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Abstract. This paper presents the new release of the Robotics Academy
learning framework and the open course on Intelligent Robotics available
on it for anyone. The framework hosts a collection of practical exercises
of robot programming for engineering students and teachers at univer-
sities. It has evolved from an open tool, which the users had to install
on their machines, to an open web platform, simplifying the user’s ex-
perience. It has been redesigned with the adoption of state-of-the-art
web technologies and DevOps that make it multiplatform and scalable.
The web browser is the new frontend for the users, both for source code
editing and for the monitoring GUI of the exercise execution. All the
software dependences are already preinstalled in a container, including
the Gazebo simulator. The proposed web platform provides a free and
nice way for teaching Robotics following the learn-by-doing approach. It
is also a useful complement for remote educational robotics.
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1 Introduction

In the last decade robotics has experienced a large growth in the number of
applications available in the market. We usually think of robots as the robotic
arms used in the industrial sector and automated assembly processes. However,
today robots have appeared in many areas of daily life such as food processing or
warehouse logistics [1]. Moreover, recently robots have been used in the homes
to carry out real life tasks for people, such as vacuum cleaning. This shows
how robots can successfully address real life tasks. In many areas, robots are
progressively being included, with technologies such as automatic parking or
driver-assistance systems, not to mention aerial robots that have also become
really popular.

Robotics in Education tries to strengthen the learning skills of future engi-
neers and scientists by using robot-based projects. Both in schools and colleges
presenting robots in the classroom will give students a more interesting vision of
science and engineering, and they will be able to observe directly the practical
application of theoretical concepts in the fields of mathematics and technology.
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From the perspective of the University, robot-based projects help to enhance key
abilities since their origin, for instance those identified with mechatronics [2].

The fast technological changes and the subsequent movements in education
require the development and use of educational methodologies and opportunities
with a moderate economic effort. Many institutions answer to this challenge
creating distance education programs. Web-based robotics distance education is
a growing field of engineering education. Web based applications allow students
to code robotic projects without having to run special software in their computers
nor the robot physically near them [3,4].

When learning online, the robotic projects take place using a robotic frame-
work and a teaching tool where the robot behavior is programmed using certain
language [4]. The most common way to interact with robots remotely is through
virtual and remote laboratories [5]. According to Esposito’s work [6], MATLAB
(62%) and C (52%) are the dominat choices, with a minority using free open-
source packages such as the Robot Operating System (ROS) (28%) or OpenCV
(17%). ROS stands out for having a large and enthusiastic community. ROS
enables all users to leverage an ever-increasing number of algorithms and simu-
lation packages, as well as providing a common ground for testing and virtual
commissioning [7]. The best ROS compatible simulator is Gazebo [8]. It provides
3D physics simulation for a large variety of sensors and robots, and it can be
customized for the user needs. Gazebo is bundled into the full installation pack-
age of ROS, making it widely and easily available. Many robot manufacturers
offer ROS packages specifically designed for Gazebo support. Therefore, ROS
and Gazebo seem suitable tools to be used in web environments to offer robotics
education at no cost.

In this paper we present the latest release of Robotics Academy learning
framework.

On its exercises the student is intended to develop the intelligence of some
robots for several robotics application. Robotics Academy is open source and
uses Python, ROS, Gazebo and Docker for supplying an easy method to create
robotics or computer vision applications.

2 Robotics Engineering Education

In educational robotics at universities there are two areas that are usually taught:
industrial robots and mobile robots [9]. The main topics of knowledge are ma-
nipulation control techniques, inverse kinematics, trajectory calculations, local
and global navigation, position control, perception, mapping and self-location.
Today, the proggressive digitalization of the world has transformed how the
knowledge is created and consumed. In this sense, web platforms are gaining
popularity exponentially, since they allow users to access content wherever and
whenever as long as they have an Internet connection. Some leading universities
already provide online robotic courses such as Artificial Intelligence for Robotics
from Standford University, Autonomous Mobile Robots from ETH Zurich or the
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Art of Grasping and Manipulation in Robotics from the University of Siena.
They see the potential of online learning in robotics engineering.

In addition, many authors and developers have joined forces to create web
platforms for robotics. We may find in the literature examples of robotics web
platforms such as RobUALab [10]. This platform has been programmed in Java
and thanks to web technologies it allows to teleoperate, experiment and pro-
gramm a robotic arm. With it, the students can test diferent configurations,
evaluate pairs, both Cartesian and articulation trajectories and program the
arms with a list of comands.

Another example is the work of Peidré et al. [11]. They presented a virtual
and remote laboratory of parallel robots consisting of a simulation tool and a real
robot. The virtual tool helps the students to simulate the inverse and forward
kinematic problems of three parallel robots in an intuitive and graphical way.
On the remote lab, the students can experiment with a real parallel robot and
let them explore phenomena that arise in the motion of the real robot and do
not happen in the simulation.

Fabregas et al. [5] presented the Robots Formation Control Platform, a web
based tool for simulation and real experimentation with mobile robots with ped-
agogical purposes. The platform provides an interactive simulator to develop
advanced experiment of formation control with multi-robots systems, an exper-
imental environment to develop laboratory sessions with real mobile robots and
a low-cost robotic platform. It also allows the students to conduct experiments
with mobile robots in a dynamic environment by chaning the configuration with-
out having to reprogramm the simulation itself.

One of the main issues regarding robotics platforms is that they do not follow
a standard in the robotic infrastructure used and many times they do not use
open hardware or software [12]. It was not until recently when ROS has been
taken into account in the development of educational robotics platforms. One
interesting educational robotics platform is EUROPA, an extensible one, based
on open hardware and software (ROS) which includes friendly user interfaces
for control and data acquisition and a simulation environment [13]. By using
ROS, they provide the opportunity for both teachers and students to work with
advanced simulation and visualization tools. EUROPA allows easy programma-
bility based on Python. In spite of all the advantages of the EUROPA platform,
its functionality is limited to only one robot and the computer where the software
is installed.

3 Robotics Academy: from open tool from open web
platform

This educational robotics framework hosts a collection of practical exercises of
robot programming for engineering students and teachers at universities. It fol-
lows the learn-by-doing paradigm and puts the focus in the programming of the
main robotics algorithms: for perception, navigation, control, localization, map-
ping, etc. It supports Python as robot programming language and it is strongly
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based on the Gazebo simulator. In addition, it is open source, its source code is
publicly available at GitHub 2.

Each exercise is a robot application, which is designed as the combination
of the student’s code and a template with auziliary code. The template includes
many functionalities that are required to execute that robot application but
are not the focus of the learning target. There is one specific template for each
exercise.

The first major release was based on ICE middleware [1]. The second one
was completely migrated to ROS middleware and two robotics courses were de-
veloped for it and provided [14, 9]. This second release included a ROS-node as
the template for each exercise. The student was required to include her program-
ming in a separate Python file and to install all the software dependences needed
for each exercise. The framework included installation recipes for all those de-
pendencies, which are typically third party software such as ROS middleware
for sensor and actuator drivers, PX4 for drones, OpenCV for image processing,
Movelt for industrial robotics, etc.

WEBSERVER

Student’s code Execution monitoring
editor GUI

T Websockets

v
Python template

Student’s code GzWeb server
in execution

Actuators

DOCKER Container

USER MACHINE: Linux, MS-Windows, MacOS SERVER MACHINE

Fig.1: New design of Robotics Academy learning framework
3 https://github.com/JdeRobot/RoboticsAcademy
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The third major release [15] has been significantly refactored following the
design in Fig. 1 and delivered as a web platform. It is available and ready to
use at the web?, which makes it a nice choice for distance engineering learning.
It persistently stores the student’s code for the exercises, who may access them
and run them anytime anywhere. Its main improvements are described in the
following subsections.

3.1 Robotics Academy Docker Image

The robotics software is inherently complex, includes many pieces and so it
usually has many dependencies. For instance, the software access to robot sen-
sors and actuators is provided by drivers. Sometimes the focus for the Robotics
students is on the drivers themselves, but when focusing on the algorithms the
students just need to install and use them. They are included in common robotics
frameworks such as ROS and Gazebo simulator.

In order to run RoboticsAcademy exercises many software pieces are required
and so, the student had to install all of them. The installation recipes delivered
in the second framework release were not enough to significantly simplify the ex-
perience for the users. They still had to manually install all the needed packages
on their local operating system, and this was an entry barrier. In the presented
release a Docker container is provided® which includes all the dependencies of ex-
ercises already preinstalled inside. It is called RADI (Robotics Academy Docker
Image) and it may be easily installed and run in most operating systems, as all of
them support this de-facto DevOps standard. This approach follows some of the
ideas in ROSLab [16] which also uses ROS as underlying middleware and takes
benefit of Jupyter Notebooks and Docker containers for providing reproducible
research environments.

The burden of installing all the dependencies is removed from users and
moved to the RoboticsAcademy developers who build that container. This way
the learning curve is greatly reduced for final users, who skip most of the details.
They are only required to install a Docker image, which is a simple and standard
step. In addition, this container works both in Linux, MS-Windows and MacOS,
expanding so the number of potential users of the framework.

The robot simulator and the student’s code both run inside that Docker
container, in the user’s machine. This design allows the framework to scale up
to many users, as the main computing costs are already distributed.

3.2 New web-based exercise templates

The new exercise templates have two parts, as shown in Fig.1: a Python program
inside the RADI (host.py) and web page inside the browser (exercise.html).
They are connected to each other through two websockets. The browser holds
the code editor and sends the user’s source code for an exercise to the host.py,

* https://unibotics.org
® https://hub.docker.com/r/jderobot /robotics-academy /tags
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where it will be run. The host.py sends debugging information to the browser,
where it will be displayed.

The student just programs the robot’s brain in the browser. From the user’s
point of view the template provides two programming interfaces: (a) HAL-API
for reading the robot sensor measurements and for commanding orders to the
robot actuators; and (b) GUI-API which includes several useful methods for
debugging, for showing print messages in the browser or displaying the processed
images.

The Python program host.py is connected to the Gazebo simulator for get-
ting the sensor readings and setting the motor commands. In addition, it runs
the source code of the robot’s brain received from the browser, which typically
executes perception and control iterations in an infinite loop.

(a) Gazebo environment (b) Autonomous F1 Car

Robotics Academy by JdeRobot
2 i
oo 0:00:19.946930

® B | @ | S
Name Slider Frequency Measure
Brain = =—® 0/125
Gul — 225/23

(c) Exercise GUI

Fig. 2: Visual Follow Line Exercise

The browser is the only Graphical User Interface (GUI). The webpage of
each exercise, exercise.html, is divided in two vertical columns, as shown in
Fig.2c. The left column is for an inline text editor and the buttons for executing
the code, stopping it, etc.. The right column typically includes a view of the
simulated world to see the generated robot behavior. It also includes a debugging
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console for text messages and several exercise-specific illustrative widgets to show
debugging information such as the processed images. The widgets use state-of-
the-art web technologies from html5 such as 2D canvas, 3D graphics, websockets,
etc.

3.3 Webserver

The core of the web platform is a Django based webserver. It shows the differ-
ent exercises available to the users so they may choose which one try to solve.
The currently available exercises are shown in Fig.3. Once the user chooses an
exercise the webserver will show the template corresponding to that exercise, its
simulation will be executed in the Docker container that the user has instantiated
on his computer, as shown in Fig.1.

The webserver also supports a second option: the Docker containers are in-
stantiated and run on a backend computer farm, and so the user is not required
to install anything in his/her computer. The webserver distributes the user’s
simulation into one of the available computers in the farm. The IP of the farm
computers remain hidden for the user, since all of the required communications
(sending code, receiving images, sensor information, etc) occur through the web-
server itself.

JdeRobot Academy ¢ Local backend & Version3.0.6 W @ davidrol ~

L/
) ] Localized Vacuum
Follow line Obstacle Avoidance Vacuum cleaner Cleaner
The goal of this exercise s to The obijective of ths practice is to The objective of this practice is to The objective of this exercise is
perform a PID reactive control implement the logic of the VFF implement the logic of a 1o implement the logic of a
capable of following the ine navigation algorithm. Navigation navigation algorithm foran navigation algorithm for an
painted on the racing circuit. You using VFF (Virtual Force Field) autonomous vacuum. The main autonomous vacuum cleaner by
will program a Formula1 car in a consists of: The objective of this objective wil be to cover the i smistimini 4
race circuit to follow the red line practice is to implement the logic. largest area of a house using the robot. The robot is equipped with
in the middle of the road. of the VFF navigation algorithm. programmed algorithm, amap and knows its current
Destiny generates an attractive location in it. The main objective
force in the robot. This makes it will e to cover the largest area
possible for the robot to go of a house using the
towards the target, istancing programmed algorithm.
itself of the obstacles.

Fig. 3: Available exercises in Robotics Academy

In order to manage the computer farm and the running Docker containers
the webserver provides an administration panel as shown in Fig.4. The panel
offers all the functionalities needed to monitor execution, add a new computer,
to delete a container, to restart a container and to run a new container.

Through the webserver, the user is able to save and load the code written
for each exercise. When the code is saved, the webserver stores it in an Amazon
S3 service. Amazon S3 is an object storage service that offers scalability, data
availability, security and performance. Everytime the user loads an exercise, the
last version of the code is retrieved from Amazon S3.
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Fig.4: Admin panel with the computers in the farm with a running RADI

4 Intelligent Robotics Course

Robotics-Academy is currently in use in two university courses on Intelligent
Robotics at Universidad Rey Juan Carlos. Both of them follow a ’learn by doing’
paradigm and focus on robotics algorithms. Solutions to the exercises involve the
use of PID Controllers, Local and Global Navigation, random as well as Optimal
Coverage algorithms. In each exercise, the robot to be used, the environment and
the task to be carried out are detailed. Reference solutions have been developed
and published as illustrative videos, so the students may know in advance the
expected robot behavior and results for each exercise. Some Theory related to
the exercise task and programming hints are also available for the students.

4.1 Visual Follow Line exercise

The challenge of this exercise is to program an autonomous F1 Car to complete
a lap of the circuit in the shortest possible time by following a red colored line
drawn throughout the circuit. The car is equipped with an onboard front camera.
Regarding movement, an intermediate command interface has been provided:
forward speed V and angular speed W. Fig. 2a and Fig. 2b show the Gazebo
environment and the F1 car used.

This exercise is designed to teach basic reactive control, including PID con-
trollers as well as introducing students to basic image processing, for example
color filters, morphological filters or segmentation of the red line from the track.
The solution involves segmenting the red line and making the car follow it using
a PID based control. The GUI of this exercise includes a bird’s eye view widget
to know the current position of the car inside the track, as shown in Fig. 2c.

4.2 Obstacle Avoidance exercise

In this exercise, the user has to program an Autonomous Car to complete a lap
of the circuit in the minimum possible time while avoiding the obstacles present
in the way. The car has a laser sensor in front of it. The car may be given
commands for translational speed V and angular speed W. The Gazebo scenario
consists of a race track similar to Visual Follow Line exercise, with stationary
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obstacles present at different places on the track. Fig. 5a shows the GUI, the
robot and simulated scenario.

(a) Gazebo scenario
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(b) Exercise GUI
Fig.5: Obstacle Avoidance Exercise

The solution of this exercise involves the use of Local Navigation Algorithms,
such as Virtual Force Field (VFF). A sequence of waypoints is provided to the
students for a successful completion of the circuit. Navigation using the VFF
algorithm consists of obstacles generating a repulsive force and the current way-
point generating an attractive force. This makes it possible for the robot to go
towards the nearest waypoint, distancing itself of the obstacles and addressing
towards the vector sum of the forces. A debugging widget specific to this vector
sum algorithm is provided in the GUI, as shown in Fig.5b.

4.3 Vacuum Cleaner exercise

The challenge of this exercise is to program a Roomba vacuum cleaner robot to
clean an apartment. The robot is intended to visit the whole area of the apart-
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ment, in the shortest possible time. It can softly bump into walls, chairs etc, as
real vacuum cleaner robots do. The robot has motors which can be commanded
in translational speed V and rotational speed W. It includes a laser sensor and 3
bump sensors (left, middle and right). For instance, the getLaserData() method
is used to read the laser sensor measurements. Fig.6a shows the Gazebo envi-
ronment of the exercise.

Random Wandering algorithms may be developed to solve this exercise. For
instance, initial spiral and bump and go behavior may be proposed as base
solutions. This exercise includes a debugging widget as shown in Fig. 6b, which
displays the path followed and the area swept by the robot.

|

(a) Gazebo scenario
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(b) Exercise GUI

Fig. 6: Vacuum Cleaner Exercise

4.4 Vacuum Cleaner with Localization exercise

This exercise is similar to the previous one. The student is provided with the
same Roomba vacuum cleaner robot to clean an apartment. However, the robot
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is equipped with an additional pose estimation sensor, which is used to estimate
the 3D position of the robot. Its position estimations are available using a Python
APT call to getPose3d() method.

This exercise has been developed to teach planning algorithms. As self local-
ization is provided, efficient foraging algorithms, such as boustrophedon motion
and A* search algorithm, are available choices . They minimize the revisiting of
places and sweep the apartment more systematically and efficiently.

5 Conclusions

The lessons learnt with the previous release of the learning framework have
motivated the transition from an open tool to an open web platform. First, the
installation of the software dependencies has been greatly simplified as they are
now all pre-installed in the Docker container. This makes simpler the use of the
framework.

Second, the web browser is the only frontend for the student, who edits the
robot program there and monitors its execution there as well. The new exercise
templates are composed of a webpage inside the browser and a Python program
inside the Docker container, mutually connected. The Python program is also
connected to the robot simulator and runs the user’s code for the robot’s brain.

A webserver has also been developed and the new platform is ready to use
by anyone at a web site, for free. The framework is truly multiplatorm as the
container technology and the web browser used technologies are widely supported
in the main operating systems.

Beyond the major framework upgrade, the exercises of the Intelligent Robotics
course have been successfully migrated to the web platform and are ready to use
by Robotics teachers and students around the world. An instance of this course
is currently taking place with twenty students of the Rey Juan Carlos University.

Future lines for the new web platform: (a) include support for real robots;
(b) introduce more educative contents such as computer vision course and in-
dustrial robotics course; (¢) upgrade the infrastructure dependencies to ROS2
and Ignition simulator; and (d) perform an in-depth and empirical study with
quantitative evidence of its impact in the learning process of real students.
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