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VisualHFSM 5: recent improvements in
programming robots with automata in JdeRobot

Samuel Rey and José M. Cañas

Abstract—A visual programming tool, named VisualHFSM,
has been improved in the JdeRobot robotics software framework.
This tool provides Hierarchical Finite State Machines to program
robot behaviors. The particular automata is designed visually,
with nodes for the states, links for the transitions and specific
source code on them. It automatically generates a C++ or a
Python JdeRobot component that connects to the drivers and
implements the automata. It uses multithreaded templates for
that. Such component dynamically shows the current state of the
automata while running. This tool speeds up the development
time of robot behaviors, reducing the code that has to be
created from scratch for new behaviors. VisualHFSM has been
experimentally validated creating several autonomous behaviors
for drones.

Index Terms—Visual languages, robot programming, automata

I. INTRODUCTION

MOst of the robot intelligence lies on its software.
Its functionality resides in its programming, in the

software that manages hardware resources like sensors and
actuators. There is no universally standardized methodology to
program robots. In the last few years the robotics community
has begun to apply software engineering methodologies to
its field, making more emphasis in code reuse, distributed
software design, etc. Several robot programming frameworks
that simplify the development of applications have emerged.

These frameworks (1) provide a more or less portable
hardware access layer (HAL); (2) offer a concrete software
architecture to the applications; (3) include tools and libraries
with already ready-to-use functionality and building blocks.
Many of the emerged platforms are component oriented,
such as ROS, Orca, Microsoft Robotics Studio, RoboComp,
JdeRobot, etc..

In several frameworks, automata have been used for robotic
software development. Finite State Machines (FSM) have
been largely and succesfully employed in many fields and
they can also be used in robotics to symbolize the robot
behaviors, representing them in a compact and abstract form.
With FSM the robot behavior is defined by a set of states,
each of which performs a particular task. The system can then
switch from one state to another through transitions, which
are conditions of state change or stay depending on certain
events or sensor conditions that may happen, both internal or
external. FSMs provide one smart way to organize the control
code and perception on-board a mobile robot. They have been
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explored in research and also incorporated in recent robotic
frameworks with tools that let the programmer to focus on
the behavior logic more than in implementation details. With
these tools most of the code is then generated automatically
from the abstract description of the FSM. This diminishes the
chance of bugs, reduces the development time and allows the
programming of complex behaviors in a robust way.

JdeRobot is the component oriented robot programming
framework developed in Universidad Rey Juan Carlos. In this
paper we present the new release of the VisualHFSM tool in
JdeRobot, which supports the visual programming of robot
behavior using hierarchical Finite State Machines. Now it
can generate Python components, not only C++ ones. The
generated components now show in a runtime GUI the active
states in the hierarchical FSM. Its usability has been improved
and support for drones has been included.

The reminder of this paper is organized as follows. In the
second section we review related works on FSM tools in
different frameworks. The third section presents the current
visual programming tool emphasizing the improvements from
the previous release. The fourth section describes two example
applications generated with VisualHFSM for simulated and
real drones. Finally, conclusions are summarized.

II. RELATED WORKS

Automata have been successfully used in videogame pro-
gramming for generating the behavior of automatic players.
For instance, Xait 1 enterprise commercializes tools that
facilitates automata programming to videogames developers,
as its xaitControl (Figure 1). This tool allows the program-
mer to easily develop behaviors with hierarchical finite state
machines. It has a main canvas in which the automaton is
displayed, a tree view on the left shows the created structure
and other panels show different information about auxiliary
procedures, execution flow control, etc.. Another example is
the successful best seller Halo 2 game of Bungie, where
several automata were used to deploy more than one hundred
different behaviors.

Regarding finite state machines in robotics, in ROS frame-
work there is SMACH 2 [6], [7]. This tool is a task-level
architecture for rapidly creating complex robot behaviors. At
its core, SMACH is a ROS-independent Python library to build
hierarchical finite state machines. To develop a hierarchical
finite state machine you have to write the code needed to create
and describe each state and transition, it is not a visual tool.

1http://www.xaitment.com
2http://www.ros.org/wiki/smach
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Fig. 1. An instance of xaitControl

The package also comes with the SMACH-viewer (Figure 2),
a tool that shows the developed finite state machine at runtime.
In that tool, we can see either a graph or a tree view of the
current automaton, but not both at the same time. It also shows
every state and transition, as well as the active state and a
debug window where we can see data of the active state.

Fig. 2. An instance of SMACH-viewer

One of the most powerful frameworks that use HFSM in
robotics is MissionLab, developed in Georgia Tech by the pro-
fessor R. Arkin. This environment includes a graphical editor
of configurations (CfgEdit) [5] as a tool, similar to automaton,
that allows to specify missions with its states, transitions,
etcetera. It allows to generate applications following the AuRA
architecture, developed by the same group. In order to repre-
sent the automaton they developed their own language, the
Configuration Description Language. A more recent example
of FSM is the automaton editor inside the component-oriented
platform RoboComp, from Universidad de Extremadura. For
instance, in [8], they used it to program the behavior of
a forklift. Another sample is the behaviors graphical editor
Gostai Studio [9], inside the Urbi platform. This graphical
editor generates urbiscript code as its output, includes time-
execution visualization of the state of the automaton, allows
to stop and continue the execution of the generated automaton
and offers the possibility of creating hierarchical finite state
machines.

In the RoboCup scenario finite state machines are frequently
used to generate behaviors for the standard SPL league
humanoid robots. Several teams use the tool and language
XABSL [10], [11] to specify behaviors, around the influential

German team B-Human. In addition, the TeamChaos team [12]
used an HFSM tool to handle hierarchical finite state machines
for its architecture ThinkingCap, allowing even behavior hot-
edition in each state. In SPIteam a tool named Vicode is used
to generate finite state machines for BICA architecture.

III. IMPROVEMENTS IN VISUALHFSM 5

VisualHFSM [1] is a tool created for the programming
of robot behaviors using hierarchical finite states machines.
It generates as output a component in JdeRobot framework
that implements the robot behavior. It represents the robot’s
behaviour graphically on a canvas composed of states and
transitions.

The source text code to be executed in each state or transi-
tion must be introduced. This tool decreases the development
time for new applications, providing the developer with a
higher level of abstraction. It also increases the quality of
these applications, automatically generating most of the code
using a clean and well organized template. The tool allows the
engineer to focus on specific parts of her application, writing
only the actual code that will be executed by the automaton
and the conditions that will make the robot to go from one
state to another. The final result is a more robust code and less
prone to failure.

VisualHFSM is divided in two parts: a graphical editor and
the automatic code generator. The graphical editor displays
the main window where the automaton structure is created.
It also contains internal structures and saves all the data into
an XML file. The automatic code generator reads that XML
file and delivers the source code of a JdeRobot component
implementing the HFSM. It also generates a configuration file
for it. The compilation can be launched from the graphical
editor or outside.

The previous release of VisualHFSM had several shortcom-
ings and limitations. Most of them have been addressed in the
fifth release and are described next.

A. Better usability in the graphical editor

The graphical editor allows the developer to see, edit and
add states and transitions in a clear and simple way. The
component is represented by a finite state machine in a canvas,
where all elements are visualized. It allows to manipulate
states (create, remove, move, rename...) and to define the
behavior that will be executed in them. It is also possible to
set the conditions for regulating the transitions between states,
and the code that will be executed when the transitions occur.

As shown in the Figure 3, the GUI in VisualHFSM 5.0 is
now divided into two parts: the Tree View at the left and
the Scheme View at the right. The buttons part of Figure
4, present in previous releases, is now placed in the menu
bar, so the space of the window for creating the automaton is
bigger and more comfortable. Another usability improvement
is that now the canvas, the Tree View and all of the popup
elements are scrollable.

In the Tree View (red border area in Figure 3) the whole
automata is text represented in the hierarchical mode with two
columns for identifying the states: one for the ID and other
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Fig. 3. Graphical editor of VisualHFSM 5.0

Fig. 4. Graphical editor of previous version of VisualHFSM

for the name given to this state. It has now the option of
collapsing or expanding the children of some state, so the
developer can choose to see all the levels at the same time
or focus on some specific levels by collapsing the rest. The
children and levels of the hierarchy are represented under their
fathers by using different tabulations. It allows a simple and
intuitive navigation through the automaton, double clicking in
one state for representing the subautomaton that it contains.

In the Schema View (green border area in Figure 3) the
automata is graphically drawn, showing the name of each state
or transition. States are represented as blue circles and for
each subautomata it also marks with a double circle the state
which must be active at the beginning. For each state, the
user can rename it; edit it, allowing to change the code of the
selected state; mark it as the initial state of its subautomata;
copy it, allowing to paste the selected state into another or the
same subautomata; and delete it. Any state can be connected
to another by an unlimited number of transitions or to itself
by auto-transitions. Transitions are represented as arrows that
go from the origin state to the destiny, with a red square
in the middle for applying them different actions, as move
them, rename them, editing its condition, adding them code
and delete them. The condition added by editing a transition
is the condition that must happen for the transition to occur.
The Schema View also allows to graphically navigate through
the automata double clicking in the desired state or in the Up
button.

In the menu bar, menus are structured in five groups:

Archive, Figures, Data, Actions and Help. The Archive menu
allows to create new projects, open existing ones, saving the
current project or exit VisualHFSM. Figures menu contains
two buttons, for adding new states or transitions. Data menu
has Timer, for choosing the frequency of the iterations, and
Variables, for adding variables and functions that the developer
may need for better organizing and structuring its code, giving
more flexibility to the tool. Last, the Actions menu allows to
add additional libraries that the automata code may need, edit
the parameters for the “Config file” that will be auto-generated
with the code, generate C++ or Python code and compile the
C++ code by using the CMake file generated with the code.

B. Runtime GUI in the generated C++ component

For running the automata, the XML file is parsed and a
new JdeRobot component in C++ is generated. Such C++
component implements the automaton and is generated using
a carefully designed C++ template. Each subautomaton is
implemented as a single thread, so the full automata is a
collection of concurrent threads which interact among them,
sleep, are resumed, etc. as some states of the automaton are
activated or deactivated. More details of this template can be
found in [1].

The new VisualHFSM 5 includes some code to graphically
show the (hierarchical) automaton state at runtime. If the user
wants it, the generated JdeRobot component displays a runtime
GUI that shows which states are active or not while running.
This is very convenient for debugging.

Fig. 5. Runtime GUI in C++ component using the Autofocus feature

Figure 5 shows one runtime GUI similar to the graphical
editor. The current active states are displayed with green
background color in the TreeView, in all levels of the hierarchy
including the root. The user may expand or collapse the
different hierarchical levels at will. In addition, a check box
named “Autofocus” has been added. When selecting it, the
Tree View will automatically expand and collapse itself for
showing the active states and the rest of the automaton will
be collapsed, as shown in Figure 5. In the Schema View of
this runtime GUI, the active nodes are presented in green
and the others in blue. When a transition takes place, the old
active state is painted in blue in the Schema View and with
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white background in the Tree View, and the new active state is
painted in green and with green background in the Tree View.

This runtime GUI feature is off by default, because the
graphical window is useful only for debugging. In normal
robot operation, once its behavior programming has been
refined, there is no need to spend computational resources in
this additional GUI. Nevertheless, it is very useful in the de-
veloping process. Enabling this feature is as easy as executing
the component with the flag --displaygui=true.

The runtime GUI has been implemented as an additional
thread and a new library called automatagui. When the
code or the C++ component is being generated, a C++
function is written for constructing a list containing all subau-
tomatas with its states and transitions. An object of the class
AutomataGui is created and inserted in the component. The
component will use at runtime that object for dinamically
showing the automaton.

C. Generation of Python component with its runtime GUI
In the new release of VisualHFSM, the robot behavior may

be programmed in Python too. Adding support for this lan-
guage, VisualHFSM increases its flexibility and the component
does not requires to be compiled. The code inserted for the
states and transitions in the graphical editor must be in Python
and a new template in Python has been developed to generate
the component’s final code.

The code is now organized following an object oriented
model. There will be the main class Automata, which will
contain all the information related to the automaton. This
approach makes easier the communication between different
subautomata, or different threads, by using elements of the
Automata class instead of global variables. It also provides
a threading lock, in case some code is sensitive to race condi-
tions and it allows to create inner classes, in addition to more
functions or variables that could be needed. The additional
features will also be created inside the Automata class. This
implementation provides more robust, better organized and
cleaner code. In addition, as Python do not need to compile,
it is faster to make any change on the program. The Python
code is generated as an executable.

For unfolding the runtime GUI the Python component must
be launched with the --displaygui=true parameter too.
It has been programmed using the PyQt4 graphic library in
Python. The way of communicating that the color of a state
needs to change is simpler than in C++. It is implemented by
the GUI thread again to avoid race conditions, but this time the
notification is done using a handler. The thread that is going to
change its active node will emit a signal with the node name,
which will be handled by a handler in the GUI thread.

In this release it is possible to create several runtime GUI
windows (one for one subautomaton in detail), if convenient.
To activate a new window the user only has to right click over
one state of the desired subautomaton and then select “Open
Subautomaton”. Figure 6 shows several subwindows.

D. Support for drones
Several real robots as Pioneer from ActivMedia, Kobuki

(Turtlebot) from Yujin Robot, Nao from Aldebaran and their

Fig. 6. State diagram of the monitor-an-area application shows three
subautomatas at the same time

counterparts in Gazebo simulator were supported in previous
releases of VisualHFSM. In the new release support for
ArDrone-1 and ArDrone-2 from Parrot and simulated drones
in Gazebo has been included. Their corresponding JdeRobot
interfaces and their local data structures are now available for
use from the code of the states and transitions.

E. Shutdown

Another feature added in this release, both in Python and in
C++, is the Shutdown function. This function ends the loop
of all the subautomata by setting the correspondent variables
to false, so the code will reach the end and finish, in contrast
with previous releases of VisualHFSM, where the execution
never ended unless the process was manually interrupted from
the terminal.

IV. EXPERIMENTS

In order to validate the new features introduced with this
version of VisualHFSM, we have performed two different
experiments, both of them using a simulated ArDrone robot.
The experiments are two robot applications developed using
visualHFSM: monitor-an-area application and follow-colored-
objects applications. Both of them are written using the Python
code generator of VisualHFSM.

A. Monitor-an-Area application

For this first application, we have used a Gazebo scenario
with a road, and some victims of a car accident laying in
the ground around the location were the accident has occured.
This simulated scenario is an example of an application where
drones could be useful: go fast to the accident place and check
with its camera the status of the victims, for the emergency
service to give a better, faster and more accurate response.

We identified several states to unfold different behaviors of
the robot in this example. Their combination into a HFSM
fulfils the whole application. First, the drone has to take off.
When it has reached the desired height, it goes to the next
state following-the-road. Figure 7 shows the ArDrone
following the road in that state. This state has a child subau-
tomaton, for following it and considering other aspects at the
same time. For instance, if the drone lost the road, this child
subautomaton tooks control to search and recovers the road
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Fig. 7. ArDrone following the road

again. After finding it, it returns to the state of following the
road.

It will keep in the following-the-road state until it
gets to the point where the accident has happened. Then, it
switches to the monitor-area state, which is responsible
of looking for and locate the victims, as shown in Figure 8,
where the drone has found a victim. This state has a child
subautomaton for specifying phases of this activity in a simpler
and more understandable way. When it has finished searching
in the area, the drone will come back to the point of the road
where it started to search for victims, it will turn around,
and again it will go to the following-the-road state,
following it until it reaches the point where the drone took
off, and then lands there.

During all the execution, the height of the drone has been
watched. If it went too hight or too low, the automaton would
have switched to another state until it reaches the desired
height. The state diagram of this behavior is shown in the
Figure 6, where we can see the root subautomaton, and those
of following-the-road and monitor-area states.

Fig. 8. ArDrone recording the location of a car accident’s victim with its
camera

B. Follow-colored-objects application

The motivation for this application is to use visualHFSM
with a real robot, an ArDrone2 from Parrot. In this experiment
there are several different colored moving objects, and the
ArDrone must follow them using its ventral camera following
a sequence. First, it will follow the green object until it finds
something blue, then it will start following this new blue object
until it finds a green object again. Finally, it will follow such

green object until it finds a red one, which it will follow until
the application finishes.

Fig. 9. State diagram of the follow-colored-objects application from its
runtime GUI

This kind of behaviour perfectly matches a HFSM, as each
of the four stages of following an object while looking for
another can be modelled with states and transitions. The state
diagram is shown in Figure 9 when the Robot is following
the green object and looking for a blue object. The whole
automaton is expanded on the Tree View.

As it is shown, the drone starts in the take-off state.
When the desired height is reached, the drone will go to
the state FollowGreen-LookForBlue. There it will be
filtering two colours: green and blue. It will be following the
green object until it detects a blue contour, and then it will
change to FollowBlue-LookForGreen state. Then, to
avoid the drone immediately detecting the green object that it
has been following in the previous state, it will wait a blanking
interval. During this interval it will only follow the blue. When
such interval is over, in case of finding a green contour it will
change to FollowGreen-LookForRed state. This state
works like the other two, and when the drone finds the red
object it will change to FollowRed state until the program
finishes. Figure 10 shows the real drone following this last red
object.

All the color following states are implemented with a child
subautomaton. The father is in charge of detecting the colors
and decides if it should continue in the current state or go to
the next, while the children is responsible for following the
color. We have followed this approach because the laboratory
where the experiments have been performed is small, and so,
when the drone loses the color it is following, it should stop. In
other scenarios like open spaces it would be more convenient
that when the drone loses the object, it would start a looking
for manouver. With this approach it would be easier to have
a new child subautomaton performing such manouver.

This experiment has been performed both using Gazebo
simulator and real robots. In Gazebo it works perfectly, but
we have found some difficulties while migrating it to the real
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Fig. 10. ArDrone robot following a red object in the FollowRed state.

world. First, we had to fine tune the color filters, as making
robust color filters with real light is complex. In addition,
the real ArDrone flight is not as stable as in the simulator.
A limitation in current visualHFSM release was detected:
once the generated component with the automaton is started,
it cannot be stopped until it reaches the final state. This,
combined with the previous problems, is annoying when the
drone does not behave as expected.

V. CONCLUSIONS

This paper has presented the new release of visualHFSM
tool in JdeRobot framework. It allows the programming of
robot behaviors using automata. The developer creates a
graphical representation of the automaton, fills the code to
be executed on each state and on each transition, and the tool
automatically generates the output JdeRobot component. The
use of hierarchical automata provides power to the tool to
represent complex behaviors. The new release automatically
generates Python or C++ components, and the generated
component dynamically shows the state of the (hierarchical)
automata in execution while running. In addition the usability
of the tool has been improved.

The tool was previously tested with Pioneer, Kobuki and
Nao humanoid robots. The new release has also been validated
generating two example behaviors for a drone robot.

As future lines we would like to make the generated
automaton safely interruptible and to promote the use of
visualHFSM among JdeRobot users, to get feedback from
them using the tool in different scenarios. In this way, the
tool has recently been included in the official release of the

framework. In addition, we are exploring the extension of the
tool to generate ROS nodes and support for Petri nets as richer
robot behavior model.

ACKNOWLEDGMENT

This research has been partially sponsored by the Com-
munity of Madrid through the RoboCity2030-III project
(S2013/MIT-2748), by the Spanish Ministerio de Economı́a
y Competitividad through the SIRMAVED project (DPI2013-
40534-R) and by the URJC-BancoSantander.

REFERENCES

[1] Borja Menéndez and Rubén Salamanqués and José M. Cañas, Program-
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