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Summary

One of the most attractive �elds within computer vision is that of visual localization.

This opens the door to applications that can be developed for mobile phones or tablets,

and can also be combined with augmented reality, to turn our applications into very visual

and entertaining ones.

The project we present in this document is immersed in both these technologies, and

aims to design and develop a self localization algorithm that is based on visual markers,

as well as an augmented reality application that is based on it. The particular augmented

reality will be a �lm that is continuously played in a virtual screen drawn over the real

scene, in the same 3D area regardless of the location and orientation from which the camera

observes the scene. This algorithm has been validated experimentally for several scenes,

with the markers located in various di�erent positions and numbers, studying the error in

the varying axis.

For the development of this project we have used JdeRobot 5.2 software platform.

The development has been done in C++, and we have used ICE for the communication

interfaces between the di�erent components. In order to perform the graphics rendering

we have used OpenGL. OpenCV has been used to process images, and April Tags and

ARuCo to interact with the markers and allow an easy detection.
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Chapter 1

Introduction

Sight isn't just one of the most important senses for the human being, but it is also one of

the most interesting ones. All the tasks that are related with vision need a great amount

of brain activity, and they allow us to obtain about 80% of the sensations and information

that surround us.

Not all the information we can capture through our eyes is real though. In some

occasions, our brain can fool us into believing as real, certain situations that are actually

just optical illusions caused by perspective of tricky illumination. These situations that we

can consider confusing, or a limitation in our human condition, can also be taken advantage

of, and thought of an open door towards imagination and illusions. To represent these

ideas, it is important to mention very traditional examples, such as optical illusions that

are designed with that aim, as well as more modern ones, such as video-games, which each

year surprise us more with the realism of the graphics. Also, video-games are starting to

go for new immersive tendencies, in which they make use of either virtual reality, in order

to build the sensation of being inside the video-game world, which is all simulated in a

virtual environment, or augmented reality, in which they introduce virtual objects to our

real world, giving us a whole new perception of the gaming world.

Apart from the obvious uses this may have in entertainment, we also have to mention

that there are several other �elds that are also investigating into these new technologies,

in order to put them in their advantage. Mobile applications and marketing are two of the

most popular ones, between many others. It is thanks to the great futuristic aura they

have, as well as the fascination that is created when playing with illusions that have built

the interest in the development of this project.

In this �rst chapter, we would like to give a general idea of the context that surrounds

1
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this project, which can be placed in between computer vision, visual auto-localization and

augmented reality. We shall also give an insight into the present of these technologies, as

well as examples of their use.

1.1 Computer Vision

We can understand computer vision under two di�erent points of view. One of them, is

as the study of the human sense of vision, in order to obtain a computer model that can

reproduce it. The other, the design of autonomous systems that can perform some of the

activities that have traditionally been job only for the human eye.

The origin of this �eld of study can be placed in 1960, when Larry Roberts [10] wrote

his doctoral thesis in the MIT, and performed a study on the possibility of extracting 3D

information from standard two dimensional images taken from di�erent perspectives. Using

this as a starting point, several other investigation projects were performed on computer

vision, applied to a world created with geometric blocks. After some investigation, they

got to the conclusion that a certain image preprocessing was needed in order to be able to

obtain valuable results.

The cheap hardware needed, and the exponential growth of the computers processing

have been two key points in the evolution of this technology, yielding in various �elds that

have developed applications with it:

• Industry: In industrial plants, inspections and quality control are very important

in order to be successful. Using computer vision systems we can manage to comply

with the highest standards without a�ecting the work rhythm, thanks to the great

speed of processing that can be ful�lled. In Figure 1.1 we can see an example of a

bottle inspection system, as well as an automatic packeting robot.

• Security: Be it in big events, with people identi�cation systems, to a more personal

perspective, with home security, accident prevention or the monitoring of an elderly

person, computer vision has given the security world a totally new perspective.

• Identi�cation: With the world being more digital as the time goes by, biometric

recognition (be it face, �ngerprints or eyes, between others), allows us to not have to

carry so many keys or ID cards around, as well as substituting traditional passwords.
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(a) Quality Control System

(b) ABB Robot: Automatic Packeting

Figure 1.1: Computer Vision Industrial Applications

• Sports: Even though most people know the Hawk-Eye system that has been used

in tennis to determine whether a ball has bounced in or out of the pitch using the

information from several cameras, we can also �nd other similar applications in other

sports that aren't so well known. The repetition of a baseball run with several

di�erent vision angles is another very interesting one, as well as the new system

introduced in the last football world cup, which sets several cameras around the

stadium in order to determine whether the ball crossed the line or not.

(a) HawkEye System

(b) Goal Control 4D System

Figure 1.2: Computer Vision Sports Applications

• Robotics: When developing the intelligence for a robot, one of the most complicated

tasks we can �nd is that of managing for the robot to understand and interact with

its surroundings.

• Entertainment: In the videogames world, computer vision can provide a whole



CHAPTER 1. INTRODUCTION 4

new way to interact with our games, using our body as the remote control, or with

augmented reality to give a new realism to games that wasn't available before.

• Mobile Applications: One of the handiest �elds with computer vision applications,

is those developed for your mobile phone. Thanks to CamScanner (Fig. 1.3a), you

can have a scanner in your pocket, or with Word Lens(Fig. 1.3b), a international

dictionary that works with a picture of what you would like to translate. Not

understanding tra�c signs when you travel will no longer be a problem, thanks

to the great advances that are being done in this �eld.

(a) CamScanner
(b) Word Lens

Figure 1.3: Computer Vision Mobile Phone Applications

• Medicine: Computer vision is of great importance in the medical �eld, specially

in terms of image analysis in order to obtain more accurate diagnoses. These images

can provide from X-rays, ultrasounds or by a magnetic resonance, and their correct

analysis is very important for the lives of many people.

Figure 1.4: Miranda Medical
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In this �eld we must make a mention toMiranda Medical 1, a company that is focused

on software development and diagnosis tools for medical images. One of their best

known software products is XD3, which we can see in Figure 1.4, and is aimed at the

diagnosis of oncologic illnesses. It is being used by several centres around the world

to evaluate the response patients are having to their oncological treatment, and the

advance of the illness.

1.2 Visual Auto-Localization

Computer vision can be divided into several di�erent sub-�elds. One of the most interesting

ones, and a base for the present project, is visual auto-localization. This can be described

as the ability of an algorithm to estimate the position of a camera, using as input only the

images that are taken by this camera. This means that, with a series of RGB images taken

by a camera, we should be able to calculate the absolute position and orientation of this

camera, taking a point in the world as reference.

As we have mentioned, the only information that a visual auto-localization algorithm

will receive is that of an RGB camera, not having any depth information, such as that

we could have if using a Kinect Camera (RGBD), nor laser sensor information. This has

its fall backs, obviously, but we can also mention several advantages of only using RGB

information. For one, the cost involved in hardware is minimal, as we are talking about

any normal camera, and can be found in a wide variety of devices, be they mobile phone,

wearables or web cams, between others. Apart from the cost, one of the fall-backs of using

RGBD information is that this is provided using infra-red lights. This means it cannot be

used outdoors, as it would combine with the sun's infra-red lights.

When talking about visual localization, there are several di�erent techniques, depending

on the way this localization is performed. We shall now mention the three most important

ones:

1.2.1 Visual Odometry

We can talk about visual odometry as a method to calculate the relative movement

between the camera positions when taking two separate pictures. Therefore, if we have two

1http://www.mirada-medical.com/
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sequential images, a visual odometry system would calculate the movement the camera has

made to go from the place it took the �rst image, to that where it took the second.

The most commonly extended method to perform visual odometry, is based on the

extraction of characteristic points of an image, that allows us to compare these points

between both images to �nd matching points, and calculate the movement that must have

been performed in order to have this change.

1.2.2 Visual SLAM

Visual SLAM (Simultaneous Localization and Mapping) is a technique that allows us to

perform both the mapping of an area that we are observing and the localization of the

camera in that world. This method is also based on characteristic points, which we must

obtain through a two dimensional image processing algorithm (FAST, for example), and

then provide these to a 3D processor.

From the work on monoSLAM, by Davidson2 [2] is where the �rst ideas on how to

perform such actions simultaneously. The idea proposed is to use an extended Kalman

Filter to calculate the camera's estimated position and orientation, as well as that of a

series of 3D points. Before this idea, the only possible way we could perform this action

was with an initial known position of at least three 3D points. From this point, we no

longer needed to have any information of the map we are using previous to the processing.

(a) PTAM Mapping
(b) AR based on PTAM

(c) AR based on PTAM

Figure 1.5: PTAM Augmented Reality Application

Also, it is very important to mention the work proposed by George Klein3 [7] regarding

2http://www.doc.ic.ac.uk/ ajd/
3http://www.robots.ox.ac.uk/ gk/



CHAPTER 1. INTRODUCTION 7

PTAM (Parallel Tracking and Mapping). One of the main fall-backs all the algorithms

based on monoSLAM have is that the computing time increases exponentially when

increasing the number of 3D points we wish to use for our estimations. This so due to the

fact that, for each iteration, the algorithm performs both the mapping and the localizing

with all these points. This problem was dealt with by Klein, who suggested the mapping

and localization should be separated, with the condition that the localization must be

performed in real time, when the mapping can be done in an asynchronous mode, in order

to optimize the timing. An example of an augmented reality application that makes use of

PTAM can be found in Figure 1.5, where we can see the mapping performed with certain

points in 1.5a, and the AR based on this mapping and camera location on 1.5b and 1.5c.

1.2.3 Localization based on Markers

The last localization method we are going to mention is that based on markers. This

method is based on a known map, which is indicated to the camera via a series of markers

which we are able to detect easily, and that have a known position for us. With these

markers, when the camera manages to detect one of them, it can calculate its distance

from the tag, and seen as the tag has a known position, it can also calculate it from the

world's reference.

The markers that can be used are plenty, with the only limitation being that the camera

must be able to recognize them easily and without error, in order for the estimation to be

accurate. Some of the most common markers used are bi-dimensional bar codes, similar

to QR codes. These are easily detectable by a camera that knows what it is looking for,

and seen as we can use so many di�erent ones, there shouldn't be much confusion between

their detections. April Tags or ARuCo are two auto-localization libraries based on markers

that have their own families of markers, compatible with their software.

1.2.4 Relevant Examples

Keeping in the �eld of visual localization, we can mention several examples that make use

of this technique in order to provide the information that is required from them. A few of

the most important are the following:

• Drones Localization: Given how very modern most of these techniques are, it isn't

strange for the applications that make use of them to also be very modern. Drones
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are the new toy everyone wants to play with, and therefore, there is also a great

amount of people that develop new applications for them. In Figure 1.6 we can see a

visual odometry system[11] that is running with the images that a drone is capturing

during its �ight. If these methods evolve, we could soon be talking about drones that

go from A to B without any human assistance.

Figure 1.6: Drones Visual Auto-localization

• Dyson Hoover4: With a camera lens that features 360o vision, Dyson 360 Eye

captures 30 images a second in order to build a picture of the room, and uses this

information along with a mapping software, to plot and follow the optimal minimal

route around the house. In �gure 1.7 we can see the hoover on its self-charging

station, cleaning and moving between di�erent surfaces, and the mobile application

that we can use to interact with it.

• Augmented Reality: As we will mention in the following section, auto-localization

is very important for augmented reality applications, as in order to obtain a certain

realism that will give our application a good user experience, it's very important to

have the camera located at all times, to project the virtual objects that will construct

our augmented reality in the correct positions.

1.3 Augmented Reality

Augmented reality consists of, having an image �ow provided by a camera, performing a

virtual projection of a series of objects above this image �ow, giving the end user the idea

4https://www.dyson360eye.com/
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Figure 1.7: Dyson 360 Eye

that he is watching a real time video, but it has something new on it, something that isn't

quite real.

In order to perform a realistic augmented reality application we must link a series of

operations and algorithms, for the �nal result to be the best possible. First, if the camera

we are using to capture this image �ow is moving, it is very important to have a visual

localization algorithm running, in order for this camera to have full knowledge of its position

at all times, and be able to project the virtual objects in the correct place. ARuCo, which

we have already mentioned, or ARToolKit are good libraries that can provide us with the

minimal tools necesary for these applications, as we can see in Figure 1.8. Following this,

we need a graphics engine that provides us with the rendering of the virtual object over our

video �ow. Ogre or Open GL could be examples for this step, as they are very extended

libraries that give us the required functionalities. The last point we can introduce to our

augmented reality application has to do with the realism that we wish to give it. In this

line, we can di�erentiate between simple graphic AR, which wouldn't have much more to

be added that what we already have, or physical ones. These applications try to get the

virtual objects to interact with the real world, giving them physical properties such as

weight. Using a physics engine such as Bullet, we can add realism to this application.

Augmented reality is also a very modern application, and is being used in a great variety

of �elds to develop applications. These are obviously very visual, and manages to easily

capture the end users attention. When talking about applications, we can separate these

in di�erent �elds:
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Figure 1.8: ARToolKit Phases

• Entertainment. When talking about entertainment, the �rst idea to come to mind,

and one of the �rst �elds to develop AR applications is the videogames world. One of

the earliest AR games to be available is Invizimals, a game launched in 2009 by Sony

for their PSP. With the advances that are taking place in the smartphone world,

we can now �nd several augmented reality games for Android or iOS, such as AR

Defender. We can �nd examples of both of these in Figure 1.9.

(a) Invizimals (b) AR Defender

Figure 1.9: Augmented Reality Video Games

Another modern way of AR entertainment is the one that Parrot's AR Drone 2.0

o�ers us. It has available several di�erent AR games, which we can see in �gure 1.10

and gives us more reasons to acquire one of these modern toys.

Figure 1.10: Game modes with Parrot's AR Drone 2.0
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• Advertisement. Regarding this world, AR is perfect to capture the potential buyers

attention and make them remember the product you are trying to announce. One of

the options available that is most appealing is that of scanning the inside of a product,

which will then provide the user with an hidden advertisement or some information

regarding the product, as we can see in Figure 1.11. With these techniques, not only

do we have more e�ective marketing campaigns, but also we can receive much more

feedback regarding the end users experience.

(a) Scanning a drink bottle with AR
(b) Toyota Campaign based on AR

Figure 1.11: Augmented Reality examples in advertisement

Another set of examples related to advertisement are those that we see on the

television between sports retransmissions. On these, we can often �nd the camera

watching the football pitch, and suddenly see virtual people or objects appearing in

scene and interacting with it.

• Education. Another application �eld with great potential is the educational one.

Helping children learn in a new, modern and entertaining way will always have

better results that boring standard classes, as well as providing a new point of

view regarding the concepts learnt. AR can also help cheapen the cost of certain

professional practical activities that need be learn, but usually involve a high cost in

material and equipment. In Figure 1.12b we can see Soldamatic, an augmented reality

welding system that has revolutionized a welders professional course, giving them

the possibility to perform very realistic practical activities without risk and cost that

these usually carry. Another great example is found in the smartphone application

Anatomy 4D, with which we can analyse all the di�erent parts of a human heart,

watching how this beats, and being able to view the exact parts that we wish to

visualize. This application is a great help in medical learning, as it gives the student

a new way of visualizing what they learn in the books. We can see an example of

this application in Figure 1.12a
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(a) Anatomy 4D (b) Seaberry Soldamatic

Figure 1.12: AR examples in Education

• Tourism. AR has also arrived to the tourism world, giving the travellers knew

ways to discover the city they are travelling to. These provide us with new ways to

discover the cities history and events, as well as information regarding restaurants

and museums. In this section, the company Layar 5 has started creating personalised

augmented reality application for di�erent places that wish to have them, in order to

o�er them to their clients and increase their status as a tourist attraction. One of the

�rst users of this system was the Segovian town hall, which has a layar application

for their tourists to discover the city.

• Medicine: With the great potential that is in augmented reality, it isn't strange

that the medical world has also gone into it. A good example of use in this �eld is

the projection of a 3D reconstruction of the internal organs over a body that one

is operating on. Another way to use augmented reality in the medical world is in

the treatment of phobias, creating virtual projections of the elements that create the

phobia in order to treat them in a controlled environment.

1.4 Visual Localization and Augmented Reality in the
Robotics Group of the URJC

As we can see, Augmented Reality and Computer Vision applications are present

in a very extensive number of �elds, and these are growing day by day. Within the

Robotics Group or the URJC, we can mention several previous projects and thesis where

the fundamentals of these have been exposed.

First, we would like to mention some projects done regarding camera calibration, which

are very important for visual localization algorithms. To know the intrinsic parameters of

5www.layar.com
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a camera is a fundamental point when having to analyse an image, as it is important to

know the physics behind the camera that captures the image we are analysing to perform

a better job. In this �eld, we can mention the projects performed by Redouane Kachach

[6] y Agustín Gallardo[3].

There have also been projects related to localization making use of RGBD cameras,

such as the one on visual odometry by Daniel Martín [8], who developed a system that

integrates camera position and route estimation, based not only on RGB images, but also

depth information provided by a Asus Xtion (RGBD). Daniel performs an estimation of

the relative movement the camera has performed between two consecutive image frames

using SVD(Singular value decomposition) and RANDSAC(Random sample consensus)

algorithms, of which we can see the �nal application in Figure 1.13a

Visual self-localization with RGB cameras was the main point of the master thesis

written by Alejandro Hernández [5], in which he performed implementations and tests of

di�erent visual auto-localization algorithms, as well as an Augmented Reality video game

that makes use of them, as we can see in Figure 1.13b. Alex performed his own PTAM

implementation, based on the original, but making use only of OpenCV and Eigen libraries.

(a) RGBD Visual Odometry by Daniel Martín (b) AR Video Game by Alejandro
Hernández

Figure 1.13: Computer Vision Projects in the URJC

In this project, we wish to get into the world of visual localization and its appliances

in augmented reality. We would like to develop a marker based visual auto-localization

algorithm, making use of several di�erent technologies that we must manage to blend in

together, in order to obtain the desired results. With this algorithm in place, we would like

to integrate it with an augmented reality application in order to determine the cameras

position, and be able to project in consequence. Last, we would also like to port this

algorithm and augmented reality application to an Android device, in order to verify the
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complexity of such migration, as well as test the software in a di�erent environment.

This document has been divided into 7 chapters, of which the current is the �rst. In the

second chapter, we will talk about the requisites and objectives that we have established

for our applications. In chapter three, we shall go through all the hardware elements and

software infrastructure that has helped in the developments. In the fourth, a description of

the mathematical fundamentals that are behind great part of this development. In the �fth

chapter, we shall provide a detailed explanation of the development performed for all the

di�erent parts of the project. The next chapter will analyse the results after performing a

series of experiments to the application, in order to verify it quality. Last, chapter seven

will provide the conclusions we have obtained during this development, along with future

improvements that could be performed.



Chapter 2

Objectives

In this chapter, we are going to describe the present project's main objectives, as well as

the methodology followed to obtain the �nal results.

2.1 Problem Description

This project is immersed in the computer vision world, and its objectives are all very

tightly related to this topic. We aim to learn and understand di�erent technologies related

to the �eld. The main idea of the project is the development of a computer application

that estimates a mobile camera's position, and uses this information to create Augmented

Reality, in the form of a �lm projection.

We can clearly identify three main points in the development:

1. To investigate visual localization techniques, and develop a marker-based self-

localization algorithm. This algorithm will estimate the camera's position in a known

world, using as only input the images provided by a RGB camera and the position of

the markers that describe our world. This algorithm will also be tested in a simulated

world, in order to evaluate its accuracy, and then move on to a real scene using a

RGB web cam to perform the image capturing.

2. Development of an Augmented Reality application for PC, using as a base the

previously calculated camera position. This application will represent an augmented

reality cinema, in which we will project a virtual �lm screen between certain points

of our 3D world. This projection will take into account the perspective from which

the camera is viewing the world, and the mobile nature of the camera.

15
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3. Development of an Android version of the previous application, making use of

libraries that allow us to reuse as much code as possible. The localization module

of this application will be reused from the PC version, in order to compare the

performance on di�erent platforms, but the user interface module, along with the

general application structure, will be redone in order to be able to perform the

required actions on the Android platform.

2.2 Requirements

As well as the previously mentioned investigation and development, this project must also

satisfy a series of requirements, which we are going to describe in this section.

• Modular Software. The developed software must be able to integrate with

JdeRobot platform, as well as its components, using C++ programming language.

• Platform. The software must be executable on a Linux run PC, as well as on a

mobile telephone running Android operating system.

• Camera. The mentioned system must work with any RGB camera that is connected

to either the PC or the Android run smartphone, with the condition that the

mentioned camera must be previously calibrated in order for the system to work

correctly.

• Scene. This project will work in a real scenario with visual markers, being exportable

to any world which contains the mentioned markers. The camera position estimation

will be performed parting from the known location of the tags used for such

estimation, and the area in which we project the augmented reality will also be

de�ned previously.

• Real Time. The developed algorithm must execute in real time, in order for the

�lm view to be realistic. It must analyse the images given by a camera and provide

the data needed for the representation of the augmented reality, in such a way that

there is a minimal delay between both.
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2.3 Methodology

The cycle life model used during the development of this project will be a spiral model based

on prototypes. This model will allow us to work on the desired software incrementally,

progressively increasing the complexity of the project, and providing working simpli�ed

prototypes in each phase. The use of this model is very helpful, due to the fact that it

allows the developer to have a simpli�ed working version of his work, on which to perform

tests and perfect, before moving on to higher goals in the development.

Figure 2.1: Spiral Model

The spiral model is developed in cycles, and in each cycle we can di�erentiate four

main parts. When we have gone through all four parts of our cycle, we can move on to

the next iteration of the project. In Image 2.1 we can distinguish the 4 main parts of each

development cycle:

• Determine Objectives. We �nd what objectives must be satis�ed after each

iteration, taking in to account the desired �nal result.

• Identify Risks and Alternatives. Study of the processes that can be followed to

ful�l the determined objectives, and an analysis of the pros and cons that each one

holds, such as performance or time consumption. In this phase we also determine the

risks that will be present in this cycle, and possible mitigation actions against them.



CHAPTER 2. OBJECTIVES 18

• Development and Test. After deciding the process and tools that will be used, we

develop the desired product. Once the development is �nished, we perform a series

of tests to assure its compliance with the objectives we had for this phase.

• Plan the Next Iteration. After seeing the results of this phase, we start to plan

the following phase taking into account the problems that we have had in the present

cycle, and trying to avoid them in the following.

The cycles that we have managed for the project here described are detailed in the

following section. In order to perform them accurately and decide future actions, my tutor

and I shall have weekly meetings to supervise and orientate the work in the right direction,

and to evaluate possible alternatives in the development.

You can �nd a diary on the work performed in mediawiki 1, in order to keep a temporal

reference to the work done, accompanied by images and videos to analyse the results.

2.4 Work Plan

During the development of this project, the work to be done is divided in several di�erent

stages to be worked on progressively:

• JdeRobot and image processing initiation. The main objective of this initial

phase is the familiarization with JdeRobot and the Robotics group of the URJC's

general work, as well as an insight to the di�erent projects they are working on. We

will also take our �rst steps into image processing, and getting familiar with OpenCV

library to do so.

• Visual markers detection. Using the image processing studied previously, an early

version of this project will developed, using di�erent colours as the tags between which

to project the �lm. This version will then improved introducing April Tags visual

markers, in order to prove a more robust detection pattern. The camera position

estimation won't be involved in this stage.

• 3D Camera pose estimation. With the detection dominated, we will start working

on the camera pose estimation, combining April Tags' detection and ARuCo's pose

estimation to determine the distance that the camera holds from a single tag.

1http://jderobot.org/Ycumberbirch-pfc
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Following this, we will use the tags known pose to calculate the camera's estimated

position in reference to the world's coordinates. When we considere our camera

pose estimation to be good, we shall move on to the use of several tags, and

the combination of the pose estimation obtained from all to obtain a more robust

estimation.

• AR Cinema in PC. After developing a robust auto-localization algorithm, we will

have obtained the �rst working version of our demo application. The augmented

reality for this project will be developed using OpenGL API's texture rendering to

represent the image obtained from our RGB camera in a background, and to render

on top of this, a virtual �lm screen, which receives an image feed of a �lm saved on

the PC.

• AR Cinema in Android. With a �nal PC version, we shall try to perform an

integration to an Android run smartphone. This will start by familiarising ourselves

with Android development, and the libraries that may be needed to obtain the desired

result, paying special attention to JNI (Java Native Interface) and OpenGL ES. To

develop this Android application, the core of the auto-localization will be modi�ed as

least as possible, in order to run the same algorithm in both systems, and the main

changes performed will be regarding the representation.



Chapter 3

Infrastructure

In this chapter, I am going to describe the di�erent external elements that have been used

in order to give this thesis shape. I shall go through hardware devices, PC programs and

third party libraries that take an important role in this project.

3.1 Hardware: Mobile Phone and Webcam

This project can be divided in two parts, mainly di�erentiated by the hardware used in

both. In the �rst part of this project, an external web cam was used to provide the images

over which the Augmented Reality would be placed, and a PC to do the processing. In the

second, an Android run mobile telephone with it's integrated camera does all the work.

(a) BQ
Aquaris E5

HD

(b) Logitech WebCam Pro 9000

Figure 3.1: Hardware used during the development of this project

The web cam used is a Logitech WebCam Pro 9000, which is connected to the PC

through a USB drive. Its usual frame rate is 30 fps, and can support several di�erent

camera and video resolutions (320x240, 640x480, 800x600, from others).

20
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The PC used for the development and testing of the software is a Intel (R) Core (TM)

i7 3537U @ 2.00 Ghz. The operating system used during the development was Ubuntu

12.04 LTS (Precise Pangolin), an extensively used GNU/Linux distribution, available for

several computer architectures.

The Android run mobile telephone used for the second part of this project is a Quad

Core Cortex A7 @ 1.3 GHz, BQ Aquaris E5 HD, running Android 4.4.2. (Kit Kat). It

includes two integrated cameras for the image capturing.

3.2 JdeRobot Framework

JdeRobot 1 is a robotics and computer vision development platform, which was originally

developed thanks to a doctoral thesis [1]. JdeRobot is a middle-ware that provides support

to several di�erent sensors and actuators. It is mainly developed in C++ and gives the

user all the necessary tools for the communication between di�erent components, that do

not necessarily have to be developed in the same programming language nor run under the

same architecture. This middleware is supported and continuously under development by

the members of the Robotics Group in the Rey Juan Carlos University (URJC).

JdeRobot uses ICE for the communication between its di�erent components with

TCP/IP connexions. The mentioned components can extract information from di�erent

robot sensors, or can provide this information for other components to use. In JdeRobot

framework, a robotic application is composed of several interacting components, and the

communication between these is done thought ICE.

Within JdeRobot, there have been plenty of drivers developed to support several

physical sensors and adapters, as well as the gazebo simulator. These are very useful when

working and processing information provided by sensors in your new JdeRobot component.

The encapsulation level that JdeRobot uses allows users to interact with several di�erent

components at the same time, modularize the tasks to perform and organize your code in

a very easy manner.

For this project, I have used version 5.2 of JdeRobot. In the next subsections, I am

going to describe the components and libraries that have been used for the development

of this project.

1http://JdeRobot.org
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3.2.1 CameraServer Component

CameraServer is a JdeRobot component that, as its own name says, "serves" a camera

�ow for other JdeRobot components to receive and use the images. It uses ICE interfaces

to provide the image �ow on a certain IP and Port, for others to listen and capture the

images, so that these can be used by others.

One of the facilities that Camera server provides us, is a uni�ed interface for the

reception of images in our application, as well as the use of ICE, which allows the developer

to forget about low level connections between components.

In this concrete project, we use two instances of cameraserver, one used to serve the

camera images that we are processing, and one serving the �lm frames to project in our

Augmented Reality. This allows a great simpli�cation in our code, as the reception and

saving of the frames for both �ows is identical and can be reused.

3.2.2 Progeo Library

Progeo (Projective Geometry) is a JdeRobot library that bases on Richard Hartley

and Andrew Zisserman's [4] projective geometry calculations to provide the users with an

easy-to-use set of functions to resolve projective geometry problems. Within these, we

must stand out both the project and backproject functions. With the project function, we

can project a 3D point in space within a 2D image, knowing the parameters, both intrinsic

and extrinsic, of the camera that will be capturing the image. On the other hand, the

backproject function cannot determine the exact 3D point that corresponds to a position

on an image, but can give us a 3D point which, if we join it with the camera focus, will

give us a ray that contains the 3D point represented in the image. This is very useful to

obtain the 3 dimensional absolute coordinates of a certain point detected in an image, or

to project to an image a point in our real world.

In order to use this library, we must previously calibrate the camera to obtain the exact

intrinsic camera parameters to take in to account when projecting. For more reference,

please consult Chapter 4, as there is an detailed explanation of the Pin Hole Camera model

and its parameters.

For our augmented reality component, Progeo has been used to project the 3D points

within which the augmented reality should be in spatial world to the image shown on the
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screen, using both the camera's extrinsic parameters (calculated estimating the camera

pose) and intrinsic (given with the camera calibration).

3.3 ICE

ICE (The Internet Communications Engine)2 is a modern object-oriented toolkit

that enables you to build distributed applications with minimal e�ort. Ice takes care of

all interactions with low-level network programming interfaces, such as opening network

connections, serializing and de-serializing data for transmission or retrying failed connection

attempts.

Within JdeRobot environment, all communications between components are done via

ICE, which helps them to be more portable and interchangeable. Being a JdeRobot

component, this project uses ICE version 3.4 to communicate with other JdeRobot

components used, such as CameraServer, described previously, or Gazebo plugins to help

the interaction with our simulated world.

3.4 Gazebo Simulator

Gazebo 3 is a multi-robot simulator for both outdoor and indoor environments. It is able

to simulate several robots with their sensors, in a 3D world. This world can be personalized

by the user, thanks to the tools provided for the integration with 3D models designed with

SDF, and the models that Gazebo includes (TurtleBot or Pioneer2, from others).

This simulator in under constant development, under the Open Source Robotics

Foundation. It is also able to simulate physical interactions between objects in the 3D

world, thanks to its integration with physics libraries, such as Bullet or ODE.

Gazebo also provides us with an extensive API, which is very well documented, to allow

the users to develop plugins for their personalized robots and sensors. It also guarantees

high quality graphics in the simulations, thanks to the use of OGRE for the texture

rendering.

The version of Gazebo used in this project is 1.8.1., and has been used to simulate a

RGB camera in a virtual world, for the �rst tests of the developed component. It was

2https://zeroc.com/6
3http:://gazebosim.org
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also used for a plugin development to move this camera within the virtual world with a

teleoperating component.

3.5 OpenGL

OpenGL (Open Graphics Library) 4is a standard speci�cation that de�nes a multi-

platform API for the development of 2D and 3D graphics. This API is used as a

communication interface between your application and the graphics processing unit, in

order to optimize the graphic rendering. It can be used to build very complex 3D scenes

using, as a base, simple geometric shapes, such as points and lines. Thanks to this,

OpenGL is used very commonly in Computed Aided Design (CAD), Virtual Reality, Flight

Simulation and Video Games.

(a) Rage (b) Minecraft

Figure 3.2: Video Games with OpenGL Graphics Rendering

Basically, OpenGL is an interface, a document that describes a group of functions and

the exact behaviour that these should have. Parting from this, each hardware developer

can create their own implementations, libraries of functions that adjust to the given API.

In order to be able to use the o�cial OpenGL logo, and qualify the library as OpenGL

friendly, these must go through certain tests that certify the compliance with the original

development. OpenGL is supported on every major operating system and works with most

major windowing systems.

In this concrete project, OpenGL is used to render both the image captured by a

camera, and to project over that image a �lm in order to provide the Augmented Reality.

4https://www.opengl.org/
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3.6 OpenCV

OpenCV (Open Source Computer Vision Library) 5is an BSD-licensed open source

computer vision library, originally developed by Intel Russia research centre, and now

supported by Willow Garage and Itseez.

The library includes more than 2500 optimized algorithms that can be used to detect

and recognize faces, track camera movements and extract 3D models of objects, between

others. The library is used extensively in companies, research groups and by governmental

bodies.

It has C++, C, Python, Java and MATLAB interfaces and supports Windows, Linux,

Android and Mac OS. In this project, OpenCV 2.4.10 is used in the capture and processing

of the camera images, prior to the tag detection, and is also used to convert rotation vectors

to matrix's for the camera pose estimation.

3.7 AprilTags

AprilTags 6is a visual �ducial system, useful for a wide variety of tasks including

augmented reality, robotics, and camera calibration. AprilTags are conceptually similar

to QR Codes, in that they are a type of two-dimensional bar code. However, they are

designed to encode far smaller data payloads (between 4 and 12 bits), allowing them to be

detected more robustly and from longer ranges.

The AprilTag detection software detects any April tags in a given image, providing the

unique ID of the tag as well as its location in the image. If the camera is calibrated and

the physical size of the tag known, also provides the relative transformation between tag

and camera. Implementations are available in Java, as well as in C.

For this project, AprilTags has only been used for the detection of tags in an image,

obtaining the tag ID and the location (height and width pixel) in the given image. We

have not used April Tags' functionality to estimate the camera position in respect from

the absolute tag position. We have used another library that gives us this functionality,

and that we will mention next.

5http://opencv.org/
6http://april.eecs.umich.edu/wiki/index.php/AprilTags



CHAPTER 3. INFRASTRUCTURE 26

(a) April Tags Robots (b) ARuCo Tag used for
Augmented Reality

Figure 3.3: Di�erent 2D Tags: April Tags and ARuCo

3.8 Aruco

ArUco(Augmented Reality Universidad de Cordoba) 7is a minimal library for

Augmented Reality applications based on OpenCV. Similar to AprilTags, it relies on black

and white 2D markers with codes that are detected by the library.

It is a fast, reliable and cross-platform library developed by the University of Cordoba,

with approximately 1024 di�erent tags to be used for detection. If the camera used for the

detection has been calibrated, and we know the tags size, we can also estimate the camera

position from the tag, the same as happens with April Tags.

In this project, we have used ArUco 1.2.5 for the camera pose estimation, using as a

base the tag detection from AprilTags, explained previously.

3.9 Android

Android8 is a mobile operating system, originally developed by a company named Android

Inc., which was bought by Google, its current maintainers. Android is based on a long term

support Linux kernel. Currently, the version of this kernel is either 3.4 or 3.10, but has

used several di�erent ones since they started with version 2.6.35 in Android 1.0.

Android's Linux kernel has been slightly modi�ed, in order to allow the OS to interact

with the di�culties derived from use in mobile terminals. From others, it includes several

new Out Of Memory (OOM) handlers and a Logging class.

The wide range of smartphones that run Android and the fact that is it open code,

make this platform a great one to develop applications for, and distribute them, as well as

7http://www.uco.es/investiga/grupos/ava/node/26
8https://www.android.com/
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the extensive documentation and tools available.

We are now going to describe the main components that are present in Android

operating system:

• Application. Android includes plenty of applications by default with its system,

such as contact list, messaging or a web browser. We can also get hold of more

applications via Google Play, Android's application store. All android applications

are written in Java.

• Application Framework. Android developers have access to the same tools from

the Android framework used by the base applications. These are also designed in

order to simplify the re-usability of the components, therefore any android application

can announce its capabilities, for others to make use of them.

• Libraries. Android includes a set of C and C++ libraries that are used in several

system components. The functions included in these are available to developers via

the application framework. Some of the most important ones are the System C

library, an implementation on the standard C library; media and graphics libraries

or SQLite. Android also provides a good base of libraries that allow the developer to

access most of the functions available in the standard Java libraries

• Android Runtime. Each Android application runs its own process, with its

instance of Dalkiv Java virtual machine. Dalkiv has been designed in order for it to

be run in several virtual machines e�ciently. It executes �les with its own executable

format (.dex), which is optimized to use as little memory as possible.

3.9.1 Android Application Fundamentals

When developing an Android Application, we have several di�erent components that can

be developed, depending on the task we wish to perform. We can generally di�erentiate

four main components:

• Activity. An Activity is a component that represents a single user interface screen,

as well as handling the user interactions with the terminals screen. This component

is the most used within Android, seen as it is necessary for the user to be able to

make use of the application.
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If we take the messaging application as an example, we can clearly di�erentiate two

activities. The �rst, lists all the messages received, and a second activity that is

called when the user wishes to read one of the messages, which would give all the

message information. When we wish to navigate between di�erent activities, the one

we leave behind is left in a paused state, and will not return from this state until the

activity is called again.

In the developed Android application, we have used 2 activities, the �rst for the user

to con�gure some details needed for the projection, and a second that takes care of

the camera and �lm projection.

• Service. A Service is an Android component that runs in the background, and as

such, has no user interface. These components can run in the background of our

terminal for an unde�ned amount of time, and have the possibility to call an activity

providing it with information when certain conditions occur. For an example, we can

take a service that is constantly checking a certain news feed, and informs the user

when there is a new article regarding his city. Meanwhile, the user can keep using

his smartphone as usual.

In our application, we make use of a service that processes the image given from the

camera, and estimates the 4 points between which to project the �lm.

• BroadCast Receiver. A Broadcast Receiver's function is to respond to broadcast

messages originating from another application, or even from the telephone's system.

We could use a broadcast receiver to act within our application and release memory

when the systems sends a message informing that the terminal is running low on

memory.

In our case, we use this functionality to receive the information given by our image

analysing service.

• Content Provider. This component is used to supply data to another applications

that requests it. They encapsulate the data, and provide mechanisms for de�ning

data security. Android's system includes content providers to access certain data

such as audio, video or contact information.

Our Android application uses a content provider to obtain the list of videos saved

in the telephone's SD card, and allows the user to choose which �lm he wishes to

project.
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3.9.2 Java Native Interface / Native Development Kit

JNI (Java Native Interface)9 is a development environment that provides our Android

application, running within its Java Virtural Machine, to call functions developed in other

programming languages, such as native C/C++.

JNI is used in the scenarios when we need to perform certain activities in our application

that need native C/C++ code to be able to ful�l them. There are several classes in Java's

standard API that make use of JNI in order to provide the developer the required tools, such

as the access to �le systems. It is also used when high performance arithmetic calculations

are required, due to the fact that native code is generally faster than the code run in JVM.

JNI has been very important for the development of our Android application, as it

allowed us to reuse the camera localization algorithm developed for our PC application,

with no need to rewrite this in Java. It also enables us to use exactly the same code used

on PC in Android, which allows us to be able to compare the performance in a fair way.

3.9.3 OpenGL ES

OpenGL ES (OpenGL for Embedded Systems) 10 is a cross-platform simpli�ed

version of the OpenGL API to provide 2D and 3D graphics on embedded systems, such

as consoles or phones. It consists of well-de�ned subsets of desktop OpenGL, creating a

�exible and powerful low-level interface between software and graphics acceleration.

This standard 3D graphics API makes it easy to o�er a variety of advanced 3D graphics

across most major mobile and embedded platforms. Since it is based on OpenGL, no new

technologies are required, and this ensures a simple migration to and from you desktop

OpenGL application.

We have used OpenGL ES 2.0 to perform the �lm projection over the camera preview

on our application.

9http://developer.android.com/training/articles/perf-jni.html
10https://www.khronos.org/opengles/



Chapter 4

Theoretical Fundamentals

In this chapter, we describe some of the fundamental mathematical procedures and

techniques that have been used during the development of this project. More in detail, we

shall explain some projective geometry notions, as well as di�erent ways to represent an

objects orientation in a 3D world.

4.1 Pin Hole Camera Model

Great part of the work on this project has been related to camera models and their

projections. In order to estimate the position of a camera, parting from an object with a

known position and its representation on an image from the mentioned camera, we must

have a very clear idea on the geometric model the camera uses to capture the image.

The Pin Hole Camera Model bases itself on a modelling where the projection is conical,

meaning that all the light rays, at some point, go past one unique point, the camera focus.

With this theory, the light from a scene passes through this pin hole and projects an

inverted version of the scene on the other side of this pin hole.

For this model to be applicable, the used cameras should not be able to have a lens,

as this would invalidate the supposition, but modern cameras allow us to use this model

regardless of the lens. In �gure 4.1 we can see a simpli�ed version of the Pin Hole Camera

model, which includes the image plane in front of the focus, instead of behind as would be

the real case. This model is very useful thanks to its simplicity and precision in camera

modelling.

30
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Figure 4.1: Pin Hole Camera Model

4.1.1 Intrinsic Parameters

An ideal camera with its focus located on the origin of coordinates, and orientated in the

positive Z axis, would project 3D points to an image plane following the next equation,

where f represents the focal distance (distance from the focus to the image plane):(
u
v

)
= f

(
−x

z

−y
z

)
(4.1)

The origin of coordinates of images that are saved on computer systems is usually located

on the top left corner of the image, so if the image has dimensions m × n the equation

would be as follows. (
u
v

)
=

(
m
2
n
2

)
+ f

(
−x

z

−y
z

)
(4.2)

This equation should be considered as our ideal pin hole model. In a more realistic model,

the focal length is generally di�erent for the x axis then for y, and even in the case of an

ideal lens, unless this is perfectly aligned with the origin of coordinates, our optical centre

could never be

(
m
2
n
2

)
. We would have to use a generic point

(
u0
v0

)
as our optical centre.

Including the mentioned parameters to our model, the expression would be the following:(
u
v

)
=

(
u0
v0

)
+

(
fx 0
0 fy

)(
−x

z

−y
z

)
(4.3)

It is a good practice to express these geometric expressions in homogeneous coordinates,

which enables us to represent points at in�nity using standard notation for �nite

coordinates. If we do so for the mentioned transformation, expression 4.3 would result



CHAPTER 4. THEORETICAL FUNDAMENTALS 32

in the following:

λ

 u
v
1

 =

 fx 0 0 u0
0 fy 0 v0
0 0 1 0



X
Y
Z
H


cam

= K


X
Y
Z
H


cam

= KPcam (4.4)

In expression 4.4 we can di�erentiate the following factors:

• λ: This term is present due to the fact that we are using equivalence classes and

homogeneous coordinates. It is a scaling factor.

• K: The projection matrix, that contains the cameras focal distance and optical

centre, which are the main intrinsic parameters. We have not included any distortion

parameters nor skew, as modern cameras don't tend to introduce deformations.

4.1.2 Extrinsic Parameters

When working with cameras, we cannot necessarily use the parting point that it will

always be located in the same place, nor orientated in the same direction. When modelling

a camera we must take into account the position and orientation it has, as the image taken

from it can change drastically from one point to another.

In the last expression we de�ned, our 3D point Pcam is expressed in universal

coordinates, which aren't equal to the cameras. In the previous suppositions, we were

taking the cameras position equal to our universal systems centre of coordinates. If we

want to take into account the cameras mobile position, we would have to express the three

dimensional point in the camera coordinates, so that we can use the previously calculated

expressions.

To express our 3D point in the camera coordinates, we will have to perform a generic

rotation and translation. These transformations can be expressed in a matrix form,

called Rotation and Translation Matrices. If using homogeneous coordinates, as the ones

explained previously, our RT matrix would have the following shape:

RT =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (4.5)
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With this, we can de�ne the relation between the 3D point in both coordinates:
X
Y
Z
H


cam

=


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



X
Y
Z
H


w

(4.6)

or expressed in another way,

Pcam =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

Pw (4.7)

If we combine the expressions calculated for both intrinsic and extrinsic parameters, we

can obtain a general equation that relates any 3D point in our world to the corresponding

image plane of the camera used to capture it. Obviously, there will be points that do not

re�ect on to the image plane, as they are out of the cameras view.

The general expression calculated is the following:

Pim = K ·RT · Pw (4.8)

 u
v
1


im

=

 fx 0 u0 0
0 fy v0 0
0 0 1 0

 ·

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 ·

X
Y
Z
1


w

(4.9)

In the current project, we part from the premise that the cameras are calibrated, which

means that the K matrix is known, and we will calculate the camera position (RT).

4.2 Quaternions

One of the problems we have faced during the development of this project, has been the

decision on the di�erent orientation representations, and which is more optimal for the

augmented reality application to be developed. After a great amount of searching and

analysing, I came to the conclusion that none of these representations are perfect, and that

they all have their pros and cons.

Before going in to details on the chosen model, lets give a quick description of some of

the other choices available:

• Axis Angle Representation
One of the most simple ways to represent the orientation of an object in a three
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dimensional world is using an axis that unites our position with where we are looking

at, and an angle that represents the inclination that we have around such axis,

following the right hand rule, as seen in Figure 4.2.

With this representation, we need 3 coordinates (x, y, z) to for a vector that represents

in what direction our object is looking (ê), and another to clarify the inclination

that it has(θ). This means, that with 4 values, we can fully represent our objects

orientation.

Figure 4.2: FOA and angle rotation representation

On the down side, the interaction with this kind on representation is quite complex,

as when we need to move the object, we need several mathematical operations to

calculate the objects new orientation, and this is not trivial

• Roll, Pitch and Yaw

Another way to represent an objects orientation is using three angles, the ones

corresponding to rotations around the axis that are present in a three dimensional

world: Roll represents the rotation around X axis, Pitch around Y axis and Yaw

around Z axis.

With this approximation, we have a full orientation representation with 3 angle

values. It was originated in aircraft physics, thanks to the need to express the

movements an air-plane must perform to obtain the required route.

In the negative points, we must mention that the order in which these 3 rotations are

performed can change the �nal orientation result, which gives an extra complexity to

the arithmetic operations. Using this representation of rotations, we are also in risk

of getting a Gimbal Lock, which is the situation we get when, in certain rotations, we

lose one degree of rotation.
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• Rotation Matrix

Finally, the other orientation representation that we evaluated is using a NxN matrix,

being N the number of dimensions we are working with. As we are currently managing

a three dimensional world, we will limit the explanation to 3D. In section 4.3 we shall

see a more extensive explanation of all the parameters involved in rotation matrices.

A three dimensional rotation can be represented by 9 values in a matrix form, that

gives us a detailed view regarding the orientation of our object.

The main fall-back for this kind of representation is the memory use for it, as

not only does the rotation use 9 values, but operations with them are also quite

computationally expensive.

After this quick insight to orientation representations, we must talk about the chosen

option: quaternions. A quaternion is generally thought of as a complex number, with the

peculiarity that it has three complex parts, or better said, an hypercomplex number, only

realizable in a 4D world. This idea was �rst thought of by W.R. Hamilton (1805�1865) in

1843, and gives us the �rst example of a hypercomplex system.

The signi�cance of these 4 terms is very similar to that of the axis angle representation

of rotations. The three complex numbers give us a reference to the axis around which we

shall be rotating our object, and the real part denotes the rotation we will apply around

the given axis.

The basic representation of a quaternion is as follows:

Q = q0 + q1i+ q2j + q3k (4.10)

In this representation, q0, q1, q2 and q3 can all denote any real quantities, and i, j and k

represent three imaginary quantities, regarding the three complex parts of our quaternion,

which must obey the following identity:

i2 = j2 = k2 = ijk = −1 (4.11)

The main advantage of using quaternions, in stead of the other mentioned

representation, is the simplicity they provide in terms of rotation calculations. With just

a few simple calculations we can calculate an objects new orientation, after having been

rotated, and eliminating the risk of su�ering from gimbal lock. Further into this chapter,

we will go into more detail on how these operations are done, in order to calculate an
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objects orientation. Another important factor to take into account is the computational

load that these operations might have in our system. As a quaternion is a set of 4 real

numbers, the memory use to save them is not very high, and the operations performed

(sums and multiplications) will not be a problem in a modern day computer. Quaternion

representation also has ways to transform them into other representation, which helps the

re-usability of code and the integration in other applications, giving the developer the

option to convert to and from quaternions, depending on the other representations the

application may need.

4.2.1 Properties

The quaternion set is a four dimensional vector space, based on real numbers (H = R4).

We can de�ne three basic operations for the set that de�nes quaternions: addition, scalar

multiplication, and quaternion multiplication.

The addition of several elements inH is de�ned as the sum of the elements that compose

this set. This means:

Q+Q′ = (q0+q1i+q2j+q3k)+(q′0+q
′
1i+q

′
2j+q

′
3k) = (q0+q

′
0)+(q1+q

′
1)i+(q2+q

′
2)j+(q3+q

′
3)k

(4.12)

As we can see, the addition of quaternions can be done in the same manner as the sum

in complex numbers or vectors.

In the same way, the multiplication between a quaternion and a scalar number is de�ned

as the multiplication of the scalar and each element of the quaternion:

Q ·N = (q0 + q1i+ q2j + q3k) ·N = q0 ·N + q1i ·N + q2j ·N + q3k ·N (4.13)

Yet again, the scalar multiplication for quaternions has no di�erence from the same

operation applied to a standard vector, or to a complex number.

When we start to talk about the quaternion multiplication, is when start to note some

di�erences. Thanks to the basic quaternion identities stated in equation 4.11, we can easily

de�ne the pairwise cross-product between the three unit vectors:

ij = −ji = k

jk = −kj = i

ki = −ik = j

(4.14)
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As can be noted, the multiplication of these unit vectors is not commutative, and therefore,

the multiplication of two quaternions won't be either. The method to do this multiplication

is very similar to a general one, but we have to take into account the order of the factors

in order to obtain the correct result:

Q×Q′ = (q0 + q1i+ q2j + q3k)× (q′0 + q′1i+ q′2j + q′3k) =

q0q
′
0 + q0q

′
1i+ q0q

′
2j + q0q

′
3k + q1iq

′
0 + q1iq

′
1i+ q1iq

′
2j + q1iq

′
3k+

q2jq
′
0 + q2jq

′
1i+ q2jq

′
2j + q2jq

′
3k + q3kq

′
0 + q3kq

′
1i+ q3kq

′
2j + q3kq

′
3k

(4.15)

If we apply the product of the unit vectors de�ned in equation 4.14 we obtain the following

result:

(q0 + q1i+ q2j + q3k)× (q′0 + q′1i+ q′2j + q′3k) =

q0q
′
0 + q0q

′
1i+ q0q

′
2j + q0q

′
3k + q1q

′
0i− q1q′1 + q1q

′
2k − q1q′3j+

q2q
′
0j − q2q′1k − q2q′2 + q2q

′
3i+ q3q

′
0k + q3q

′
1j − q3q′2i− q3q′3 =

(q0q
′
0 − q1q′1 − q2q′2 − q3q′3) + (q0q

′
1 + q1q

′
0 + q2q

′
3 − q3q′2)i+

(q0q
′
2 − q1q′3 + q2q

′
0j + q3q

′
1)j + (q0q

′
3 + q1q

′
2 − q2q′1 + q3q

′
0)k

(4.16)

Apart from these main operations, there are others that can be de�ned based on these.

The most important ones to be mentioned are the following:

• Conjugate
The concept of conjugate for quaternions is equal to the one applied to complex

numbers. The main di�erence with the complex plain, is that the conjugate

of a quaternion can be entirely expressed with a combination of additions and

multiplications.

q∗ = −1

2
[q + iqi+ jqj + kqk] (4.17)

If we expand this equation, yet again using the expressions in equation 4.14 we obtain

the well known expression for a conjugate, applied to quaternions:

q∗ = q0 − q1i− q2j − q3k (4.18)

• Norm
The norm of a quaternion is what, in other scopes would be the square root of the

product of a quaternion with its conjugate. This yields a non negative number, which

is calculated in the same way as the norm applied to a vector:

||q|| =
√
qq∗ =

√
q ∗ q =

√
q20 + q21 + q22 + q23 (4.19)
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A quaternion's norm is mainly used to calculate unit quaternions, which are

quaternions with unitary norm. They are calculated in the following way:

Uq =
q

||q||
(4.20)

Unit quaternions are important in the representation of angles and rotations, as they

allow us to use the general addition and multiplication methods that we apply within

quaternions, and use these results to obtain rotations, having to just do one extra

calculation in order to do these calculations.

4.2.2 Representing Rotations with Quaternions

As we have mentioned previously, a quaternion is a way to represent rotations which is

composed by three complex numbers and a real part, totalling 4 numbers. We have also

mentioned that unit quaternions provide the user with a very useful mathematical notation

for representing the orientation and rotation of an object in a three-dimensional world.

Because of these reasons, quaternions are widely used in computer graphics, robotics,

navigation and �ight dynamics, between other �elds.

If we call Θ the rotation around the axis, and ax, ay, az the vector representing the axis,

our members of the quaternion have the following de�nition:

q0 = cos

(
Θ

2

)
q1 = ax · sin

(
Θ

2

)
q2 = ay · sin

(
Θ

2

)
q3 = az · sin

(
Θ

2

)
(4.21)

With this de�nition, we can now start to use quaternions to perform rotations. If we

have a quaternion with the absolute rotation of an object, de�ned in the same way as the

previous, and a quaternion with the rotation we wish to perform on our objects rotation,

we should use the following formula: newOrientation = rotation ∗ orientation, using the
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quaternion multiplication description in 4.16. Using matrices, we obtain the following:

cos

(
Θnew

2

)
anewx · sin

(
Θnew

2

)
anewy · sin

(
Θnew

2

)
anewz · sin

(
Θnew

2

)


=



cos

(
Θrot

2

)
arotx · sin

(
Θrot

2

)
aroty · sin

(
Θrot

2

)
arotz · sin

(
Θrot

2

)





cos

(
Θpos

2

)
aposx · sin

(
Θpos

2

)
aposy · sin

(
Θpos

2

)
aposz · sin

(
Θpos

2

)


(4.22)

As we can see, thanks to quaternions, in a relatively simple way we have performed a

complex operation such as rotating from one orientation to another in 3 di�erent axis.

Obviously, quaternions are not the most simple representation, from the users point of

view. It would be quite complicated to ask an application user to describe the orientation

of an object in quaternions. In order to solve this, we are going to describe the conversions

between roll, pitch and yaw, and quaternions.

Quaternions and Roll, Pitch and Yaw

As mentioned, we can convert quaternions to and from yaw, pitch and roll format, in

case it is needed during our application. These equations can be very useful, as it means

we can obtain our rotation data in a simple way, such as yaw, pitch and roll, which are

concepts whose values can be interpreted easier, and use a conversion to quaternions to

do the complicated operations that would be very costly if we wished to do them without

conversion.

To obtain the 4 quaternion factors from yaw, pitch and roll, we would have to apply

the following equations:

q0 = cos

(
roll

2

)
cos

(
pitch

2

)
cos
(yaw

2

)
+ sin

(
roll

2

)
sin

(
pitch

2

)
sin
(yaw

2

)
q1 = sin

(
roll

2

)
cos

(
pitch

2

)
cos
(yaw

2

)
− cos

(
roll

2

)
sin

(
pitch

2

)
sin
(yaw

2

)
q2 = cos

(
roll

2

)
sin

(
pitch

2

)
cos
(yaw

2

)
+ sin

(
roll

2

)
cos

(
pitch

2

)
sin
(yaw

2

)
q3 = cos

(
roll

2

)
cos

(
pitch

2

)
sin
(yaw

2

)
− sin

(
roll

2

)
sin

(
pitch

2

)
cos
(yaw

2

)
(4.23)

On the other hand, we can also represent our rotation in yaw, pitch and roll format

after doing the desired operations with quaternions, converting from the quaternion we
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have obtained to our original angle format. To do so, we have the following operations:

roll = atan

(
2(q0q1 + q2q3)

q20 − q21 − q22 + q23

)
pitch = asin (2(q1q3 − q0q2))

yaw = −atan
(

2(q0q3 + q1q2)

q20 + q21 − q22 − q23

) (4.24)

4.3 Rotation-Translation Matrices

In this project we have already introduced RT matrices, when talking about the pin hole

camera model. In that case, we used then to describe the position and orientation the

camera has, in order to be able to project objects in our world towards an image plane. This

manner to represent the position and orientation of an object is not only used for cameras,

but is very extended in order to express an objects absolute position and orientation. We

have seen how we can use quaternions to express and calculate an objects orientation, but

when we use both position and orientation, we need more data to represent all of this, that

quaternions cannot give us.

We tend to talk about rotation translation matrices as just one thing, but they are

actually two separate ones, a rotation matrix, such as the ones described at the beginning

of this chapter, and a translation matrix, that gives us the position of the objects. They

are both de�ned as follows, using homogeneous expressions:

R =


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

 (4.25)

T =


1 0 0 X
0 1 0 Y
0 0 1 Z
0 0 0 1

 (4.26)

If both these expressions are multiplied, we will obtain the formula described in equation

4.5, with the following equivalences:

tx = r11X + r12Y + r13Z

ty = r21X + r22Y + r23Z

tz = r31X + r32Y + r33Z

(4.27)



CHAPTER 4. THEORETICAL FUNDAMENTALS 41

In these expressions, tx, ty and tz give us the position of an object from a reference

point given, and with the rotation values, we describe the orientation of the object from

an initial rotation. To understand what the values of the rotation matrix mean, we have

to go a little deeper. We will start by 2D rotations following the right hand rule, where we

can describe a rotation matrix in the following way:

R(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(4.28)

In the case we wish to perform this rotation following the left hand rule, we would just

have to change the sign to all the sin(θ) elements.

If we wish to move a 2D point x, y according to this rotation, we can represent it with

the following relation of matrices:[
x′

y′

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
x
y

]
(4.29)

With this, our resulting point would be described as:

x′ = xcos(θ)− ysin(θ)

y′ = xsin(θ) + ycos(θ)
(4.30)

If we wish to do this same operation on a three dimensional space, we have di�erent

equation, one for the rotation on each axis. If we have rotations around more than one

axis, we would have to perform each rotation, and then multiply these to obtain the

�nal rotation, always taking into account that, the order in which we do the mentioned

multiplication can change our �nal result.

The three simple rotations in a three dimensional space, have an equal representation

as that we have just described for a two dimensional space, but taking into account the

axis that are involved:

Rx(θ) =

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (4.31)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (4.32)

Rz(θ) =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (4.33)

With these three rotations, we can combine them to obtain our full 3D rotation. As I

mentioned previously, the order in which we perform this multiplication is relevant to the
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�nal solution we obtain. The general convention regarding this order, is to apply them

in the same order that an air-plane would. This is, �rst we rotate around Z (before the

aircraft has taken o�), then we rotate around Y in order to leave the ground, and �nally

around X to orientate the plane in the correct direction. Applying this convention, we

would obtain the following values for each member of the equation 4.25:

r11 = cos(α)cos(β)

r12 = −sin(α)cos(γ) + cos(α)sin(β)sin(γ)

r13 = sin(α)sin(γ) + cos(α)sin(β)cos(γ)

r21 = sen(α)cos(β)

r22 = cos(α)cos(γ) + sin(α)sin(β)sin(γ)

r23 = −cos(α)sen(γ) + sin(α)sin(β)cos(γ)

r31 = −sen(β)

r32 = cos(β)sin(γ)

r33 = cos(β)cos(γ)

(4.34)

With RT matrices we can represent the movement an object, or the camera itself, has

done from the origin of the world it is in. Parting from the origin of the world begin at

position [0, 0, 0], and orientated looking towards the positive X axis, an RT matrix fully

describes the movement an object has done to go from this origin position to its new

localization.

This functionality can be used to obtain the position of an object in a coordinate system

di�erent to the one his RT is represent from, knowing the conversion from one another.

In order to use an example related to this project, we are going to use a robot that has a

camera located on a certain part of this robot. The RT of the camera is expressed from the

origin of its coordinates system, which would be the robots feet, for instance. If we know

the position the robot has from the world it is walking around, and the position of the

camera from the robot, we can use RT's product to calculate the position of the camera

from the world, and use this RT in the camera's pin hole camera model.

RTcam−world = RTrobot−world ∗RTcamera−robot



Chapter 5

Software Development

In this chapter, we will give a detailed explanation on the developed augmented reality

JdeRobot component. This application, named AR Cinema, includes both augmented

reality and auto-localization, in order to provide a good user experience and a realistic

representation. We will start the chapter with a general design of the component, and the

di�erent data exchanges done, to then go into detail on each element of the application. In

addition, we shall also detail the steps taken to build an Android version of this application,

trying to reuse as much code as possible, in order to be able to compare the performance

on di�erent frameworks.

5.1 Design Overview

The development of the application AR Cinema has several parts worth mentioning. We

have to describe the inputs and outputs of the whole application, as well as detailing the

di�erent modules inside the component.

Figure 5.1: Global Schema

43
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In Figure 5.1 we can see a diagram with the inputs and outputs of AR Cinema. As we

can see, the application receives two image �ows, one that comes from the camera that is

capturing images, and will the one to be analysed, and another that provides a �lm feed,

which will be used to project our virtual �lm over the camera image, as well as a series of

data values that will describe the position of the tags, and between which points the �lm

projection must be done. Both the images and the initial scene data is provided to the

application via ICE.

If we go into more detail, we can see the application has two main parts that must

be very well di�erentiated in order to have a full understanding of the objectives of

this application. First, we have the visual auto-localization module, that determines the

position of our mobile camera in the 3D world and in real time, and provides us with

the position of the 4 corners between which we wish to project our virtual cinema. And

second, and AR component that is in charge of projecting the virtual cinema. As well as

these main parts, we also have a module which saves shared information for both of these

to access, as can be see in Figure 5.2

Figure 5.2: Design of AR Cinema

During this chapter, we will describe both the modules developed, going into a detailed

explanation on all the main steps taken during the development, accompanied by images

and references. To end, we will also describe the steps taken to migrate the developed

modules to Android platform.
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5.2 Visual Auto-Localization

As its name well says, the main function of this module is to determine a mobile camera's

position and orientation in a 3D world, using as only input to determine this position the

information it has on the disposition of the world, and the images that the camera captures.

These images are analysed in real time to determine the cameras position, which means

our module must be light enough to be able to execute and obtain real time results.

Figure 5.3: Auto-Localization Module Diagram

The general structure of this module is illustrated in Figure 5.3, with the main functional

blocks that divide the module:

1. Marker Detection. Using April Tags library, we detect the tags present in the

image provided by the camera, and the image position of these.

2. Estimate Camera Position. With the localization of each tag on the image,

ARUCO allows us to estimate the position and orientation of the camera, using as

a base the tag position. As we also know the position of each tag in our world, we

calculate the absolute camera position.



CHAPTER 5. SOFTWARE DEVELOPMENT 46

3. Fusion of Several Estimations. After calculating the estimated camera position

provided by each tag in the current image, we perform a weighted fusion of the all

the camera positions estimated, in order to obtain a more robust estimation.

4. Temporal Fusion of Estimations. In order to avoid sudden jumps in the camera

position, we perform a fusion of the estimated position with the previously calculated

one.

5.2.1 Marker Detection

To perform the visual marker detection in our auto-localization module, April Tags were

chosen due to the great advantages that these provide us with [9]. Contrary to QR codes,

which require the camera to be very close to the code in order to be able to detect and

extract the information from it, April Tags is based on a visual �ducial system which

encodes much less payload in the 2D codes, giving more importance to the long range

detection than to the information to be saved in the codes. This allows us to detect a

relatively small tag in a large image with a lot of other information, as well as being less

sensitive to light and orientation than QR codes, as we can see in Image 5.4.

Figure 5.4: April Tags Detection

In this example, the camera is located about 1 metre away from the tag, and we can

see how it marks both the centre of the tag as the perimeter with great precision.

April Tags provides us with several families of Tags, with more or less data saved,

depending on the chosen family. Obviously, the more information the tags have in them,
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the more complicated the detection can result, but it will also be much more robust and

give us less false positives, which will give our augmented reality application a better user

experience.

(a) Tag Family 36h11 (b) Tag Family 16h5

Figure 5.5: April Tags Di�erent Families

April Tags library provides us with the necessary functions in order to analyse a given

image and return the information regarding the tags detected.

The �rst step to use April Tags library in one's code is to initialize a detector, telling

it the tag family it must search for:

//Instanciate TagCodes and TagDetector
AprilTags::TagCodes m_tagCodes = AprilTags::tagCodes36h9;
AprilTags::TagDetector∗m_tagDetector = new AprilTags::TagDetector(m_tagCodes);

When it detects a series of tags in an images, it will return the developer with an array

of detections, of which the most important information is the following:

• id: Integer with the tag id within the family we are working.

• p: Array with four pairs of integers, which represent the position in the image of

each corner of the tag .

• cxy: Pair of integers that give us the position of the centre of the detected tag.

A very basic function that prints the tag information after detecting them would be

the following:

void processImage(cv::Mat& image){
cv ::Mat& image_gray;
//Converto to grayscale for detection
cv :: cvtColor(image, image_gray, CV_BGR2GRAY);
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//Call detector
vector<AprilTags::TagDetection> detections = m_tagDetector−>extractTags(image_gray);
//Print information
cout << detections.size() << " tags detected:" << endl;
for ( int i=0; i<detections.size (); i++) {

print_detection(detections[ i ]);
}

}

In the code above, we can see that it is necessary to convert the given image to grey-scale

before we can pass it to the April Tags detector. To do so, we make use of OpenCV and

the functions it includes to perform such operations. After the detection, we can see that

we have a series of detections, over which we can iterate in order to analyse each one. In

our case, after the detection, we would perform the camera pose estimation for each tag.

5.2.2 Estimate Camera Position

In order to calculate the camera's position in a 3D world which has several tags to help us

locate the camera, we can di�erentiate 2 main steps. First, we have to locate the position

of the camera from the detected tag, and as we know the tag's position from the origin

of coordinates of the world, we can then calculate the position of the camera from such

origin, as is represented in Image 5.6.

Figure 5.6: Relation between the di�erent objects reference systems
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Camera-Tag Position

The �rst step to calculate the camera's global position is to obtain it using as a reference

the tag detected's coordinates system. To do so, we can make use of several frameworks

that allow us to determine the position of the tag, using the centre of the camera as a

reference. With this information, we would only need to invert the obtained RT in order

to have ful�lled our �rst objective.

Figure 5.7: RT to calculate the camera's position, using the tag's as a reference

To calculate the position our camera has from the tag detected in the image it is

capturing, we could have used April Tags, as it has the functionality to perform the opposite

operation, providing the library with the tag size and certain information regarding the

camera's intrinsic parameters, but we �nally decided to perform these operations making

use of another library, in order to test the integration between both of these.

ARuCo is a library very similar to April Tags, which has it's own families of tags and

also includes a tag detector, to perform the tag detection in an image. After performing

the detection of a tag in ARuCo, we also have the possibility to give the library some extra

information, such as the tag size and the camera's K matrix, for it to perform a calculation

of the transformation necessary to know the tag's position using the camera as reference.

With this information, we would just have to invert it to obtain our �rst camera position.

In order to perform any position estimation, we �rst need to provide the application

with the intrinsic parameters of the camera used. The procedure followed to determine

this information is generally denoted as camera calibration, and uses a board with known

size and pattern, such as those you can see in Image 5.8, to determine the cameras focal

distance and optical centre. OpenCV has an implementation of this functionality, which

can be executed both on PC and Android, each with their adapted boards. Several projects
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have also been done in the URJC to provide other camera calibration methods, which are

also compatible with JdeRobot [3].

(a) PC (b) Android

Figure 5.8: OpenCV Calibration Pattern Boards

Having the camera matrix (K), we can proceed to calculate the position of the marker,

taking our camera as a reference point. To do so combining ARuCo and April Tags, we have

to feed ARuCo with the position of the 4 corners of the tag in the image, as calculated

with April Tags. We mentioned previously that April Tags returns the developer with

both the tags centre position and the 4 positions of the corners, for him to choose which

information he needs. In this case, we have to provide ARuCo's Marker class with a

vector that contains the 4 pairs of coordinates that represent our tag perimeter. With this

information, along with the camera matrix and tag size, ARuCo will calculate two vectors,

Rvec and Tvec, that represent the movements that the camera would have to perform in

order to position itself with the same location and orientation as the tag has.

std :: vector<cv::Point2f> realCorners;
realCorners.push_back(cv::Point2f(detection.p[3]. �rst , detection.p [3]. second));
realCorners.push_back(cv::Point2f(detection.p[2]. �rst , detection.p [2]. second));
realCorners.push_back(cv::Point2f(detection.p[1]. �rst , detection.p [1]. second));
realCorners.push_back(cv::Point2f(detection.p[0]. �rst , detection.p [0]. second));
Marker m(realCorners, detection.id);
m.calculateExtrinsics(realTag−>getSideLength(), camMatrix, distCoe�s, false);
//m.Rvec contains vector with rotations
//m.Tvec contains vector with translation

Within this code, we must make a special mention to the ARuCo function

calculateExtrinsics, which is in charge of calculating the tag's RT matrix, with camera's

optical centre as reference. To do so, one would have to resolve the function de�ned in

equation 4.8, which establishes a relation between a 3D point and it's projection on a 2D

plane (image), using the cameras intrinsic and extrinsic parameters. In this function, we

need to determine the RT, as we already have the rest of the information. In order to
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calculate this RT, ARuCo uses an OpenCV function named cv::solvePnP, which performs

this exact operation.

Thanks to ARuCo, we have calculated the rotation and translation necessary to move

our camera towards the detected marker. Unfortunately, what we need to do is the opposite:

calculate the movement the marker has to do to place itself in the same position as the

camera, in order to be able to calculate the transformation the camera has su�ered if the

origin of the world was the tag's centre. To do so, we need to transform the vectors given

by ARuCo to a generic RT matrix, to be able to calculate the inverse of such matrix.

This problem must be tackled in two phases, �rst, to set the data corresponding to the

translation and the rotation, and then perform the inverse of such matrix. In reference to

the translation, the T vector provided by ARuCo has 3 positions, each corresponding to the

movement performed in X, Y and Z. In our RT matrix, the column corresponding with the

translation data would just have to be replaced with these values. When trying to convert

the R vector to a matrix form, we have a few more problems. The values contained in Rvec

correspond to the Roll, Pitch and Yaw that must be performed to rotate the tag's centre

to the same orientation as the camera. As we have already mentioned, the order in which

one executes these rotations can modify the �nal result, as well as having a performance

problem with the great amount of computer memory needed to perform them. OpenCV,

being a vision library has already got several implementations of problems similar to these.

In this case, the function cv::Rodrigues is of great help, as it allows us to provide a rotation

vector which it will transform into a 3x3 Matrix, or vice-versa. With the values contained

in this 3x3 matrix, and the data in Tvec, we can obtain the RT matrix corresponding with

the data that ARuCo provides. Calculating the inverse of this matrix, we can obtain our

new RT which indicates the movements needed to move the point corresponding to the

centre of the marker detected to the camera capturing the image. In Figure 5.9 we can see

an overview of the full process followed and described.

Figure 5.9: RT to calculate the cameras position, using the tag's as a reference
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Camera-World Position

With the RT calculated in the previous step, we only have half of the required work done.

We now have to add to the calculated RT, the transformations required to move from the

origin of our world to the tag's centre. Seen as the world we are working with is known

and we have full knowledge of the position and orientation of each marker in our world,

we would just need to calculate the RT transformation from the centre of the world to the

tag's centre, in order to add this to our previously calculated camera RT, to obtain the

�nal result.

Figure 5.10: RT to calculate the tag's position, using the world reference

Each tag located in out scene has a known position and orientation, which is passed

to our application via ICE when this starts. The information given to the program is

the position (X, Y, Z) of the tag, and the orientation, expressed in Roll, Pitch and Yaw.

Making use of cv::Rodrigues again, we can obtain the rotation matrix corresponding to the

given values, and construct the required RT as in the previous step.

Having calculated both RT's, we can join them in order to calculate the absolute

position of the camera, this is, the position of the camera using the worlds reference.

To do so, we would have to apply the following formula:

RTcam−world = RTtag−world ∗RTcam−tag

5.2.3 Fusion of Several Estimations

With these procedures, we have managed to obtain the cameras absolute position, taking

into account the information provided for one of the tags located in our world. In order to
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have a more robust estimation, we have decided to include several tags in the scene used,

and combine the information we obtain from them.

The fusion of several estimations is a complex problem. If calculating the mean of the

di�erent camera positions isn't much of a problem, to do so with rotations makes things a

lot harder. Rotations, at the end of the day, are angles, which are circular quantities. With

circular quantities, one cannot apply the general methods to calculate the mean value, as

the discontinuous values would lead us to incorrect results.

Figure 5.11: Mean of Circular Measures

When one is working with angles, they have the peculiarity that 0o and 360o, even

being such di�erent numbers, represent exactly the same quantity. This fact creates a

discontinuity in the values of the measure, which leads to problems performing weighing

operations. When calculating the mean value between 0o and 360o, if one understands the

values that they are working with, they will know that the mean value would be 0o (or

360o, seen as they are thesame), but it we just apply the usual mathematical expression,

we would obtain 180o, which in this case, is the exact opposite of the value we wish to

calculate. As we can see in Image 5.11, to calculate the mean value between 2 angles can

be very tricky.

During this project, we faced the challenge of performing a weighing operation between

all the tags detected in our image, in order to obtain a more robust estimation. To do

so, the �rst step was to determine the weight we would give each tag, and under what
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conditions this weight could improve. After this, we went into the adventure of calculating

the mean value of N angles, each with their own weight.

Weighing Criteria

As mentioned previously, one of the �rst steps taken into calculating a weighed average

camera pose estimation, was determining the weight we would give each tag. The main

aspects taken into account for this choice were related to te position of the tag from the

camera. For one, at shorter distances we have a more robust camera pose estimation,

and then, when the camera and tag had similar inclinations in all angles, our camera

pose estimation was also more accurate. All these ideas have been experimentally tested,

in order to determine the weight criteria we must follow for each tag, as we will see in

chapter 6. In table 5.1 we can see a detailed description of these choices taken in order

to provide each tag with a weight according to the importance we believe it should have,

after experimentally validating di�erent options.

Distance Weight
< 0.5m 5
< 1m 4
< 2m 3
< 3m 2
< 4m 1
> 4m 0

Table 5.1: Weighting criteria for each tag

Mean Position and Rotation

Having determined the weight that each tag must have in our fusion algorithm, we must

start to weigh the camera positions provided by each tag. This operation must be done

both with the camera position as with its rotation, in order to obtain the desired results.

First, the position. To calculate a weighed mean between several positions, one can

apply the general standard on calculating mean values. As so, each position would be

multiplied by the weight it was given previously, and then divided by the total weight of

all tags in order to obtain its portion in the �nal result.

With this equation applied to all tags, the only thing left in order to obtain the camera
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position would be to perform the sum of all these to obtain the �nal camera pose estimation:

[x, y, z] =
∑[

[xi, yi, zi] ∗ weighti∑
weightj

]
(5.1)

Second, we move on to calculating the mean value for the orientation of the camera.

As we have mentioned, this operation is not trivial, and needs some thinking over, before

obtaining a working method.

In our case, the �rst approach we took was to perform the mean value of the quaternion

that represents our orientation. When one performs the mean value of each component of

a quaternion, and then normalizes it, theoretically, we should obtain the mean value of the

rotation. After testing this alternative, we realized that such operation worked in all cases

except the critical case we mentioned previously. When performing the mean value in the

discontinuity area, we yet again obtained the opposite result to that we wished to obtain.

After this failed attempt, we �nally managed to obtain an algorithm to calculate the

mean value of two angles, without having problems in the critical parts. The main idea

of this approach is based on the fact that, even though angles are discontinuous, some of

their trigonometric functions are not, such as sin and cosine.We can make use of these to

calculate the mean value of two angles, and a relation between the two (arctangent), in

order to obtain more accuracy. Therefore, we can express the average value between two

angles as:

Mean(α, β) = atg

(
(sin(α)ratio+ sin(β)(1− ratio)
(cos(α)ratio+ cos(β)(1− ratio))

)
(5.2)

When applying this function with our weight values for each estimation, we obtain an

average value of all the tags detected, giving more importance to the ones we consider

should be more accurate than others. In equation 5.3, we can see how this would be

performed. In the mentioned equation, we have taken weighti and weightj as already

being divided by the total amount of weights, in order to simplify the function slightly.

α = atg

(∑
(sin(αi)weighti))∑
(cos(αj)weightj))

)
(5.3)

5.2.4 Temporal Fusion of Estimations

With all the previous steps completed, we now have a estimation of the camera position in

real time, taking into account the image provided by the camera in a precise moment.This

estimation will be more or less accurate, depending on certain circumstances, such as
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lighting, distance from the marker or rotation from the marker, between others. We

believe it was a good idea to perform, apart from the calculation of the current position

using several estimations with di�erent tags, a weighted mean calculation with the previous

camera position, using as a base the fact that, in the time it takes the camera to capture

another frame, the camera position cannot have changed very radically. We can use this

as an advantage, in order to �lter bad estimations.

When performing this mean calculation, we yet again had to decide the weighting values

we would give for each tag, and then, perform the mean calculation in the same manner

as the previous one.

In this case, the weight values given to the camera position depended on its similarity

to the previous camera pose estimation. In addition to this, we also took into account the

number of estimations we have already had, in order to determine whether the previous

estimation can be considered accurate or not. The �rst step taken, was to perform a

50% mean between the current camera pose estimation and the previous, for the �rst

20 estimations, in order to obtain a reliable base estimation. From there, we tested

experimentally di�erent weight criteria, and opted �nally to give more importance to the

current estimation as opposed to the previous one, when the similarity between them is

high, and progressively decrease the weight of the new estimation when the similarity

decreases, as can be seen in table 5.2

Condition Position Di�. Rotation Di�. Weight New Pose
All Axis and All Rotations <0.1 <0.05 0.90
All Axis or All Rotations <0.15 <0.1 0.80
All Axis or All Rotations <0.15 <0.1 0.50
All Axis or All Rotations <0.3 <0.15 0.25

Other >0.3 >0.15 0

Table 5.2: Weighting criteria for Temporal Fusion

Having determined the weight for current and previous camera estimation, we proceed

to calculate the fusion of the two, following the same procedure as in equation 5.2

5.3 Augmented Reality

The second main module in the AR Cinema application is the representation of the virtual

cinema screen, between the four known points in our 3D world.
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Figure 5.12: Augmented-Reality Module Diagram

The structure of this module is described in Figure 5.12, with the main blocks that

compose it being the following:

• Cinema Corners Calculation. The �rst step performed by this module is the use

of Progeo library to calculate the position of the corners of the virtual �lm, taking

the position of the camera calculated previously.

• Draw Background. The second step would be to paint, in our OpenGL GUI

window, the image from the camera as the background, in order to be able to paint

over it.

• Draw Virtual Film. Having the background in place, we shall then continue to

paint the virtual �lm between the corresponding pixels of the image.

5.3.1 Cinema Corners Calculation

After ful�lling all the previous objectives, we have an estimation of the camera position

which we believe is reliable and valid in order to perform an augmented reality application

with such camera position. The next step to perform, is to identify between which pixels

of the image provided by the camera we wish to perform the augmented reality.

As we have mentioned, the �nal application to be developed in this project is a virtual

cinema screen, which will be projected between certain �xed points of our world. Depending

on the position the camera holds, these pixels will vary, and therefore must be calculated

each time we have a new camera position. In order to perform this calculation, we have

made use of ProGeo library described in chapter 3.2.2. This library gives us all the
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necessary data types and functions to perform the projection of a 3D point in our scene

towards an image captured by a camera in such world.

In this project, we have developed a personalized wrapper for the ProGeo library, in

order to have a easier interaction with this library, and make use of some data types that

were already in use by our project. Some of the main parts to be mentioned about this

wrapper are the following:

• Camera Intrinsic Parameters. Possibility to give ProGeo the camera's K matrix,

both using a �le that contains the information as giving it the data via parameters.

• Camera Extrinsic Parameters. Possibility to give ProGeo the cameras RT

matrix, passing the position data as X, Y and Z, and the rotation information either

as a quaternion, as used in the rest of our project, or as the FOA (focus of attention)

and a roll angle, which is the format used internally by ProGeo.

• Project Function. Wrapper around ProGeo's original project function, initializing

the data types used by ProGeo with the information passed to the function, in order

to keep a high level of abstraction.

• Backproject Function. As in the previous case, we also developed a wrapper

around ProGeo's original backproject function, with the same characteristics and

objectives as the previous.

With our progeo wrapper class, we can easily interact with the library to obtain the

pixel corresponding to the 3D points between which we wish to project our virtual �lm.

ProGeo is based on the pin hole camera model, and uses a ray projection theory in order

to calculate these pixels. Seen as the 3D points between which we shall be projecting the

�lm are known, we simply have to pass these points to our project function in order for

this to calculate and return the pixel corresponding to such positions.

//Init progeo with prede�ned �le
progeoWrapper∗ prog = api−>getProgeoCamera();
//Init camera RT
Pose3D∗ poseEstim = api−>getPoseEstim();
prog−>setCamRT(poseEstim);
//Variables that will contain 3D point
�oat X3d, Y3d, Z3d;
getData3D(X3d, Y3d, Z3d);
//Variables that will contain corresponding pixel data
�oat X2d, Y2d;
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//Project
prog−>project(tl3dx, tl3dy, tl3dz, &tl2dx, &tl2dy);

5.3.2 Draw Background

In order to draw an image �ow as a background in an OpenGL window, the �rst thing one

must do is to understand the di�erent projection options we can use in OpenGL, in order

to understand how to proceed with our application. Having understood this, we will then

proceed to loading the camera image to an OpenGL texture, which we will then paint on

the screen. Let's describe these three parts separately.

Understanding and Choosing Projections

One of the many di�culties we have experienced with application was to manage to draw

an image on a full background. This is due to the fact that, by default, OpenGL uses

a perspective projection, which is more similar to a camera, but also makes the task of

drawing an image that takes up the whole background very di�cult. We had to change

the projection used to an orthographic one, in order to be able to draw such background.

Figure 5.13: Di�erent projection options in OpenGL

In Figure 5.13 we can see the main di�erences between the two. As mentioned, a

perspective projection is similar to a pin hole camera, in the sense that it uses ray theory

to project the points it can see to an image that will contain the objects it captures, all
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of these being captured using the perspective of the scene: if an image is further away, it

will appear smaller in the image, and vice-versa. An orthographic projection, is totally

opposing to this idea. It bases on a camera that captures all the image without projection.

We could say that this camera is as big as the scene, and for each pixel it only captures

what is straight in front of that pixel. We would be reducing our 3D world to a �at one,

that conserves the objects sizes.

In our application, we have used an orthographic projection to be able to draw the

whole camera image as the background of the image. To do so, we need to know the height

and width of the world we are managing, to know where each object must be positioned.

We have taken the size of the camera image as height and width, in order to keep the same

measure system.

glOrtho(0,w,0,h);

Loading Textures

The next step in order to draw our background it to load the current camera image in

an OpenGL texture. Textures in OpenGL are used to give the objects you are drawing a

pattern that comes from an image or a camera. When drawing an object, one can choose

the colour you want to give this object, but when you want a more realistic representation

of the object, you may need to use an image to give it a di�erent pattern.

In our case, we have an image saved in the shared memory of our application, and we

wish to use this image to feed the background of the OpenGL world. To do so, we �rst have

to generate and bind a texture in the application, which is saved as a GLuint, OpenGL's

own integer type. With this, we then have to give OpenGL information on how the image

is saved, in order for it to be able to extract the information correctly. In this case, our

image is saved in OpenCV's type Mat. If it were to be saved in another image type, we

would have to give OpenGL the correct information. With this, the only thing left would

be to load the image data in OpenGl, as we can see in the following code snippet.

//Texture and Image Variables
GLuint textureId;
Cv::Matm_GLFrame = api−>getBackgroundImage();
//Generate Texture
glGenTextures(1, textureID);
// Bind Texture
glBindTexture(GL_TEXTURE_2D, ∗textureID);
//Give information on the how the data is saved
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glPixelStorei (GL_UNPACK_ALIGNMENT, (m_GLFrame.step & 3) ? 1 : 4);
glPixelStorei (GL_UNPACK_ROW_LENGTH, m_GLFrame.step/m_GLFrame.elemSize());
//Save Image Data to the Texture
glTexImage2D(GL_TEXTURE_2D,
0,
3,
m_GLFrame.cols,
m_GLFrame.rows,
0,
GL_RGB,
GL_UNSIGNED_BYTE,
m_GLFrame.data);

Draw Background

Having loaded the image we wish to draw in a texture, the last step is to draw this texture

on the background of our OpenGL world. As we mentioned previously, textures are used

to give an object a pattern, they cannot be drawn if it is not using an object as base.

Therefore, to draw the background, we will have to draw a rectangle, the size of the

OpenGL world, and they give this rectangle the camera image as a pattern.

A rectangle in OpenGL is noted as a QUAD, so we will have to draw this QUAD in

order to have our background. We have several ways to perform this object rendering in

OpenGL. In this project, we have adopted the way that uses less memory, and the one

that is most similar to the drawing in OpenGL ES in Android, to be able to make use of

some of the code in a latter phase. This method to draw an object is based on vectors,

saving the corners of the quad in one vector, and those of the texture in another. After

this, we must enable the function to draw using vectors, and proceed to draw the image,

with it's corresponding texture.

//Load Texture Generated
loadTexture(textureId, 1);
//Enable Texture Rendering
glEnable(GL_TEXTURE_2D);
//Bind the Texture Generated to this Rendering
glBindTexture(GL_TEXTURE_2D, this−>textureId);
//QUAD vertices vector
GL�oat vertices [] = {api−>w,api−>h,

0,api−>h,
0,0,
api−>w,0};

//Texture vertices vector
GL�oat texVertices [] = {1,0, 0,0, 0,1, 1,1};
//Enable drawing through vectors
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glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState (GL_TEXTURE_COORD_ARRAY_EXT);
// Draw the image.
glVertexPointer(2, GL_FLOAT, 0, vertices);
glTexCoordPointer(2, GL_FLOAT, 0, texVertices);
glDrawArrays(GL_QUADS, 0, 4);
//Disable Texture
glDisable(GL_TEXTURE_2D);
//Disable drawing through vectors
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState (GL_TEXTURE_COORD_ARRAY_EXT);

5.3.3 Draw Virtual Film

With our background already drawn, the last step in order for our Augmented Reality to

be �nished would be to project our virtual cinema screen between the four pre-established

points in the world, and over which we have already performed calculations to obtain the

pixels between which the �lm will be represented. Therefore, in our shared memory, we

have the position of the 4 pixels that will limit the cinema virtual screen, and we will have

to perform an operation very similar to the one to draw the background of the image.

As we have mentioned, the OpenGL world within which we are working has been given

the same size as the image captured by the camera. Therefore, in order to determine the

position of the �lm screen, we will have to perform a transformation between the camera

pixels that represent the corners of the virtual screen, and the corresponding points in

OpenGL. OpenGL performs the homography between the texture frame and the four

corner pixels provided as image placeholder. In Figure 5.14 we can see the di�erence

between both systems. To perform such transformation, we can see that the width value

will remain unchanged, but the height is taken from di�erent points in each system, and

must be recalculated.

The procedure followed to draw the virtual �lm screen, as we said, has been very similar

to the one to draw the background. In this case, we don't need to perform any changes

on the world's projection, as this is constant for the whole OpenGL world. Therefore, to

draw the virtual screen, we will have to load the �lm image as a texture, and draw a quad

between the four mentioned corners, rendering the texture in order to give it the image we

need.
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Figure 5.14: Relation between Image pixels and Points in OpenGL World

5.4 AR Cinema for Android

With a working PC prototype of our component, the next challenge was to export this

application to an Android running mobile device. This application would try to reuse as

much of the already developed code as possible, and perform its own representation of the

�lm using a light weight OpenGL (OpenGL ES). As we can see in Figure 5.15, the general

schema of the application is very similar to that of the PC component, with the main

di�erence being in that, the camera images and the �lm frames are not provided externally

via ICE, but taken from inside the app.

Figure 5.15: Android Global Schema

Going more into detail, in Figure 5.16 we can see that we will have another two modules

inside our application, which are those related to the extraction of the �lm frames from a

local video �le in order for these to be projected, and that of the local Android camera.
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These were not necessary in the PC component, as JdeRobot provided the images via ICE.

Figure 5.16: Design of Android AR Cinema

5.4.1 Android Manifest

In Android, the developer must indicate what permissions of the operating system, or the

physical telephone we need to give the application, in order to give this information to the

end user for him to decide whether they wish to install the application or not. To do so,

we have to indicate these permissions in the Android Manifest, as follows:

<uses−permission android:name="android.permission.CAMERA" />
<uses−permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

If we interpret this information, we can see that we are requesting permission to use

the phone camera, as well as to access the external memory of the application. The �rst

permission is obvious, seen as an Augmented Reality application needs to capture the

camera image to be able to augment the reality. The second permission is provided for the

application to be able to access the videos that are saved on the telephone, for the user to

choose which �lm he would like projected.

5.4.2 Camera Capture Module

As mentioned, the developed Android application is not dependant on any external

JdeRobot components. Therefore we do not use cameraServer to provide the camera
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images for the application, and we perform this action internally.

To obtain the camera images, we make use of OpenCV's Android library, that has a

great wrapper between the code and the interaction with Android's camera. To do so, we

have to implement CameraBridgeViewBase.CvCameraViewListener2, which has a method

(onCameraFrame) that is called each time we have a new frame from the camera. With

this, we have access to the image provided by Android's camera in a cv::Mat format, for

us to work with. As we will explain in 5.4.5, thanks to this listener we will also provide

the image to be drawn on the screen's background.

In order to use OpenCV in Android we must initialize it with a BaseLoaderCallback.

We perform this action asynchronously in order to not block the user interface, as it's quite

a costly operation.

private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {

switch (status) {
case LoaderCallbackInterface.SUCCESS:
{

Log.i(TAG, "OpenCV loaded successfully");
mOpenCvCameraView.enableView();

} break;
default :
{

super.onManagerConnected(status);
} break;

}
}

};

@Override
protected void onResume() {

super.onResume();
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_3,

this , mLoaderCallback);
}

5.4.3 Film Frame Retriever

When trying to perform this application, seen as one can use ICE in Java also, we tried

to provide the �lm frames via ICE, to avoid interacting with Android's �le system. This

gave us several problems: �rst, that both PC and Telephone had to be connected to the

same Wi-Fi connection for it to work, and secondly, that sending the frames through ICE
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in Android was very slow, and didn't give us a good user experience regarding the virtual

�lm. Finally, it was decided to let the end user choose a video saved on the telephone, and

extract the tags of this �lm as OpenGL textures to be able to render them.

Choose Film to be Rendered

Of the main components of an Android application that we described in chapter 3, to

choose a �le from android's external �le system, we would have to use a Content Provider.

With this, we can perform a call to the telephones gallery to be able to choose a �le. In

this application, we indicated that the �les we wish to be given to choose from where video

�les, as we can see in Figure 5.17, reducing the amount of �les that it provided us with.

When chosen, the Content Provider returned us with the full �le path, in order for us to

be able to access the �le in another part of the application.

Figure 5.17: Content Provider to Choose Video File

Extract Film Frames

When having the path to the video �le we wish to project, we made use of a class named

MediaPlayer, that allows us to feed it with the data source we wish to play, and an OpenGL

Surface on which we wish to dump the data. When we wish to start the media player, it

will proceed to play the �lm, sending each frame to a SurfaceTexture that is associated to

the Surface indicated to the MediaPlayer. This action is done automatically on another
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thread, in order to not block the thread from which we perform the call. On a application

with a user interface, this action is very important, as if we block the actual user interface,

it will give the user a bad user experience.

player = new MediaPlayer();
try
{

File �le = new File(this. �lePath );
FileInputStream �s = new FileInputStream(�le);
player .setDataSource(�s.getFD());
player . setSurface(new Surface(renderer.getVideoTexture()));
player .setLooping(true);
player .prepare();
player . start ();

}catch (IOException e){
returnCon�g(getString(R.string .FormatNotSupported));

}

5.4.4 Porting Camera Localization

As we have mentioned several times in this document, we wanted to perform an Android

application that reuses as much native code as possible, in order to be able to compare the

performance and results of the application in both platforms in the fairest way possible.

The part of the component that could be reused in both platforms corresponds to the

auto-localization algorithm, thanks to the use of JNI library.

JNI (Java Native Interface) is an Android library that allows us to use native C++

code in our Android application, performing the compilation of such code speci�cally for

Android architecture, and creating a dynamic library that can be called from our Java

Code. Therefore, in order to use the auto-localization module developed in our Android

platform, we could reuse the code (with certain small adjustments regarding the way the

data is saved), and we only have to perform a wrapper between the C++ and the Java

code, which JNI helps us create.

The wrapper created only has one function, as it was developed as an interface between

Java and C++ code. This function is in charge of receiving the information provided by the

Java part of the application, and then performing the calls needed to perform the camera

pose estimation.

JNIEXPORT j�oatArray JNICALL
Java_org_jderobot_gui3_NativeWrapper_doProcessNative
(JNIEnv ∗ jEnv, jobject jThis, jlong jImgAddr){
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//Get Img
cv ::Mat& img = ∗(cv::Mat∗)jImgAddr;
//Process Image
j�oatArray result = doProcessing(img);
//Return Data to Java
return result ;

}

On the Java part of the wrapper, we have to create a function with the indicator native,

and after so, loading the library that will include the C++ �les.

public native �oat [] doProcessNative(long imgAddr);

/∗∗ Load the native library where the native method
∗ is stored.
∗/
static {
System.loadLibrary("autoloc_lib");
}

In order to compile our C++ source �les for Android architecture, we have to create two

speci�c �les in our Android Project, Android.mk and Application.mk, that will allow us to

indicate the location of the source �les and libraries needed (Android.mk), as well as the

native resources that the application will use (Application.mk).

For the Application.mk �le, the main �elds are the following:

• APP_STL. Implementation of standard C++ library used.

• APP_CPPFLAGS. Flags that we must give the C++ compiler.

• APP_ABI. Type of architecture we are compiling the �les for.

APP_STL := gnustl_static
APP_CPPFLAGS := −frtti −fexceptions
APP_ABI := armeabi
APP_PLATFORM := android−16

For the Android.mk �le, we can mention the following �elds:

• LOCAL_MODULE. Name we wish to give the generated dynamic library.

• LOCAL_SRC_FILES. Location of the C++ native �les.

• LOCAL_C_INCLUDES. Location of the C++ header �les.

• LOCAL_LDLIBS. Location of any auxiliary libraries we may need to use.



CHAPTER 5. SOFTWARE DEVELOPMENT 69

5.4.5 Augmented Reality

The last part of the Android application developed is the actual Augmented Reality part,

this is, to paint the camera image as a background of the application, and then project a

�lm between 4 prede�ned points, as we do on the PC version. To do so, the method used

is quite di�erent to the previous version. In this case, we do not use OpenGL to render

two textures, one with the background image and another with the �lm frame texture,

but only one with the �lm, and use a native view that contains the camera images as the

background.

Draw Background

In order to represent the camera image, we have used the Java version of OpenCV to

capture the image from the camera, and then represent it in a JavaCameraView. This

kind of view is part of OpenCV, and inherits CameraBridgeViewBase, which provides us

a listener for such a class in order to be able to manipulate the image provided by the

camera.

setContentView( R.layout.activity_ar );
mOpenCvCameraView = (CameraBridgeViewBase) �ndViewById(R.id.java_cam_view);
mOpenCvCameraView.setVisibility(SurfaceView.VISIBLE);
mOpenCvCameraView.setCvCameraViewListener(this);

The listener provided has 3 functions, which are called when the camera view starts, stops

and has a new frame. Out of these, the most important function is onCameraFrame, as

it allows us to access the camera image before it begin represented on the screen. This

is the point where, in our application, we create another thread that performs the image

processing, as it is the only point where we can access the camera image in a OpenCV

friendly format.

@Override
public void onCameraViewStarted(int width, int height) {}
@Override
public void onCameraViewStopped() {}
@Override
public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame){}

Draw Virtual Film

Having the camera image as a background, we need to create another view that is

compatible with OpenGL in order to be able to project the �lm texture we have between
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the required points. The view used for this purpose is a TextureView.

surface = new TextureView(this);
surface .setSurfaceTextureListener(this );
addContentView(surface, new ViewGroup.LayoutParams

(ViewGroup.LayoutParams.WRAP_CONTENT,
ViewGroup.LayoutParams.WRAP_CONTENT ) );

Every TextureView has a SurfaceTexture associated to it, which can be provided to a

SurfaceViewRenderer in order to perform the rendering of graphics on the Surface Texture.

For this application, the SurfaceViewRenderer has been named VideoTextureRenderer,

and between others, we have declared a attribute named videoTextureHolder which

corresponds to the SurfaceTexture that contains the �lm frame mentioned previously, and

which is directly related to a native OpenGL texture attribute. From our code, if we call

the method updateTex() from videoTextureHolder, it will dump the texture it contains

to the native texture, in order for us to be able to use it for other purposes. We have

assigned this attribute with yet another listener, that will inform us when we have some

new information in the SurfaceTexture, and therefore when we need to send it to the native

texture for this to render it.

When performing the actual rendering, there are two points to be taken into account.

For one, that the background of the TextureView must be transparent in order to be able

to see the camera image below, and secondly, the position of the �lm projection.

The �rst point is simple and is resolved in the following code:

//RGB and ALPHA VALUE (corresponds to transparency)
GLES20.glClearColor(0.0f, 0.0f, 0.0f , 0.0f );
//Apply the colour above
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);

For the second point, as in the PC version of this application, we need to perform a

transformation between the image pixels and the representation of these that OpenGL will

apply. In this case, the OpenGL world does not have the same measures as the image, and

we cannot set them to be like so. This is because the variety of devices that Android is

orientated to is very high, and each of these can have di�erent size screens. If OpenGL

allowed the mapping of points to the screen be personalized, it would be very di�cult to

provide support to all the available devices.

In order to solve this problem, OpenGL assumes a square uniform coordinates system

for the developer to use, and then internally will scale this image, as is represented in

Figure 5.18.
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Figure 5.18: Relation between Image pixels and Points in Android OpenGL World

With this information and the pixels between which we wish to project, we can calculate

their correspondence in Android OpenGL ES format:

handroid =
2himg

h
− 1

wandroid =
2wimg

w
− 1

Having these points, we can then proceed to perform the virtual �lm projection. To do

so, we need to have clear the way one gives OpenGL ES the data to be drawn. We must

use vectors to indicate both the QUAD and the texture positions.

//De�ne ByteBu�er
ByteBu�er texturebb = ByteBu�er.allocateDirect(textureCoords.length ∗ 4);
texturebb.order(ByteOrder.nativeOrder());
//Put the data in
textureBu�er = texturebb.asFloatBu�er();
textureBu�er.put(textureCoords);
//Reset to the begining to start reading from it
textureBu�er. position (0);

After de�ning the required vectors, we can proceed to perform the drawing of the

QUAD and assign it a texture.

//Enable Position Vector
GLES20.glEnableVertexAttribArray(positionHandle);
GLES20.glVertexAttribPointer(positionHandle, 3,

GLES20.GL_FLOAT, false, 4 ∗ 3, vertexBu�er);
//Bind and Activate Texture
GLES20.glBindTexture(GLES20.GL_TEXTURE0, textures[0]);
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glUniform1i(textureParamHandle, 0);
//Enable Texture Vector
GLES20.glEnableVertexAttribArray(textureCoordinateHandle);
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GLES20.glVertexAttribPointer(textureCoordinateHandle,
4, GLES20.GL_FLOAT, false, 0, textureBu�er);

//Draw
GLES20.glDrawElements(GLES20.GL_TRIANGLES, drawOrder.length,

GLES20.GL_UNSIGNED_SHORT, drawListBu�er);
//Disable Vectors
GLES20.glDisableVertexAttribArray(positionHandle);
GLES20.glDisableVertexAttribArray(textureCoordinateHandle);



Chapter 6

Experiments

After describing the procedure we have followed to develop the AR Cinema application,

we must now describe the tests we have performed on it, in order to verify the results

obtained. The �rst tests performed have been done in the three di�erent platforms we

have been using during the development of this project: real scene, Gazebo and Android.

Apart from these, we have also performed accuracy tests to the algorithm in Gazebo, in

order to calculate the error that our algorithm introduces to the system.

6.1 PC Prototype AR Cinema with Real Camera

To start of this chapter, we would like to provide some images of the working prototype of

the standard version of the JdeRobot component that has been designed.

In Figure 6.1a we can �nd an image of the scene we have used to perform this demo.

This image has been remarked in Figure 6.1b, where we can see the three tags present in

the world, all located on the same plane, marked in red. The television located between

them (and marked in blue) indicates the points we wish to use as the cinema screen.

As we have mentioned, this component receives both the camera images and the �lm

frames through ICE interfaces, using as a provider the JdeRobot component cameraServer.

It also receives a con�guration �le that will inform the application of the real three

dimensional position of the tags that are visible in our world, as well as the position

of the four points between which we wish to project the virtual �lm.

Using the camera image provided, AR Cinema performs an image processing, extracting

the pixels that correspond to each tag and using this information, along with the real tags

position, to calculate an estimated camera position and orientation. With this, we will

73
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(a) (b)

Figure 6.1: Real Camera Scene for AR Cinema Demo

then perform a projection of the cinema corners to calculate the pixels that correspond to

these positions.

Last, we shall perform a projection of the �lm frames between those calculated pixels,

giving the e�ect of a virtual cinema �lm, that will be playing in Augmented Reality.

The demo we shall see in the images has been executed on a Intel (R) Core (TM) i7

3537U @ 2.00 Ghz running Ubuntu 12.04. As the algorithm performs a great amount of

calculations, the computational cost is quite high. When trying to execute this same demo

on a Intel (R) Dual Core (TM) @ 1.4 Ghz, we noted a serious performance �aw. The

images are provided by CameraServer at 30fps, which is the speed the component works

at.

We can see some images of this component working in a real scenario in Figure 6.2,

where we can see the execution from di�erent angles. As we can see, the �lm projection

is performed between the TV area, and it remains between it during the di�erent rotation

and position changes, being consistent with the movements the camera performs.

Figure 6.2: Working Prototype AR Cinema
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6.2 PC Prototype AR Cinema with Gazebo Simulator

As we have mentioned during this document, the video source that is analysed, and

therefore augmented is irrelevant to the algorithm, needing only to have known tags around

the world. In order to demonstrate this, we have performed the execution of the component

using the Gazebo simulator, which has been our test environment during the development

of this project, and where we have tested all the algorithms developed before using a real

scene.

(a) (b)

Figure 6.3: Gazebo Simulator Scene for AR Cinema Demo

In Figure 6.3a we can see the virtual scene we have designed in Gazebo, which has

all the tags located in the same position as they have in the real world. In this case, the

cinema screen is represented by the grey box that is located between the 3 markers, which

are in the same position as in the real world. We can see these relevant features of the

scene marked in Figure 6.3b, with the tags in red and the projection screen in blue. In

Figure 6.4 we can see images from the execution in Gazebo.

Figure 6.4: Working Prototype AR Cinema in Gazebo

As happened in the real scene, in these images we can appreciate di�erent camera

movements, both in position and in orientation, and how the �lm projection remains
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between the prede�ned points for it. In this case, we can appreciate changes in the distance

to the screen, as well as rotations in two di�erent axis, so as to test several movement

options around the designed scene.

6.3 Android Prototype AR Cinema

To �nish the set of working scenes this application has been tested on, we shall describe the

execution on an Android platform. The Android device used for this test has been a Quad

Core Cortex A7 @ 1.3 GHz. If we mentioned previously that the execution of the algorithm

on a PC with similar speci�cations to this telephone was quite slow, we can assume the

execution will also worsen on this platform. We tried to execute this application at 30 fps

on this telephone, having quite poor performance results. When lowering the camera �ow's

image rate (20 fps), we obtained better results, but these are still far from those obtained

on the PC.

The scene used for the Android demo is the same as that used during the PC demo with

a real camera, and which we can see in Figure 6.1a. In Figure 6.5 we can see a successful

execution on the Android device, with two di�erent angles.

Figure 6.5: Working Android Prototype AR Cinema

6.4 Auxiliary Components for Gazebo

The �rst task to be performed in order to be able to verify our results, was the development

of certain JdeRobot components and Gazebo plugins that were necessary to interact with

the simulated Gazebo world. More speci�cally, we needed to have a camera remote control,

to be able to move it in the Gazebo 3D world and know the camera's absolute position. This

required component can be described as a Gazebo camera teleoperator, and was developed

in a collaborative way between the JdeRobot robotics group of the URJC. This component
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was named moveCamera, and would have to be able to move the camera in the Gazebo

world, giving it the exact points where it should place itself, and also receive a feed of the

image from the camera and the real position of the camera, to help the user know where

the it is placed at all times.

Figure 6.6: Relations moveCamera component - �yingCamera plugin

Associated to this component, we also have a Gazebo plugin that can interact with it

and move the simulated camera. This plugin will be in charge of receiving the commanded

camera position from the teleoperator and setting the cameras position to that required,

as well as providing the application with the images that the camera is capturing, along

with the real camera pose.

The communication between these modules is done via ICE interfaces. We have three

interfaces, one that starts from the plugin, and provides the camera position, another that

also starts on the plugin and provides the camera images, and the last one, which starts

on the component and sends the plugin the new desired position for the camera.

In Figure 6.6 we can see a relation between the di�erent interfaces that connect Gazebo's

plugin and the developed component, and in Figure 6.7, an image of the component in

action.

6.5 Camera Localization Accuracy Study

The tests performed on the auto-localization module of our application were performed

in the Gazebo simulator. This is because, being a controlled environment, we can have

the real camera position information along with the estimated one, and therefore we can

quantify the error that our module is introducing.
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Figure 6.7: moveCamera Component

Thanks to the previously described component, we have the ability to move the camera

in our Gazebo world and receive the images that it sees, along with the real camera

position. Using the same auto-localization algorithm as described in chapter 5, we can

use a combination of this algorithm and the auxiliary component to perform an error

analysis of the algorithm, in order to verify the results. To do so, we have performed a

series of experiments in order to validate the error that is introduced by our algorithm in

several di�erent scenarios.

6.5.1 Eccentricity

To start with, the �rst experiment performed is regarding a single tags radius from the

camera centre. To do so, we have placed the tag in three di�erent positions of the Gazebo

world, each with di�erent radius values and positions within the image, as we can see in

Figure 6.8, and analysed the error in each axis (x, y, z), as well as the rotation (roll, pitch,

yaw).

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 6.8: Eccentricity Experiment Scenes

After performing the camera pose estimation for each of theses scenarios, leaving the
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camera height as a constant value, we can see in the Table 6.1 the results we have obtained.

In this table, we have the three mentioned scenarios, along with the error in each variable

we have obtained, being in meters the error measures for distances, and in radians for the

case of the angles.

Scene Z Error XY Error Roll Error Pitch Error Yaw Error
1 0.124515 0.00676985 0.18925 0.00423333 0.1983
2 0.136663 0.0292605 0.2519 0.0282087 0.25338
3 0.105571 0.00282806 0.242208 0.00591452 0.244711

Table 6.1: Eccentricity Experiment Results

If we analyse this information, we must say, it is not very intuitive. The fact that the

scene with the tag in the centre has a low error in all 3 position axis is reasonable, but for

what we have not managed to get an explanation is that, in scene number 3, where the

radius between camera and tag is highest, the error is very similar to that in scene number

one, where we would expect to have the best results.

Regarding the angles, we have the same problem. In this case, it isn't so obvious, seen

as the error in scene 3 isn't so similar to that in scene 1, but it's still very similar to the

second scene, which we would expect to be lower.

The only minimal explanation we have found for these results is that, even if the radius

is higher in scene number three, the fact that the tag is moved in two di�erent axis helps

compensate between them the error caused by the high radius. In scene two, we have a

lower radius, but the fact we only have one movement axis turns the scene to having a

high error that isn't compensated, and therefore is dragged all the way to the end of the

experiment.

6.5.2 Number of Tags

With the results we have obtained in our previous experiment, we will now proceed to

analyse the impact that the number of tags has on the obtained results. Seen as the

previous results indicate quite a large di�erence between one radius and another, we will

perform this experiment having all the tags around the same radius, in order for the analysis

to be as fair as possible.

In this case, we have also considered 3 di�erent scenes, each with one, two and four

tags, in order to decide the best option to be used, as we can see in Figure 6.9.
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(a) One Tag (b) Two Tag (c) Four Tag

Figure 6.9: Number Markers Experiment Scene

In order to be able to represent this information in a graph, we decided to maintain the

camera's XY position �xed for this experiment, and increase the height of the camera for

each case. Like that, we can have a comparison on how the error changes by varying the

camera's Z value, as well as the impact the number of tags in the image has in such error.

(a) Error in XY (b) Error in Z

Figure 6.10: Number Markers Experiment Results

As we can see in Figure 6.10, the error in the XY axis reduces as we increase the number

of tags in our image, as well as does it increase with the distance between tags and camera.

On the opposite side, we can see that the error introduced in the Z axis remains practically

the same regardless of the number of tags we have. This result can be explained as all

the tags that have been used are coplanar, and therefore should the same value in Z. To

perform the mean value of a group that will be very similar, will result in yet another

similar result.

In order to verify this, we will perform another experiment similar to the previous, but

apart from the four coplanar tags, we are going to add a �fth tag perpendicular to the

previous, as can be seen in Figure 6.11a. With this, we hoped to �nd a way to reduce the

error in the Z axis as much as possible.
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(a) Perpendicular Experiment Scene (b) Perpendicular Experiment Error in Z

Figure 6.11: Experiment and Results for Perpendicular Tags

In Figure 6.11b we can see that our supposition was correct, and that introducing

markers on di�erent planes will reduce the error in Z axis. This result is very interesting

in order to apply it in the �nal scene that will be used during the demo application we

prepare.

6.5.3 Translation

With the previously gathered information, we shall proceed to calculating the error when

the camera is moved within the X and Y axis. To do so, we will part from the 4 tag scene,

and perform movements in X and Y separately, and then in both, to see the di�erent error

values that we obtain.In Figure 6.12 we can see an example of one of the test scenes.

Figure 6.12: Translation Experiment Scene

In order to represent the error we have obtained for this experiment, we are going to

do so in three di�erent graphs. The �rst of these we can �nd in 6.13a, and represents the
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error caused by moving the camera linearly in the X axis, represented in two di�erent lots:

one that represents the XY error, and another that represents the Z error. In the graph,

we can see how the error that is introduced in the Z axis is constant, while that of the XY

axis increases with the movement. In 6.13b we can see how this e�ect also occurs when

the single translation is done in Y.

(a) X Translation Results (b) Y Translation Results

Figure 6.13: Translation Experiment Results for movement in one axis

Having characterized the error in each axis separately, we could conclude that a

movement in both axis would have a similar result: the error would increase with the

distance between the tag and camera centres. In Figure 6.14 we can see a graph that

indicates that this e�ect indeed happens. We can see that, for the error in the XY axis, it

increases with the distance. The error in Z maintains a constant value, which is coherent

with the rest of the information we have received during these experiments.

Figure 6.14: Translation Experiment Results for movement in two axis
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6.5.4 Rotation

The last point of our algorithm we wish to perform experiments with, is how is behaves

when performing a rotation around a single axis. With this, we will have completed a full

analysis of the algorithm, with movements in all the directions that are available to the

camera, and therefore veri�ed it's validity.

(a) Roll Rotation (b) Pitch Rotation (c) Yaw Rotation

Figure 6.15: Rotation Experiment Scenes

In this case, we have also performed three tests, one performing a rotation in each

direction, yaw (around Z), pitch (around Y) and roll (around X), as we can see in Figure

6.15 with the three di�erent rotations.

(a) Error in Roll (b) Error in Pitch (c) Error in Yaw

Figure 6.16: Rotation Experiment Results

In Figure 6.16 we can see the results of this experiment. As we can see, the error

remains relatively constant during the performance of the rotations, and this error is below

3o in most cases. The interpretation we can make of this is that the rotation does not

introduce much error in the camera pose estimation. If we compare it to the translations

performed by the camera, we can conclude that this last one has much more impact on

our algorithm than the rotation does.

From these results, we can conclude that the algorithm developed has is �aws, as

most do, but even so, the performance it gives is quite high, and when applied to an AR

application, this executes �uidly, without many sudden jumps.
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Conclusions

During the di�erent chapters of this document we have described the building process of

the visual localization system developed, along with the augmented reality application we

have built using it, starting from a description of the technologies and systems used until

the experimental validation of the systems. Now, in this �nal chapter, we are going to go

through the objectives we had at the beginning of this document, and see in what measure

these have been ful�lled. Also, we shall comment a series of future actions that could be

taken in order to improve the current project.

7.1 Conclusions

We have designed and developed a marker based auto-localization algorithm, making use

of a very wide range of di�erent technologies, which had to be tamed, not only in order

to understand how they work, but how to combine them between themselves in order for

them to all work together towards the �nal results. Based on this algorithm, we have also

developed an augmented reality application, and this has been prototyped not only for a

Linux running PC, but also on an Android framework. To perform this, the �rst developed

the PC version, and then performed an analysis on how this could be ported to an Android

device with a minimum number of changes.

If we go back to chapter 2, we can remember a series of objectives we established for

our application. Going back to them, and performing a posterior analysis of these, we can

conclude the following points:

• The �rst objective we established was the investigation into self-localization

techniques, and the following development of a marker based one. In chapter 5 we

84
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have performed an in depth analysis of the algorithm that has been developed, and

in the sixth one, an experimental validation of its accuracy. The developed algorithm

is based on the pin hole camera model, that has been described in chapter 4, and

can be divided in three main steps. The �rst, the detection of markers in the image,

in order to use these to perform the localization of the camera. The next step is to

actually perform this localization, using the information of the tags position in the

world, and an estimation we perform of the camera's position from the tag. The

last part of the algorithm is the fusion of several of the previously calculated camera

positions, seen as we have one for each tag. In order to perform this algorithm, we

have made use of several vision libraries, the main ones being April Tags, ARuCo

and OpenCV, that have worked together to obtain the �nal results. Finally, and in

order to verify the validity of our algorithm, we validated it in chapter 6, performing

a series of experiments designed to test the algorithm in di�erent limit cases, and

obtaining valuable information that could be used in a future application.

• The following objective we gave ourselves was the development of an augmented

reality application that made use of the developed localization algorithm. In order

to accomplish this point, we took note of the validation results in chapter 6 in

order to use these to design a good scene for the �nal application. With the scene

designed, we integrated the self-localization algorithm in a JdeRobot component that

uses this camera position to create an OpenGL augmented reality application. This

application consists of a virtual cinema screen that projects a �lm between 4 pre-

established corners. Therefore, our application does not only have to perform the

augmented reality, but based on the camera position it must also calculate the image

pixels between which the projection must be done, making use of the pin hole camera

model (chapter 4).

• The last objective given was that of porting the previous application to an Android

platform, reusing the same localization algorithm as the PC application. When we

say using the same algorithm, we do not only mean the same principles, but trying

to reuse as much code as possible, in order to verify the di�erences between both

executions fairly. Thanks to the use of Java Native Interface, we can use C++ code

in an Android application. JNI will compile this code in Android's architecture, and

provide us with a dynamic library so that we can execute this same code on Android.

As we know, this application doesn't only have the algorithm part, but also a graphics

representation. This GUI cannot be reused from the PC version of the application,
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and has been developed directly for Android thanks to OpenCV Android library, to

represent the camera image, and OpenGL ES to project the virtual objects.

Apart from these main objectives that we have just described, in chapter 2 we also

established a series of requirements that the project has to comply. These were the

following:

The developed components in this project have been developed under JdeRobot

framework, in C++. Using JdeRobot has given us a great number of advantages, as

it o�ers us a series of ICE interfaces to communicate with di�erent components that we

may need to use, as well as also providing information for others to reuse in their own

applications. Apart from JdeRobot, we have also taken advantage of several other libraries

and software that have given us a series of tools that were very important during the

development. OpenCV during the image processing, April Tags and ARuCo with the

algorithm development, and OpenGL during the augmented reality are the main ones, but

there have also been other smaller libraries that have helped during this development.

The algorithm we have developed has been written in C++, and executed both on a

Linux running PC as on an Android mobile terminal. In these cases, we have obviously

used di�erent cameras in each system, and therefore performed test with several calibrated

cameras. We can see then, that the application is not dependant on a concrete camera,

but on a decent camera calibration method.

All the described operations are performed in real time, as the image �ow we are

working with provides us with approximately 30 fps, and there are processed and analysed

on the moment in order to provide our augmented reality application with the best user

experience possible.

In the experimental analysis we have seen how the application works in a series of

di�erent scenes. Obviously, the algorithm will work better with a scene that has been

prepared with that objective, such as the ones we described in chapter 6. When using a

higher number of tags we can obtain a more robust estimation, as we have more information

on which to base the estimations. Also, if we distribute these tags in di�erent planes we

shall obtain better estimations as we have several tags that provide information from

radically di�erent positions. Obviously, being a marker dependant algorithm, when none

of these markers are visible from the camera it will loose it's pose estimation, and therefore

no augmented reality will be projected.

Regarding the knowledge acquired during this project, most of this has been regarding
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computer vision and auto-localization techniques. I believe I have now got quite a good

base of information regarding camera models, image analysis, three dimensional camera

localization, which are all very modern technologies.

7.2 Future Works

As well as performing a summary of the objectives that we have ful�lled, we would like to

end this document by describing a series a future works that we believe could be performed

in order to improve the developments performed.

In �rst place, the developed augmented reality application could replace the current

self-localization algorithm by another more robust one, or one that isn't dependant on a

known scene for this to work. Introducing visual SLAM or PTAM to our AR application

could give this a better user experience, as it wouldn't be dependant on the markers.

Another improvement that would be very interesting is a optimization of the code, in

order to improve the performance on mobile terminals. We have seen that the application

has a correct execution on an Android terminal, but this is not as �uid as on a PC, and

therefore, should be improved in order to have a fully working and useful mobile application.

Finally, the last improvement we can mention for our project is the development of

a �nal application that has more commercial objectives. The application developed is

perfect to demonstrate the integration between self localization and augmented reality,

but a commercial application that can be sold is always a good idea.
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