates
a son to carry out a mission and waits for the result while
the son does the job. Instead, JDE understands hierarchy as a
co-activation that only means predisposition. In JDE, a father
can coactivate several sons at the same time, because this does
not mean that all the sons gain control of the robot. Their
real activation is left to an action selection mechanism that
continuously selects which one gains control at each iteration,
according to the current goals and current environment situa-
tion.

JDE claims that such hierarchical organization provides
many advantages for robotics like bounded complexity for
action selection, action-perception coupling and distributed
monitoring. At the same time, this type of hierarchy does
not lose the reactivity needed to face dynamic and uncertain
environments.

This hierarchical activation is the skeleton of the collection
of schemas, and several competitions among brothers take
place, one at each level, to avoid incoherent behavior and
contradictory commands to actuators. There is only one winner
per level. A motor schema may command to actuators directly
or may awake a set of new child schemas. These children
will execute concurrently and they will in conjunction achieve

Fig. 1. JDE hierarchy. Motor schemas are represented by circles and
perceptual schemas by squares. Current WINNER schemas are shaded.

the father’s goal while pursuing their own. The continuous
competition between all the actuation siblings determines
whether each child schema will finally get the WINNER state
or will remain silent in CHECKING or READY state. Only the
winner, if any, passes to the WINNER state and is allowed
to send commands to the actuators or spring its own child
schemas.

The father activates the perceptive schemas that provide the
information needed to solve the control competition between
its actuation children and the information needed for them
to work and take control decisions. The chain of activa-
tions creates a specific hierarchy of schemas for generating
a particular global behavior (figure 1). All awake schemas
(CHECKING, READY and WINNER) run concurrently, similar
to the distribution found in behavior-based systems.

Once the father has awaken its children it keeps itself
executing, continuously checking its own preconditions, mon-
itoring the effects of its current children, modulating them
appropriately and keeping them awake, or maybe changing to
other children if they can face better the new situation.

Hierarchies are specific for each global behavior. They are
built and can be changed dynamically: at a given level, the
current winner among brothers may change if the environment
conditions or the final goals of the robot were modified. In
such a case the hierarchy under that point would also be
modified: All the active schemas underneath the previous
winner would then be consequently deactivated, and a new
tree generated under the new winner. The hierarchy adapts to
the new situation or goals reconfiguring itself. Depending on
the relevance of the modification, the change in the hierarchy
will start at a level close to the root node or lower.

III. JDEC: C IMPLEMENTATION AND ITS LIMITATIONS

The JDE cognitive architecture was implemented, written
in C language, in the jdec software platform. The reference
hardware that jdec supports is the Pioneer robot of figure 3.
jdec has been the framework for many robot applications in
our group, both research and academic, for three years. Many
schema based behaviors have been developed: person fol-
lowing [6], laser-based and vision-based localization, Virtual-
Force-Field reactive navigation, Gradient-Path-Planning delib-
erative navigation [7], etc1.

A. Schema
In jdec the schemas are implemented as threads, one per

schema. All of them follow the skeleton shown at figure 2.

1More information can be found at www.robotica-urjc.es



CAÑAS et al.: JDE-NEOC: COMPONENT ORIENTED SOFTWARE ARCHITECTURE FOR ROBOTICS 3

initialization code
loop

if (slept) stop the schema
action selection

check preconditions
check brother’s state
if (collision OR absence)

father arbitrates
if (winner) then schema iteration
msleep

end loop

Fig. 2. Pseudo-code of an schema in jdec

When active, each schema executes iterations. All the task
dependant code lies in the iteration function, which is called
periodically at a controlled frequency.

Following the JDE action selection mechanism, a motor
schema continuously checks its preconditions and the state
of its brothers. In case of none (control collision), two or
more brothers (control overlap) fulfilling their preconditions,
it invokes the arbitration function at the father level. The
schema that wins the current control competition at that level
of the hierarchy gains the WINNER state and executes its
schema_iteration in that iteration. Perceptive schemas
do not compete in the action selection and always gain the
WINNER state without problems.

The iterative execution avoids excessive CPU consumption
and forces to design the application in a reactive way. For
instance, instead of having a ”rotate-90”, command we pre-
fer the loop “rotate-rotate-...-rotate-stop”, where the iteration
realizing that no more rotation is need directly stops the
motors. This is very convenient to reactive applications and
also provides room to deliberative schemas that use plans as
resources instead of explicit courses of action.

B. Hierarchy

Each schema provides a set of shared variables to com-
municate with other schemas. Such communication is carried
out by shared memory in a very efficient way, using mutexes
to prevent race conditions when needed. This is fully asyn-
chronous and straightforward as all schemas are threads of
the same process.

First, the schema defines and updates continuously its output
variables when is in WINNER state. They are offered to other
schemas, which can read them. For instance, they can be
used to store the outcome of a perceptive schema. Second,
the schema defines and continuously reads its modulation
variables when WINNER. Other schemas may write there the
modulation to bias the current behavior of the schema, mainly
its father. The interaction is not constrained to a given instant
(as in the parameters of a function invocation) but carried
out as a continuous modulation, which may change from one
iteration to the next.

The API to the robot hardware itself (figure 3) is a set of
global variables: on the one side sensor variables like encoders,
laser, etc. that schemas may read and, on the other side, motor

Fig. 3. Reference robot, sensors and actuators

variables like rotation and translation speeds, position of the
pantilt, etc. that schemas may write.

C. Limitations

To write a robot application the programmer has to design
it in schema terms. Each schema is written in two separate C
files: myschema.h with the declaration of shared variables
of the schema, and myschema.c with their definitions and
implementation. Both are compiled together in a single C
object module. All the schemas of the application are statically
linked together in the executable.

In order to speed up the development, there is a schema
template with common parts of code ready to reuse, so the
programmer focuses herself just on the iteration function of her
schemas, their preconditions and their arbitration functions.

Although schemas were designed to ease the component
reuse, in practice, such a reuse in jdec is still a difficult task.
Each application starts from the bare software platform and
adds its own schemas. There is a strong coupling between
schemas and it is difficult to remove the dependences between
object modules. Moreover, adding the graphical interface of a
schema requires the modification of the system GUI, as it is
unique for the whole application.

Using shared variables opens the door to name collisions.
All the schema variables are joint in a single name space.
The variable names must be unique in a given application, but
the system does not provide mechanisms to detect that two
schemas in the application offer different variables with the
same name.

IV. JDE-NEOC SOFTWARE ARCHITECTURE

With the limitations of the first implementation of JDE in
mind, a second one has been designed and developed from
scratch. It is named jde-neoc [19]. Its main goal was to
improve the component-orientation of the framework in order
to ease the development of new robot applications and favor
the component reuse. Another goal was to replace the old-
fashioned libraries underlying jdec by better, standard and



4 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, SEPTEMBER 2007

more portable libraries like Glib, GTK for visualization, etc.
New tools for debugging and development have been also
programmed and added to the framework, like the hierarchy
oscilloscope and the sensors-and-motors GUI.

A. Modules

In jde-neoc each schema is compiled separatedly into a
plugin, loaded and linked at run-time to the framework. This
provides more flexibility to the system. The components to
load for a given application are specified in a configuration file,
the framework will load them at the beginning of its execution.

In addition, the applications become more modular as they
are always composed of the framework executable and the
collection of plugins for the application itself (for instance
schema1.so and schema2.so files). Instead of having one
executable file per application, in jde-neoc the executable is
always the same, and it does not require to be rebuilt for
each application. Only the set of plugins change from one
application to another.

Another advantage of this approach is that improving the
code of the schema does not requires the recompilation of all
the applications that depend on it. It only requires building
the new release of the plugin. The programs will dynamically
link to the improved schema when loading the new release.

While in jdec there was a unique name space, with all
the symbols linked at building time, in jde-neoc each schema
keeps its own name space or symbol table. If one schema
needs some variable defined by another one, it must explicitely
import it at run time before using it. If one schema offers some
variable to the others, it must explicitely export it. The jde-
neoc infrastructure keeps updated a list of shared variables,
with all the variables exported by the schemas. It provides two
functions, getSchemaVar and putSchemaVar, to import
and export the variable’s symbol respectively. This way no
name collision can occur as long as there can be two or more
variables with the same name, but they will belong to different
schemas, and so, they can be treated indepedently. Unresolved
dependencies on those variables are properly reported when
found.

For other symbols required for one schema to run but not
provided by other schemas, i.e. symbols defined at a library,
the linking is the regular one, at building time.

The schema interface is more strictly enforced than in
jdec. Besides the exported variables, each schema must
define an API with several standard symbols and func-
tions that allow its use by other schemas and its integra-
tion in the hierarchy. For instance: schema_startup and
schema_suspend functions allow other schemas to activate
or sleep it, schema_interval variable is the modulation
parameter that determines the frequency of the schema itera-
tions.

Regarding implementation details, instead of using di-
rectly the dlopen and pthreads libraries, jde-neoc uses
GModule and GThreads types, both inside Glib, to im-
plement the plugins and the multithreading (one thread per
schema). This way the framework is more portable than the
old one.

B. Distributed visualization

Following the modular design, the Graphical User Interface
in jde-neoc is already distributed in several GUIs. Every
schema may integrate its own visualization code and show
its own window. There is no single window for the whole
application, and so, adding new schemas does not require the
reprogramming of any existing GUI. That was a drawback of
jdec, where the GUI was shared for all the available schemas.

The visualization is considered optional, an schema may or
may not have visualization code. In case of having it, its code
is included in the plugin. In addition, the schema GUI can be
activated or deactivated at will. Often it is useful only while
debugging, but not while the robot is in operation. The schema
API includes two functions: schema_gui_startup and
schema_gui_suspend to activate or hide it at will at
run time. They may be empty if the schema does not offer
visualization at all.

Fig. 4. 3D visualization of the robot

Regarding implementation details, the old-fashioned
XForms graphical library has been replaced by GTK, a
widely used library more powerful and standard. New
visualization code has also developed to show 3D sketches of
the robot, its laser and sonar readings, and the world around
(figure 4). This display is nicer than the old 2D one and uses
the standard OpenGL libraries. These libraries reduce the
computational load of visualization as it is carried out on the
Graphics Card not the main CPU.

C. New tools

Two new tools have been created and added to the jde-
neoc framework. They make easier the development of robotic
applications.

First, the visualization tool shown at figure 5, named
sensors-and-motors GUI. It displays the sensor values in a
graphical and intuitive way, for instance images from the robot
cameras, laser readings, etc.. It also allows teleoperation for
robot motors, both the robot base and the pantilt unit (red
crosses in the upper part of figure 5). This tool is useful to
check the proper functioning of sensors and motors, and to
manually move the robot without pushing or pulling it.



CAÑAS et al.: JDE-NEOC: COMPONENT ORIENTED SOFTWARE ARCHITECTURE FOR ROBOTICS 5

Fig. 5. Tool for sensor visualization and motor teleoperation

Fig. 6. Hierarchy oscilloscope

Second, the management tool at figure 6 shows the col-
lection of the loaded schemas, their current state, its cycle
time among iterations and the current hierarchical relationships
among them. It allows the manual activation and deactivation
of their schemas (“play” column) and their GUI (“show”
column). This is very convenient when debugging the pre-
conditions of a set of schemas, to see which one really wins
the competition at each level depending on the current goals
and environment situations.

V. EXAMPLE

Beyond programming the whole jde-neoc infrastructure a
toy example has been also developed, just to check the frame-
work mechanisms for hierarchy, schema use, shared variable
list, etc. The whole infrastructure are about 7000 lines of C
code, including several drivers, in particular one that connects
jde-neoc to SRIsim simulator.

The toy behavior is the safe reactive navigation, and it is
generated with four schemas. The father, named example,
has null preconditions and it is alone at its level, so it is always
in WINNER state. The human user clicks with the mouse
on its GUI to specify the destination of the safe navigation
(red cross at figure 7). It coactivates three different actuation
schemas: go-on, vff and stop. Their preconditions are
approximately disjoint, so depending on the distance to the

Fig. 7. GUI of the example schema

closest obstacle only one of them will win the selection
competition and gain control of robot motors.

The go-on schema drives the robot towards the destination
point at high speed. Such destination point is its modulation
parameter and can be asynchronously changed by its father.
Its precondition is to have the rectangular shaded area around
the robot at figure 7 free of obstacles. The vff schema drives
the robot to avoid a close obstacle while approaching to the
destination point. Such point is also a modulation parameter
of this schema. Its precondition is to have an obstable in the
shaded area. Finally the stop schema brakes the robot motors
when there is any obstacle in a very close area around the robot
(the inner rectangle inside the shaded area at figure 7).

Fig. 8. Hierarchy state at given time, with cycle time in milliseconds

The hierarchy oscilloscope snapshot at figure 8 shows the
state of the system at a given time: the example schema
is the only one at the upper level, is WINNER. It has three
active children: go-on in CHECKING state as its preconditions
are not fulfilled, vff in READY state as its preconditions are
fulfilled, but it loses the control competition against stop
schema. This matches a situation where there is an obstacle
both inside the shaded area and inside the inner rectangle. The
control collision is detected by the children and the father,
through its arbitration function, chooses the winner between
stop and vff.

VI. CONCLUSIONS

A new component-oriented software framework for robotic
applications, named jde-neoc, has been presented. It is an
implementation of the behavior-based cognitive architecture
JDE and it was designed to overcome some of the limitations
observed in the prior JDE implementation, jdec.



6 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, SEPTEMBER 2007

jdec probed to be good for reactive behaviors and those
not requiring a complex architecture. However it was difficult
to generate complex behaviors in jdec because it had some
limitations for the code reuse and integration.

In jde-neoc, the perception and control are distributed
among a collection of schemas. Each schema is a software
component with a clear API that is built as a plugin on a
separate file. The schema has its own name space, the symbols
required from other schemas are dinamically imported and
those offered to other schemas explicitely exported through
a shared variable list that jde-neoc provides. This approach
provides great flexibility to the robot application development.
Collision in variable names, typical at jdec, are no longer a
problem. There is no need to rebuild the whole system after a
schema improvement, only that plugin must to be recompiled.

The visualization is also distributed in schemas and can be
(de)activated at will in run time. It is optional, as the schema
may or may not have visualization code. In case of having it,
it will be included in the plugin.

Several powerful and standard libraries, like Glib and
OpenGl, have been selected as the base for jde-neoc,
making it more portable. In addition, new tools have been
developed and added to the framework: a sensors-and-motors
GUI and a hierarchy oscilloscope. They make application
developing and debugging easier.

jde-neoc is an on going project. The core software architec-
ture has been designed and fully implemented in C. We are
currently migrating from jdec to jde-neoc the drivers for the
different sensors, actuators, robots, and simulators available
at our laboratory. In the near future we intend to develop
new behaviors using this infrastructure in order to get the
experimental feedback about its real usefulness.

ACKNOWLEDGMENT

This work has been funded by Spanish Ministerio de
Ciencia y Tecnologı́a, under the project DPI2004-07993-C03-
01 and Comunidad de Madrid under the project RoboCity
2030: S-0505/DPI/0176.

REFERENCES

[1] Arkin, R., Behavior Based Robotics, The MIT Press, 1998.
[2] S. Behnke and R. Rojas, A hierarchy of reactive behaviors handles

complexity, Balancing Reactivity and Social Deliberation in Mulit-Agent
Systems, LNCS 2103 Springer, 2001, pp 125-136.

[3] B. Blumberg, Old tricks, new dogs: ethology and interactive creatures,
PhD Thesis, Massachusetts Institute of Technology, 1996.

[4] J. Bryson and L. Stein, Modularity and design in reactive intelligence, Int.
Joint Conf. on Artificial Intelligence IJCAI-2001, Seattle (USA), 2001,
pp 1115-1120.

[5] J. Bryson, Intelligence by design: principles of modularity and coordina-
tion for engineering complex adaptive agents, PhD Thesis, Massachusetts
Institute of Technology, 2001.

[6] R. Calvo, J.M. Cañas and L. Garcı́a-Pérez, Person following behavior
generated with JDE schema hierarchy, ICINCO 2nd Int. Conf. on
Informatics in Control, Automation and Robotics, Barcelona (Spain),
2005, pp 463-466.

[7] J. Cañas, R. Isado and L. Garcı́a-Pérez, Robot navigation combining the
Gradient Method and VFF inside JDE architecture, VI Workshop de
Agentes Fsicos, WAF-2005, Granada (Spain), 2005, pp. 153-160.

[8] J. Cañas, V. Matellán, Integrating behaviors for mobile robots: an
ethological approach, Cutting Edge Robotics, Pro Literature Verlag /
ARS, 2005, pp 311-330.

[9] T. Collett, B. MacDonald and B. Gerkey, Player 2.0: Toward a Practical
Robot Programming Framework, Australasian Conf. on Robotics and
Automation (ACRA 2005), Sydney (Australia), 2005.

[10] C. Cote, Y. Brosseau, D. Letourneau, C. Raievsky adn F. Michaud,
Robotic software integration using MARIE, Int. J. of Advanced Robotic
Systems, vol. 3(1), 2006, pp 55-60.

[11] A. Farinelli, G. Grisetti and L. Iocchi, Design and implementation of
modular software for programming mobile robots, Int. J. of Advanced
Robotic Systems, vol. 3(1), 2006, pp 37-43.

[12] B. Gerkey, R. Vaughan and A. Howard, The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems, 11th Int. Conf.
on Advanced Robotics (ICAR 2003), Coimbra (Portugal), 2003, pp 317-
323.

[13] M. Hattig, I. Horswill and J. Butler, Roadmap for mobile robot specifi-
cations, 2003 IEEE/RSJ Int. Conf. on Intelligent Robot Systems (IROS
2003), Las Vegas (USA), 2003, pp 2410-2414.

[14] D. Isla, Handling complexity in the Halo 2 AI, Proceedings of the Game
Developers Conference (GDC-2005), San Francisco (USA), 2005.

[15] G. Metta, P. Fitzpatrick and L. Natale, YARP: Yet Another Robot
Platform, Int. Journal of Advanced Robotic Systems, vol. 3(1), 2006,
pp 43-48.

[16] M. Montemerlo, N. Roy and S. Thrun, Perspectives on standarization in
mobile robot programming: the Carnegie Mellon Navigation (CARMEN)
toolkit, 2003 IEEE/RSJ Int. Conf. on Intelligent Robot Systems (IROS
2003), Las Vegas (USA), 2003, pp 2436-2441.

[17] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons and T. Estlin,
CLARAty and challenges of developing interoperable robotic software,
2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS-03),
vol. 3, 2003, pp 2428–2435.

[18] M. Nicolescu and M. Mataric, A hierarchical architecture for behavior-
based robots, Int. Joint Conf. on Autonomous Agents and Multiagent
systems, Bologna (Italy), 2002, pp 227-233.

[19] J. Ruı́z-Ayúcar, Jdeneo.c - Una plataforma de desarrollo de aplicaciones
robticas, Undergraduate Final Year Project, Universidad Rey Juan Carlos,
2007.

[20] H. Utz, S. Sablatng, S. Enderle and G. Kraetzschmar, Miro – Mid-
dleware for mobile robot applications, IEEE Transactions on Robotics
and Automation, Special Issue on Object-Oriented Distributed Control
Architectures, vol. 18, no. 4, 2002, pp 493-497.

[21] H. Utz, G. Kraetzschmar, G. Mayer and G. Palm, Hierarchical behav-
ior organization, 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS-05), Edmonton (Canada), 2005.

[22] R. Vaughan, B. Gerkey and A. Howard, On Device Abstractions For
Portable, Resuable Robot Code, IEEE/RSJ Int. Conf. on Intelligent Robot
Systems (IROS 2003), Las Vegas (USA), 2003, pp 2421-2427.

[23] E. Woo, B. MacDonald and F. Trépanier, Distributed mobile robot
application infrastructure, 2003 IEEE/RSJ Int. Conf. on Intelligent Robot
Systems (IROS 2003), Las Vegas (USA), 2003, pp 1475-1480.


