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Abstract

3D localization from images is an useful capabil-
ity for robots and cameras. One successful ap-
proach is to rely on visual SLAM techniques. An-
other approach, maybe more robust, is to use vi-
sual markers in the environment. In this paper
a study about the accuracy of marker based vi-
sual 3D localization is presented, using AprilTags
markers and the solvepnp algorithm in OpenCV
library. The impact of distance to markers, num-
ber of markers, their position in the image on ac-
curacy of the 3D estimated pose is experimentally
measured and analyzed.

1 Introduction

Cameras are ubiquitous sensors: robots, drones,
mobile phones, etc. are typically endowed with
one or more. One useful piece of information
that can be extracted from images is the 3D lo-
calization of the camera. There are many ap-
plications where the 3D visual localization is ex-
tremely useful. For instance, augmented reality
applications in order to calculate how virtual ob-
jects should be located and oriented in the images.
Also in robotics, like the self localization of an
autonomous industrial robot, to generate ground-
truth robot trajectories and close control loops or
to estimate the relative position of tagged objects
for a humanoid robot (like Atlas from Boston Dy-
namics).

This problem has been addressed from several
fields like robotics, augmented reality and com-
puter vision. Many techniques have appeared like
probabilistic visual self-localization algorithms
(particle filters...), visual odometry (image regis-
tration...), etc. In recent years, visual SLAM tech-
niques like monoSLAM, PTAM, SVO, etc. have
been very successful. Another approach is based
on visual markers, whose position is known in ad-
vance. These fiducial systems provide camera-
relative position and orientation of a tag and such
estimation is known as the Perspective-n-Point
(PnP) problem [10, 7].

Most of these techniques work with color images.
In the last five years RGBD sensors have appeared
and simplified the problem, helping to estimate
the scale of the estimations. For instance the re-
cent project Tango1 from Google uses both color
and depth images.

Operation in real time, robustness, re-localization
capability and accuracy are very desirable features
of the visual 3D localization algorithm. The goal
of the paper is to study the limits of the standard
solution to PnP problem and its accuracy esti-
mating the position and orientation of the camera
from the markers.

Second section of this paper presents previ-
ous works on mark-based visual 3D localization.
Third one describes our implementation of the
classic solve-PnP algorithm extending it to work
continuously and with several markers at the same
time. Experiments section presents our accuracy
analysis and the conclusions end the paper.

2 Related works

Several types of markers have been explored in the
literature, many of them closely related to Aug-
mented Reality applications. ARToolkit [6, 11]
and ARToolkitPlus use tags contained in a square-
shaped payload surrounded by a black border.
ARToolkit is now open source. Its payload was
not directly encoded in binary. ARToolkitPlus
was succeeded by Studierstube Tracker 2, closely
oriented to mobile phones.

ARTag [4] is a bitonal system of markers consist-
ing of a square border and an interior region filled
with a 6x6 of black and white cells. More re-
cent proposals are CALTag [2], with high precision
markers oriented to camera calibration; RUNE-
tag [3], oriented to high resilience to occlusions;
and ARUCO [5], whose code has been integrated
as a module in OpenCV library.

Interesting localization accuracy analysis can be
found at [9] and [1], the last one using ARToolkit

1https://www.google.com/atap/project-tango
2http://handheldar.icg.tugraz.at/stbtracker.php



markers.

3 Marker-based 3D visual
localization

Many of the approaches to localization and navi-
gation of robots in the last years have been based
on visual markers, mainly because they are cheap
and not extremely hard to computationally de-
tect if they are well selected. To this aim, their
main distinctive features are the contrast and the
shape: the first one has to be as high as possible
and the second one must be considerably different
from the rest of the nearby objects. As an exam-
ple, the AprilTags or ArUco markers can be cited,
which are similar to the QR codes, but designed
to store less information in a more robust manner.
For this work, the AprilTags library [8] has been
used 3, in particular the C++ implementation 4,
which is open source licensed.

Figure 1: Marker set from AprilTags

3.1 Detection of markers in image

AprilTags is a 2D marker detection system that
describes a robust method to find the markers in
the image and proposes a precise segmentation al-
gorithm. On the other hand, it describes a coding
system that deals with specific problems of the
2D bar code systems: robustness to rotation and
robustness to false positives arising from natural
imagery.

The first main component of the system, the
marker detector, is designed to have a very low
false negative rate, so its false positive rate is high.
That is why it relies on the second main compo-
nent, the coding system, to reduce this rate to an
acceptable level. This last component can gener-
ate codes for any marker size and minimum Ham-
ming distance. Its approach explicitly assures the
minimum Hamming distance for the four rotations
of each marker and discards the markers of low ge-
ometry complexity.

Making use of the commented algorithm, the C++
library provides, for each image passed, the posi-
tion in image coordinates of the four corners of
every detected marker.

3http://april.eecs.umich.edu/wiki/index.php/AprilTags
4http://people.csail.mit.edu/kaess/apriltags

3.2 3D information from a marker

The PnP problem is one of the classic problems
in computer vision and photogrammetry. The es-
timation of the position and orientation based on
points of correspondence has been intensely stud-
ied in the last decades and is essential in numerous
fields of application. Such problem could be for-
mally stated in the following way: given a set of
matches between n reference 3D points and their
projections in the image, find the position and the
orientation of the calibrated camera with respect
to those control points. Namely, what is to be de-
termined is the rotation-translation matrix that
transfers the coordinate system of the world to
the image one.

There are basically two types of methods to solve
the problem in the case n < 6: closed form
methods (that convert the problem in a polyno-
mial equation) and optimization iterative meth-
ods (that try to solve it by the minimization of
a cost function properly defined). In this study
an iterative one has been selected, making use
of the OpenCV library, that provides a function
(solvepnp) which accepts as arguments the con-
trol points (the four corners of a marker with re-
spect to its center), their projections (given by
the AprilTags library) and the intrinsic parame-
ters of the camera (which has been previously cal-
ibrated). As a result it returns the estimated pose
of the marker with respect to the camera, in the
form of a rotation vector (in the Rodrigues format)
and a translation vector. The cost function used
by the method of this function is the re-projection
error, which is the sum of the squares of the dis-
tances between the provided projections and those
calculated with the corresponding solution. The
great strength of these kind of methods relies on
that they are usually extremely fast and accurate.
As a drawback, they can only find a feasible solu-
tion each time (when n < 6 the uniqueness of the
solution can not be guaranteed).

From the obtained translation and rotation vec-
tors, the corresponding rotation-translation ma-
trix can be formed (RTCameraMarker), with the
help of the OpenCV function called Rodrigues.
Then, to change to the reference system of
the marker, the inverse matrix is calculated:
RTMarkerCamera. Finally, to get the pose of the
camera with respect to the world, the following
matrix product is performed:

RTWorldCamera = RTWorldMarker·RTMarkerCamera



3.3 Fused 3D estimation

More than one marker may appear in an image
so it is useful to fuse all the individual estima-
tions from each marker, hopefully improving the
robustness of the final estimation. The 3D fusion
performed is a weighted average of the coordinates
and angles of all the estimated poses: the closer
the marker is, the bigger is the weight assigned.
This fusion is done in every received image, so an
estimation of the absolute pose of the camera is
continuously available.

ratioi =
weighti

weighttotal

This calculation is straightforward for position co-
ordinates:

[x, y, z]fusion =
∑

([xi, yi, zi] · ratioi)

but needs a careful management for angles be-
cause of their circular nature. To deal with them,
the arctangent of the sum of the sines of the corre-
sponding angle is calculated, divided by the sum
of the cosines.

αfusion = atan(

∑
(sen(αi) · ratioi)∑
(cos(αi) · ratioi)

)

4 Experiments

In order to study the accuracy of this 3D visual
localization algorithm, a camera has been placed
close to a visual marker in different relative posi-
tions and orientations. Then the mean distance
error and the mean angular error have been mea-
sured. The distance error is the euclidean distance
between the true position and the estimated one.
The angular error is an average of the errors in
yaw, pitch and roll, taking into account the cir-
cular nature of the angles. The experiments have
been performed within the standard robotics sim-
ulator Gazebo, which provides the true camera
pose information. Some of them were also carried
with a real camera, a Logitech WebCam Pro9000
at 25fps with 640x480 frames, that was properly
calibrated with OpenCV tools.

The algorithm delivers the relative pose of the
camera according to the detected marker, which
has its own coordinate frame (Figure 2). Then,
it is transformed to the absolute pose of the cam-
era taking into account the absolute pose of each
marker in the world. For the experiments, yaw is
considered as the rotation of the camera around
the marker Z axis, pitch the rotation of the camera
around the marker Y axis and roll the rotation of
the camera around the marker X axis.

Figure 2: Relative-to-marker and absolute coordi-
nate systems

4.1 Effect of yaw and distance

In this first experiment only one marker has been
used, which was observed by the camera in the
center of the image.

Figure 3: One marker at two different distances
and angles

Figure 4 shows the radial and the angular errors
depending on the distance and the yaw angle at
the same time. The first interesting point is how
the estimation degrades once a certain distance is
passed (about 4 meters), which is true for both ra-
dial and angular error and independently from the
orientation. The error increases with the distance,
smoothly from 1 to 4 meters (the mean radial error
increases with the distance, but remains below 10
cm and the mean angular error below 0,02o), until
the estimation gets completely degraded beyond 4
m.

Figure 4: Errors in front of distance and yaw, 1
marker

The dependence with yaw is lower, getting sim-
ilar values in the whole range of angles (+-180o

because in this case the camera can make a com-
plete turn and the marker is detected the whole
time).

The experiments in real environment lead to sim-
ilar conclusions, as it can be observed in figures



Figure 5: Errors in front of distance, real setting

5 and 6. The error increase with distance is also
observed, as it is the low influence of yaw.

Figure 6: Errors in front of yaw, real setting

4.2 Effect of pitch and distance

In this experiment the focus is how the estimation
behaves if the distance and pitch between the cam-
era and the marker varies. Increasing or decreas-
ing this angle from 0o makes the camera capture
the marker more and more heeled over. The cam-
era was not moved just the marker’s orientation,
because this way the desired angle was controlled
easier.

Figure 7: One marker at different pitch angles

Figure 8 shows a noticeable dependence with the
distance, as well as in the previous experiment.
Nevertheless, there is a difference, the error in-
crease is not uniform in the whole range of pitch.
In addition, the error is bigger when the pitch is
small, that is, when the parallelism between the
marker and image planes is high. Moreover, hav-
ing a certain pitch between the marker and the
camera attenuates the effect of the distance, get-
ting better estimations than in the parallel case at
the same distance. So, it can be concluded that, at
the time of choosing the orientation of the markers
to use in a real system, a certain pitch is advis-

Figure 8: Errors in front of distance and pitch

able, as well as avoiding the camera to observe the
markers totally parallel to its image plane.

Figure 9: Errors in front of pitch, real setting

In the real setting the error decrease trend is par-
tially observed, though not completely most likely
due to the inaccuracy of the real pose measure-
ment method.

4.3 Effect of roll and distance

In this experiment the focus is to study the de-
pendence of the estimation with the roll angle. It
is equivalent to the one in the previous section: a
marker has been included in the Gazebo virtual
environment and its orientation was modified so
the camera saw it with different roll angles, that
is, with different inclinations (with a 0 roll the
marker is parallel to the image plane).

Figure 10: One marker at different roll angles

Figures 10 and 11 shows something similar to the
pitch case is: the error increases with distance and
this distance does not affect that much if there
is a certain roll. Again, the conclusion is that a
certain roll is advisable for a better quality of the
estimation, instead of setting the markers parallel
to the image plane of the camera.

In the real setting there are no measurements for
positive values of roll because it is difficult to in-
cline the marker without falling down. In that



Figure 11: Errors in front of distance and roll

range the expected trend is first observed while
the absolute value of the roll increases, but a peak
appears later, that may be caused by a puntual
wrong marker detection.

Figure 12: Errors in front of roll, real setting

4.4 Number of markers

Another interesting issue is knowing if the esti-
mation gets better making use of more markers.
First, two of them have been used in a diagonal
disposition, so the camera observes them at the
corners of the image when it is close to them.

Figure 13: Two markers at two different distances
and angles

Analyzing the figure 14, the errors increase with
the distance and there is low dependence on the
angle, similar to previous experiments, but new
interesting information arises: first, the error size
has decreased in both radial and angular errors
and, second, the distance where the degradation
gap occurs is bigger. The average radial error is
around 5 cm until 4 m of distance and is no bigger
than 10 cm until 5 m (with a single marker the
mean error was 10 cm until 4 m and it went up
to 40 cm at 5 m). On the other side, the mean
angular error is no bigger than 0,02o until 5 m
of distance. That is, with only one marker the
estimation was considerably degraded after 4 m

Figure 14: Errors in front of distance and yaw, 2
markers

while, with two markers, the error at 5 m is still
acceptable.

In another experiment four markers have been
used (Figures 15 and 16), all of them in the same
plane and with their borders parallel. Again some-
thing similar is observed, with an even smaller er-
ror and with a smoother degradation gap. The
improvement with respect the two markers case
is specially noticeable after 4,5 m, because before
that distance the error values are similar. At a
distance of 5 meters the radial error in this case
is around 8 cm (in the previous case it began to
exceed 10 cm), while the mean angular error is of
0,01o (with two markers it was around 0,02o).

Figure 15: Four markers at two different distances
and angles

Figure 16: Errors in front of distance and yaw, 4
markers

In addition to the error representation depending
on the angle and the distance at the same time, the
relationship between the error and each parame-
ter has been analysed independently. For exam-
ple, the Figure 17 shows the evolution of the error
depending on the distance alone, without taking
into consideration the angle between the camera
and the markers. For that, the average error in
the whole yaw range has been calculated.

In these graphics, two of the observations made
before are even more clear: the error increases



Figure 17: Errors in front of distance

with the distance and decreases with the number
of markers. This last point is also noticeable in
the graphics of error in front of yaw, where for
each yaw value the mean error in the whole range
of distances has been calculated.

Figure 18: Errors in front of yaw

4.5 Markers in different planes

In this experiment the effect of an additional
marker, perpendicular to the plane of the others,
on the estimation was studied.

First, the four markers case have been measured
again, but this time they were not parallel to the
floor, because then the additional marker would
have been completely perpendicular to the cam-
era. Comparing figures 20 and 16, both corre-
sponding to a case with four markers, but inclining
in a case and parallel to the floor in the other, an
improvement in bigger distances can be observed,
having no peaks of error. Again, the inclination
is a good factor for improving the estimation. An
acceptable response in the whole range of angles
and distances studied is observed, exceeding the
mean radial error 10 cm at a distance of 6 meters,
keeping the angular error below 0,001o.

Figure 19: Four inclined markers at two different
distances and angles

Figure 20: Errors in front of distance and yaw, 4
inclined markers

Second, a fifth marker has been added and the
experiment has been repeated. Initially, a simi-
lar behavior is observed if Figures 20 and 22 are
compared.

Figure 21: Four markers and a perpendicular one
at two different distances and angles

Figure 22: Errors in front of distance and yaw, 4
markers and 1 perpendicular

To better appreciate the differences, the following
figures are presented, which directly compare the
results obtained in both cases, but for each param-
eter separately. Having a look at the radial error
comparatives (left part of figures 23 and 24): the
error is lower using the fifth value, which is ob-
served in front of distance and in front of yaw too.

Figure 23: Errors in front of distance, 4 and 5
markers

The angular error (right part of figures 23 and 24)
behaves in a weird way. In front of distance, the



angular error with five markers begins below, but
after 5 m this trend seems to revert surprisingly.
In front of yaw (figure 24 right) takes values very
similar in both cases, except in the range from 0o

to 100o, where the value for four markers present a
considerable peak. This may be due to an excep-
tional bad corner detection of one or more mark-
ers.

Figure 24: Errors in front of yaw, 4 and 5 markers

Another aspect to consider when a perpendicular
marker is included is to separate the radial error
in error in XY and error in Z.

Figure 25: Error XY and Error Z in front of dis-
tance and yaw, 4 and 5 markers

Left part of Figure 25 shows that what affects the
most to the radial error increase with distance is
the error in Z, not in XY. The error in XY re-
mains around 4 cm in the whole range of studied
distances, while the error in Z begins to substan-
tially increase after 4,5 m. In addition, it is ob-
served how the inclusion of the fifth marker affects
positively to the error in Z, being lower at bigger
distances.

With respect to the errors in front of yaw, pre-
sented in the right part of figure 25, it is also ob-
served the improvement with the perpendicular
marker, being the errors (both XY and Z) smaller
in the whole range of studied distances.

4.6 Pattern position in image

These experiments aim to study if the distance of
the marker to the center of the image affects the
quality of the estimation. To do so, the image has
been divided in 9 zones and the camera has been
positioned so the marker was captured in each one.

Twenty measurements have been performed each
time.

Figure 26: Marker in 3 of the 9 possible positions

The table 1 shows the radial error measured in
each case. As it can be observed the differences
are minimal, being the biggest one of 7,1 mm. It
is not observed either trends in the error increase
or decrease that may lead to think that the esti-
mation is better when the marker is centered or
in a corner of the image.

Radial error (cm)
10,93 10,63 10,65
10,45 10,53 10,64
10,25 10,62 10,96

Table 1: Radial error in image translation

In all these 9 zones of the image the XY and Z er-
ror were also studied separately. In the left part of
the table ?? a significant trend may be observed:
the zones of the image where the XY error is lower
are the corners, which is related with the previous
conclusions that indicated that a certain roll and
pitch (not being the marker completely centered)
increases the quality of the estimation. However,
because this error is much lower than the Z error
and being this independent from the translation,
the trend gets masked within the global radial er-
ror.

XY error (mm) Z error (cm)
2,95 11,28 4,98 10,92 10,56 10,63
9,37 6,28 7,40 10,41 10,51 10,61
4,09 5,09 2,13 10,24 10,60 10,96

Table 2: Radial error in image translation

5 Conclusions

The main conclusions that can be drawn from the
experiments performed are the following. First,
there is a clear error dependence (both radial and
angular) on the distance to the markers. Under 4
m the distance error keeps below 5 cm. The fur-
ther a marker is from the camera, the bigger the
error in the 3D estimations. This can be mitigated



if more markers are included in the scene, increas-
ing the maximum valid distance under which the
estimation error is reasonably small.

Second, using perpendicular markers (markers in
several planes) improves the accuracy, mainly in
Z. Using markers with a certain inclination in roll
or pitch improves the accuracy of the estimations
over using only markers in a plane parallel to the
image plane.

Third, the impact of the yaw angle between the
marker and the camera on the quality of the esti-
mation is small.

And finally, the trends observed in the virtual ex-
periments have also been noted in the real world
experiments, although they are not completely
equivalent, probably due to the inaccuracy of the
method used to estimate the real true pose.
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