
XIV Workshop en Agentes Físicos WAF 2013
Congreso Español De Informática CEDI 2013

Madrid
18th - 19th of September, 2013

Coordinator of the edition:
José María Cañas Plaza
Universidad Rey Juan Carlos

c�The authors
ISBN: 978-84-695-8319-7



PROCEEDINGS OF THE XIV WORKSHOP ON PHYSICAL AGENTS (WAF-2013), MADRID, SEPTEMBER 18-19, 2013 15

Programming of a Nao humanoid in Gazebo using
Hierarchical FSM

Borja Menéndez, Rubén Salamanqués, José Marı́a Cañas

Abstract—The interest in humanoid robots has increased
significantly in the last years. International contests like RoboCup
or DARPA Robotic Challenge foster the research in humanoids
and an increasing number of conferences focus on them. The
intelligence of the humanoid robot mainly lies on its software.
There are several tools that help in the development of intelligent
software for them. In this paper we present two tools inside
our JdeRobot framework. First, the support for the Nao
humanoid in the latest releases of Gazebo simulator. Second,
a visual programming application, named VisualHFSM, which
provides Hierarchical Finite State Machines to program the
robot behaviors. Both have been experimentally validated using
VisualHFSM to generate example behaviors in the simulated Nao.

Index Terms—Humanoid, simulators, middleware, visual
languages, finite state machines

I. INTRODUCTION

Humanoids is a field of growing interest in robotics.
Prototypes such as the Honda Asimo or the Fujitsu HOAP3
are the basis for many research efforts, some of them designed
to replicate human intelligence and manoeuvrability. Their
appearance facilitates their acceptance and natural interaction
with humans as a personal assistant in the field of service
robotics. As a representative sample, the functionality achieved
in the Asimo humanoid has progressed significantly in recent
years, allowing it to run, climb stairs, push carts and serve
drinks. Moreover, the recent DARPA Robotics Challenge has
chosen a humanoid platform (first in simulation, second with
the real Atlas robot) for its contest testing robot usefulness for
hazardous activities in disaster response operations.

Within this field the humanoid robot Nao, manufactured by
Aldebaran Robotics, has burst recently. Since 2008 it is the
official platform of the Standard Platform League (SPL) in
the international robotics competition RoboCup. Due to its
low price, compared to other humanoids, their prominence and
good features the number of users of this robot is growing in
the robotics community, both for use in research and teaching.

Most of the robot intelligence lies on its software. Its
functionality resides in its programming, in the software that
manages hardware resources like sensors and actuators. There
is no universally standardized methodology to program robots.
In the last few years the robotics community has begun to
apply software engineering methodologies to its field, making
more emphasis in code reuse, distributed software design,
etc. Several robot programming platforms that simplify the

Universidad Rey Juan Carlos.

E-mails: b.menendez.moreno@gmail.com, rubensalamanques@gmail.com,
jmplaza@gsyc.es

development of applications have emerged. These platforms
(1) provide a more or less portable hardware access layer
(HAL); (2) offer a concrete software architecture to the
applications; (3) include tools and libraries with already
ready-to-use functionality and building blocks. Many of the
emerged platforms are component oriented, such as ROS,
Orca, Microsoft Robotics Studio, RoboComp, JdeRobot, etc.

One significant tool for development of robot software are
simulators. They provide virtual environments and emulate
the sensor observations and the effects of the orders to the
actuators. They allow testing and debugging before putting
the software on the real robot, making easier and cheaper to
work with teams of robots. They also provide ground truth data
to test perception software. Current available simulators have
gained in realism, incoporate noise in sensors and actuators,
provide physics engine and 3D simulation, including cameras.

There are many simulators available, some on commercial
bases like Webots or the one in Microsoft Robotics Developer
Studio1 [10], and others from the open source robotics
community. One interesting recent simulator is MORSE2

[6], aimed at educational environments. Perhaps the most
widespread ones are Stage [7], a multirobot bi-dimensional
simulator, and Gazebo [11]. Gazebo3 is a powerful 3D
simulator that supports multirobot systems, cameras, complex
robots with manipulation capabilities, etc. (Figure 1). It was
born within the project Player/Stage/Gazebo [19] and now
the Open Source Robotics Foundation fosters its development.
WillowGarage chose it as the reference simulator for ROS and
DARPA chose Gazebo as the platform for the first stage of its
DARPA Robotic Challenge.

Fig. 1: Gazebo 1.8.1 showing the a Pioneer robot with laser
and cameras

1http://www.microsoft.com/robotics
2http://www.openrobots.org/wiki/morse
3http://gazebosim.org



16 PROCEEDINGS OF THE XIV WORKSHOP ON PHYSICAL AGENTS (WAF-2013), MADRID, SEPTEMBER 18-19, 2013

Another interesting
tool that can be used for robotic software development is the
use of automatons to generate robot behaviors. Finite state
machines (FSM) have been succesfully used to symbolize the
robot behaviors, representing them in a compact and abstract
form. With FSM the behavior is defined by a set of states,
each of which performs a particular task. The system can then
switch from one state to another through transitions, which
are conditions of state change or stay depending on certain
events or sensor conditions that may happen, both internal or
external. FSMs provide one smart way to organize the control
code and perception on-board a mobile robot. They have been
explored in research and also incorporated in recent robotic
frameworks with tools that let the programmer to focus on
the behavior logic more than in implementation details. With
these tools most of the code is then generated automatically
from the abstract description of the FSM. This diminishes the
chance of bugs, reduces the development time and allows the
programming of complex behaviors in a robust way.

In this paper we present two steps forward from our previous
works: the support of the Nao humanoid in latest releases
of Gazebo simulator 4 and its programming using a visual
tool with finite state machines that we have developed inside
the JdeRobot framework, extending it to manage hierarchical
FSM.

The reminder of this paper is organized as follows. In the
second section we review related works on frameworks for
Nao programming and other tools to create hierarchical finite
state machines in robots. The third section presents in detail
our visual programming tool, VisualHFSM. The fourth section
describes the developed support for the Nao robot in Gazebo,
its sensors and actuators, and its use inside the JdeRobot
framework through standard ICE interaces. The fifth section
describes experiments with robot behaviors developed using
the VisualHFSM for programming a simulated Nao. Finally,
conclusions are summarized.

II. RELATED WORKS

The reference simulator for Nao is Webots from
Cyberbotics, which is compatible with the Nao SDK. Webots5

is a proprietary software to simulate mobile robots mainly used
for educational purposes. Like Gazebo, Webots uses a physics
engine. With it, you can simulate in a realistic way several
Nao robots, visualizing its cameras and having access to its
sensors and actuators.

Another example of using simulators for Nao in the SPL
Robocup is SimRobot. This is an open source simulator
developed by the B-Human team, led by Thomas Röfer [12],
developed at the Universität Bremen and the German Research
Center for Artificial Intelligence. It is being used for further
research on autonomous robots.

The Nao robot is also supported by Robot Operating System
(ROS6). ROS provides an API that allow roboticists to have
full control of the real robot, so you can run ROS inside the

4At the time of writing this paper the latest release is 1.8
5http://www.cyberbotics.com
6http://www.ros.org

Nao using this API. ROS is supporting the simulated Nao
by Rviz7, the visualization tool for this platform, licensed
under BSD and Creative Commons, in which you can create
scenarios for the Nao robot.

Fig. 2: An instance of SMACH-viewer

Regarding finite state machines, ROS is also gaining
prestige with its platform-independent SMACH8. This tool is
a task-level architecture for rapidly creating complex robot
behaviors. At its core, SMACH is a ROS-independent Python
library to build hierarchical finite state machines. To develop
a hierarchical finite state machine you have to write the code
needed to create and describe each state and transition, it is
not a visual tool. The package also comes with the SMACH-
viewer (Figure 2), a tool that shows the developed finite state
machine at runtime. In that tool, we can see either a graph or
a tree view of the current automaton, but not both at the same
time. It also shows every state and transition, as well as the
active state and a debug window where we can see data of the
active state.

One of the most powerful frameworks that use HFSM in
robotics is MissionLab, developed in Georgia Tech by the
professor R. Arkin. This environment includes a graphical
editor of configurations (CfgEdit) [15] as a tool, similar
to automaton, that allows to specify missions with its
states, transitions, etcetera. It allows to generate applications
following the AuRA architecture, developed by the same
group. In order to represent the automaton they developed their
own language, the Configuration Description Language.

A more recent example of FSM is the automaton editor
inside the component-oriented platform RoboComp, from
Universidad de Extremadura. For instance, in [3], they used
it to program the behavior of a forklift. Another sample is
the behaviors graphical editor Gostai Studio [8], inside the
Urbi platform. This graphical editor generates urbiscript code
as its output, includes time-execution visualization of the state
of the automaton, allows to stop and continue the execution of
the generated automaton and offers the possibility of creating
hierarchical finite state machines.

In the RoboCup scenario finite state machines are frequently
used to generate behaviors for the standard SPL league
humanoid robots. Several teams use the tool and language
XABSL [14; 17] to specify behaviors, around the influential
German team B-Human. In addition, the TeamChaos team [9]

7http://www.ros.org/wiki/rviz
8http://www.ros.org/wiki/smach



17

used an HFSM tool to handle hierarchical finite state machines
for its architecture ThinkingCap, allowing even behavior hot-
edition in each state. In the SPIteam9 team a tool named
Vicode is used to generate finite state machines for BICA
architecture.

Another example of the automaton power is the use
for programming the intelligence of automatic players in
videogames. This scenario is simpler than real robotic because
much of the player perception is obtained looking up some
videogame variable. For instance, in the successful Halo 2 of
Bungie automaton trees were used to deploy more than one
hundred different behaviors.

Fig. 3: An instance of xaitControl

Xait10 enterprise commercializes tools that facilitates
automaton programming to videogames developers, as its
xaitControl (Figure 3). This tool allows the programmer
to easily develop behaviors with hierarchical finite state
machines. It has a main canvas in which the automaton is
displayed, a tree view on the left shows the created structure
and other panels show different information about auxiliary
procedures, execution flow control, etc.

III. HIERARCHICAL VISUAL FSM TOOL

We have created the VisualHFSM tool inside JdeRobot11

framework for the programming of robot behaviors using
finite state machines with hierarchy (HFSM - Hierarchical
Finite State Machines) to generate components for this
component-oriented framework. It represents the robot’s
behavior graphically on a canvas composed of states and
transitions. The source code to be executed at each state or
when checking each transition can be also introduced. This
tool decreases the development time for new applications,
providing the developer with a more abstract visual language.
It also increases the quality of these applications, automatically
generating most of their code using a clean and well organized
template. The tool allows the engineer to focus on specific
parts of his application, automatically generating the rest,
getting a more robust code, less prone to failure.

9http://www.spiteam.org
10http://www.xaitment.com
11http://jderobot.org

Current release is based on a previous work without
hierarchy [20]. In that release, the functionality was almost the
same, but it did not include more than one-level automaton,
providing worse usability and readability for the FSMs.

VisualHFSM is divided into two parts: the graphical editor
and the automatic code generator. The graphical editor displays
the main window of the tool, where all the functionality is
located to create the automaton structure. It also contains
internal structures that provide functionality to the interface
and saves in an XML file all the information related to the
automaton structure and the application. The automatic code
generator reads such XML file and delivers the source code
of a JdeRobot component implementing the HFSM. It uses
a multilevel automaton template that fills with the state and
transition contents of the created HFSM.

Fig. 4: Graphical editor of the VisualHFSM tool including
the sub-automaton of one of its states

A. Graphical editor

The graphical editor allows the user to visually represent,
edit and add states and transitions in a clear an simple way
(Figure 4). The component is represented by a finite state
machine in a canvas, where every element or state and the
transitions that connect each other are visualized. It allows
to manipulate states (create, remove, move, name...) and to
define the behavior in every state. It is also possible to set the
conditions of stay and the transitions between states.

The GUI is divided into three parts: the tree view at the left,
the canvas at the center and the action buttons at the right.
The graphical editor saves in an XML file all the features of
the developed component: the structure of the automaton, the
characteristics of each node and transition, etcetera.

The tree view is the area where you can see the hierarchical
tree of the generated automaton. It has a drop down menu
where you can navigate through the created hierarchical
automaton. The tree view allows to double-click in a state and
represent its underlying sub-automaton in the main canvas.

The canvas is the area where the automaton is drawn,
showing the name of each element, either state or transition.
States are represented as blue circles if the state has no
sub-automatons and as green circles if the state has a sub-
automaton. For each sub-automaton it also marks with a
double circle the state which must be active at the beginning.



18 PROCEEDINGS OF THE XIV WORKSHOP ON PHYSICAL AGENTS (WAF-2013), MADRID, SEPTEMBER 18-19, 2013

For each state we can do a few actions: rename it; edit it,
allowing you to change the code of the selected state; mark
it as initial; copy it, allowing to paste the selected state into
another or the same automaton; and delete it. Every state can
be connected to another by an unlimited number of transitions.
An state can also be connected to itself by an autotransition.
Transitions are visualized as an arc and correspond to the
conditions of stay or change. These conditions can be
temporary or conditionals. States and transitions are associated
with a name defining its specific functionality, entered from
the graphical interface. The operations associated to transitions
are rename, edit and delete it, with the same functionality as
mentioned before.

The button area is the area where the buttons are showed.
They are structured in five groups: navigation, where you can
go up to see the parent automaton; object or figure buttons, to
create states and transitions; save and open buttons, to save the
automaton created or load an existing one; edit automaton data,
where you define interfaces, timing, variables and functions of
the showed automaton; and generate code and compile buttons.

B. XML

As mentioned before, the graphical editor allows to save an
XML file in disk as nonvolatile support of all the application
properties. The equivalent component in textual language will
be generated from this file. The XML file allows to save
the component, regardless it is finished or not, to its later
modification, editing it in another computer or even loading it
in later tool versions.

The XML file saves for each sub-automaton different
features. First of all, it saves a number as the automaton id
and another number as the automaton parent id. This unique
identifier allows to distinguish and establish the dependency
relationship between states. States are also saved with its own
identifier, the point coordinates in the canvas, its name, its
child id (if it does not have any, 0 is written), its own code
and its outgoing transitions. For every transition the position
in the canvas is saved, its name and its destiny as the state id
where the transition ends. It also saves the automaton attributes
as iteration time, sensor and actuator interfaces used, variables
and functions.

C. Automaton template

In order to materialize and translate all of the states and
transitions to textual code, a template is used. It has two
parts: the control thread and the graphics thread. Each of them
executes periodic iterations in concurrent threads. The tool
we have built automatically fills the automaton template and
embed the code of states and transitions in it (code, names,
changes between states, etc.).

To implement the multilevel hierarchical FSM, the control is
subdivided into different concurrent threads belonging to each
automaton. For each automaton thread it executes different
actions in a constant loop at a refresh rate of 10 Hz (can be
changed). First of all, it has an evaluation switch in which
the transitions are evaluated. If the transition is met, the state

is changed to the new state. Then, it has an action switch in
which the code of the state is executed.

This is the basic template used for the first automaton,
but for its children it has one modification. Before executing
the code embedded of the sub-automaton, each thread checks
whether the parent state is active or not. If not, it does not
execute its own code.

Fig. 5: Multi-thread automaton template

The automaton template provides multi-threaded execution
in which every thread is an automaton waiting for being
executed. Multi-threaded execution opens the door to
subautomata of different speeds in the same HSM. We can
see in Figure 5 an example of a multi-threaded automaton
template; the active state is shown in green. As the tool builds
hierarchical finite state machines, a sub-automaton will be
executed only when its parent state is active. If the parent
state transits to another state the tool saves the state in
which its child sub-automaton has been stopped. To save that
information, it creates ghost states. If the parent transits to
another state, the child changes to its corresponding ghost
state. Later on, when the parent recovers the previous state,
the child starts its execution where it stopped before, changing
its state from ghost to the corresponding regular one.

This behavior is summarized in Figure 6, where the ghost
state of each state in second and third level is displayed. The
active state is coloured in green, either the regular state or
the ghost one. In the first instant, we have the active state
running with its respective child and grandchild sub-automata.
In the second snapshot, the previous active state of the second
level automaton loses the control, so there is a new state as
active and its child, the third level automaton, has the state
as ghost. In the third snapshot, the active state of the first
level automaton loses the control and then the second level
automaton has the state as ghost, maintaining the ghost state
in the third level.

The graphical thread helps the developer to debug its
automaton. It iterates in an infinite loop, as the execution
threads of each automaton, at a refresh rate of 10 Hz, too.
It shows in a window which is the active state running on
the hierarchical finite state machine, sensor data and internal
structures at runtime. The automatic code generator general
schema is showed in Figure 7.

IV. NAO SUPPORT IN GAZEBO

There are two building blocks when programming the Nao
support in Gazebo: create the model in Gazebo and plugins



19

Fig. 6: Ghost states of the same automaton at three different
times

Fig. 7: Automatic code generator of VisualHFSM tool

that allows external applications to access to its sensors and
actuators. Every plugin work as a dynamic library (.so) that is
loaded at the start of Gazebo. A previous work was developed
before, but for Gazebo 0.9 [1]. Since that version, the simulator
has deeply changed and it i-s quite different, providing a totally
different API and methods to move a simulated robot.

A. The model

The first step to bring support to the Nao humanoid in
Gazebo is to create a model inside the simulator with basic
objects: links, joints and sensors. In addition to assembling all
the pieces, the simulator offers Simulation Description Format
(SDF), a way to write XML files defining the visual properties
of our robot. The last version of this SDF (1.4) works with
versions of Gazebo up to 1.6.

Fig. 8: Two blocks connected by a hinge

To build the robot we have to join some basic predefined
blocks like hexahedrons, spheres, cylinders, etc (Figure 8).
These blocks can be given geometrical size and mass necessary
for the particular model, as well as its location in the world,
its inertia matrix and many other features. These bodies are
joined by hinges, which can give one or more directions of
rotation. This provides our simulated model with different

degrees of freedom. Every hinge in this model is built based
on revolute joints, which commands the aperture of the hinge
in the specified axis. The arm and the camera will be detailed
as representative samples.

First of all, the humanoid’s arm in Gazebo is composed by
humerus, ulna, radius and hand. The humerus is modelled as
a rectangular hexahedron with dimensions of 60x60x105mm
and a mass of 157,77g; the part of ulna, radius and hand is
joined in the same structure and is modeled as a rectangular
hexahedron with dimensions of 60x60x55,95mm and a mass
of 77,61g (Figure 9).

Fig. 9: An arm as connected blocks (left) and with skin
(right)

These two bodies are joined by an elbow hinge. This hinge
gives the regular elbow’s degree of freedom, which allows to
bend and stretch the arm. Besides, it allows another additional
degree of freedom available in the real Nao, one that allows
you to rotate the forearm with respect to the humerus. To
achieve these two degrees of freedom at the elbow we used
two hinge joints in the model. Gazebo can not join two bodies
with more than one hinge at the same time, so we introduced
another dummy body between the forearm and the upper arm.
It is the only way to get that turning the forearm rotating
with the other elbow hinge that allows us to stretch and bend
the arm. This new body created has a size small enough to
not be visually appreciated and also a mass small enough to
be negligible in the overall calculation of the mass of our
simulated robot.

To add a skin is as simple as specify the path to a Collada12

file (.dae) in the visual tag. The Nao robot skins were built
with Blender and added to this model.

The humanoid head is modelled as an sphere, with its skin,
and incorporates two camera sensors, as in the real robot. To
do that, it is necessary to add two sensors in the model. This
sensor is created based on the SonyVID30 camera, sensor
already supported by Gazebo. This camera provides images
with a size of 320x240 pixels, with an horizontal field of
view (HFOV) of 60 degrees and a refresh of 10 frames per
second. Once incorporated to the head, we developed the
basic programming interface which allows to get data from
the camera to see what the Nao robot in Gazebo is watching
every moment.

In order to move the head, we have developed a neck hinge.
The neck has two degrees of freedom: one for the pitch (tilt),

12https://collada.org



20 PROCEEDINGS OF THE XIV WORKSHOP ON PHYSICAL AGENTS (WAF-2013), MADRID, SEPTEMBER 18-19, 2013

that is, the vertical movement of the head, and one for the
yaw (pan), that is, the horizontal movement of the head. As
explained before, this is done joining the body with the head
through a new little dummy body with small size and mass.

Following these steps we designed and built every part of
the simulated humanoid Nao: the arms, legs, body and head. In
Figure 10, we can see at the left the humanoid without textures,
with mechanical blocks, and at the right the appearance of the
same robot with skins incorporated, with a much more realistic
appearance. As well as the mechanical assemble of the blocks,
this model adds a set of basic programming interfaces for each
block: actuators in its joints and sensors, including its cameras.

Fig. 10: Nao with the basic blocks without skin (left) and
with skin (right)

Every part of the simulated Nao is designed following the
Aldebaran Robotics documentation, including the center of
masses, inertial matrices or the aperture range of the hinges,
getting a realistic behavior at the simulation.

B. Gazebo plugin
Once the Gazebo humanoid model was built, developers

can program applications that use its sensors and command
movements to its actuators. The simulator provides an API
with different modules in order to have a realistic simulation,
such as methods to do operations with quaternions, get the
position of a link, simulate a depth camera sensor or give an
easy way to have a PID controller in the simulation, among
others.

Fig. 11: Low level and high level API in a Gazebo plugin

Gazebo provides a low level API in which a plugin can act
moving bodies, while Gazebo plugins provides a high level

API that can be connected to another JdeRobot components
(Figure 11). At least, a Gazebo plugin may have at least three
elements: the line in which you register the plugin, the Load
method in which you load every element of the SDF file you
want to take over control and the OnUpdate method that will
run iteratively in a loop to do the work.The Gazebo plugin is
developed following these lines:

First of all, as explained before, we register the model. Then,
the model will be loaded. In this step, we have to find the links
and joints we want to provide movement. Finally, the code will
enter in the OnUpdate method, where we have to check the
position of the hinge with its encoders in order to move it to
the position we ordered. Encoders and motors are offered as
standard interfaces, updating them in every loop and offering
them when the user chooses it.

The plugin provides access to sensors and actuators of
the robot. To do this in an easy way, JdeRobot provides
standard interfaces with the ICE middleware. This fact makes
all JdeRobot components can easily communicate each other.
There are ICE interfaces predefined in JdeRobot, so to
provide this access we wrote methods that can connect other
components to obtain the sensor values and give ability to
move the actuators.

The simulated robot’s neck is special: it is the only hinge
that allows movement both in position and in speed. With this
characteristic we can move the neck to an specific position
or command it to move to an specific speed in the axis
we command it. This feature allows the programmer to do
experiments such as follow-objects.

V. EXPERIMENTS

In order to validate the VisualHFSM tool and the structure to
give support to Nao robot in Gazebo, we have performed three
different experiments. The first one tests some of the simulated
actuators, the robot dances using its arms. The second one tests
the main Nao sensor, its camera, and performs a visual control
to let the robot track a color ball with its head. The third one
validates VisualHFSM integrating the previous behaviors in
just one hierarchical finite state machine.

A. Dancing

In the first experiment the robot dances with its arms,
moving the right and the left arm simultaneously (Figure 12).
The Nao plugins provide several joint hinge controls which
accept position commands. Each hinge stops its movement
when the commanded position is reached. The developed
component that moves the robot in this experiment gets the
position of the hinge through the odometric in the plugin and,
when it reaches the desired position, commands the hinge to
a new position following the designed position sequence. The
simulated robot is in a constant movement, dancing with its
arms.

B. Follow-ball

In the second experiment the robot follows a moving ball
with its upper camera. A green ball is moved following a



21

Fig. 12: The Nao robot dancing in Gazebo simulator

3D trajectory in Gazebo and the simulated Nao turns its head
vertically and horizontally to keep the ball in the middle of
the field of view (Figure 13).

Fig. 13: The Nao robot following a ball in Gazebo simulator

The green ball movement is performed with a plugin
in order to move it through the world. This plugin uses
two different hinges, the first one (revolute) gives horizontal
movement and the second (prismatic) provides vertical
movement. In order to move the ball, we developed an ad-
hoc JdeRobot component which commands its position and
waits until it is reached. When done, it sends a new target
position.

To generate the tracking behavior a JdeRobot component
implements a feedback control with a proportional controller.
It receives the simulated image, filters the pixels with the ball
color and estimates the ball’s position in the image averaging
those pixels. It calculates the error between ball’s position and
the center of the image, and sends speed commands to the
neck motors. The bigger the error, the faster speed commands

in each direction (pan and tilt axis). The robot succesfully
moves its neck following the ball, keeping it centered in the
image.

C. Follow-ball and dancing with VisualHFSM

The third experiment has been developed with VisualHFSM
and it combines the previous dancing and tracking behaviors.
The hierarchical finite state machine is showed in Figure 14.
This is a toy example of hierarchy created with VisualHFSM.
We can see at the left the tree view the first level of the
automaton and its children, showing in different windows the
children of each state.

Fig. 14: Hierarchical automaton developed with VisualHFSM
for the simulated Nao

There are two states in the first level of the automaton: the
followBall state (which is the active one at the beginning)
and the dance state. Each state does nothing by itself, it just
gives the control to its respective child sub-automaton. The
transitions are defined in a temporary way: every 10 seconds
the working state changes. When these time transitions are
hold, the old state loses the control of the robot, which
passes to the other state, and switches off its respective sub-
automaton. When the control returns to an state, its child sub-
automaton is switched on, recovering its previous state.

The sub-automaton child of followBall has two states:
red and green. In each one the robot follows the red
or the green ball respectively. The transitions are defined
in a temporary way too, but now last for 8 seconds. The
sub-automaton child of dance has two states: right and
left. In each state, the robot moves its right or its left arm
respectively. The transitions here are defined in a conditional
way: if the arm has reached 10 different positions, the control
passes to the other state. The entire video with this combined
behavior is shown at JdeRobot13 web page.

VI. CONCLUSIONS

Nao from Aldebaran is an example of the growing interest
in humanoid robots in the robotics community. It is the official
platform of the Standard Platform League of the Robocup
since 2008, and an increasing number of centres use it in
their research or teaching. One typical simulator for this robot
is Webots from Cyberbotics, but it is commercial and closed

13http://bit.ly/nao_automata



22 PROCEEDINGS OF THE XIV WORKSHOP ON PHYSICAL AGENTS (WAF-2013), MADRID, SEPTEMBER 18-19, 2013

source. We have developed the support for the Nao humanoid
in the open source Gazebo simulator. Gazebo is becoming a
de facto standard since the ROS middleware chose it as its
reference simulator. More recently the DARPA chose it as the
platform for the first stage of the DARPA Robotics Challenge.

The developed support for Nao in Gazebo has two parts.
First, creating a model of the Nao robot inside Gazebo, with its
mechanical pieces properly connected and with right sizes and
weights, its sensors, hinges and realistic appearance. Second,
developing a set of software plugins that link the low-level
local API for sensors and motors inside the simulator with a set
of high-level ICE interfaces that provide such data to external
applications. These ICE interfaces allow the connection of
distributed objects, maybe running in different computers, to
the sensors and actuators of the simulated Nao. They are
exactly the same that the NaoServer component in JdeRobot
offers to access to the resources of the real Nao. With this
design the robotic application can run without changes both
in the real and in the simulated humanoid.

In addition, we have extended our VisualHFSM application
to deal with multilevel FSM. It provides a visual programming
tool to develop robot behaviors with hierarchical finite state
machines. This tool provides a graphical user interface to show
and manage the automaton. It also automatically generates the
C++ source code from an XML description of the automaton,
filling in a general multithreaded template that we have
designed. Its output is a JdeRobot C++ component. This
tool allows a reliable and quick development of new robot
behaviors in the abstract and powerful terms of states and
transitions.

As preliminar experimental validation we have programmed
example behaviors for the Nao in Gazebo using the
VisualHFSM tool. The robot is able to combine several
behaviors like following a color ball with the head and dancing
in a sequence that uses temporary transitions and sensor
conditions to switch from one state to another.

We intend to follow the work presented here in several
lines. First, to use both tools in robotics teaching. With
this JdeRobot+Gazebo+VisualHFSM environment, students
can program the behavior of the simulated Nao humanoid and
learn the foundations of robotics, visual perception, etc. Their
feedback will help to improve the tools’ usability. Second,
to extend the VisualHFSM to generate source code for Naoqi
middleware, not only for the JdeRobot framework. A different
automaton template should be developed for that, and so the
generated code would run seamlessly on the real Nao robot,
equipped with the original manufacturer Naoqi framework.
Finally, we would like the VisualHFSM to be used with several
different robot platforms and to explore the integration of
different languages like LUA or Python.

ACKNOWLEDGEMENTS

This research has been partially sponsored by the
Community of Madrid through the RoboCity2030-II project
(S2009/DPI-1559).

REFERENCES

[1] J. Bermejo and J. Cañas. Soporte del robot humanoide nao en el
simulador 3d gazebo. In Proceedings of XIII Workshop on Physical
Agents, WAF 2012, pages 73–80, Santiago de Compostela, September
2012.

[2] S. Carpin, M. Lewis, J. Wang, S. Balarkirsky, and C. Scrapper. Usarsim:a
robot simulator for research and education. In Proceedings of the IEEE
2007 International Conference on Robotics and Automation, pp. 1400-
1405, 2007.

[3] R. Cintas, L. Manso, L. Pinero, P. Bachiller, and P. Bustos. Robust
behavior and perception using hierarchical state machines: A pallet
manipulation experiment. Journal of Physical Agents, 5(1):35–44, 2011.

[4] P.T. Cox and T.J. Smedley. Visual programming for robot control. In
Proceedings of the IEEE Symposium on Visual Languages, pages 217–
224, sep 1998.

[5] Jeff Craighead, Robin Murphy, Jenny Burke, and Brian Goldiez. A
survey of commercial open source unmanned vehicle simulators. In
Proceedings of the IEEE 2007 International Conference on Robotics
and Automation, pp. 852-857, 2007.

[6] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan. Modular
openrobots simulation engine: Morse. In Proceedings of the IEEE ICRA,
2011.

[7] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The
player/stage project: tools for multi-robot and distributed sensor systems.
In Proceedings of the 11th International Conference on Advanced
Robotics ICAR-2003, pp. 317-323, Coimbra (Portugal), 2003.

[8] Gostai. Gostai studio suite.
http://www.gostai.com/products/studio/gostai studio/, 2012.

[9] D. Herrero-Perez, F. Bas-Esparza, H. Martinez-Barbera, F. Martin, C.E.
Aguero, V.M. Gomez, V. Matellan, and M.A. Cazorla. Team chaos 200.
In Proceedings of the IEEE 3rd Latin American Robotics Symposium,
2006. LARS ’06, pages 208–213, 2006.

[10] J. Jackson. Microsoft robotics studio: a technical introduction. IEEE
Robotics & Automation Magazine, 14(4):82–87, 2007.

[11] N. Koening and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sendai,
Japan, 2004.

[12] T. Laue and T. Röfer. Simrobot - development and applications. In
The Universe of RoboCup Simulators - Implementations, Challenges and
Strategies for Collaboration. Workshop Proceedings of the International
Conference on Simulation, Modeling and Programming for Autonomous
Robots, 2008.

[13] T. Laue, K. Spiess, and T. Röfer. Simrobot - a general physical robot
simulator and its application in robocup. In In A. Bredenfeld, A. Jacoff, I.
Noda, Y. Takahashi (Hrsg.), RoboCup 2005: Robot Soccer World Cup IX,
Nr. 4020, S. 173–183, Lecture Notes in Artificial Intelligence. Springer,
2006.

[14] M. Lötzsch, J. Bach, H.D. Burkhard, and M. Jüngel. Designing agent
behavior with the extensible agent behavior specification language xabsl.
In D. Polani, B. Browning, A. Bonarini, and K. Yoshida, editors,
RoboCup 2003: Robot Soccer World Cup VII, volume 3020 of Lecture
Notes in Artificial Intelligence. Springer, 2004.

[15] D C MacKenzie and R C Arkin. Evaluating the usability of robot
programming toolsets. The International Journal of Robotics Research,
17(4):381, 1998.

[16] F. Martı́n, C. Agüero, Cañas J.M., and E. Perdices. Humanoid soccer
player design. In Vladan Papic, editor, Robot Soccer, pages 67–100.
IN-TECH, 2010.

[17] Max Risler. Behavior Control for Single and Multiple Autonomous
Agents Based on Hierarchical Finite State Machines. PhD thesis,
Fachbereich Informatik, Technischen Universitat Darmstadt, 2009.

[18] F. Rivas, J. Cañas, and J. González. Aprendizaje automático de modos
de caminar para un robot humanoide. In Proceedings of Robot 2011, III
Workshop de Robótica: Robótica experimental, pages 120–127, Sevilla,
November 2011.

[19] Richard T. Vaughan and Brian P. Gerkey. Reusable robot software and
the player/stage project. In D. Brugali, editor, Software Engineering for
Experimental Robotics, pages 267–289. Springer, Berlin / Heidelberg,
2007.

[20] D. Yunta and J. Cañas. Programación visual de autómatas para
comportamientos en robots. In Proceedings of XIII Workshop on
Physical Agents, WAF 2012, pages 65–71, Santiago de Compostela,
September 2012.


