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Robotics Lab, Rey Juan Carlos University, C/ Tulipán, 28933 Móstoles, Madrid, Spain
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Abstract

This paper presents a new approach to robot vision-based self-localization in dynamic and noisy environments for legged robots when efficiency
is a strong requirement. The major contribution of this paper is the improvement of a Markovian method based on a fuzzy occupancy grid (FMK).
Our proposal combines FMK with a population of Extended Kalman Filters, making the complete algorithm both robust and accurate while
keeping its computational cost bounded. Two different strategies have been designed to combine both the methods. They have been tested in the
RoboCup environment and quantitatively compared with other approaches in several experiments with the real robot.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For 50 years one of the recurring testbeds for artificial intel-
ligence has been the chess. Chess is a highly abstract problem
that can be easily represented on a computer. This problem was
used to focus the efforts of AI researchers on this complex com-
mon problem. In 1997, Deep Blue defeated Garry Kasparov
and achieved this milestone for AI. More challenging problems
have been proposed to keep AI progressing. One of the most
popular is the RoboCup [5]. RoboCup is an attempt to foster AI
and intelligent robotics research by providing a standard prob-
lem in which a wide range of technologies can be integrated
and examined. The ultimate goal of the RoboCup project is to
develop a team of fully autonomous humanoid robots that can
defeat the human world champion team in soccer by 2050.
Many problems have to be solved to achieve this goal:
perception, locomotion, collaboration, localization, etc.

In this paper we will focus on the localization problem
in legged robots in the RoboCup environment. The self-
localization capacity of mobile robots [13] can be defined as
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the ability to determine its position in the world using its own
sensors. Localization problem includes the ability of globally
localizing the robot from scratch, or from an erroneous position,
(global localization) and the ability of tracking the robot from
a known pose (local localization) [18]. The techniques that are
used to solve this problem vary enormously depending on the
sensors available in each type of robot.

Probabilistic approaches have been successfully imple-
mented to deal with the existing uncertainties in the real world.
For example, the work by Simmons [14] showed how Bayesian
methods can be used to determine the robot’s pose in an office
environment. Other probabilistic approaches are those based
on Monte Carlo that have been successfully used in single
robots [9] or in multi-robot environments [10]. Condensation is
a Monte Carlo approach that is used in [18] to localize a vision-
based robot in an crowded indoor environment. In this work,
the occlusion problem due to the people surrounding the robot
is solved using the images of the camera pointing at the ceiling.
Monte Carlo techniques have been widely used in the RoboCup
environment, Sensor Resetting Localization (SRL) [2] is a
good example. Kalman Filtering is also a classic approach [1]
to estimate the robot’s pose. A comparison of Extended
Kalman Filtering and sequential Monte Carlo methods can be
found in [12], and a more general comparison can be found
in [11].

0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
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Fig. 1. Problems in the legged robot odometry.

Fig. 2. Color segmentation, and recognized objects superposed on the real image.

Most of these works have proposed solutions to the location
problem for wheeled robots using rich 360◦ range sensors such
as sonar or laser, and with accurate odometric information
available. But they cannot be applied to legged robots, which
only have directional vision and do not have reliable odometry.
Our proposal has been designed for that scenario and tested
in the AIBO legged robot. Other relevant localization works
for this kind of robots are [15,7], both using a Monte Carlo
approach, and [8] which uses a Extended Kalman Filter.

The AIBO legged robot is used in the four legged league1

competition of the RoboCup Federation (Fig. 1). In this
competition, robots must be aware of their position on the
field at any moment so that they can adapt their behavior. For
instance, robots have to be well-located in order to know when
to kick, or to generate a group strategy among the members of a
team. The robots are not allowed to abandon the field and they
also have to be able to place themselves at a predefined starting
point when the match is starting and after each goal.

The RoboCup playing field is a 6 × 4 m rectangle. In the
center of both small sides are the goals, and on the other sides

1 http://www.tzi.de/4legged/bin/view/Website/WebHome.

there are four beacons. All these landmarks are colored so that
they can be easily detected by filtering the images obtained by
the robots. Other landmarks of the field, such as lines, can also
be used for localization in the environment. The light conditions
are also controlled. In spite of these facilities, the algorithms
developed for localization must consider that both perception
and locomotion can be very noisy or erroneous. Robots collide
with each other, making the odometry sent to the Localization
module highly erroneous, as shown in Fig. 1 (in the left image
robot numbered 4 is being pushed, and in the right one, one of
the robots has been turned around). Also, it had to be able to
recover from situations in which the robot has suddenly been
moved to another place of the field (kidnapped problem). In the
RoboCup environment, this situation frequently happens when
the robot is penalized by the referee and it is manually removed
for thirty seconds from the game field.

Perception is also challenging, as shown by Fig. 2. In the
leftmost image, the fast robot movements causes failure in the
detection of the landmark; in the center image, the robot vision
has been partially occluded by other robots, and in the rightmost
image one external object (the window) is taken as the blue
goal. The upper part of Fig. 2 is the resulting color segmentation
made, and the lower part shows that the recognized objects
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Table 1
Localization methods used in the RoboCup 2005

Method Number of teams

Monte Carlo 12
EKF 3
Monte Carlo + EKF 3
Triangulation 2
Fuzzy based 1

are superposed to the original image (marked as squares for
landmarks and goals, and as a circle for the ball).

Several localization methods have been used in the teams
competing at RoboCup. According to the self-description of
the teams (last edition completely published when writing
this paper was the 2005 edition), most of the teams used
methods based on Particle Filters (Monte Carlo localization).
Six teams used Extended Kalman Filters (EKF), three of them
combined with Monte Carlo [12]. Our team, TeamChaos,2 used
a fuzzy logic Markov method (FMK), described in [4,16]. This
information has been summarized in Table 1.

CPU requirements of each of the modules that generates the
complex behavior are also critical in this scenario. In particular,
our method based on fuzzy logic [6] solves the problem of
global localization, but consumes a lot of the robot resources
and its needs grow exponentially with the accuracy and the size
of the field. In addition, this FMK method have shown to be
really unstable without very precise tuning, so we decided to
study the combination of this method with Extended Kalman
Filter (EKF).

In the remainder of this paper we first detail the fuzzy
method which we want to improve in Section 2. Next,
in Section 3 we describe the Extended Kalman Filter
implementation adapted to our problem, and in Section 4,
we explain how it combines with the fuzzy FMK method to
solve the localization problem, both global and local, in our
environment. The results of the experiments are presented in
Section 5 and the discussion and future works are explained in
Section 6.

2. Fuzzy-logic-based localization method

The initial goal of this method of global localization was
to provide the robots with a robust way of representing
the uncertainty about its position. Next, we summarized
this method, named FMK, because it is the basis of the
improvement proposed on this article. The method was
initially developed by TeamSweeden [4], and adapted by
TeamChaos [6].

In FMK, the field is represented by a grid G t so that G t (x, y)

is the probability of finding the robot at a position (x, y).
Each one of the positions of this grid is a cell of configurable
dimension. Each one of the cells contains information of
the probability that the robot is in a determined cell, and
information on the most probable orientation range. This means

2 http://www.teamchaos.es.

Fig. 3. Diffuse trapezoid.

that it is actually a 2 1
2 D grid because only one orientation is

represented.
This information is represented by a diffuse trapezoid

(Fig. 3). This trapezoid is defined by the tuple 〈θ,∆, α, h, b〉.
Intuitively, if h is low, the probability of being in this cell is low.
If h is high, it is very probable that the robot is in this position.
If the trapezoid is wide (∆ is large), great uncertainty exists
about the orientation of the robot. If the trapezoid is narrow,
or even has triangular form (because ∆ is practically null), the
orientation uncertainty is so low that we can affirm that the
robot orientation is θ .

The localization process used in this method is iterative, each
cycle having a prediction and an update step. The prediction
step is carried out whenever a movement is performed blurring
the probability grid in the direction of movement, using the
odometry. In the update step the visual information is included.
Our sensor model is based on the information of distance and
bearing with respect to the 6 landmarks of the playground.

The robot is considered localized when the quality is high.
The quality depends on the size of the field with cells with high
probability. If the cells with high probability (their component
h is high) are concentrated in a reduced area of the field, the
quality is higher than that in the case of the cells with high
probability covering big areas of the field, or when representing
several hypothesis (cells with high probability are concentrated
in several areas). The robot position is determined in the center
of the area with high probability cells.

An example of the sequential application of the prediction
and update steps can be observed in Fig. 4. The white color
indicates cells with high probability, and the black color
indicates cells with low probability. The red circle is the
robot’s position, and the red arrow is the orientation. A robot
is considered localized when there are few cells with high
probability (colored white) in an area. In the first figure (the
leftmost figure), the robot starts from a situation of total
ignorance because all the cells have the same probability and
∆ value of each cell covers all the orientations. Using the
sensorial information relative to the distance to the goal (center
figure) the robot is able to improve its position belief, having
higher probability the cells are set at the perceived distance
from goal. When the robot moves, the grid is blurred because of
the unreliable odometry, making the zone with high probability
wider.

The performance of the entire method depends almost
exclusively on the size of each cell of the grid. If the size of
the cell is large, the accuracy is low, and the computational cost
is also low. If more accuracy is required, the cell size has to
be reduced, but the computational cost can make the method
unusable because it is increased almost exponentially with the
size of the grid. In practice, a 20 × 20 cm cell was adequate to



Author's personal copy

F. Martı́n et al. / Robotics and Autonomous Systems 55 (2007) 870–880 873

Fig. 4. Process of localization of the robot in the fuzzy grid. Probability is represented by greyscale, being white cells the most probable ones, and black cells the
less probable ones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

obtain a reasonable level of accuracy in the small field previous
to the 2005 rules change.

This localization method has shown the following proper-
ties:

• Fast recovery from erroneous or unknown estimations.
• Fast recovery from kidnappings.
• Multi-hypothesis in the (x, y) estimation.
• Much faster than classical Markovian approaches, in which

the orientation is composed of several (x, y) states. In this
method, the orientation estimation is a simple trapezoid
operation.

The drawbacks, that motivates this work, are the following:

• This method is difficult to tune.
• Mono-hypothesis in the theta estimation.
• Very sensitive to sensor errors and false positives, which

makes the method very unstable in noisy conditions.
• The computation time became unacceptable when the field

size was sensibly incremented in 2005 (356 → 600 cells).
The time used by the localization module became very high
if the previous accuracy was kept. This is the main reason for
developing a technique based on extended Kalman filters.

3. Localization method using the extended Kalman filter

The EKF is one the most popular tools for state estimation in
robotics. It is a local localization method whose strength lies in
its simplicity and its computational complexity O(k2.4

+ n2),
where k is the dimension of the measure vector and n the
dimension of the state vector [3]. In our implementation, the
computational complexity is O(22.4

+ 32). Its flawlessness lies
in its sensibility to noisy measures. In these conditions, the filter
diverges and it is difficult to recover from these situations.

The filter is initialized in a known position with given uncer-
tainty about its pose. If this information is not available because
of a total ignorance about the robot pose, the filter is initialized
with the robot pose at the center of the field and a high enough
uncertainty to consider the robot in any position in the field.

In order to implement an EKF we have defined the position
of a robot as the state vector s ∈ R3,

Fig. 5. Odometry-based movement model.

s =
(
xrobot yrobot θrobot

)T
. (1)

The update process will be guided by two nonlinear
functions, f and h. First, f relates the previous state st−1, the
odometry ut−1, and the noise in process wt−1, to the present
state st , according to Fig. 5.

st = f (st−1, ut−1, wt−1). (2)

3.1. Prediction step

In this step s−
t ∈ R3 is calculated. This is the position

in which the robot will be, according to its previous position
and the information of the odometry using the movement
model of Fig. 5. Also P−

t ∈ R3×3 is calculated. This matrix
represents the general error of the system. It is initialized with
the maximum possible error: the field dimensions for x, y, and
180 for θ .

s−
t =

(
x−

t y−
t θ−

t
)T

= f (st−1, ut−1, 0) =

xt−1
yt−1
θt−1



+

(ux
t−1 + wx

t−1) cos θt−1 − (u y
t−1 + w

y
t−1) sin θt−1

(ux
t−1 + wx

t−1) sin θt−1 + (u y
t−1 + w

y
t−1) cos θt−1

uθ
t−1 + wθ

t−1

 (3)

P−
t = At Pt−1 AT

t + Wt Qt−1W T
t . (4)
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Fig. 6. Evolution from Pt−1 to P−
t .

At Pt−1 AT
t represents the previous uncertainty P after

control input u (Fig. 6). At is defined as follows:

At =
∂ f
∂s

=

1 0 −u y
t−1 cos θt−1 − ux

t−1 sin θt−1
0 1 ux

t−1 cos θt−1 − u y
t−1 sin θt−1

0 0 1

 (5)

Qt represents the noise in the prediction process. Wt Qt−1W T
t

represents the noise Q added to P−
t from Pt−1. We have

experimentally determined that the information given by the
odometry system can be represented by a normal distribution
N (0, 0.3ut−1). Applying transformation matrix Wt (Eq. (7)),
this noise is introduced in the uncertainty.

Qt = E[wt w
T
t ]

=


(0.3ux

t−1)2 0 0
0 (0.3uy

t−1)2 0

0 0 (0.3uθ
t−1 +

√
(ux

t−1)2 + (uy
t−1)2

500
)2

 (6)

Wt =
∂ f
∂w

=

(
cos θt−1 − sin θt−1 0
sin θt−1 cos θt−1 0

0 0 1

)
. (7)

In a typical implementation of an EKF, this step is followed
by the update step to get the new st and Pt . In this work, the
frequency of the odometry readings is higher than the sensor
measures. For this reason, the prediction and correction step
are executed independently making st = s−

t and Pt = P−
t at

the end of each step.

3.2. Update step

Our sensor model is based on the information about the 6
landmarks of the playground m1···6, each one is placed in a
known position (x, y). Information zi

t perceived from landmark
i at time t is the vector (r i

t , φt i ), representing the distance and
the orientation to that landmark. For each perception cycle, a
measure i updates the system state as:

st = st−1 + K i
t (z

i
t − ẑi

t ) = st−1 + K i
t (z

i
t − hi (st−1)) (8)

where hi (st−1) is a nonlinear function (Eq. (9)) that calculates
the ẑi

t predicted depending on the robot pose estimation,

ẑi
t = hi (st−1) =

(
distance(mi , st−1)

angle(mi , st−1)

)

=

( √
(mi

t,x − st−1,x )2 + (mi
t,y − st−1,y)

atan2(mi
t,x − st−1,x , mi

t,y − st−1,y) − st−1,θ

)
(9)

K i
t , known as the Kalman gain, is calculated as:

K i
t = Pt−1(H i

t )
T(Si

t )
−1 (10)

Si
t = H i

t Pt−1(H i
t )

T
+ Ri

t (11)

H i
t =

∂hi (st−1)

∂st

=


−

mi
t,x − st−1,x

√
q

−
mi

t,y − st−1,y
√

q
0

mi
t,y − st−1,y

q
−

mi
t,x − st−1,x

q
−1

0 0 0

 (12)

q = (mi
t,x − st−1,x )

2
+ (mi

t,y − st−1,y)
2

Ri
t represents the noise in the sensor information. Depending

on the type of landmark (net or beacon) the estimated errors are
shown in Fig. 7. This observation model was empirically made,
and reflects how the distance estimation error is big when the
robot is far from the landmark, and how the angle estimation
error is low when the robot perceives the entire landmark. The
resulting covariance error in the robot position estimation Pt is
calculated as (I − K i

t H i
t )Pt−1.

3.3. Outliers filter

Before incorporating all the zi
t sensed, a δi

t value is
calculated (Eq. (13)). This value represents the measurement
likelihood and it is used to reject those measurements
considered false positives or unknown correspondences. If this
value is higher than a threshold, the measure is rejected and
it is not incorporated into the filter. This threshold changes
dynamically in the range heuristically set between 5 and 100.

δi
t = (zi

t − ẑi
t )

T(Si
t )

−1(zi
t − ẑi

t ). (13)

4. Combining fuzzy logic and extended Kalman filter

On the one hand, FMK offers a global method able to re-
cover quickly from situations of complete uncertainty. How-
ever, this method consumes many computational resources,
even using the compact way of representing the angular infor-
mation of each cell. A possible solution so that the method was
usable would have been to increase the size of each cell of the
grid, but this means less accuracy in the estimation of the posi-
tion of the robot. This method also fails in situations with erro-
neous observations. In this case, the system estimates the robot
position in the center of the filed, as in the initial step with full
uncertainty.

On the other hand, the local method of localization based on
EKF is computationally light and very accurate. The problem
of this method is that the robot is not able to self-locate quickly
when starting from a situation of total uncertainty. Neither, is it
able to recover from situations of high error in the estimations,
nor from the manual change of the position of the robot during
the game.

Combining both local and global methods we hope to obtain
several advantages. FMK estimation will help to initialize the
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Fig. 7. Errors in the distance and angle estimation depending on the type of landmark and the actual distance to it.

EKF filter in the case of total ignorance. The FMK grid helps
to evaluate if the EKF filter may be wrong. Once initialized,
the EKF filter is more stable than FMK when erroneous
observations are detected. If the cell size in FMK is increased,
obtaining a better processing time with loss of accuracy, the
EKF filter provides the accuracy needed.

Two different strategies are proposed in this work to
combine both methods. In the first approach, an EKF runs
concurrently with the FMK. In the second approach, several
EKFs run concurrently with the FMK. In both the strategies the
cell size for FMK has been increased to 500 mm. This allows
us to obtain a fast global localization with low accuracy, That is
compensated by accuracy obtained from the EKF method.

We will describe both approaches in detail in the next
subsections, and then the experiments to evaluate them.

4.1. FMK + EKF

This proposal combines FMK with one EKF. The
combination in this case is simple, as shown in Algorithm 1.
Both algorithms are initialized to full uncertainty: all the FMK
cells are identically probable, so the position calculated is the
center of the field; EKF position is set at the center of the field,
with an uncertainty that covers all the field.

At the end of each cycle, the position estimated by EKF is
compared with the FMK information. To make this comparison,
the value of the cell on the position estimated by EKF is used.
If this value is low, the EKF estimation is supposed to be
erroneous. If FMK quality is low, it makes no sense to reset.
In the same way, If the position estimated by FMK is close
enough (only one cell apart) to the EKF estimation, we let the
filter converge itself.

In order to summarize, we only reset the EKF filter when
we consider that the FMK estimation is reliable, far from the
EKF estimation, which is improbable according to the FMK
information.

4.2. FMK + (EKF × n)

Using the previous strategy, incorrect estimations appear
when the FMK estimation has low uncertainty, but it is
erroneous. It is not very common, but it is difficult to recover
quickly from this situation, as preliminary experiments have
shown. For this reason, we have also tried to maintain several
hypotheses, each one represented by an independent EKF. We
will still use FMK to give the population of EKFs the global
localization ability.

Each EKF has its own estimation about the robot pose, and
its own associated uncertainty. They are independent of each
other.
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The number of EKF filters is not constant. It can be
dynamically modified up to a maximum limit. Initially, there
will not be any active EKF. Every time that FMK seems
reliable, but no filter close enough to the position estimated
by FMK, a new EKF filter is created. The new EKF filter
is initialized to the center of the FMK cell position, and the
uncertainty is set to the one associated with that cell.

EKF filters can also be removed in two situations:

• When the FMK information is reliable and indicates that the
position estimated by EKF is not the cell estimated by FMK.

• If two EKFs are very close, there is no sense in maintaining
both. The one with less uncertainty is maintained, the other
one is removed.

The estimation of the robot position is determined by the
EKF filter with less uncertainty. If an EKF is initialized in a
wrong position, it is not likely to reduce its uncertainty with
the subsequent observations. This filter will not be taken into
account to determine the robot position. A filter that estimates
the right position, will get its uncertainty reduced at each
observation, maintaining its uncertainty low. In the event of a
kidnapping, the filter created in the new position will get its
uncertainty reduced, and the filter in the old position will get
its own increased. In a few steps, the uncertainty of the new
filter will be lower than the old one, thus estimating the robot’s
position correctly. In Algorithm 2 the entire process is detailed.

5. Experiments

The environment in which the experiments are carried out is
the field used in RoboCup. We have used two cenital cameras to

Fig. 8. Tracking system used in the experiments.

track the robot during the experiments to obtain the ground truth
(Fig. 8), using a modified version of Mezzanine [17] software
to support the two cameras. The robot’s behavior used in the
experiment tries to patrol a set of predefined way-points. In the
experiments, the 4 localization methods described in this article
are compared among themselves and with the Sensor Resetting
Localization (SRL) method [2]:

• FMK.
• EKF.
• FMK + EKF.
• FMK + (EKF × n).
• SRL (Sensor Resetting Localization).

In these experiments we will measure several aspects:
the accuracy in the position and the orientation estimation,
the recovery time from an unknown position, the amount of
time the robot is successfully localized and the CPU time
consumed by each method. The experiments measure how well
the robot is localized while performing simple and complex
movements, and in the case of kidnapping. Each experiment
has been repeated several times to obtain reliable results. In
each experiment the conclusions will be based on the evolution
of the error in position and orientation during the experiment,
and the statistical analysis of these errors. The main statistical
indicators are mean and standard deviation of the error, but the
analysis of the median will give us an idea of the amount of
time each method maintains the error low.

5.1. Experiment 1

The first experiment (straight in Fig. 9) is a simple
movement. The robot starts at one net, and goes to the other one.
This experiment was repeated 20 times, and the evolution of the
error in position and orientation in one execution is shown in
Fig. 10. The error in the position estimation of the 20 executions
has been summarized in Table 2, and the error in the orientation
estimation is summarized in Table 3.

In this trajectory, EKF is not able to converge from its initial
position (center of the field). FMK is able to converge quickly
to the right position, but it is unstable (the estimation frequently
jumps from one position to another when errors in perception
occurs). If we take a look at the orientation graph, FMK is not
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Fig. 9. Path followed in the experiments. The robot follows the path indicated by lines. Each circle is numbered to indicate the initial and ending point.

Fig. 10. Error in the distance and angle estimation in one sample trial in the first experiment.

Table 2
Comparison of error in distance (in mm)

Method Median Mean SD

FMK 1626 1668 1041
EKF 2039 1846 968.3
EKF + FMK 1932 1883 1093
n(EKF) + FMK 791.8 1283 1336
SRL 1060 1267 792.3

Experiment 1.

able to estimate the angle correctly. The combination of FMK
and one EKF converges as quickly as FMK, but it is more stable
and robust. Finally, the best accuracy is got by the combination
of FMK and several EKFs. The estimation converges due to the
FMK information, and is able to be very accurate once it has
converged.

5.2. Experiment 2

The second experimental tests show how the algorithms
manage a kidnapping situation. This experiment was repeated
10 times, and the results are summarized in Table 4, for error in
position, and in Table 5 for error in orientation. On the middle

Table 3
Comparison of error in orientation (in deg)

Method Median Mean SD

FMK 91.95 90.49 57.5
EKF 33.05 46.79 38.73
EKF + FMK 81.45 42.71 49.31
n(EKF) + FMK 14.23 32.64 42.97
SRL 24.39 34.05 29.72

Experiment 1.

of Fig. 9 the path that the robot has followed is represented. It
starts from point one, goes to point two, and then it is manually
displaced to point three. This situation is usual in the RoboCup
matches when the referees penalizes the robot and it returns to
the field after two minutes. To see the results more clearly, the
instant of kidnapping (2) and release (3) of the robot have been
marked in Fig. 11.

The results are similar to the previous experiment until the
kidnapping: EKF converges, but very slowly; and the proposed
combination of several EKF’s is the more accurate. After the
kidnapping, single EKF is the most damaged. FMK recovers
quickly, although the orientation estimation is very inaccurate.
It can also be observed that after the kidnapping, it is unstable,
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Fig. 11. Error in the distance and angle estimation in the second experiment.

Table 4
Comparison of error in distance (in mm)

Method Median Mean SD

FMK 1649 2060 1551
EKF 1553 1748 838.7
EKF + FMK 1457 1949 1746
n(EKF) + FMK 1361 1761 1331
SRL 1502 1869 1113

Experiment 2.

Table 5
Comparison of error in orientation (in deg)

Method Median Mean SD

FMK 60 77.29 60.22
EKF 18.18 39.21 45.85
EKF + FMK 35.84 55.9 57.22
n(EKF) + FMK 23.46 38.95 38.9
SRL 49.08 66.41 52.31

Experiment 2.

mainly because of the residual cell probabilities before the
kidnapping. This makes the combination of FMK and one EKF
fail. It is due to its dependability on FMK. The combination
of FMK and several EKFs recovers in a reasonable time, and
remains stable after the kidnapping.

This experiment also shows some of the drawbacks of
the FMK + (EKF × n) combination strategy. The stability
offered by this method makes it slow when recovering from
kidnapping. The active filters before kidnapping have good
quality and low uncertainty. So, one of them is selected as robot
position estimation. When these new erroneous filters start to
reject the observation (due the outliers filter) and to incorporate
the odometry, the uncertainty grows and the quality will become
lower. New filters started after kidnapping in the right position
will get their uncertainty reduced, and after several cycles,
their uncertainty will become lower than the erroneous ones,
recovering from the kidnapping. Sometimes it takes several
cycles to incorporate observations and reduce their uncertainty,
as shown in Fig. 11.

Table 6
Comparison of error in distance (in mm)

Method Median Mean SD

FMK 610.6 955.6 868.9
EKF 1118 1257 691.3
EKF + FMK 601 946.6 928.8
n(EKF) + FMK 778.3 1226 1227
SRL 1303 1281 602.3

Experiment 3.

Table 7
Comparison of error in orientation (in deg)

Method Median Mean SD

FMK 50.32 70.51 60.43
EKF 9.455 31.61 49.42
EKF + FMK 19.74 38.78 42.6
n(EKF) + FMK 21.05 36.75 39.49
SRL 37.22 45.04 38.55

Experiment 3.

5.3. Experiment 3

We designed the last experiment to test the performance of
the localization methods when facing a noisy environment and
how the EKF outliers filter rejects false positives. In this way,
calibration made was not good enough to avoid a couple of
false positives. One of them was situated close to the center
of one side (blue box in right in Fig. 9) and resulted in the robot
perceiving the blue goal in that position. This experiment was
repeated 5 times. The error in position is summarized in Table 6,
and the error in orientation in Table 7. The data shown in Fig. 12
demonstrates that the combination of FMK and several EKFs is
the only algorithm able to estimate the robot position correctly
most of the time. The moment when the robot perceives the
false positive is marked in both graphs.

5.4. CPU time analysis

Besides the accuracy and the convergence speed, the
performance is a critical issue in the RoboCup environment.
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Fig. 12. Error in the distance and angle estimation in the third experiment.

Fig. 13. CPU time spent in every algorithm in experiments 1 and 2.

This has been one of our main concerns. In Fig. 13 the CPU
time spent on each algorithm is shown. FMK original (with
cell size 20 × 20 cm.) requires up to ten times more CPU than
the other methods (which use a FMK version with cell size
50 × 50 cm) almost all the time. This causes the robot to fail,
for instance, when it approaches the ball and tries to kick it,
because the delay introduced by the localization module makes
the robot to kick in an old position of the ball. The new approach
has shown an evident upgrade in the robot’s performance in
kicking and grabbing the ball.

6. Conclusions and future work

The localization methods presented in this article combine
the global localization and recovery abilities provided by
the Markovian fuzzy logic algorithm with an Extended
Kalman Filter, whose advantages are its low processing time
requirements and its stability. We have combined them in two
strategies. First, in the FMK + EKF strategy the EKF is
restarted with the FMK information when the EKF estimated
uncertainty is high. Second, in the FMK + (EKF × n) strategy a
slightly more complex mechanism has been proposed, running

several EKF’s in parallel and using the FMK information in
some cases to restart the EKF filters.

To validate and compare our methods to others, we have
implemented several localization algorithms in a legged Aibo
robot and tested them in the RoboCup scenario. This scenario
is challenging for localization, as it is an example of dynamic
and noisy environment with poor odometry information and
directional vision as the main sensor sources.

The FMK + (EKF × n) algorithm has proved adequate for
the RoboCup environment constraints and the functional needs.
It converges from scratch and recovers from kidnapping. It is
also the most robust in noisy environments, maintaining enough
accuracy for the robot to perform its tasks with a high level
of performance in CPU time. FMK method is able to quickly
converge from total uncertain situations and to recover from
kidnapping or erroneous estimation situations, but it is very
unstable when perception errors occurs. EKF method works
fine, but it requires to be properly initialized and it does not
recover from kidnapping. The FMK + EKF algorithm let us to
initialize the EKF and recovers quickly from kidnapping, but
it is not as stable as needed. The FMK + (EKF × n) strategy
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seems to be more stable than the FMK + EKF. Nevertheless,
when kidnapping occurs, the recovery is slower. Regarding
computing cost, experiments show that the processing time of
the localization module has been greatly reduced compared to
the equivalent FMK.

The future works aim to achieve an optimal combination of
both algorithms. Also the development of other methods, such
as Particle Filters, to reinitiate the Extended Kalman Filter in
certain situations, could be useful and should be considered.
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móvil Aibo mediante el Método de Monte Carlo, Anales del Instituto de
Ingenieros de Chile 115 (3) (2003) 91–102.

[8] Raul Lastra, Paul Vallejos, Javier Ruiz-del Solar, Self-localization and
ball tracking for the robocup 4-legged league, in: Proceeding of the 2nd
IEEE Latin American Robotics Symposium LARS 2005, Sao Luis, Brazil,
2005.

[9] Jürgen Wolf, Wolfram Burgard, Hans Burkhardt, Robust vision-based
localization by combining an image retrieval system with Monte Carlo
localization, IEEE Transactions on Robotics 21 (2) (2005) 208–216.

[10] Dieter Fox, Wolfram Burgard, Hannes Kruppa, Sebastian Thrun, A Monte
Carlo algorithm for multi-robot localization, Technical Report CMU-
CS-99-120, Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA, 1999.

[11] John Gutmann, Wolfram Burgard, Dieter Fox, Kurt Konolige, An
experimental comparison of localization methods, in: Proceedings., 1998
IEEE/RSJ International Conference on Intelligent Robots and Systems,

vol. 2. 1998, pp. 736–743.
[12] David C.K. Yuen, Bruce A. MacDonald, A comparison between extended

Kalman filtering and sequential Monte Carlo technique for simultaneous
localisation and map-building, in: Proc. Australian Conference on
Robotics and Automation, Auckland, New Zealand, 2002.

[13] Johann Borenstein, H.R. Everett, Liqiang Feng, Navigating mobile robots:
Systems and techniques, Ltd. Wesley, MA, 1996.

[14] Reid Simmons, Sven Koening, Probabilistic navigation in partially
observable environments, in: Proceedings of the 1995 International
Joint Conference on Artificial Intelligence, Montreal, Canada, 1995, pp.
1080–1087.

[15] Mohan Sridharan, Gregory Kuhlmann, Peter Stone, Practical vision-
based Monte Carlo localization on a legged robot, in: IEEE International
Conference on Robotics and Automation, 2005, pp. 3366–3371.

[16] Humberto Martı́nez, Vicente Matellán, Miguel Cazorla, Teamchaos
Technical Report, Technical Report, TeamChaos, 2006.

[17] Andrew Howard, Mezzanine User Manual, Institute for Robotics and
Intelligent Systems, Technical Report IRIS-02-416, 2002.

[18] Frank Dellaert, Dieter Fox, Wolfram Burgard, Sebastian Thrun, Using
the condensation algorithm for robust — vision-based mobile robot
localization, in: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, CVPR, 1999.

Francisco Martı́n received his B.Eng. in Computer
Science from Rey Juan Carlos University, Spain, in
2003. He is currently working toward the Ph.D. degree
at Robotics Group, Rey Juan Carlos University, where
he is Lecturer. His research interest include mobile
robotics, localization methods and computer vision.

Vicente Matellán got his Ph.D. at the Technical
University of Madrid, and worked as Assistant
Professor at Carlos III University, currently is an
Associate Professor in Computer Science at the
Rey Juan Carlos University, leading the Robotics
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