
Ingenieŕıa Técnica en Informática de Sistemas

Curso Académico 2014/2015

Proyecto de Fin de Carrera

An UAV prototype

Autor: Livio Calvo Ramos
Tutor: Jose Maŕıa Cañas Plaza

Acknowledges

I wish to thank Jose Maŕıa Cañas Plaza for his guidance in the development of
this project, to Oscar Garćıa for his advice on electronics and aeromodelism,
and to Maŕıa Teresa González de Lena, José Centeno González, Julián Nora
and many other teachers whose teachings were especially helpful to me.

1

Summary

The Unmanned Aerial Vehicles (UAVs), also known as ”drones”, are flying
robots that can be controlled remotely by a human operator or can function
completely autonomous. They are a booming technology and we are now
seeing them in the news, movies and video games. They can patrol borders,
monitor power lines, transport light payloads and even fight in war scenarios.

Implementing a real UAV can be very expensive and time consuming.
This final degree project has been oriented to implement an UAV prototype
with cheap hardware components to simulate the basic operations of a real
UAV like obtaining information from hardware sensors, calculating the flying
route and sending the corresponding electric currents to the motors. A tele-
operation mode has also been implemented through a web interface to allow
a human operator to monitor and control the UAV prototype remotely.

Finally, several tests have been run to check that all the simulated capabil-
ities of the UAV prototype worked as expected. All of them were successfully
completed.

2

Contents

1 Introduction 5
1.1 Unmanned Aerial Vehicles . 5

1.1.1 Aeronautical Design 5
1.1.2 Sensors and Actuators 6
1.1.3 Radio-controlled aircraft 9

1.2 UAV applications . 9
1.2.1 Surveillance and Reconnaissance 9
1.2.2 Combat Operations . 16

1.3 UAVs in Spain . 17
1.3.1 Universidad de Sevilla 17
1.3.2 Alfa Bravo Servicios Aeronáuticos 18
1.3.3 Atlante . 18
1.3.4 Universidad Politécnica de Madrid (UPM) 20
1.3.5 FUVE: Future Vehicles and Entrepreneurs 21

2 Objectives 23
2.1 Description of the problem . 23
2.2 Requirements . 23
2.3 Development Process . 24

3 Infrastructure 26
3.1 Android Mobile . 26
3.2 Raspberry Pi . 28
3.3 Arduino . 30
3.4 Web Interface Technologies . 32

3.4.1 Apache . 32
3.4.2 MySQL . 33
3.4.3 PHP . 33

3

3.4.4 Motion . 34
3.5 Flying platform . 34

3.5.1 DC Motors . 34
3.5.2 Servos . 35
3.5.3 Propellers . 36
3.5.4 Phantom FPV Flying Wing 37

4 UAV System Description 39
4.1 UAV Design . 39
4.2 Navigation . 45

4.2.1 Android application . 46
4.2.2 Java application . 53
4.2.3 Arduino application . 58

4.3 Web Interface . 59
4.3.1 UAV Manager web application 60
4.3.2 Apache Web Server . 63
4.3.3 Motion . 64
4.3.4 MySQL server . 64

4.4 Sensors-Actuators Infrastructure 64
4.4.1 Sensors-to-Navigation 66
4.4.2 Navigation-to-Motors 66
4.4.3 Web Interface-Motors 68

5 Experiments 70
5.1 UAV test board assembly . 70
5.2 UAV platform teleoperation 71
5.3 Assembly of the ”Phantom” RC airplane 79

6 Conclusions 81
6.1 Conclusions . 81
6.2 Future developments . 82

4

Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV), commonly known as ”drone”, is an
aircraft without a human pilot on board. It’s controlled by computers on
board or by a human operator through a remote control. They are usually
deployed in missions that are too simple or dangerous for a human pilot.

The use of drones has grown quickly in recent years because unlike manned
aircrafts they can stay aloft for many hours (a British drone called Zephyr
holds the official endurance record, flying more than 336 hours). They are
much cheaper than conventional aircrafts and they are controlled remotely
so there is no danger to the flight crew.

1.1 Unmanned Aerial Vehicles

1.1.1 Aeronautical Design

The UAVs can have several shapes and sizes. They can fly by gaining support
from the atmosphere. This support counters the force of gravity by using
either static lift, as airships do, or by using the dynamic lift of an airfoil, like
airplanes.

The human activity that surrounds aircraft is called aviation. Crewed
aircrafts are flown by an onboard pilot, but UAVs may be remotely con-
trolled or self-controlled by onboard computers. Aircrafts may be classified
by different criteria, such as lift type, propulsion, usage and others. They
can be as small as radiocontrol planes or as big as an Airbus 380. A general
classification follows:

5

• Airplanes: they are powered fixed-wing aircrafts (as seen in figure 1.1)
that are propelled forward by thrust from a jet engine or propeller.
If the airplane has no engines it’s called a glider and it’s supported in
flight only by the dynamic reaction of the air against its lifting surfaces.

Figure 1.1: IAI Heron airplane

• VTOLs (Vertical Take-Off and Landing): they are powered aircrafts
that can hover, take off, and land vertically. All helicopters are VTOLs,
like other aircrafts such as the Harrier, the V-22 Osprey or the Parrot
AR.Drone.

• Airships: they are lighter-than-air aircrafts (as seen in figure 1.2) that
can be steered and propelled through the air using rudders and pro-
pellers or other thrust mechanisms. Airships stay aloft by having a
large ”envelope” filled with a lifting gas that is less dense than the
surrounding air.

1.1.2 Sensors and Actuators

The UAVs, as other robots, need sensors to perceive the surrounding world
and actuators to interact with their environment. Usually UAVs have these
technologies onboard:

• Camera: it allows the human operator to get a video feed, so he can see
where the UAV is flying. It allows to take pictures and to record video.

6

Figure 1.2: Airship

In some cases, the UAV can analyze the video to assist in navigation,
pursue targets and other tasks.

• Magnetic sensors: they sense earth magnetic field and can be used as
a compass so they provide the heading of the UAV. They can be used
to get pitch and roll values too.

• Altimeter: it measures the atmospheric pressure. When the altitude is
higher, the pressure is lower. Using this rule the altimeter can calculate
the altitude of the UAV.

• GPS receiver: the Global Positioning System (GPS) is composed of
several satellites in geostationary orbit around the Earth. Each satellite
continually transmits electromagnetic signals with information about
the time the message was transmitted and the satellite position at the
time of message transmission. With this information the GPS receiver
calculates the 3D position of the UAV.

• Inertial Measurement Unit (IMU): it measures the aircraft velocity, ori-
entation, and gravitational forces, using a combination of accelerome-
ters and gyroscopes, sometimes also magnetometers. The data collected
from the IMU’s sensors allow a computer to track the aircraft’s posi-
tion, using a method known as dead reckoning. An IMU works even
when GPS-signals are unavailable, such as in tunnels, inside buildings,
or when electronic interferences are present.

7

• Flight Control Surfaces: the moving parts attached to the airframe
of the aircraft (as seen in figure 1.3). The flight control surfaces can
deflect the air stream passing over them. This redirection of the air
stream generates an unbalanced force to rotate the aircraft about the
associated axis, so the pilot (or computer) can control the aircraft’s
flight attitude.

Figure 1.3: Flight control surfaces of an airplane

• Motors: they are machines designed to convert energy into useful me-
chanical motion. They are used when circular motions are required, for
example, to move a propeller. Aircrafts can use heat motors or electric
motors: Heat motors burn a fuel to create heat, which then creates
motion, while electric motors convert electrical energy into mechanical
motion. Electric DC motors are powered from direct current and they
are the most used in small aircrafts because they use rechargeable bat-

8

teries instead of fuel and they are safer and cheaper than heat motors.
Heat engines provide much more energy than electric ones, so big air-
crafts still use this technology. Aircrafts use motors to provide forward
and/or upward thrust.

• Servos: they are a actuators which move or control a mechanism or
system. They are operated by electric current and convert that energy
into motion. Servos are used to control the aircraft, doing tasks like
move the control surfaces or down the landing gear.

1.1.3 Radio-controlled aircraft

A radio-controlled aircraft (RC aircraft) is a small flying machine that is
controlled remotely by an operator on the ground using a radio transmitter.
The flying machine can be an airplane (as seen in figure 1.4), an helicopter, a
multirotor or even an airship. The transmitter communicates with a receiver
within the flying machine that sends signals to servomechanisms which move
the control surfaces and change the motor speed based on the position of
joysticks on the transmitter. In this way the flying machine can be flied
remotely, so a radio-controlled aircraft is an UAV that only has a manual
control mode.

1.2 UAV applications

UAVs are predominantly used in military applications but also in a growing
number of civil applications, which basically fall into two categories:

• Surveillance and Reconnaissance: the UAV gets any type of information
of a designed flying route using its internal sensors

• Combat Operations: the UAV is armed with missiles and/or bombs,
and uses its internal sensors to locate and destroy enemy targets

1.2.1 Surveillance and Reconnaissance

UAVs can be used for surveillance operations, which raise significant issues
for privacy. Surveillance drones are already in use by law enforcement and can
carry various types of equipment including live-feed video cameras, infrared

9

Figure 1.4: RC airplane

cameras, heat sensors, and radar. They can even carry wifi crackers and fake
cell phone towers that can determine your location or intercept your texts
and phone calls[1].

A fleet of miniature helicopter drones (as seen in figure 1.5) mounted with
thermal imaging cameras will be deployed to combat graffiti-spraying gangs
on the german railway network [2]. Each drone will be able to record videos
which will be used as evidence in trials. These drones are manufactured
by german firm Microdrones. The use of drones against vandals is the latest
indication of the growing civilian market for unmanned aerial reconnaissance.
Over 400 new drone systems are being developed by firms based in Europe.

UK police is using the ”spy drone”[3], fitted with CCTV cameras, mainly
for tackling anti-social behaviour and public disorder, but also for monitor-
ing traffic congestions. These drones are manufactured by Microdrones (UK).
The machines, which are flown by remote control or using pre-programmed
GPS navigation systems, are silent and can be fitted with night-vision cam-
eras (as seen in figure 1.6). The images they record are sent back to a police
support vehicle or control room.

UAVs like ”InView Unmanned Aircraft System” (as seen in figure 1.7)

10

Figure 1.5: Deutsche Bahn drones

can be used to perform aeromagnetic surveys[4] where the processed measure-
ments of the Earth’s magnetic field strength are used to calculate the nature
of the underlying magnetic rock structure, which helps trained geophysicists
to predict the location of mineral deposits. This drone is manufactured by
Barnard Microsystems in the UK.

The ”Air Mule” UAV (as seen in figure 1.8) is being designed for cargo
transport, medical evacuation and troop supply missions[5]. It can be op-
erated in remote areas where helicopters and traditional rotorcraft cannot
function. It’s scheduled to enter service in 2014 and it’s being developed by
Urban Aeronautics in Israel.

The U.S. Customs and Border Protection is using a computer system
called VADER[6] (Vehicle Dismount and Exploitation Radar) developed by
Northrop Grumman and operated from Predator drones (as seen in figure
1.9) which patrol Mexico border to locate illegal inmigrants and smugglers.
This system was developed to track Taliban fighters in Afghanistan.

French electricity distribution network operator ERDF and Cassidian[7]
are developing an UAV (as seen in figure 1.10) to inspect high voltage power
lines. This drone is an helicopter which can fly in unfavourable weather

11

Figure 1.6: UK Police Drone

Figure 1.7: InView Unmanned Aircraft System

12

Figure 1.8: AirMule

Figure 1.9: Predator drone used in border control

13

conditions, carry large numbers of various types of sensors and provide data
post-processing.

Figure 1.10: ERDF/Cassidian drone for power lines inspection

Amazon, the world’s largest online retailer, is testing unmanned drones
to deliver goods to customers[8]. The drones (as seen in figure 1.11) could
deliver packages weighing up to 2.3 kg to customers within 30 minutes of
flying time from drone base to customer home. This service is called Amazon
Prime Air and could take up to five years to start. The US Federal Aviation
Administration is yet to approve the use of unmanned drones for civilian
purposes.

Brazilian police have bought israeli surveillance drones (as seen in figure
1.12) to monitor the areas around the soccer stadiums during the 2014 World
Cup soccer tournament[9]. There are thousands of fans from across the world
expected to attend this event, and this and other measures are expected to
increase street security.

Parrot AR.Drone is a radio controlled quadcopter (as seen in figure 1.13)
built by the French company Parrot. The drone is designed to be controlled
by mobile or tablet operating systems such as Android or iOS, but it can
be controlled from other operating systems through unofficial software. It
takes off automatically, hovers by itself and is very easy to fly thanks to its
autopilot and sensors. It also incorporates a 720p camera located in the nose.

14

Figure 1.11: Amazon drone

Figure 1.12: Brazilian Police drone

Organizations from around the world such as the Stanford Robotics Club or
Students at NASA Program are now using the drone[10].

15

Figure 1.13: Parrot AR.Drone

1.2.2 Combat Operations

While the military drones are physically in the war zone (i.e.: Afghanistan or
Iraq), they are usually controlled via satellite from the country to which they
belong. Ground crews launch drones from the conflict zone, then operation
is handed over to controllers at video screens in specially designed facilities in
their country. One person flies the drone, another operates and monitors the
cameras and sensors, while a third person is in contact with ground troops
and commanders in the war zone.

Some military drones are very popular today as they have appeared in
the news, movies and video games. Such is the case of the Predator (as seen
in figure 1.14): initially conceived for reconnaissance and forward observa-
tion roles, it carries cameras and other sensors but has been modified and
upgraded to carry and fire two AGM-114 Hellfire missiles or other munitions.
The drone, in use since 1995, has seen combat over Afghanistan, Pakistan,
Bosnia, Serbia, Iraq, Yemen, Libya, and Somalia.

Following 2001, the Predator became the primary unmanned aircraft used
for offensive operations by the USAF and the CIA in Afghanistan and the
Pakistani tribal areas; it has also been deployed elsewhere. Civilian applica-
tions have included border enforcement and scientific studies.

16

Figure 1.14: Predator

1.3 UAVs in Spain

There are several spanish universities and firms developing and manufactur-
ing UAVs. The following list describes the main projects:

1.3.1 Universidad de Sevilla

They are working in several UAV related projects like MUAC-IREN[11]
(Multi-UAV Cooperation for long endurance applications). This project is
trying to develop long endurance UAVs (as seen in figure 1.15) with a very
high range1. They are exploring new ideas like autonomous soaring exploit-
ing favourable wind conditions to extend flight duration. UAVs which are

1Range is the distance an aircraft can fly between takeoff and landing, as limited by
fuel or battery capacity in powered aircraft, or environmental conditions in unpowered
aircraft

17

able to fly without need to land for recharge batteries or fill fuel tanks can be
very useful for many applications such as surveillance, traffic control, coast
control, etc. They are also exploring ways to integrate weather estimation
and control algorithms that enable UAVs to fly and perform their mission
successfully even if very adverse weather conditions are encountered.

Figure 1.15: MUAC-IREN aerial robot

1.3.2 Alfa Bravo Servicios Aeronáuticos

Alfa Bravo Servicios Aeronáuticos SL is a young firm, founded in 2008, fo-
cused in the production of electronic systems and unmanned robots for Span-
ish Armed Forces, including military UAVs. In 2009 they signed a contract
with Spanish Armed Forces[12] for 1,96 million euros. The UAV model was
not disclosed but the internet portal ”El Confidencial Digital” assured that
the model chosen by Spanish Armed Forces was a RQ-11 Raven (as seen
in figure 1.16), supplied by the american firm AeroVironment. The RQ-11
Raven is a small hand-launched unmanned aerial vehicle developed for the
U.S. military, but now adopted by the military forces of many other coun-
tries. The Raven can be either remotely controlled from the ground station
or fly autonomous missions using GPS waypoint navigation.

1.3.3 Atlante

Atlante (as seen in figure 1.17)[13] is a tactical long-endurance unmanned
air vehicle (UAV) system designed to perform ISTAR2 operations. Other
operations carried out by the UAV include identifying targets, day and night

2Intelligence, Surveillance, Target Acquisition and Reconnaissance

18

Figure 1.16: RQ-11 Raven

Figure 1.17: Atlante

19

surveillance, over-the-hill reconnaissance, battle-damage assessment, troop
and convoy protection, border surveillance, and search and rescue.

The UAV will also meet the requirements of Guardia Civil and other
Spanish emergency agencies. The UAV system is manufactured by EADS
CASA and made its first flight in February 28th, 2013 in Lugo (Spain).

Atlante offers fully automated take-off and landing capabilities, even in
adverse weather conditions. It uses a pneumatic catapult to take off and is
recovered with parachutes or nets. It has a simple landing gear to take off
and land in conventional airstrips.

1.3.4 Universidad Politécnica de Madrid (UPM)

Figure 1.18: UPM autonomous drone flying indoors

A team of five members of the UPM research group ”Visión por Com-
putador del Centro de Automática y Robótica” has won the first position
in the IMAV competition 2013. The category of this award was Indoor

20

Autonomy[14], their best innovations were UAV autonomy and simultane-
ous coordination of several UAVs. The Indoor Autonomy category requires
the UAV to fly autonomously in an environment only partially known and
without use any GPS sensor. The research group presented a multi-robot
autonomous system using as platform the Parrot AR Drone 2.0 drone (as
seen in figure 1.18). Each drone communicates with a computer via wifi in
which the navigation algorithms run, and each computer communicates with
other computers though a LAN network.

1.3.5 FUVE: Future Vehicles and Entrepreneurs

FUVE[15] is a team of students from different universities and various dis-
ciplines such as marine engineering, aerospace, electronics, software and
telecommunications. They are working together in Politechnical University
of Madrid (UPM) Naval School to design and construct remotely operated
underwater vehicles (ROVs) and Unmanned Aerial Vehicles. Their UAV is an
Autogyro (as seen in figure 1.19) which was created by spanish engineer Juan
de la Cierva in 1923. This type of flying machine uses an unpowered rotor
in autorotation to develop lift, and an engine-powered propeller to provide
thrust.

Figure 1.19: FUVE Autogyro

The objective of this project is the design of a basic UAV prototype, in-
cluding onboard computer, sensors, actuators, and a user interface for remote
control.

21

The rest of the document is organized in 5 chapters. The second chapter
describes the objectives of the project. The third chapter offers a description
of the hardware and software technologies that have been used to develop the
UAV. The fourth chapter explains the implementation of our UAV system.
The fifth chapter describes the experiments made to test the prototype. Fi-
nally the sixth chapter explains the conclusions of the project and proposes
some ideas for future developments.

22

Chapter 2

Objectives

The purpose of this work is to build a prototype simulating the basic com-
ponents of an Unmanned Aerial Vehicle.

2.1 Description of the problem

We have divided the global goal into several subgoals:

• Design of an UAV prototype including hardware and software architec-
ture

• Development of an API1 to read the sensors and control the actuators
of the UAV prototype

• Development of a web interface to monitor and control the UAV pro-
totype remotely

2.2 Requirements

The UAV system should have the following features:

• It must have an onboard computer to run the software that controls
the system

1An Application Programming Interface (API) is a set of functions and procedures that
allow the creation of applications which access the features or data of an operating system,
application, or other service.

23

• Free software tools: The UAV must use only free software tools which
are developed under terms that guarantee the users freedom to run it,
adapt it to their needs, and redistribute it with or without changes

• License: The source code of the project applications are free software,
under GPLv3 License 2

• The onboard computer must be connected to sensors to detect signals
from the UAV environment

• The UAV must have actuators to control flight control surfaces and/or
motors

• Real time: The UAV hardware and software must be fast enough to
control an hypothetical airship like flight

• Robustness: The UAV hardware and software never should freeze or
behave in an unsafe way

2.3 Development Process

The development model has been ”Code and fix” 3. Due to this is a small
project and there was no previous knowledge about aeromodeling in the
robotics group at URJC, the system was developed from scratch without
following any previous design.

During the course of the project several stages had been established so
different parts of the development have been addressed progressively, always
considering cost as a critical factor. The cost of the hardware has been more
than 200e, and the cost of the software has been 0e as only have been used
free software tools.

They main stages have been:

• Selection of computing platform: Several options have been studied
considering weight and computing capabilities. Once computing hard-
ware was choosed, several software platforms have been studied to run
on the selected hardware

2http://www.gnu.org/licenses/gpl-3.0-standalone.html
3http://en.wikipedia.org/wiki/Software development process#Code and fix

24

• Selection of electronic system: A set of battery, sensors, cables and
actuators has been choosed to perform basic operations like signal de-
tection and control of engines and/or surface controls

• Design and development of an autopilot: Several applications have been
developed to implement an autopilot system that sense external signals,
process them, and send commands to actuators simulating a real flight

• Design and development of user interface: To allow user interaction
with the UAV a web user interface has been developed. Using any
device with wifi and web browser the user can monitor the system
status, set up a flying route and fly it easily only pressing buttons
using an optional manual flight mode. A webcam has been added to
the computing hardware whose video feed is showed in the web user
interface

For more information, including videos, pictures and source code check
project MediaWiki[16].

25

Chapter 3

Infrastructure

In this chapter the main hardware and software technologies used to build
the UAV will be explained. They can be categorized in the following sections:

3.1 Android Mobile

The Samsung Galaxy Mini (figure 3.1) is a smartphone manufactured by
Samsung that runs the Android operating system. Its key features for this
project are GPS receiver and WiFi connectivity. It has been used as naviga-
tion computer. A summary of the most important features follows:

• Quad-Band GSM and dual-band 3G support

• 7.2 Mbit/s HSDPA

• WiFi 802.11 (b/g/n)

• Bluetooth technology v 2.1

• USB 2.0 (High Speed)

• 3.14 in (80 mm) 256K-color QVGA TFT touchscreen

• ARMv6 600 MHz processor, 384 MB RAM (only 279 MB RAM avail-
able)

• Adreno 200 GPU

26

Figure 3.1: Samsung Galaxy Mini

• Android OS v2.2 (Froyo), upgrade to v2.3.6 (Gingerbread) available in
some places.

• 160 MB internal storage, hot-swappable MicroSD slot, 2 GB card in-
cluded

• 3.15 Mpixel fixed-focus camera with geo-tagging

• 3.5 mm audio jack

• Accelerometer and proximity sensor

• Swype virtual keyboard

• MicroUSB port (charging and data transfer) and stereo Bluetooth 2.1

27

• Magnetic sensors: They sense earth magnetic field. This allows to use
this sensors as a compass to get the heading, and as a gyroscope to get
roll, pitch and yaw values

• GPS receiver with A-GPS: This device allows to know the gps coordi-
nates of the device

The mobile operating system is Android. It’s Linux-based and designed
primarily for touchscreen mobile devices such as smartphones and tablet
computers. The Android programming language is a customized version of
Java.

Android is open source and Google releases the code under the Apache Li-
cense. This open source code and permissive licensing allows the software to
be freely modified and distributed by device manufacturers, wireless carriers
and enthusiast developers.

Android’s open nature has further encouraged a large community of de-
velopers and enthusiasts to use the open source code as a foundation for
community-driven projects.

3.2 Raspberry Pi

The Raspberry Pi (figure 3.2) is a single-board computer developed in the UK
by the Raspberry Pi Foundation. It’s a low cost device that can be purchased
for only 25$. It does not include a built-in hard disk or solid-state drive, but
uses an SD card for booting and long-term storage. It has been used as
a computing node to host the user interface and to allow communication
between Android Mobile and Arduino.

The more important features are:

• SoC: Broadcom BCM2835 (CPU, GPU, DSP, SDRAM, and single USB
port)

• CPU: 700 MHz ARM1176JZF-S core (ARM11 family)

• GPU: Broadcom VideoCore IV

• Memory (SDRAM): 512 MB (shared with GPU)

• USB 2.0 ports: 2

28

Figure 3.2: Raspberry Pi

• Video Outputs: Composite RCA (PAL and NTSC), HDMI (rev 1.3 &
1.4), raw LCD Panels via DSI

• Audio outputs: 3.5 mm jack, HDMI

• Onboard storage: SD / MMC / SDIO card slot

• Onboard network: 10/100 Ethernet (RJ45)

• Power ratings: 700 mA (3.5 W)

• Power source: 5 volt via MicroUSB or GPIO header

• Operating Systems: Debian GNU/Linux, Fedora, Arch Linux ARM,
RISC OS

Raspbian is the operating system running on Raspberry. It’s a Linux
variant based on the ARM hard-float (armhf)-Debian 7 ’Wheezy’ architec-
ture port but optimized for the ARMv6 instruction set of the Raspberry Pi

29

hardware. The Raspbian Linux distribution is free software and basically
contains the LXDE desktop environment, the Openbox window manager,
the Midori web browser and software development tools.

The programs that have been developed on this project for running on
Raspberry are Java applications. Java is a general-purpose, concurrent, class-
based, object-oriented computer programming language. It is intended to let
application developers ”write once, run anywhere” (WORA), meaning that
code that runs on one platform does not need to be recompiled to run on
another. Java applications are typically compiled to bytecode (class file)
that can run on any Java virtual machine (JVM) regardless of computer
architecture. Java is one of the most popular programming languages in use,
particularly for client-server web applications.

3.3 Arduino

The Arduino is a microcontroller board programmed with a language similar
to C++. It has connectors exposed in a standard way, allowing the main
board be connected to a variety of add-on modules known as ”Shields”. It’s
a low cost computing node that can be use to control electronic systems like
servos, motors, leds, temperature sensors, etc.

There are different models of Arduino, I have used the Arduino Uno
(figure 3.3) connected to the official Arduino Motor Shield (figure 3.4) to
control the UAV motors. The cost of both boards was approximately 60e .

The more important features are:

• Microcontroller: ATmega328

• Operating Voltage: 5V

• Input Voltage (recommended): 7-12V

• Input Voltage (limits): 6-20V

• Digital I/O Pins: 14 (of which 6 provide PWM output)

• Analog Input Pins: 6

• DC Current per I/O Pin: 40 mA

• Flash Memory: 32 KB of which 0.5 KB used by bootloader

30

Figure 3.3: Arduino Uno

• SRAM: 2 KB (ATmega328)

• EEPROM: 1 KB (ATmega328)

• Clock Speed: 16 MHz

The more important features are:

• Operating Voltage: 5V to 12V

• Motor controller: L298P, Drives 2 DC motors or 1 stepper motor

• Max current: 2A per channel or 4A max (with external power supply)

• Free running stop and brake function

The Arduino integrated development environment (IDE) is a cross-platform
application written in Java. Arduino programs are written in C or C++. The
Arduino IDE comes with a software library which makes many common in-
put/output operations much easier. Users only need to define two functions
to make a runnable cyclic executive program:

31

Figure 3.4: Arduino Motor Shield

• setup(): It runs once at the start of the program to initialize settings

• loop(): It’s called repeatedly until the board powers off

The most of Arduino boards have a LED and a load resistor connected
between pin 13 and ground, a convenient feature for many simple tests.

3.4 Web Interface Technologies

3.4.1 Apache

The Apache HTTP Server, commonly referred to as Apache, is a web server
software program notable for playing a key role in the initial growth of the
World Wide Web. In 2009, it became the first web server software to surpass
the 100 million website milestone. Apache was the first viable alternative
to the Netscape Communications Corporation web server (currently named
Oracle iPlanet Web Server). Typically Apache is run on a Unix-like operating

32

system, and was developed for use on Linux. In this project Apache has been
used to host the user interface.

Apache is developed and maintained by an open community of developers
under the auspices of the Apache Software Foundation. The application is
available for a wide variety of operating systems, including Unix, FreeBSD,
Linux, Solaris, Novell NetWare, OS X, Microsoft Windows, OS/2, TPF, and
eComStation. Released under the Apache License, Apache is open-source
software. Since April 1996 Apache has been the most popular HTTP server
software in use.

3.4.2 MySQL

MySQL is the world’s most widely used open source relational database man-
agement system (RDBMS) that runs as a server providing multi-user access
to a number of databases. The SQL phrase stands for Structured Query
Language.

The MySQL development project has made its source code available un-
der the terms of the GNU General Public License, as well as under a variety
of proprietary agreements. It’s a popular choice of database for use in web
applications, and is a central component of the widely used LAMP open
source web application software stack. LAMP is an acronym for ”Linux,
Apache, MySQL, Perl/PHP/Python. Free-software-open source projects
that require a full-featured database management system often use MySQL.
In this project MySQL has been used to store navigation data.

Applications which use MySQL databases include: TYPO3, Joomla,
WordPress, phpBB, MyBB, Drupal and other software. MySQL is also
used in many high-profile, large-scale websites, including Wikipedia, Google
(though not for searches), Facebook, Twitter, Flickr and YouTube.

3.4.3 PHP

PHP is a server-side scripting language designed for web development but
also used as a general-purpose programming language. PHP is now installed
on more than 244 million websites and 2.1 million web servers. In this project
PHP has been used to develop the user interface.

PHP code is interpreted by a web server with a PHP processor module
which generates the resulting web page: PHP commands can be embedded
directly into an HTML source document rather than calling an external file

33

to process data. PHP is free software released under the PHP License, which
is incompatible with the GNU General Public License (GPL). PHP can be
deployed on most web servers and also as a standalone shell on almost every
operating system and platform, free of charge.

3.4.4 Motion

Motion, a software motion detector, is a free, open source CCTV software
application developed for Linux. It can monitor video signal from one or
more cameras and is able to detect if a significant part of the picture has
changed saving away video when it detects that motion is occurring. In this
project Motion has been used to capture pictures from the onboard camera,
which is a standard usb webcam.

The program is written in C and is made for the Linux operating system
(exploiting video4linux interface). Motion is a command line based tool
whose output can be either jpeg, netpbm files or mpeg video sequences. It is
strictly command line driven and can run as a daemon with a small footprint
and low CPU usage.

It is operated mainly via config files, though the end video streams can
be viewed from a web browser. It can also call to user configurable ”triggers”
when certain events occur.

3.5 Flying platform

3.5.1 DC Motors

Two brushed DC motors (figure 3.5) are used to spin the propellers of the
test board.

• Free-run speed at 6V: 11500 rpm

• Free-run current at 6V: 70 mA

• Stall current at 6V: 800 mA

One brushless DC motor (figure 3.6) is used to spin the propeller of the
Phantom Flying Wing. No especifications were provided by the vendor.

34

Figure 3.5: Brushed DC Motor

Figure 3.6: 900kv Brushless Outrunner Motor

3.5.2 Servos

Two servos (figure 3.7) are used to move flight control surfaces of the Phan-
tom Flying Wing.

35

Figure 3.7: Standard Hitec Servo

• Operating Voltage: 4.8-6.0 Volts

• Operating Temperature Range: -20 to +60 Degree C

• Current Drain (4.8V): 5.4mA/idle and 150mA no load operating

• Current Drain (6.0V): 5.5mA/idle and 180mA no load operating

• Dimensions: 0.89” x 0.45”x 0.94” (22.8 x 11.6 x 24mm)

• Weight: 0.28oz (8g)

3.5.3 Propellers

The propellers (figure 3.8) move the air to provide propulsive force.
Two propellers like the first one (left) are used in the test board. They

have the following specifications:

• Diameter: 4 inches

36

Figure 3.8: Propellers

• Blade pitch: No specified by the vendor

The second propeller (right) is the Phantom Flying Wing propeller and
has the following specifications:

• Diameter: 9 inches

• Blade pitch: 6 inches

3.5.4 Phantom FPV Flying Wing

The Phantom is an aeromodeling airplane, it has been used as the flying
platform, carrying onboard the rest of the components with the following
features:

• Wingspan: 1550mm

• Length: 683mm

37

Figure 3.9: Phantom

• Flying Weight: 900g

• Made from EPO foam

• Works with 2 x 9 gram servos

• Works with 900kv Brushless Outrunner Motor

38

Chapter 4

UAV System Description

In this chapter the design and operation of the UAV prototype will be ex-
plained. The 4.1 ”UAV Design” section provides an overview of the system.
The 4.2 ”Navigation” section describes how the UAV prototype manages to
fly in autonomous and manual mode. The 4.3 ”Web Interface” section de-
scribes how the human operator connects to the UAV prototype (displayed
in figure 4.1) to monitor the system status and to control the flight. Finally
the 4.4 ”Sensors-Actuators Infrastructure” section describes the dataflow be-
tween the main components of the system.

The UAV software is open source and can be downloaded from the project
MediaWiki[16] and svn repository[17].

4.1 UAV Design

The UAV prototype features the following hardware components:

• Mobile: It’s a Samsung Galaxy Mini, which communicates with the
Raspberry Pi using its integrated Wi-Fi capabilities. This smartphone
also has the following integrated devices:

– IMU: The mobile has integrated magnetic sensors which are used
in this prototype as an Inertial Measurement Unit1 which allow

1An inertial measurement unit (IMU) is an electronic device that measures and re-
ports on a craft’s velocity, orientation, and gravitational forces, using a combination of
accelerometers and gyroscopes, sometimes also magnetometers

39

Figure 4.1: Hardware design

to know the device orientation, acceleration and inclination (roll,
pitch and yaw axes).

– GPS: The mobile also has an integrated GPS sensor which is used
to know the UAV current location using only the GPS satellite
data. No A-GPS2 or network provided location is used in this

2A-GPS (Assisted GPS) is a system that allows GPS receivers to obtain information
from network resources to assist in satellite location. It is very useful in places with a poor
reception of satellite radio signals.

40

prototype.

• Raspberry Pi: It’s connected via USB with the following devices:

– Wi-Fi USB adapter: it allows Wi-Fi connectivity with the mobile
phone and the Operator Station.

– Webcam: it’s a standard webcam, which is used to generate a
stream of pictures.

– Arduino: it operates 2 DC motors according to the orders received
from the Raspberry Pi through the USB connection.

• Arduino: It’s connected via USB with the Raspberry Pi device. This
USB connection encapsulates a virtual serial port, through which both
devices communicate with each other. The Arduino Motor Shield is
connected to two DC motors with propellers attached, which emulate
the basic operations (forwards,backwards,yaw left and yaw right) of an
airship. The Arduino Motor Shield was also connected to two servos
to study how to manage the control surfaces of an airplane, but were
not used in the final design.

• Operator Station: It’s any device with web browser and Wi-Fi capabil-
ities. There are no more requirements, as all the software runs inside
the UAV prototype.

On this hardware works the UAV software which is subdivided in Nav-
igation functionality, Web Interface functionality and Sensors-Actuators In-
frastructure.

Navigation functionality

This functionality (as shown in figure 4.2) gets the UAV current position from
the mobile device sensors, calculates how to go from the current location to
the next waypoint of the flying route, and translates these calculations into
motor movements. This is done by an Android application running on the
mobile device, a Java application running on the Raspberry Pi and a C
application running on the Arduino.

These applications perform the following tasks:

41

Figure 4.2: Navigation functionality

• Receive the flying route from the human operator which is composed
of 4 waypoints

• Use the information provided by the mobile IMU (magnetic sensor) to
get the current heading of the UAV

• Use the information provided by the mobile GPS sensor to get the
current location and altitude of the UAV

• Calculate how to go from the current location to the next waypoint and
send the motor commands to Arduino using a small protocol designed
for this purpose.

42

Figure 4.3: Web Interface functionality

Web Interface functionality

This functionality (as shown in figure 4.3) provides a web site which displays
the UAV status, video streaming and control menus. The human operator
can use this interface to monitor and control the UAV remotely using any
device with web browser and Wi-Fi capabilites.

This software runs on the Raspberry Pi and is composed of an Apache
web server hosting a PHP website, a MySQL server hosting a database and
a Motion application hosting a video streaming obtained from the webcam
connected to the Raspberry Pi. They work together to perform the following
services:

• UAV Monitoring: The human operator can use one of the PHP web
pages to monitor the UAV status. The status information is obtained
from the database hosted by the MySQL server

• UAV Control: The human operator can use one of the PHP web pages
to configure the UAV to fly in autonomous or manual mode. When the
UAV is in autonomous mode, if follows the flying route waypoints. The

43

manual mode is a teleoperation from the web server. These commands
are collected by the PHP code and stored in the database hosted by
the MySQL server

• Flying route: The human operator can use one of the PHP web pages
to set a flying route using up to 4 waypoints. These waypoints are
collected by the PHP code and stored in the database hosted by the
MySQL server. The UAV will follow this route when in autonomous
mode

• Video Streaming: The human operator can use one of the PHP web
pages to watch the video streaming of the webcam connected to the
Raspberry Pi. This video streaming is provided by the Motion ap-
plication and displayed in a web page hosted by its own web server.
This web page is embedded in the PHP web page used by the human
operator

Sensors-Actuators Infrastructure

The Sensors-Actuators Infrastructure (as shown in figure 4.4) describes the
data flow between the main elements of the UAV prototype. This data flow
can follow three different paths:

• Sensors-to-Navigation: the sensors values of the mobile phone are pro-
cessed by the Navigation software and stored in the MySQL database.

• Navigation-to-Motors: the Navigation software processes the flying in-
structions stored in the MySQL database and sends the corresponding
electric currents to the UAV motors.

• Web Interface-to-Motors: the Web Interface saves the flying instruc-
tions selected by the human operator in the MySQL database. These
instructions are processed by the Navigation software which in turn
sends the corresponding electric currents to the UAV motors.

44

Figure 4.4: Sensors-Actuators Infrastructure

4.2 Navigation

This functionality uses the information obtained from the mobile phone GPS
and IMU sensors to calculate where to go and what commands must be sent

45

to the motors to achieve it (as shown in figure 4.2).
This is performed by three applications running concurrently, first an

Android application running on the mobile device, second a Java application
running on the Raspberry Pi and a third application running on the Arduino
microprocessor (as shown in figure 4.5). These applications are explained
below.

Figure 4.5: Navigation functionality applications

4.2.1 Android application

The Android application gets local information from the mobile phone IMU
(magnetic sensor) and GPS sensors. The mobile phone is configured to con-
nect automatically to the Raspberry Pi Wi-Fi network. The Android ap-
plication communicates with the Java application running on the Raspberry
Pi through TCP/IP protocol to read and write information about the UAV
status and about the flying route from the database stored in the Raspberry
Pi (as shown in figure 4.6).

It’s composed of the following Android classes:

1. UAVActivity: It’s the Android main class, it instantiates objects from
the other classes of this list and implements the listeners which get
information from mobile magnetic and GPS sensors. After the other
objects are instantiated, UAVActivity waits until a sensor event triggers

46

the code implemented in the listeners. The GPS sensor waits until the
location provided by the sensor is at least at 1 meter of distance from
the last event and until it has passed at least one second from the
last event. The magnetic sensor waits until it has passed at least 60
milliseconds from the last event.

2. FlightOperations: It stores in its variables part of the current UAV
flight status:

• Latitude: current latitude of the UAV in decimal degrees.

• Longitude: current longitude of the UAV in decimal degrees.

• Altitude: current altitude of the UAV in meters. It’s an estimation
based on GPS data. It’s less accurate than a real altimeter.

• Heading: current heading of the UAV in degrees. This information
is provided from mobile magnetic sensors, based on the Earth
magnetic field.

• Current waypoint: it stores the latitude and longitude of the cur-
rent destination of the UAV. When this waypoint is reached, this
information is updated with the next waypoint.

If the UAV is configured in autonomous mode, the object instantiated
by this class calculates the desired heading using the above information.
Comparing current heading with desired heading, the final order (turn
left or turn right) is sent to UAVActivity methods which send the final
order to the motors. This is done by the following methods:

pub l i c synchron ized void setHeading (double de s t ina t i onLat i tude ,
double de s t ina t i onLong i tude)

{
double auxLatitude ;
double auxLongitude ;
t a rg e tLa t i tude=d e s t i n a t i o n L a t i t u d e ;
targetLong i tude=des t ina t i onLong i tude ;
auxLatitude=des t ina t i onLat i tude−sh ipLat i tude ;
auxLongitude=dest inat ionLong i tude−sh ipLongitude ;
// I f po int i s at north o f sh ip
i f (auxLatitude >0)
{

47

headingNorth (auxLongitude) ;
}
// I f po int i s at south
e l s e i f (auxLatitude <0)
{

headingSouth (auxLongitude) ;
}
// I f po int i s in the same l a t i t u d e
e l s e i f (auxLatitude==0)
{

sameLatitude (auxLongitude) ;
}
se tEng ines () ;

}

3. SerialTCPClient: The object instantiated by this class connects via
TCP/IP with the Java application running on the Raspberry Pi called
”AndroidArduinoBridge”. The purpose of this connection is to ulti-
mately send motor orders to Arduino through the Raspberry Pi. A
small protocol has been designed for this purpose: An integer is send
to AndroidArduinoBridge, which may have the following values:

• ’1’: both motors are activated at full speed.

• ’2’: both motors are stopped.

• ’3’: left motor stopped, right motor full speed.

• ’4’: left motor full speed, right motor stopped.

4. MySQL TCPClient: The object instantiated by this class connects via
TCP/IP with the Java application running on the Raspberry Pi called
”AndroidArduinoBridge”. The communication is bidirectional. The
purpose of this connection is to send commands to AndroidArduino-
Bridge which has access to the MySQL server that is running on the
Raspberry Pi. This server stores a database with the flying data, stored
on a single table. There is only one row stored in the table, which con-
tains the following columns:

• CurrentLatitude: Current latitude of the UAV in decimal degrees.

48

• CurrentLongitude: Current longitude of the of the UAV in decimal
degrees.

• Heading Target: The desired bearing to reach the next waypoint
in degrees.

• TargetLatitude: The latitude of the current waypoint in decimal
degrees.

• TargetLongitude: The longitude of the current waypoint in deci-
mal degrees.

• Altitude: Current altitude of the UAV in meters.

• Autopilot: Autopilot status (ON/OFF).

• FlightOrder: The numeric value of the current order (i.e: ’1’: both
motors full speed).

• Waypoint1Latitude: Waypoint 1 latitude in decimal degrees.

• Waypoint1Longitude: Waypoint 1 longitude in decimal degrees.

• Waypoint2Latitude: Waypoint 2 latitude in decimal degrees.

• Waypoint2Longitude: Waypoint 2 longitude in decimal degrees.

• Waypoint3Latitude: Waypoint 3 latitude in decimal degrees.

• Waypoint3Longitude: Waypoint 3 longitude in decimal degrees.

• Waypoint4Latitude: Waypoint 4 longitude in decimal degrees.

• Waypoint4Longitude: Waypoint 4 longitude in decimal degrees.

A numeric protocol has been created for this purpose. This protocol is
a sequence of 2 double numbers for each command. The first number
is the command code, and the second number is the data required for
this command, or 0 if no additional information is required. Command
codes are always a number less or equal to -500. Command data are
always a number greater than -180. Although TCP protocol guaran-
tees that packets are processed on the destination point in the correct
order, this numeric protocol has been designed to prevent that a com-
mand data could be confused with a command code in the case of a
software bug or network problem. The sequence of numbers can have
the following values:

49

• -500,0: Ask if the current destination has changed due to a user
modification of the flight plan.

• -1500,’coordinate’: Records in database the current UAV latitude.

• -1501,’coordinate’: Records in database the current UAV longi-
tude.

• -1502,’heading’: Records in database the current UAV heading.

• -1503,’heading’: Records in database the desired UAV heading to
reach the next waypoint.

• -1504,’coordinate’: Records in database the UAV target latitude
(the latitude of the next waypoint).

• -1505,’coordinate’: Records in database the UAV target longitude
(the latitude of the next waypoint).

• -1506,’altitude’: Records in database the current UAV altitude.

• -1507,’autopilot status’: Records in database the current UAV
autopilot status (this command is used when autopilot status
changes i.e. ”autopilot ON”).

• -1508,’flight order’: Records in database the current UAV flight
order (this command is used when flight order changes i.e. ”turn
left”).

• -511,0: Gets waypoint 1 latitude.

• -512,0: Gets waypoint 1 longitude.

• -521,0: Gets waypoint 2 latitude.

• -522,0: Gets waypoint 2 longitude.

• -531,0: Gets waypoint 3 latitude.

• -532,0: Gets waypoint 3 longitude.

• -541,0: Gets waypoint 4 latitude.

• -542,0: Gets waypoint 4 longitude.

• -543,0: Gets autopilot status (ON/OFF).

• -544,0: Gets flight order (this command is used to know the cur-
rent flight order i.e. ”turn left”).

50

Figure 4.6: Navigation functionality software

51

5. DatabaseUpdater: The object instantiated by this class is a thread
that reads and updates the database running on the Raspberry Pi one
time per second. This is done to check if the user has changed the flight
route, the autopilot mode, and if this is in manual mode, the flight order
(i.e. ”turn left”). It’s done also to update the information about the
UAV status like current coordinates, altitude, autopilot status, heading,
target latitude, target longitude and flight order in the database, so the
user can get the current UAV status in real time.

When UAVActivity instantiates the object of this class, the construc-
tor of this class sends the sequence ”-1507,1” to AndroidArduinoBridge.
This enables the UAV autopilot which is very important if the mobile
reboots itself when the UAV is in manual mode. This makes the UAV
to fly to the next waypoint, preventing the UAV to fly in an uncon-
trolled manner and giving time to the user to activate manual control
again if it’s required. The constructor sends the sequence ”-1508,0” to
AndroidArduinoBridge too to stop motors when device boots to pre-
vent the UAV continues with the last flight order in the case of an
accidental system restart and to prevent any injury to the user if near
the UAV propellers.

6. StartupReceiver: The object instantiated by this class is created when
the mobile device boots, or after an accidental mobile restart. Its only
purpose is to launch UAVActivity which creates the other objects as
explained above. Without this class, if the mobile device reboots itself
the UAV would lose any automatic or manual control capabilities and
the motors would execute the last flight order (i.e. ”turn left”) until
the arduino batteries are spent. If the mobile reboots, the system
configures itself in automatic mode, calculates how to fly to the next
waypoint and sends the corresponding commands to the motors.

There are 2 threads in the Android application: UAVActivity (the main
application thread) and DatabaseUpdater. They share code of MySQL TCPClient.
This code is protected by ”synchronized” Java keyword to grant mutual ex-
clusion. This shared code has neither race conditions nor deadlocks.

This Android application has 865 lines of code and is mainly an event-
driven system: It does nothing until a sensor event triggers the code im-
plemented in the listeners of the UAVActivity class with the exception of

52

the DatabaseUpdater thread, which runs one time per second to update the
behavior of the UAV with the information stored in the MySQL database.

4.2.2 Java application

The Java application runs on the Raspberry Pi and as shown in figure 4.6
serves as a bridge first between the Android application and the Arduino
device and second between the Android application and the MySQL server
that runs on the Raspberry Pi.

When the Android application wants to send a motor command to the
Arduino device, it must first send the motor command to the Java appli-
cation, which in turn transfers the motor command to the Arduino device.
When the Android application wants to update the flight information in the
MySQL database it must do it throught the Java application too.

It is composed of the following classes:

• AndroidArduinoBridge: the object instantiated by this class creates
2 threads from the Serial TCPServer and MySQL TCPServer classes
which listen for incoming connections. It instantiates an object from
the SerialComm class which allow this and other objects to send com-
mands through serial port. This is used for AndroidArduinoBridge
to make a motor test at system startup, and for TCPServerThread
threads to send commands through serial port.

p r i v a t e s t a t i c SerialComm mySerialComm ;

pub l i c s t a t i c void main (S t r ing [] a rgs)
throws Inter ruptedExcept ion
{

mySerialComm = new SerialComm () ;
System . out . p r i n t l n (” Android−Arduino Bridge s t a r t e d ”) ;
servoTest () ;
t ry
{

Thread mySerialTCPServer = new SerialTCPServer () ;
mySerialTCPServer . s t a r t () ;
Thread mySQL TCPServer = new MySQL TCPServer () ;
mySQL TCPServer . s t a r t () ;

53

}
catch (IOException e)
{

System . out . p r i n t l n (” Error : Can ’ t c r e a t e TCP
s e r v e r s ”) ;

e . pr intStackTrace () ;
}

}

• MySQL TCPServer: the object instantiated by this class listens for
incoming connections from the Android application. When it receives
a new connection it creates a thread from MySQL TCPServerThread
class.

• MySQL TCPServerThread: the thread created from this class receives
commands from the Android application. It uses the same protocol of
the MySQL TCPClient class of the Android application.

whi l e (t rue)
{

command=myDataInputStream . readDouble () ;
System . out . p r i n t l n (” [DB Server] C l i en t says : ”

+ command) ;
// Command codes begin with −500
i f (command>−500)
{

System . out . p r i n t l n (” [DB Server] ” + command
+ ” i s not a v a l i d command ”) ;

}
e l s e
{

System . out . p r i n t l n (” [DB Server] ” + command
+ ” accepted ”) ;

data=myDataInputStream . readDouble () ;
// Command data i s always >= −180
i f (data<−180)
{

System . out . p r i n t l n (” [DB Server] ” + data +

54

” i s not a v a l i d data to command ” + command) ;
}
e l s e
{

System . out . p r i n t l n (” [DB Server]
Executing ” + command + ” with ” + data) ;

executeOrder (command , data) ;
}

}
}

• SerialTCPServer: the object instantiated by this class listens for incom-
ing connections from the Android application. When a new connection
is received it creates a thread from TCPServerThread class.

• TCPServerThread: the thread created from this class receives the mo-
tor commands from the Android application according to the same
protocol used by the SerialTCPClient class of the Android application.
When the motor commands are received they are sent to the Arduino
application using the object instantiated from the AndroidArduino-
Bridge class which in turn uses an instance of SerialComm.

pub l i c c l a s s TCPServerThread extends Thread
{

p r i v a t e DataInputStream myDataInputStream ;

pub l i c TCPServerThread (DataInputStream serverDataInputStream)
{

myDataInputStream=serverDataInputStream ;
}

pub l i c void run ()
{

i n t code ;
t ry
{

whi le (t rue)
{

55

code=myDataInputStream . readInt () ;
System . out . p r i n t l n (” [Server] C l i en t says : ”

+ code) ;
AndroidArduinoBridge . setEngine (code) ;

}
}
catch (IOException e)
{

// TODO Auto−generated catch block
e . pr intStackTrace () ;

}
}

}

• SerialComm: the object instantiated by this class creates a serial port
connection with the Arduino application. This connection is used to
send the motor commands to the Arduino device.

pub l i c synchron ized void s e r i a l E v e n t (Ser ia lPor tEvent oEvent)
{

i f (oEvent . getEventType () ==
Ser ia lPortEvent .DATA AVAILABLE)

{
t ry
{

i n t a v a i l a b l e = input . a v a i l a b l e () ;
byte chunk [] = new byte [a v a i l a b l e] ;
input . read (chunk , 0 , a v a i l a b l e) ;

// Displayed r e s u l t s are codepage dependent
System . out . p r i n t (new St r ing (chunk)) ;

}
catch (Exception e)
{

System . e r r . p r i n t l n (e . t oS t r i ng ()) ;
}

}

56

}

pub l i c synchron ized void w r i t e S e r i a l (i n t myByte)
{

t ry
{

System . out . p r i n t l n (” [Server] Sending code ”+
myByte+” to s e r i a l port ”) ;

output . wr i t e (myByte) ;
}
catch (IOException e)
{

// TODO Auto−generated catch block
e . pr intStackTrace () ;

}
}

There are several threads running in this layer, whose code is designed to
avoid any race condition or deadlock. This threads are:

• AndroidArduinoBridge: it’s the main application thread, which is an
instance of the AndroidArduinoBridge class. It has a method to send
commands through serial port which is used by the thread created as
an instance of the TCPServerThread class.

• MySQL TCPServer: it’s created by the main application thread as
an instance of the MySQL TCPServer class. It waits for incoming
connections, and when this happens, it creates a new thread as an
instance of the MySQL TCPServerThread class.

• MySQL TCPServerThread: this thread is created as an instance of the
MySQL TCPServerThread class. It sends and receives information to
and from the Android application through the TCP/IP protocol. If the
connection with the Android application is lost, a new thread of the
same type is created from MySQL TCPServer when it receives a new
connection from the Android application.

• SerialTCPServer: it’s a thread created by the main application thread
as an instance of the SerialTCPServer class. It waits for incoming con-

57

nections, and when this happens it creates a new thread as an instance
of the TCPServerThread class.

• TCPServerThread: it’s created by SerialTCPServer as an instance of
the TCPServerThread class. This thread sends commands to the Ar-
duino application through the serial port and receives information from
the Android application through the TCP/IP protocol. If the connec-
tion with the Android application is lost, a new thread of the same type
is created from SerialTCPServer when it receives a new connection from
the Android application.

This Java application has 641 lines of code and is an event-driven system.
It waits until the Android application sends it a command and then performs
the tasks associated to that command.

4.2.3 Arduino application

This small application receives the motor orders from the Java application
through the serial port connection and sends the corresponding electric cur-
rents to the motors through the Arduino Motor Shield outputs (as shown
in figure 4.7). It uses the same protocol as the SerialTCPClient class of the
Android application. It has 72 lines of code.

Figure 4.7: Functional diagram of the Arduino application

i f (incomingByte==1)
{

S e r i a l . p r i n t l n (” [Arduino] P r o p e l l e r s t a tu s : Fu l l ”) ;

58

//Motor A forward @ f u l l speed

// E s t a b l i s h e s backward d i r e c t i o n o f Channel A
d i g i t a l W r i t e (12 , LOW) ;
// Disengage the Brake f o r Channel A
d i g i t a l W r i t e (9 , LOW) ;
// Spins the motor on Channel A at f u l l speed
analogWrite (3 , 1023) ;

//Motor B forward @ f u l l speed

// E s t a b l i s h e s backward d i r e c t i o n o f Channel B
d i g i t a l W r i t e (13 , LOW) ;
// Disengage the Brake f o r Channel B
d i g i t a l W r i t e (8 , LOW) ;
// Spins the motor on Channel B at f u l l speed
analogWrite (11 , 1023) ;

}

4.3 Web Interface

This software is composed of four applications running on the Raspberry Pi.
These applications are:

1. UAV Manager: this is a PHP web site which is used by the human
operator to monitor and control the UAV prototype.

2. Apache Web Server: this server runs on the Raspberry Pi and hosts
the UAV Manager web pages.

3. MySQL server: this server stores a database with all the UAV infor-
mation like internal status and the flight route selected by the human
operator. This database allows information sharing between the An-
droid application and the UAV Manager.

4. Motion: this application runs on the Raspberry Pi and is used to cap-
ture pictures from the webcam connected to the Raspberry Pi.

59

4.3.1 UAV Manager web application

This is a PHP web site which allows the human operator to monitor and
control the UAV prototype using any device with web browser and Wi-Fi.
This website is hosted on the Apache Web Server that runs on the Raspberry
Pi. The user needs first to connect to the Raspberry Pi Wi-Fi network,
which is done using the user device standard procedure to join to any Wi-Fi
network. No special steps or additional software is required. When this is
done, the user only has to open a web browser and write the IP address of
the Rasperry Pi (i.e. http://192.168.1.33/UAV). This web site uses CSS3 via
HTML4 ”style” property. This web site has 469 lines of code. The web pages
are:

• Main page: This web page only shows an intro picture and the list of
hyperlinks to the other pages.

• Route: This web page has a small form which is used to program
up to 4 waypoints in the UAV. The waypoints are GPS coordinates
expressed in decimal degrees. This coordinates are referenced to the
WGS84 datum5, the same used in GPS devices and Google Maps. It’s
assumed that there are no obstacles. The UAV calculates how to go in
a straight line from the current position to the next waypoint and so on.
This web page launches PHP code on the server side which accesses to
the MySQL server that runs on the Raspberry Pi. This code stores the
waypoints in the MySQL database, where they can be read by the Java
application that runs on the Raspberry Pi. The Java application in turn
transfers this information to the Android application when requested.

$con = mysql connect (” l o c a l h o s t ” ,” Drone ” ,” FoxtrotRomeo ”) ;

i f (! $con)
{

d i e (” I can ’ t connect to database : ” . mysq l e r ro r ()) ;

3Cascading Style Sheets (CSS) is a style sheet language used for describing the look
and formatting of a document written in a markup language. Almost all web pages use
CSS style sheets to describe their presentation.

4HTML or HyperText Markup Language is the standard markup language used to
create web pages.

5A geodetic datum is a reference system that describes the surface of the Earth

60

}

mysq l s e l e c t db (”UAV” , $con) ;

$ s ta tu s=true ;

i f ($ s ta tu s)
{

$ s ta tu s=mysql query (”UPDATE Status
SET Waypoint1Latitude = ’”. $Waypoint1Latitude . ” ’ ”) ;

}

i f ($ s ta tu s)
{

$ s ta tu s=mysql query (”UPDATE Status
SET Waypoint1Longitude = ’”. $Waypoint1Longitude . ” ’ ”) ;

}

• Status: This web page shows the relevant information of the UAV
including autopilot mode, current position, orientation, waypoints, etc.
To do this, it launches PHP code on the server side which accesses to
MySQL server that runs on the Raspberry Pi. This information is read
from the MySQL database one time per second.

$con = mysql connect (” l o c a l h o s t ” ,” Drone ” ,” FoxtrotRomeo ”) ;
i f (! $con)
{

d i e (” I can ’ t connect to database : ” . mysq l e r ro r ()) ;
}
mysq l s e l e c t db (”UAV” , $con) ;
$ s q l=”SELECT ∗ FROM Status ” ;
$ r e s u l t = mysql query ($ s q l) ;
mysq l c l o s e ($con) ;

$row = mysq l f e t ch a r r ay ($ r e s u l t) ;

i f ($row [” Autop i lot ”]==0)

61

{
echo ’<h1>Autopi lo t : OFF</h1> ’ ;

}
e l s e i f ($row [” Autop i lot ”]==1)
{

echo ’<p>Autopi lo t : ON</p> ’ ;
}

echo ’<p>Lat i tude : ’ . $row [” CurrentLat i tude ”] . ’ </p> ’ ;
echo ’<p>Longitude : ’ . $row [” CurrentLongitude ”] . ’ </p> ’ ;
echo ’<p>Alt i tude : ’ . $row [” Al t i tude ”] . ’ meters</p> ’ ;
echo ’<p>Heading : ’ . $row [” Heading ”] . ’& deg ;</p> ’ ;
echo ’<p>Target Heading : ’ . $row [” Target ”] . ’& deg ;</p> ’ ;
echo ’<p>Target Lat i tude : ’ . $row [” TargetLat i tude ”] . ’ </p> ’ ;
echo ’<p>Target Longitude : ’ . $row [” TargetLongitude ”] . ’ </p> ’ ;
echo ’<p>Waypoint1 [Lat i tude : ’ . $row [” Waypoint1Latitude ”] .

’ − Longitude : ’ . $row [” Waypoint1Longitude ”] . ’]</p> ’ ;
echo ’<p>Waypoint2 [Lat i tude : ’ . $row [” Waypoint2Latitude ”] .

’ − Longitude : ’ . $row [” Waypoint2Longitude ”] . ’]</p> ’ ;
echo ’<p>Waypoint3 [Lat i tude : ’ . $row [” Waypoint3Latitude ”] .

’ − Longitude : ’ . $row [” Waypoint3Longitude ”] . ’]</p> ’ ;
echo ’<p>Waypoint4 [Lat i tude : ’ . $row [” Waypoint4Latitude ”] .

’ − Longitude : ’ . $row [” Waypoint4Longitude ”] . ’]</p> ’ ;

• Control: This web page displays a video streaming from the webcam
connected to the Raspberry Pi. This video streaming is provided by the
Motion application which has its own web server. This web server hosts
a web page with the video streaming and that web page is embedded
in this one. This web page also displays the current position, altitude,
heading, and a button to switch between automatic and manual modes.

In manual mode the UAV is controlled pressing buttons in the same web
page. These buttons launch PHP code on the server side which accesses
to MySQL server that runs on the Raspberry Pi. This PHP code stores
the flight order in the MySQL database where it can be read by the Java
application that runs on the Raspberry Pi. The Java application in turn
transfers this information to the Android application when requested.
In automatic mode the UAV calculates how to follow the planned route

62

flying in straight line to the next waypoint.

<!−−This i f rame d i s p l a y s the video streaming
o f the Motion web server−−>

<i f rame he ight =”300” width=”400” frameBorder=”0”
s r c=”http ://192 .168 .1 .33 :8081” >

</i frame>

<?php

mysq l s e l e c t db (”UAV” , $con) ;
$ s q l=”SELECT Autopi lot FROM Status ” ;
$ r e s u l t = mysql query ($ s q l) ;
mysq l c l o s e ($con) ;
$row = mysq l f e t ch a r r ay ($ r e s u l t) ;

i f ($row [” Autop i lot ”]==0)
{

echo ’< i f rame s r c=”manual . php” width=”100%” he ight =”330”
frameborder=”0” name=”conso l e”>

</i frame > ’ ;
}
e l s e i f ($row [” Autop i lot ”]==1)
{

echo ’< i f rame s r c=”auto . php” width=”100%” he ight =”330”
frameborder=”0” name=”conso l e”>

</i frame > ’ ;
}?>

4.3.2 Apache Web Server

This server (version 2.2.22) runs on the Raspberry Pi. It’s a default installa-
tion from Debian repositories including the PHP5 Apache module. It hosts
the UAV Manager web pages.

63

4.3.3 Motion

This application (version 3.2.12) runs on the Raspberry Pi and was installed
from Debian repositories. The configuration of this application is done edit-
ing a text file inside the file system of the Raspberry Pi. This configuration
is customized to capture a picture from the webcam connected to the Rasp-
berry Pi and to display it in the web page hosted by the Motion web server.
This web page is embedded in a PHP web page of the UAV Manager web
application.

The picture captured by the Motion application is updated each 4 sec-
onds. This is done because the computing capabilities of the Raspberry Pi
are limited and don’t allow a more fluent video streaming, at least with the
particular webcam model that has been used.

4.3.4 MySQL server

This server (version 5.5.28-1) runs on the Raspberry Pi and was installed
from Debian repositories. It hosts a single database whose size is only 16
KB. This database has a single table with a single row which is updated
periodically so the database never grows in size.

4.4 Sensors-Actuators Infrastructure

Here will the data flow between the main elements of the UAV prototype be
explained:

• Sensors-to-Navigation: This section explains the data flow between the
UAV sensors and the Navigation software (figure 4.8)

• Navigation-to-Motors: This section explains the data flow between the
Navigation software and the UAV motors (figure 4.9)

• Web Interface-to-Motors: This section explains the data flow between
the Web Interface and the UAV motors used in teleoperation mode
(figure 4.10)

64

Figure 4.8: Data flow between the UAV sensors and Navigation software

65

4.4.1 Sensors-to-Navigation

The UAVActivity class implements sensor listeners which get the informa-
tion provided by the mobile sensors (GPS and IMU) as shown in figure 4.8.
These listeners are configured to update GPS values each 1 second (only if
the new location is at least at 1 meter away from the last location) and to
update IMU values each 60 milliseconds seconds too. When the information
provided by the mobile sensors is received, UAVActivity sends it to the Flight-
Operations class which stores it to make flying calculations. The Database-
Updater class gets the sensors information from the FlightOperations class
one time per second and sends it to the MySQL TCPClient class which con-
nects to the MySQL TCPServer class via TCP/IP. Then MySQL TCPServer
creates a thread as an instance from the MySQL TCPServerThread class
which receives the sensors information from MySQL TCPClient. Finally
MySQL TCPServerThread connects with the MySQL server via TCP/IP
and stores the sensors information in the database.

4.4.2 Navigation-to-Motors

The Navigation software can decide to send a motor command (as shown
in figure 4.9) when a sensor event occurs or when the MySQL database is
updated by the human operator. The sensor events are triggered one time
per second for the GPS sensor and each 60 milliseconds for the magnetic
sensor, but only when the new sensor values cause a change in the flying
calculations a motor command is generated. Database updates are detected
with an unknown frequency because it depends of the human operator al-
though this frequency can’t be higher than one update per second. When due
to these causes the Navigation software decides to send a motor command,
the UAVActivity class sends it to the SerialTCPClient class, which connects
with the SerialTCPServer class via TCP/IP. Then SerialTCPServer creates a
thread from the TCPServerThread class which receives the motor command
from SerialTCPClient and sends it to a method from the Android-Arduino
Bridge class. Then Android-Arduino Bridge sends the motor command to
the SerialComm class which is connected with the Arduino application via
serial port. Finally SerialComm sends the motors command to the Arduino
application which sends the corresponding electric currents to the motors.

66

Figure 4.9: Data flow between the Navigation software and the UAV motors

67

Figure 4.10: Data flow between the Web Interface and the UAV motors

4.4.3 Web Interface-Motors

The Operation Station (as shown in figure 4.10) connects via Wi-Fi to the
Apache web server running on the Raspberry Pi and loads the PHP website
in a web browser. Then the human operator interacts with the PHP website

68

to request either configure the UAV in manual mode and send it a flight
order, or send a new flying route which will be used in the flying calculations
when the UAV is configured in autonomous mode. In both cases the PHP
code running on the server side receives this information and stores it in the
MySQL database.

The Navigation software reads the MySQL database one time per second
and calculates if a new motor command must be executed. If so, the Nav-
igation software sends the motor command to Arduino which in turn sends
the corresponding electric currents to the motors.

69

Chapter 5

Experiments

In this chapter the experiments performed with the UAV prototype will be
explained. The section 5.1 provides a description of the physical implementa-
tion of the UAV prototype, the section 5.2 explains how the UAV prototype
was monitored and controlled remotely and the section 5.3 explains how a
real flying platform was assembled and tested.

5.1 UAV test board assembly

The main structure was a plastic grid to which the following hardware com-
ponents were attached using cable-tie fasteners (as shown in figure 5.1):

• Mobile device (Samsung Galaxy Mini)

• Raspberry Pi

• Arduino Uno with Arduino Motor Shield attached

• A Wi-Fi adapter connected via usb with the Raspberry Pi

• 2 small motors with propellers attached connected with cables to the
Arduino Motor Shield

• A battery to provide power to all the components excepting the mobile
device which has its own battery

70

The webcam was not attached to the test board. When it came to test
the video streaming it was connected via usb with the Raspberry Pi. The
weight of all the hardware was between 1.5 and 2 kg. The test board was
implemented according to the architecture described in section 4.1.

Figure 5.1: Test board

5.2 UAV platform teleoperation

This experiment was divided into several stages:

71

System startup

The system startup procedure was performed succesfully. It was subdivided
into the following stages:

Figure 5.2: System startup

1. Turn on the battery: after turning on the battery, the Raspberry Pi
started and ran a test to check that the motors were working properly
(as shown in figure 5.2). In this test the motors started to first spun
the propellers individually, then spun both propellers simultaneously,
and finally stopped both propellers.

2. Turn on the mobile device: when the mobile device was turned on,
it connected automatically with the Wi-Fi access point of the Rasp-
berry Pi and the Android application started automatically. After the
Android application started, it connected via TCP/IP with the java

72

application running on the Raspberry Pi and turned on the motors
according to the last motor order stored in the MySQL database.

Figure 5.3: Opening the Web Interface

Remote connection

The remote connection procedure was performed succesfully. It was subdi-
vided into the following stages:

1. Connect to the Wi-Fi access point: using a desktop PC running the
Ubuntu operating system, the human operator connected to the Wi-
Fi access point created on the Raspberry Pi device using the usual
procedure to connect to any other Wi-Fi network (i.e.: check the list
of the available Wi-Fi networks and select the ”Drone” network).

2. Open the Web Interface: the human operator opened a web browser
and entered the URL of the Web Interface (as shown in figure 5.3)
which showed the default web page (as shown in figure 5.4).

System monitoring

Once the Web Interface was opened, the ”Status” tab (as shown in figure 5.5)
was selected. The internal status of the UAV prototype was checked using
the information displayed in this web page. This information was correct
and consisted of the following elements:

73

Figure 5.4: Web Interface default web page

• Autopilot status: it was the same that was previously selected by the
human operator. When the mobile device had just switched on or
restarted, the autopilot status was automatically configured as ON re-
gardless its previous state.

• Location: the location values (latitude, longitude and altitude) were
the same that the last values stored in the database. When the mobile
device GPS sensor obtained new location values the old values were
updated with the current ones.

• Heading: the heading value was compared with a real compass and they
displayed roughly the same values. When the test board was rotated
the heading value was updated too.

• Waypoints: the waypoints values were the same that the last values
stored in the database. When the human operator updated these values
using the ”Route” tab (as shown in figure 5.6) they were succesfully
displayed.

74

Figure 5.5: System monitoring

• Target values: the target latitude and longitude were the same as in the
first waypoint. The target heading was the course which should fly the
UAV prototype from the current coordinates to the target coordinates.

Teleoperation in manual mode

For this test, the ”Control” tab in the Web Interface was selected (as shown
in figure 5.7). The current location and heading were displayed succesfully,
showing the same values as in the ”Status” option. When the button to
enable/disable the autopilot was clicked the manual control buttons were
enabled and worked succesfully emulating real conditions as described below:

• ”Forward” button: when pressed it turned on both motors.

• ”Stop” button: when pressed it turned off both motors.

• ”Left” button: when pressed it turned off the left motor and turned on
the right motor.

75

Figure 5.6: Route tab

Figure 5.7: control section of manual mode

76

Figure 5.8: smartphone remotely connected to the UAV prototype

• ”Right” button: when pressed it turned on the left motor and turned
off the right motor.

There is a video on the project MediaWiki[18] showing a human operator
connecting to the UAV prototype through a mobile device and using the web
interface to control the motors (as shown in figure 5.8).

The ”Control” web page displayed a video feed (as shown in figure 5.9)
from the webcam with a very slow frame rate (1 frame every 4 seconds). The
Raspberry Pi was unable to get a higher frame rate from the webcam model
used for this experiment.

Autonomous mode configuration

For this test, the ”Control” tab in the Web Interface was selected (as shown
in figure 5.10) which displayed a video feed with the same features as the

77

Figure 5.9: Testing video streaming

Figure 5.10: control section of autonomous mode

manual mode. The current location and heading were displayed succesfully,
showing the same values as in the ”Status” option. When the button to
enable/disable the autopilot was clicked the motors were activated succesfully

78

emulating real conditions as described below:

• When the target heading was at the left side of the current heading a
”yaw left” action was required: the left motor was turned off and the
right motor was turned on.

• When the target heading was at the right side of the current heading
a ”yaw right” action was required: the left motor was turned on and
the right motor was turned off.

• When the target heading was the same as the current heading, a ”fly
forward” action was required: both motors were turned on.

5.3 Assembly of the ”Phantom” RC airplane

This experiment was made to study the assembly of another flying platform
for future developments because the components used to build the computing
architecture were too heavy to fly onboard of the first flying platform.

The ”Phantom” is selled disassembled by the vendor, so the different
components of the airplane had to be glued and in some cases secured with
fiberglass tape (as shown in figure 5.11). The servos had to be attached to
the control surfaces of the wings and the propeller was attached to the motor.

Finally a RC receiver was connected to the servos, the motor and the
battery. To check the airplane was properly assembled, the following test
(there is a video on the project MediaWiki[19]) was performed succesfully:

• Connect to the RC receiver using a RC transmitter: this process was
confirmed by the receiver with a beep sequence.

• The RC transmitter was operated to send the ”pitch up”, ”pitch down”,
”roll left” and ”roll right” commands to the RC receiver which in turn
sent electric currents to the servos to move the control surfaces in a
corresponding manner.

• The RC transmitter was operated to send a range of ”thrust” com-
mands from 0% to 100% to the RC receiver and the propeller spun in
a corresponding manner.

79

Figure 5.11: ”Phantom” RC airplane assembled

80

Chapter 6

Conclusions

The utility of this project has been to be a first contact with the Unmanned
Aerial Vehicles. Many new technologies and concepts have been learned from
scratch along this project, which will be very useful for future developments.
Section 6.1 reviews the objectives described in Chapter 2 and describes to
what extent they have been met. Finally section 6.2 explores some ideas for
future developments.

6.1 Conclusions

The global goal for this project was divided into several subgoals:

• Design of an UAV prototype including hardware and software archi-
tecture: the UAV prototype was succesfully designed and implemented
as explained in section 4.1. The hardware components were assembled
on a test board as explained in section 5.1 over which several tests
were run succesfully. Although not specified as a goal, the ”Phantom”
airplane was assembled and tested as explained in section 5.3.

Both the hardware architecture and the software architecture are far
from being the best, but the priority was to spend as little money as
possible and to finish before the deadline.

• Development of an API1 to read the sensors and to control the actuators

1An Application Programming Interface (API) is a set of functions and procedures that
allow the creation of applications which access the features or data of an operating system,
application, or other service.

81

on the UAV prototype: this API was succesfully implemented as the
Sensors-Actuators Infrastructure explained in section 4.4. It allows the
UAV prototype to receive the current location and orientation from the
mobile phone sensors and to control the motors assembled on the test
board.

• Development of a web interface to monitor and control the UAV pro-
totype remotely: The Web Interface software explained in section 4.3
allows to monitor and to teleoperate the UAV prototype succesfully.
The video streaming was not specified as a goal but was implemented
as a proof of concept: it worked fine but had a very slow frame rate
to teleoperate a real flight. The Navigation functionality explained in
section 4.2 allowed to calculate the flying route succesfully. When the
autonomous mode was enabled it activated the motors as expected.

Furthermore the UAV prototype was expected to have the following fea-
tures, which were achieved succesfully:

• The UAV prototype uses only free software tools. The full source code
of the project applications is free software under GPLv3 License[20]
and is available at project svn repository[17].

• Real time: The UAV prototype can be teleoperated through the Web
Interface with a delay of less than a second, which may be enough to
control a slow moving aircraft like an airship.

• Robustness: The UAV prototype never freeze or behave in an unsafe
way.

6.2 Future developments

To build the next version of the UAV prototype described in this project,
several improvements could be implemented as explained below:

• Use a lighter computing platform: the hardware used to implement the
computing platform was too heavy to fly onboard of a small aircraft,
therefore is critical to use lighter microprocessors like Intel Edison,
NVIDIA Jetson TK1, Arduino Nano, Raspberry Pi 2, etc.

82

• Use a commercial drone: instead of implementing a computing platform
onboard a flying platform, a commercial drone like the AR Drone 2.0
with the ”Flight Recorder GPS” accessory attached could be used. The
AR.Drone already provides an API to monitor and control the drone
remotely.

• Improve the web interface: the video streaming should be improved
using a higher quality webcam and a faster computing platform. Fur-
thermore the flying data transfer between the web interface and the
autopilot should be done over a channel faster than a database. The
flying data transfer could be implemented over TCP/IP using technolo-
gies like PHP, Ruby on Rails, Django or WebRTC.

• Add new functionalities: besides implementing autonomous and tele-
operated flight, many new features could be added such as implement
neural networks to recognize images in the webcam video streaming or
use an external Android device as a beacon: it could send its GPS coor-
dinates via Wi-Fi to the UAV, which in turn could use this information
for flying to or around the Android device.

83

Bibliography

[1] Electronic Frontier Fundation, Surveillance drones, https://www.eff.
org/issues/surveillance-drones, January 2015.

[2] The Telegraph, German railways deploys surveillance drones,
http://www.telegraph.co.uk/news/worldnews/europe/germany/

10082777/German-railways-deploys-surveillance-drones.html,
January 2015.

[3] BBC News, Pilotless police drone takes off, http://news.bbc.co.uk/
2/hi/6676809.stm, January 2015.

[4] The Globe and Mail, Drone start-ups woo stretched miners for
survey work, http://www.theglobeandmail.com/report-on-

business/industry-news/energy-and-resources/drone-start-

ups-woo-stretched-miners-for-survey-work/article9467067,
January 2015.

[5] Israel Defense, The Air Mule Takes off, http://www.israeldefense.
com/?CategoryID=472&ArticleID=543, January 2015.

[6] Los Angeles Times, Radar shows U.S. border security gaps,
http://articles.latimes.com/2013/apr/03/nation/la-na-

border-radar-20130404, January 2015.

[7] Airbus Defence & Space, Collaboration ERDF and Cassidian/Survey
Copter, http://www.defenceandsecurity-airbusds.com/en_US/

web/guest/collaboration-erdf-and-cassidian/survey-copter,
January 2015.

[8] BBC News, Amazon testing drones for deliveries, http://www.bbc.

com/news/technology-25180906, January 2015.

84

https://www.eff.org/issues/surveillance-drones
https://www.eff.org/issues/surveillance-drones
http://www.telegraph.co.uk/news/worldnews/europe/germany/10082777/German-railways-deploys-surveillance-drones.html
http://www.telegraph.co.uk/news/worldnews/europe/germany/10082777/German-railways-deploys-surveillance-drones.html
http://news.bbc.co.uk/2/hi/6676809.stm
http://news.bbc.co.uk/2/hi/6676809.stm
http://www.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/drone-start-ups-woo-stretched-miners-for-survey-work/article9467067
http://www.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/drone-start-ups-woo-stretched-miners-for-survey-work/article9467067
http://www.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/drone-start-ups-woo-stretched-miners-for-survey-work/article9467067
http://www.israeldefense.com/?CategoryID=472&ArticleID=543
http://www.israeldefense.com/?CategoryID=472&ArticleID=543
http://articles.latimes.com/2013/apr/03/nation/la-na-border-radar-20130404
http://articles.latimes.com/2013/apr/03/nation/la-na-border-radar-20130404
http://www.defenceandsecurity-airbusds.com/en_US/web/guest/collaboration-erdf-and-cassidian/survey-copter
http://www.defenceandsecurity-airbusds.com/en_US/web/guest/collaboration-erdf-and-cassidian/survey-copter
http://www.bbc.com/news/technology-25180906
http://www.bbc.com/news/technology-25180906

[9] Reuters, Brazil’s stadiums ready for World Cup soccer warm-
up in June, http://www.reuters.com/article/2013/05/20/us-

soccer-brazil-worldcup-stadiums-idUSBRE94J0TT20130520, Jan-
uary 2015.

[10] National Geographic, Cool Gadgets: A.R.Drone 2.0, http:

//voices.nationalgeographic.com/2013/10/07/cool-gadgets-a-

r-drone-2-0/, January 2015.

[11] MUAC-IREN, http://www.muac-iren-project.eu/, January 2015.

[12] El Confidencial Digital, El Ejército del Aire tendrá aviones no tripula-
dos. Defensa adjudica la compra de mini UAV Raven por 1,9 millones
de euros, http://www.elconfidencialdigital.com/politica/

Ejercito-Aire-Defensa-UAV-Raven_0_1292270761.html, January
2015.

[13] defensa.com, El Atlante realiza con éxito el primer vuelo en
Europa de un avión no tripulado desde un aeropuerto civil,
http://defensa.com/index.php?option=com_content&view=

article&id=10239:el-atlante-realiza-con-exito-el-primer-

vuelo-en-europa-de-un-avion-no-tripulado-desde-un-

aeropuerto-civil&catid=54:espana&Itemid=162, January 2015.

[14] Escuela Industriales UPM, Un grupo de investigación de altos
vuelos, http://www.escuelaindustrialesupm.com/escuela-

industriales-upm/un-grupo-de-investigacion-de-altos-

vuelos/#.VLQy29_08lU, January 2015.

[15] FUVE, Future Vehicles and Entrepreneurs Association, http://fuve-
english.jimdo.com/fuve-e/, January 2015.

[16] jderobot.org, Livio Calvo-pfc-itis, http://jderobot.org/index.php/
Livio_Calvo-pfc-itis, January 2015.

[17] svn.jderobot.org, https://svn.jderobot.org/users/kenshiro/

pfc-itis/, January 2015.

[18] jderobot.org, Livio Calvo-pfc-itis, http://jderobot.org/index.php/
Livio_Calvo-pfc-itis#Test_Board_v2, January 2015.

85

http://www.reuters.com/article/2013/05/20/us-soccer-brazil-worldcup-stadiums-idUSBRE94J0TT20130520
http://www.reuters.com/article/2013/05/20/us-soccer-brazil-worldcup-stadiums-idUSBRE94J0TT20130520
http://voices.nationalgeographic.com/2013/10/07/cool-gadgets-a-r-drone-2-0/
http://voices.nationalgeographic.com/2013/10/07/cool-gadgets-a-r-drone-2-0/
http://voices.nationalgeographic.com/2013/10/07/cool-gadgets-a-r-drone-2-0/
http://www.muac-iren-project.eu/
http://www.elconfidencialdigital.com/politica/Ejercito-Aire-Defensa-UAV-Raven_0_1292270761.html
http://www.elconfidencialdigital.com/politica/Ejercito-Aire-Defensa-UAV-Raven_0_1292270761.html
http://defensa.com/index.php?option=com_content&view=article&id=10239:el-atlante-realiza-con-exito-el-primer-vuelo-en-europa-de-un-avion-no-tripulado-desde-un-aeropuerto-civil&catid=54:espana&Itemid=162
http://defensa.com/index.php?option=com_content&view=article&id=10239:el-atlante-realiza-con-exito-el-primer-vuelo-en-europa-de-un-avion-no-tripulado-desde-un-aeropuerto-civil&catid=54:espana&Itemid=162
http://defensa.com/index.php?option=com_content&view=article&id=10239:el-atlante-realiza-con-exito-el-primer-vuelo-en-europa-de-un-avion-no-tripulado-desde-un-aeropuerto-civil&catid=54:espana&Itemid=162
http://defensa.com/index.php?option=com_content&view=article&id=10239:el-atlante-realiza-con-exito-el-primer-vuelo-en-europa-de-un-avion-no-tripulado-desde-un-aeropuerto-civil&catid=54:espana&Itemid=162
http://www.escuelaindustrialesupm.com/escuela-industriales-upm/un-grupo-de-investigacion-de-altos-vuelos/#.VLQy29_08lU
http://www.escuelaindustrialesupm.com/escuela-industriales-upm/un-grupo-de-investigacion-de-altos-vuelos/#.VLQy29_08lU
http://www.escuelaindustrialesupm.com/escuela-industriales-upm/un-grupo-de-investigacion-de-altos-vuelos/#.VLQy29_08lU
http://fuve-english.jimdo.com/fuve-e/
http://fuve-english.jimdo.com/fuve-e/
http://jderobot.org/index.php/Livio_Calvo-pfc-itis
http://jderobot.org/index.php/Livio_Calvo-pfc-itis
https://svn.jderobot.org/users/kenshiro/pfc-itis/
https://svn.jderobot.org/users/kenshiro/pfc-itis/
http://jderobot.org/index.php/Livio_Calvo-pfc-itis#Test_Board_v2
http://jderobot.org/index.php/Livio_Calvo-pfc-itis#Test_Board_v2

[19] jderobot.org, Livio Calvo-pfc-itis, http://jderobot.org/index.php/
Livio_Calvo-pfc-itis#First_Prototype, January 2015.

[20] Free Software Foundation, GNU General Public License, http://www.
gnu.org/licenses/gpl-3.0-standalone.html, January 2015.

86

http://jderobot.org/index.php/Livio_Calvo-pfc-itis#First_Prototype
http://jderobot.org/index.php/Livio_Calvo-pfc-itis#First_Prototype
http://www.gnu.org/licenses/gpl-3.0-standalone.html
http://www.gnu.org/licenses/gpl-3.0-standalone.html

	Introduction
	Unmanned Aerial Vehicles
	Aeronautical Design
	Sensors and Actuators
	Radio-controlled aircraft

	UAV applications
	Surveillance and Reconnaissance
	Combat Operations

	UAVs in Spain
	Universidad de Sevilla
	Alfa Bravo Servicios Aeronáuticos
	Atlante
	Universidad Politécnica de Madrid (UPM)
	FUVE: Future Vehicles and Entrepreneurs

	Objectives
	Description of the problem
	Requirements
	Development Process

	Infrastructure
	Android Mobile
	Raspberry Pi
	Arduino
	Web Interface Technologies
	Apache
	MySQL
	PHP
	Motion

	Flying platform
	DC Motors
	Servos
	Propellers
	Phantom FPV Flying Wing

	UAV System Description
	UAV Design
	Navigation
	Android application
	Java application
	Arduino application

	Web Interface
	UAV Manager web application
	Apache Web Server
	Motion
	MySQL server

	Sensors-Actuators Infrastructure
	Sensors-to-Navigation
	Navigation-to-Motors
	Web Interface-Motors

	Experiments
	UAV test board assembly
	UAV platform teleoperation
	Assembly of the "Phantom" RC airplane

	Conclusions
	Conclusions
	Future developments

