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wanders in the darkness of ignorance,
unable to make sense of the reality around him.

El que no sabe llevar su contabilidad
por espacio de tres mil años

se queda como un ignorante en la oscuridad
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Abstract

Robotics will be a dominant area in society throughout future gener-
ations. Nowadays its presence is increasing in the majority of contexts
of daily life, with devices and mechanisms which facilitate the accomplish-
ment of diverse daily tasks; as well as at labor level, where machines occupy
more and more jobs.

This increase in the presence of autonomous robotic systems in society
is due to the great efficiency and security they offer compared to human
capacity, thanks mainly to the enormous precision of their sensor and ac-
tuator systems. Among these, vision sensors are of utmost importance.
Humans and many animals enjoy powerful perception systems in a nat-
ural way, but which in Robotics constitutes a constant line of research.
The main problem lies in the correct interpretation of visual data and the
extraction of relevant information from camera images.

Thus, Robotics becomes something beyond an scientific are, but also a
social and cultural topic. Therefore, it is essential to raise an early aware-
ness and train younger students to acquire the skills which will be most
demanded in the short and mid-term future. In doing so, we will be ensur-
ing their integration into a labor market dominated by intelligent robotic
systems. In addition to having a high capacity for reasoning and decision-
making, these robots incorporate important advances in their perceptual
systems, allowing them to interact effectively in the working environments
of this new industrial revolution.

Since a few years ago, there are different Educational Robotics kits
available in the market which are designed to be used in pre-university
education. To use them as a learning tool, a correct teacher training is



necessary, as well as a change in the teaching-learning methodology and in
the educational environment in general. In addition, taking into account
that young people live immersed in a constant environment of technological
learning, most of these kits usually have a short period of interest for
students, who demand motivating intellectual challenges.

This thesis aims to provide several solutions to some classic problems
inherent to Robotics, such as navigation and localization, but using a cam-
era as the main sensor. In addition, a learning framework for teaching of
Robotics with Vision as a subject is presented. Using it the students at
pre-university curricular level learn the principles of Science and Engineer-
ing and the computer programming skills demanded in today’s society.
The use of Python language and its exercises about robots with vision
makes this learning framework unique and more powerful than other ex-
isting frameworks.

This teaching framework has been successfully used in several sec-
ondary education schools during the last two academic years (2016/2017
and 2017/2018), which includes: its software infrastructure, its hardware
platform, an academic curriculum with theoretical and practical content,
as well as a constructivist pedagogical methodology. The performance and
satisfaction of more than 2, 000 students and teachers using it, in curric-
ular subjects such as Programming, Robotics and Technology and ICTs
of Secondary Education (CSO) and extracurricular activities, have been
evaluated.



Resumen

La Robótica será un área dominante en la sociedad de las próximas ge-
neraciones. Actualmente su presencia es cada vez mayor a nivel doméstico,
con dispositivos y mecanismos que facilitan la realización de diversas ta-
reas cotidianas; así como a nivel laboral, donde las máquinas van ocupando
cada vez más puestos de trabajo.

Este aumento en la presencia de sistemas robóticos autónomos en la
sociedad es debido a la gran eficiencia y seguridad que ofrecen frente a
la capacidad humana, gracias fundamentalmente a la enorme precisión
de sus sistemas de sensores y actuadores. Entre estos sensores adquiere
especial importancia el de visión; algo que los humanos y los animales
tienen muy desarrollado, pero que en Robótica constituye un frente de
investigación en constante desarrollo. El principal problema reside en la
correcta interpretación de los datos visuales y la extracción de información
relevante a partir de las imágenes.

La Robótica se convierte así en algo más que un área de la ciencia, sino
también en una cuestión social y cultural. Por ello es fundamental crear
una conciencia temprana y formar a los estudiantes más jóvenes en adqui-
rir las habilidades que serán más demandadas en el futuro a corto y medio
plazo, garantizando así su integración en un mercado laboral dominado
por sistemas robóticos inteligentes. Además de tener una elevada capa-
cidad de razonamiento y de toma de decisiones, estos robots incorporan
importantes avances en sus sistemas perceptivos, lo que les permite inter-
actuar inteligentemente en los entornos laborales de esta nueva revolución
industrial.



Desde hace unos años existen en el mercado diferentes kits de Robótica
Educativa para su uso en enseñanza preuniversitaria. Para usarlos como
herramienta de aprendizaje es necesaria también una correcta formación
del profesorado, un cambio en la metodología de enseñanza-aprendizaje
y en el entorno educativo en general. Además, teniendo en cuenta que
los más jóvenes viven inmersos en un constante entorno de aprendizaje
tecnológico, la mayoría de estos kits suelen tener un corto periodo de interés
para los estudiantes, que demandan desafíos intelectuales que les resulten
motivadores.

En esta tesis se proponen varias soluciones a problemas clásicos de la
Robótica, como la navegación y la localización, pero empleando una cámara
como sensor principal. Asimismo, se presenta un entorno para la docencia
de Robótica con Visión como materia a través de la cual los alumnos de
niveles académicos preuniversitarios aprenden los principios de la ciencia y
la ingeniería y las habilidades de programación de ordenadores tan deman-
dadas por la sociedad actual. El lenguaje Python elegido y los ejercicios
de robots con visión, suponen un aporte novedoso único y ventajoso, más
potente que otros entornos docentes existentes.

Este entorno docente se ha implantado con éxito en varios centros edu-
cativos durante los dos últimos cursos académicos (2016/2017 y 2017/2018),
incluyendo: infraestructura software, plataforma hardware, currículum aca-
démico con contenido teórico y práctico, así como la metodología pedagó-
gica constructivista. Se ha evaluado el rendimiento y la satisfacción de más
de 2,000 estudiantes y profesores usando este entorno docente en las asig-
naturas curriculares de Tecnología, Programación y Robótica y TICs de
Educación Secundaria (ESO), así como en actividades extraescolares.
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Chapter 1

Introduction

This first chapter introduces the main topic of this thesis. It is
organized according to the following sections. Section 1.1 shows a
general description of the situation of the Robotics area, its role in
the current society and the near future and how the vision of robots
is fundamental in this new era of smart robots. Section 1.3 provides
a brief analysis of the worldwide boom in robotics and educational
programming. In Section 1.4 the educational proposal developed
in this dissertation is presented. Section 1.5 describes the main
objectives of this work. And, finally, in Section 1.6 a tour is made
of the structure according to which this thesis is vertebrated.

1.1 Technology and Robotics

In the last decade, technology has become increasingly common in the
majority of contexts of daily and industrial life. In homes, there has been a
major increase in the presence of technological devices, such as computers,
tablets, smartphones, domotic systems, etc. They are all interconnected
through Internet. At industrial level, rather than autonomous machines,
factories are increasingly incorporating in their production chains intelli-
gent robots with sophisticated sensory systems, with vision as the main
mechanism of perception.
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1.1.1 Robotics in the domestic field

A home usually has numerous technological elements; the appearance
of robotic devices in the mass market such as robotic vacuum cleaners
and mops (Figures 1.1 left and middle), as well as numerous applications
and existing domotic services (Figure 1.1 right) have made this technology
increasingly present in the daily routine of society, not to mention other
frequently automated tasks: withdrawing money at the ATM, automatic
payment in supermarkets, or the massive use of Internet, shopping, bank-
ing, and much more.

Figure 1.1: iRobot Roomba And Jet Braava, and domotic application Wattio

Furthermore, autonomous cars or drones make the use of this technol-
ogy more visible and reinforce its appeal. The large automotive manu-
facturers are behind these new advances; they have advanced prototypes
of autonomous cars. Also, large software companies such as Google (Fig-
ure 1.2) or Apple, or new companies like Tesla are well positioned in this
sector.

Figure 1.2: Google autonomous car and a drone devoted to agricultural tasks

However, the use of drones for leisure activities has remained in the
background, giving way to their increasingly widespread use at profes-
sional level (Figure 1.2) for works in the fields of emergency, events, people
searches, fiscal control, border surveillance, agriculture, traffic surveillance,
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etc. In Spain there are already almost 3, 000 companies working in this sec-
tor and the Ministry for Public Works has recently promoted the Strategic
Plan for the use of drones 2018-2021 ([Fomento, 2018]) for the development
of the civil drone sector, which establishes the roadmap to be followed to
promote the development of this incipient and potentially high growth
sector.

Because of this tendency towards the automation of almost all daily
tasks as well as an increase in the presence of robotic devices in the day to
day, knowledge of the use of the technologies is becoming increasingly key.

1.1.2 Robotics and Industrialization

Robotics at industrial level has its origins in the Industrial Revolution
of 1800 when, for the first time, products and services were developed by
machines. The flagship innovation was the steam engine, which was used
to replace a large number of jobs.

The second industrial revolution began with electricity, at the end of
the 19th century. The main new concept here was the assembly line, used
for the first time in the car industry (Figure 1.3 left).

Figure 1.3: Industrial revolutions: (a) Ford assembly line, (b) Porsche serial
production, (c) Intelligent robots at Glory Ltd.

The third industrial revolution began in 1970s and was characterized by
greater automation through electronics. The first personal computers, In-
ternet and global access to information were incorporated into society. At
labor level, human work is replaced by machines —which are programmed
to mass manufacture products— (Figure 1.3 middle), where speed, preci-
sion and reliability are paramount.

The so-called Industrialization 4.0 involves the integration of complex
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robotic systems in factories (Figure 1.3 right), logistics and what is known
as the Internet of things, where sophisticated automatons handle an im-
mense quantity of data to take strategic decisions for companies.

The short and mid-term future is/will be marked by industrial produc-
tion dominated by intelligent machines. The presence of humans in these
intelligent factories tends to be increasingly reduced and will eventually
be symbolic and sporadic. There is no doubt that a machine’s capacity
for taking optimum decisions in real time and simultaneously handling an
enormous quantity of data, is far greater than that of a human being.

1.1.3 Intelligent robots in complex surroundings

These mobile and intelligent robots need, in addition to a large compu-
tational capacity, a complex sensory system to act intelligently not only in
factories but in robot-human interaction at general level ([Vega and Cañas,
2009]). The fixed automation of structured production chains is giving way
to an unpredictable world and a totally unstructured reality which makes
evident the need for a wide complementary range of sensors and actuators
to attain complete autonomy ([Arbel and Ferrie, 2001]).

This struggle for autonomy in complex, unstructured and unpredictable
surroundings, cohabited by humans, constitutes at present a deep field
of investigation in Robotics, Intelligent Robotics, where visual perception,
reasoning and performance are intimately entwined to perform useful tasks
with little human intervention. At this point, it is worth mentioning Du-
plex, the intelligent assistant that Google presented in May of this year,
which is an accurate reflection of how machines are evolving.

1.2 Vision in Robotics

Computational vision is the branch of Artificial Intelligence (AI) that
includes the techniques and methods applied to a camera-like sensor. Al-
though this sensory modality has not been the most used for some years in
mobile robotics (sonar and/or laser have been more used as sensors, Fig-
ures 1.4 left and middle), at present it has become the most widely used
sensor and will definitely be the most commonly used in the long-term
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future, because of the possibilities it offers and the power of calculation of
current computers. They are low-cost devices which are potentially very
computationally rich, since they provide a lot of information.

Figure 1.4: Hokuyo laser sensor, HC-SR04 ultrasonic sensor and PiCam camera

However, visual capacity in robots, in contrast to that of living beings,
is not an easy technique ([Ramachandran, 1990]). The main difficulty
lies in extracting useful information from the large amount of data that a
camera provides (Figure 1.4 right), for which good algorithms are needed.
Although we have to be wary when comparing a robot with a biological
organism ([Nehmzow, 1993]), what is clear is that the sight is the main
sense on which animals base their movement through the surroundings
([Tinbergen, 1951]).

Figure 1.5: Advanced systems of Visual perception: Bumblebee, Mobile Ranger
and Kinect

Although in the market there are various devices of perception that
combine vision and infrared to obtain a greater amount of useful informa-
tion of the surroundings without the need for large data processing (Figure
1.5), in this work we use simple cameras, focusing the efforts on developing
complex algorithms able to extract information of interest from the data
they provide.
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In the literature, there are several open lines of investigation regarding
robot vision. Below, some are described.

Detection of stimuli through neural networks

In recent decades, new models of artificial neural networks (ANN) have
emerged, which are posited on diverse theories of the operation of biological
neural networks. Numerous works have been proposed, applying ANNs in
different areas of engineering. An area where they have been widely used
is that of processing images, where a large number of works using ANNs
exist ([Schmidhuber, 2015]).

For example, autonomous cars apply neural networks techniques to
manage the paths and the controls of position and orientation ([Caceres
et al., 2017]).

Visual control

Another widespread use of the vision of robots is visual control, detec-
tion of faces ([Vega and Cañas, 2009]), video surveillance systems ([Srini-
vasan et al., 2006]), traffic control (cameras with seat belt detection sys-
tems, etc.), and in autonomous cars to detect lane change ([Cho et al.,
2014]). There is also an investigation area in Biometrics, for recognition of
signatures, characters and the study of writing traces([Pinto et al., 2015]).

3D Reconstruction

The acquisition of three-dimensional models has for some years been
one of the research challenges with the greatest activity. The use of these
3D stages is very wide-ranging, from developing surroundings of virtual re-
ality ([Barrera et al., 2005]) to video games ([Richter et al., 2016]), as well
as in the reconstruction of ancient ([Murgul, 2015]) or modern buildings
([Fathi et al., 2015]) for their analysis.

Visual self-localization

Visual, or image-based, self-localization refers to the recovery of the
position and orientation of a camera in the world according to recorded
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images. This is an interesting application in environments where GPS-
based systems are not available or are imprecise, such as indoors or in
densely built cities ([Antequera et al., 2017]).

Applications that conduct their tasks in indoor places, such as Roomba
by iRobot, use these techniques to know at all times their position in the
surroundings in which they are performing their tasks and to avoid, for
example, unintelligent behaviors like repeating in zones in which they have
already been, etc.

Furthermore, autonomous cars include visual self-localization techniques
([Wolcott and Eustice, 2014]), which allows them to navigate securely in
zones or moments where the reception of GPS satellites is poor, such as
cities with high buildings, tunnels or at moments when bad weather ren-
ders it impossible to visualize these satellites.

Visual attention

When processing and selecting useful details from among the vast
amount of information perceived by a camera, it is crucial to look at how
the visual systems of organisms in nature work ([Zaharescu et al., 2005]).
Humans have a precise system of active vision ([Bajcsy, 2009, Sawides
et al., 2018]). This means that we can concentrate on specific regions of
interest of the scene that surrounds us ([Marocco and Floreano, 2002])
thanks to the movement of our eyes ([Murray et al., 2003]) and/or of our
head ([Vega and Cañas, 2009]), or simply by extending our gaze ([Arbel
and Ferrie, 2001]) to several zones within the current image being perceived
([Itti and Koch., 2005]).

Visual attention is a key task in autonomous Robotics, since a robot
with vision that interacts in a real environment has to be reactive. It has
to include rapid vision systems that extract useful information from cam-
era data in real time.

Visual memory

If a robot with vision, in addition to treating the information it receives
in each moment from its visual system, can store this in a memory, it will
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be able to take more intelligent decisions when it has to navigate through
the environment. Hence, in recent years, several works have focused on
this research challenge.

Autonomous cars, domestic applications like Roomba, or autonomous
aerial navigation systems incorporate this memory.

As regards the subject of the thesis, some methods have been devel-
oped on what and where the objects are that a robot finds in its path
([Zaharescu et al., 2005]), which will allow the robot to navigate the sur-
rounding environment intelligently and be located in it.

1.3 Educational robotics

As described in Section 1.1.2, the advance of Artificial Intelligence (AI),
Robotics and automation in society, the future of work and industry in
particular ([Mies and Zentay, 2017]) converge in what is already known as
the fourth industrial revolution ([Schwab, 2016]).

According to the analysis of the University of Oxford ([Frey and Os-
borne, 2013]) and the professional services of Deloitte ([Deloitte, 2015]),
almost half of all jobs will be occupied by robots in the next 25 years.
Furthermore, as the Mckinsey institute1 shows in its last report on the
global economy ([Institute, 2017]), robots will perform the work of about
800 million jobs in 2030.

Figure 1.6: Different robotic prototypes to work in different educational areas

1https://www.mckinsey.com

https://www.mckinsey.com
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It is therefore of vital importance to incorporate technology, and specif-
ically Robotics, in the pre-university educational system since todays’
youngest students will be those who, within a decade, have to confront
a labour market that will demand profiles related to automation of sys-
tems ([UK-RAS, 2016]). From the educational point of view, Robotics is a
field where many areas converge: electronics, physical (Figure 1.6 left), me-
chanical (Figure 1.6 right), computer sciences, telecommunications, math-
ematics, etc.

Figure 1.7: Students working in a robotic prototype

Moreover, the use of technologies in public and private schools will
also help to reduce the digital divide that currently exists across the world.
The digital divide is the term used to describe the large differences in the
use of the technology between different ethnic and economic-social groups
([Schiller, 1996], [Wresch, 1996]).

In addition, the increasing strength robotic technology requires pro-
fessionals to be trained in this sector, extending boundaries even further
and helping to create new robotic applications that serve people (Figures
1.8 left and middle) and the progress of humanity (Figure 1.8 right). At
present the training in Robotics has some presence in secondary education
but is fundamentally conducted in universities, with specific undergraduate
and master’s degrees.

Nevertheless, it is a fact that Robotics is growing in importance in pre-
university education as much in Spain as in other western countries, either
as a field of knowledge in itself, or as a tool to present technology and other
subjects to young students in an attractive way. Furthermore, Robotics has
the power to motivate students and this allows us to bring technology closer
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Figure 1.8: Robotics as a profession for society

to boys and girls ([Rodger and Walker, 1996]) using robotics as a tool to
present basic concepts of science ([Altin and Pedaste, 2013]), technology,
engineering and mathematics (STEM) ([Mubin et al., 2013]). Students
learn, almost through playing (Figure 1.7), notions which are difficult and
complex to explain or to assimilate through the classic masterclass ([Cerezo
and Sastrón, 2015, Jiménez et al., 2010]).

For example, at official level, the Autonomous Community of Madrid
(Decree 48/2015, of 14 May, of the Council of Government) included the
subject Technology, programming and robotics in the official curriculum of
Compulsory Secondary Education in the 2015-16 academic year. There is
also an increasing demand for robotics for extracurricular activities, which
is creating an ecosystem of companies to fulfill this demand. Outside Spain,
the implantation of Robotics in education is a fact. Six states in the U.S.
(Iowa, Nevada, Wisconsin, Washington, Idaho and Utah) have announced
plans and investments with this aim in the last five months. Likewise,
four countries —Canada, Ireland, New Zealand and Romania— have re-
cently announced similar plans, with a total investment of 300 million dol-
lars. Japan, in its New Robot Strategy Report ([Japan-Economic, 2015])
makes clear that investing in Robotics is fundamental for the growth of the
country.

In this educational field, there is a convergence of the teaching of
Robotics itself and other disciplines (e.g. programming) using Robotics
as a teaching tool ([Magnenat et al., 2014, Merkouris et al., 2017, Kubilin-
skiene et al., 2017]).

Another example of the increasing importance of Robotics in education
are the robotic championships for teenagers, which encourage interest in
this technology. For example, the robotic championship RoboCampeones
(Figure 1.9) in the Autonomous Community of Madrid, which brought
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Figure 1.9: RoboCampeones robotic championship

together no fewer than 2, 000 students in its last edition, with challenges
like the follow-lines, sumo between robots, etc. Similarly, at international
level, numerous championships are organized, which bring together stu-
dents from all over the world to learn, share experiences and enjoy the
development of robotic prototypes. It is worth highlighting the RoboCup
Junior2 ([Eguchi, 2016, Navarrete et al., 2016, Kandlhofer and Steinbauer,
2014]), with tests such as the rescue or robotic soccer. There is also the
First Lego League (FLL) and the VEX Robotics Competitions3. In Fin-
land, the quintessential championship, which attracts students from all
over Europe ([Jormanainen and Korhonen, 2010]) and has agreements with
centers of South Africa ([Graven and Stott, 2011]), is the SciFest4.

Also, in the academic community a group of congresses and conferences
have emerged that emphasize the role of Robotics in Education, includ-
ing the Conference on Robotics in Education (RIE), and the Workshop on
Teaching Robotics with ROS (TRROS) within the European Robotics Fo-
rum5. Special editions on education in robotics have also appeared in sev-
eral scientific journals. Finally, it is worth noting the presence of Robotics
and Education in high-impact journals: Computers and Education, British
Journal of Educational Technology, International Journal of Robotics Re-
search, Journal of the Learning Sciences or Journal of Research in Science

2http://rcj.robocup.org
3https://www.vexrobotics.com/vexedr/competition
4http://www.scifest.fi
5http://www.eu-robotics.net/robotics_forum

http://rcj.robocup.org
https://www.vexrobotics.com/vexedr/competition
http://www.scifest.fi
http://www.eu-robotics.net/robotics_forum
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Teaching.
To support this increasing presence of educational robotics, there exist

in the market few educational kits that provide useful and motivating
educational frameworks for pre-university students. The existing kits focus
on their use in class time, with a low level of complexity, which results
in a short useful life and a low motivation of students, who achieve the
challenges posed in a few sessions of work. There is no system, either, and
even less a guided one, that maintains a constant level of motivation and
challenge, especially where vision plays an important role.

1.4 Proposal

After having described in Section 1.1 the role of Robotics in society
today and in coming years and after describing in Section 1.3 the consistent
importance played by education as a means for new generations to prepare
for the short and mid-term future, an enormous gap has been identified
between the level of the academic training at university level in scientific
and technological degrees and the official curriculum implemented at pre-
university levels, specifically in science subjects at Secondary Education
level.

Thus, this work proposes to acquire an in-depth background, for subse-
quent educational application of the main problems inherent to Robotics,
such as navigation and location, using vision as the main sensor. The
development of robot techniques with vision, like visual control, visual
memory or a visual attention system is also proposed.

Furthermore, to mitigate this academic gap detected between pre-
university training and that offered by universities, the author proposes
to develop a complete teaching framework for Robotics with vision, which
today is non-existent, integrating: (a) a suitable teaching methodology in
accordance with the new profile of New digital age students, where each
student is more than ever an individual with their own interests ([Rose
and Meyer, 2002, Selber, 2004]) within the enormous universe of possi-
bilities offered by this Era of Information ([Solove, 2004]); (b) a software
infrastructure that is simple and intuitive for young students to manage
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but that at the same time is powerful and versatile, incorporating enough
resource libraries to provide practical exercises that are sufficient in both,
number and complexity, on programming robots with vision, so as to con-
tinuously motivate students ([Benitti, 2012]), as well as diverse examples;
(c) a proven academic program that can be followed during a complete aca-
demic year and that includes sufficient and properly staggered sessions for
correct assimilation by the students ([Ainley et al., 2008]); (d) a versatile
hardware platform, economically suitable for secondary education centers
to satisfy the needs of a complete class, but at the same time standardized
and powerful, which allows the execution of algorithms of Robotics with
vision.

At present, only educational kits mainly designed to be sporadically
used in class are available. This follows an approach that is considered
obsolete, and that in the short run it is not very motivating for students.
In fact, the majority of these kits existing in the market are designed to
arouse the interest of the youngest students in Robotics, but not so that
students in pre-university courses acquire correct and complete training
in programming, something which is in great demand and so widespread
in almost any degree. Although it is true that other kits exist which are
more specialized in specific scientific fields ([Schweikardt and Gross, 2006]),
the proposed framework goes further and provides all the necessary tools
for both students and teachers ([Bers et al., 2002]) required to develop
a complete academic year in a versatile way by putting at their disposal
numerous and sophisticated algorithms, including vision, with a pleasant
and intuitive interface.

1.5 Goals

The main objective of this work is the development, implementation
and evaluation of a complete framework using robots with vision for teach-
ing of Robotics. This environment will mitigate the great gap detected
during years of experience by this author between the teaching of scientific-
technological subjects at pre-university academic levels and the curricula
of technical degrees. In this way, new generations may be better trained
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in the skills demanded by today’s society and in the coming years.
The first objective is to develop the algorithms that provide a solution

to the main problems existing within the framework of Robots with vision
and that will address issues such as navigation and localization using vision
as the main sensor. This in turn will determine and implement the inherent
problems in the treatment and selection of useful information of an image,
as well as the generation of a complex visual memory that incorporates
the elements detected in the scene surrounding the robot, resulting in
more intelligent behavior by the robots, which is what will be demanded
in Robotics over the coming years.

The second objective is to integrate the above into a complete ed-
ucational environment that will include an entire academic program to
follow during the teaching of subjects such as Technology and ICTs in
pre-university courses. For this, we will develop a software infrastructure
that facilitates the programming of robots with vision to these students, so
that it is simple and intuitive to develop solutions to the classic problems
of robots: navigation, vision, etc.

Furthermore, the physical robotic platforms to be considered will be
those with a low cost, so that their acquisition by Secondary Education
institutions is viable for a complete class. That is why the developments
will be based on existing standardized and low cost platforms in the market.
In addition, and to meet the above objectives of putting robotics and
robot vision algorithms into practice, a physical robotic platform will be
developed to computationally allow the execution of these as well as the
use of a camera as the main sensor.

This educational environment is intended to be implemented in dif-
ferent schools in the Autonomous Community of Madrid, where Robotics
is officially integrated into the Secondary Education curriculum for more
than one academic year. The different teaching methodologies existing in
the literature will be investigated to analyze which may be the best for the
implementation of the Teaching-Learning process of Robotics and which,
therefore, will be the one chosen to conduct out the sessions that make up
the educational program we develop.

Finally, the proposed teaching environment with real students will be
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validated, the academic results and satisfaction will be evaluated by the
students and teachers who use the educational environment of this thesis
in comparison to the groups that follow the traditional programs of Tech-
nology subjects and ICTs. We will analyze the results of this evaluation,
which will be obtained through daily interviews, academic qualifications
obtained by the students, as well as surveys on the degree of satisfaction
across both parties: students and teachers.

1.6 Structure of the thesis

This thesis document has the following structure:
It begins with this Chapter 1 in which the context and motivation of

the thesis is presented. Chapter 2 describes the state of the art of Robotics
with vision with its different main research fronts. The state of the art of
educational Robotics is also studied.

Chapter 3 describes the problems inherent to the navigation and loca-
tion of robots using vision, as well as the different software developments
that we have contributed to solve them with selective attention mecha-
nisms and a short-term visual memory . In addition, this chapter details
the mathematical procedures we have used to integrate a conventional
camera as a powerful visual sensor.

Chapter 4 is dedicated to describing the design and development of
the hardware and software teaching infrastructure created in this thesis
and carried out over a number of years, following the chosen academic
curriculum. There is also a tour of the different teaching approaches and
a description of focused on in this thesis. The validation results of the
environment are also described, following its implementation with more
than 2, 000 students.

Finally, Chapter 5 presents the conclusions drawn from this work. This
is all accompanied by the publications derived from this dissertation. The
chapter closes with possible future lines of research.



Chapter 2

State of the art

This chapter describes the state of the art regarding the fundamen-
tal pillars on which this research work is based, such as the naviga-
tion and location of robots using the vision system as a sensory ele-
ment, as well as an in-depth analysis of the different methodologies
pedagogical that helps us when putting into practice successfully
the environment of teaching robotics in the classroom.
Thus, Chapter is structured in five sections. Section 2.1 begins
with a brief summary of the state of the art that is detailed in
the following sections. Section 2.2 describes the state of the art in
visual attention systems, whose main uses shown in the literature
are detailed in the sections corresponding to navigation (2.3 ) and
location (2.4). Finally, Section 2.5 shows the state of the art in
educational Robotics, making a review of the existing environments
in the market.

Efforts are focused on these four pillars already listed in order to pre-
pare new generations of pre-university students in their correct training
to confront a short-term future in which intelligent robots will occupy a
large part of the labor market. These are so named because they have
to be able to reason and interact in a real environment; considering as
such one in which there are changing conditions and mobile elements that
require machines skilled enough to quickly adapt to what surrounds them
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at any time to navigate safely, locate themselves in the environment and,
ultimately, interact intelligently with the elements that integrate it.

2.1 Introduction

Vision systems are currently one of the most used sensory elements in
autonomous robotics (Section 1.2). Their main difficulty lies in extracting
useful information from the captured images, as well as the small visual
field of conventional cameras.

However, with active cameras it is possible to revisit characteristics of
a previously visited area, even if such an area is out of immediate visual
range. In order to have accurate information about the areas of interest
that surround the robot, a detailed memory map of the environment is
necessary. Since the computational cost of maintaining such an amount of
information is high, only a few references can be maintained.

Humans already naturally have a precise active vision system ([Robin-
son, 1964, Clark and Stark, 1975, Bajcsy, 2009]), which means that we can
concentrate on certain regions of interest in the scene around us, thanks
to the movement of the eyes and/or of the head, or simply distributing
the gaze in different zones within the current image that we are perceiving
([Biswas, 2016]).

But, in addition, the aim of integrating a robot as much as possible
in a real environment requires that it understands the natural forms of
communication of humans. The most basic, primitive form of interaction
between humans is to look at the face ([Farroni et al., 2002]). It is therefore
interesting to develop techniques that allow the robot to know the position
of the people around him and to follow them at all times ([Sidner et al.,
2004]). Hence, for an acceptable robot-human interaction, a face detection
and tracking mechanism ([Lang et al., 2003, Parks et al., 2014, Menéndez
et al., 2013]) is indispensable. This allows a more fluid interaction with
people, because they perceive the robotic interlocutor as more natural
([Rautaray and Agrawal, 2015]).

This visual attention (Section 2.2) can be used for robots to detect and
avoid obstacles, because it is generally required to navigate autonomously
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through dynamic environments (Section 2.3). When using cameras, ob-
stacles can be detected through 3D reconstruction. Thus, the recovery
of three-dimensional information is the main focus of the computer vision
community for decades ([Goldberg et al., 2002]). Although many other
works have presented solutions that do not require 3D reconstruction ([Re-
mazeilles et al., 2006]).

Other relevant information that can be extracted from the images is
the location of the robot (2.4). Robots need to know their location within
the environment in order to develop the appropriate behavior. Using vi-
sion and a map, the robot can estimate its own position and orientation
within a known environment. The auto-location of robots has proven to be
complex, especially in dynamic environments and those with high degree
of symmetry, where the values of the sensors can be similar in different
positions.

Far from these real problems of Robotics are numerous educational
Robotics kits (Section 2.5), which usually include the components needed
to build the robot and a programming environment specific to that robot
and that typically consists of a simple and intuitive graphic interface for
students, but with limited potential. The objective of these kits is to enrich
the education of students and introduce them to Science and Technology.
They are based on the imitation of real robots but very far removed in
functionality with respect to employees in a real and/or industrialized en-
vironment.

2.2 Visual attention system

Visual attention has two clearly marked stages: the first, considered
prior processing, is one in which objects are extracted —that fulfill certain
characteristics— within the visual field; and the second, called focused
attention, consists of the identification of those objects.

Within autonomous robotics it is important to perform a visual atten-
tion control ([Nobre, 2015]). The cameras of the robots provide a wide flow
of data from which you have to select what is interesting and ignore what
is not; this is the selective visual attention. There are two aspects of vi-
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sual attention, the global (overt attention) and the local (covert attention).
Local attention ([Tsotsos et al., 1995, Itti and Koch, 2001, Marocco and
Floreano, 2002]) consists of selecting within an image those data that in-
terest us. Global attention consists of selecting from the environment that
surrounds the robot, beyond the current visual field, those objects that
interest, and directing the look towards them ([Cañas et al., 2008, Borji
et al., 2013]).

The visual representation of interesting objects in the vicinity of the
robot can improve the quality of robot behavior, as well as the ability to
handle more information when making decisions. This poses a problem
when the objects are not in the immediate field of vision. To solve this
problem, omnidirectional vision is used in some works ([Gaspar et al.,
2000]); in others, a normal camera and a global attention mechanism are
used ([Itti and Koch, 2001, Zaharescu et al., 2005]), which allows samples
to quickly be taken from a very wide area of interest. The use of camera
movement to facilitate the recognition of objects was proposed by [Ballard,
1991] and is used, for example, to distinguish between different shapes in
the images ([Marocco and Floreano, 2002]).

Figure 2.1: Diagram of salience map formation
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One of the concepts widely accepted in the works in this area is the
map of salience. We can find it in [Itti and Koch, 2001, Borji et al., 2014]
as a local visual attention mechanism, independent of the particular task
to be performed, and formed by the set of visual stimuli that draw the
attention of the scene. This work considers a bottom-up model, where
—as we can see in Figure 2.1— in each iteration the different descriptive
maps of the scene (according to colors, intensities or orientations) then
merge into what they call maps of conspicuity (one for each characteristic
feature), which will finally make up a unique and representative map of
salience.

There are two fundamental advantages offered by this natural solution
compared to a passive attention mechanism where the sensors are equally
centered in all areas of the image.

1. Areas of the scene that can not be accessed by fixed sensors, but by
mobile sensors.

2. By directing attention to specific areas of the image that are inter-
esting, we can avoid costs in visiting areas that we do not concern
us. For example, in the task of catching, humans concentrate only
on the moving object.

Thus, we can consider active vision as a supervisor of a broad repertoire
of tasks, notably greater than that contemplated by passive vision.

A good overview of these approaches to model visual attention is found
in [Bauer, 2015], where the author assumes that his evaluation is not trivial,
since the applications are diverse and the biological processes that take
place in our brain, the model for many of them, are still mysterious and are
only being slowly understood despite the large number of psychophysical
studies and experiments.

Another solution was proposed in [Hulse et al., 2009], where an active
robotic vision system was presented based on the biological phenomenon of
feedback inhibition, which is used to modulate the action selection process
for the saccades of the camera. In this article it was argued that visual
information has to be processed later by a series of cortical and subcortical
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structures that: (1) place it in a context of attentive bias within egocentric
salience maps; (2) implement the aforementioned return inhibition entries
of other modalities; (3) cancel the voluntary saccades and (4) influence the
selection of the action of the basal ganglia. Therefore, there is a specific
and sophisticated method within a biological context to facilitate the most
appropriate saccadic movement as a way of selecting attention.

Arbel and Ferrie presented/displayed in [Arbel and Ferrie, 2001] a strat-
egy of planning of the glance that moves the camera to another point of
view around an object to recognize it. The recognition itself is based on
the optical flow paths that result from the movement of the camera. The
new measurements, accumulated over time, are used in a one step ahead
Bayesian approach that solves the ambiguity of object recognition, while
navigating with an entropy map.

Figure 2.2: (a) Visual cortex of primates, (b) Simplified version of the visual
cortex

In his thesis, Rodríguez-Sánchez defined ([Rodríguez-Sánchez, 2010]) a
model inspired by Biology for the representation of forms that included in-
termediate layers of visual representation corresponding to the layers that
exist naturally in the natural visual cortex (Figure 2.2), not previously ex-
plored, and which showed that they had a direct impact on the selection of
color and 2D shapes. Furthermore, their combination led to the formation
of selective neurons.

Two profound comparative studies are found in [Borji and Itti, 2013]
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and in [Bylinskii et al., 2015], where different taxonomies of up to 65 mod-
els are presented, which provide a critical comparison of approaches, their
capacities and deficiencies. In particular, more than a dozen criteria de-
rived from behavioral and computational studies are formulated for the
qualitative comparison of care models. In addition, they address several
challenging problems with the models, including the biological plausibility
of the calculations, the correlation with eye movement data-sets, the as-
cending and descending dissociation, and the construction of meaningful
performance measures.

2.3 Vision-based navigation

Regarding vision-based navigation, Badal ([Badal et al., 1994]) pre-
sented a system to extract gradual information and perform detection and
avoidance of obstacles in outdoor environments, based on the calculation
of the disparity of the two images of a pair stereo of calibrated cameras.
The system assumes that the objects are on the ground plane located at
the bottom. Each point on the ground is configured as a potential object
and is projected onto the ground plane in a local occupation grid called
the Instant Obstacle Map (IOM). The commands to direct the robot are
generated according to the position of the obstacles in the IOM.

Goldberg ([Goldberg et al., 2002]) introduced a navigation algorithm
based on stereo vision for the mobile exploration robot on Mars, Rover
(MER), whose objective was to be able to explore and map dangerous
terrains locally. The algorithm calculates the epipolar lines between the
two images of the stereo pair and thus verifies the presence of an object,
calculates the Laplacian of both images and correlates the filtered images
so that the pixels of the left image coincide with their corresponding pixels
in the image of the right. The work also includes a description of the
GESTALT navigation module, which packages a set of routines capable of
calculating action and direction commands from the sensor information.

Remazeilles ([Remazeilles et al., 2006]) presented the design of a control
system for the autonomous navigation of robots using vision as a perceptual
system. The particularity of this system is that it does not require any
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reconstruction of the environment and does not force the robot to converge
towards each intermediate position of the route.

Srinivasan ([Srinivasan et al., 2006]) introduced a new system to in-
crease the accuracy of optical flow estimation for insect-based flight con-
trol systems. A special mirror surface is mounted in front of the camera,
which points forward instead of pointing to the ground. The mirror surface
slows down movement and eliminates the distortion caused by perspective.
Theoretically, the image must have a slow and constant speed at all times,
thus simplifying the calculation of the optical flow and increasing its accu-
racy. As a result, the system increases the speed range and the number of
situations under which the aircraft can fly safely.

In [Chen and Birchfield, 2009] a simple approach for tracking a vision-
based route for a mobile robot is presented. Following the concept of
lane reduction or funnel lane, the coordinates of the characteristic points
during the navigation phase are compared with those obtained during the
learning phase to determine the direction of rotation. Greater robustness
is achieved by coupling the coordinates of the functions with the odometry
information. The system requires a single camera facing forward, without
external or internal calibration. The algorithm is qualitative in nature,
and does not require a map of the environment, nor a Jacobian image,
nor a homography, nor a fundamental matrix, nor any assumption on a
plane. The experimental results demonstrate the capacity of autonomous
navigation in real time in indoor and outdoor environments and in flat,
inclined and rugged terrain with objects of dynamic occlusion for distances
of hundreds of meters. It also works with wide angular and omnidirectional
cameras, with only minor modifications.

In [Hornung et al., 2010], the authors develop a novel approach to
learning efficient navigation policies for mobile robots that use visual char-
acteristics for localization. To avoid the blur caused by the inherently fast
movements of a robot while navigating, they introduce a reinforcement
learning approach to determine the appropriate navigation policy in each
situation, balancing between speed and accuracy in the location, and tak-
ing into account the impact of motion blur in observations. In addition,
they develop a method to compress the policy learned through a cluster
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approach, which is especially desirable in the context of systems with lim-
ited memory. It is shown that this learned policy significantly exceeds
policies that use a constant speed and more advanced heuristics. In ad-
dition, it is generally applicable to different indoor and outdoor scenarios
with different densities of reference points and navigation tasks of different
complexity.

In [Dimitrov et al., 2015], the improvements are presented in the au-
tonomous navigation of the Rover of Autonomous Exploration of NASA
(AERO) in terms of robustness and reliability of sample collection. The
AERO is required to navigate a large outdoor area, find and collect sev-
eral geological samples, and return to the home platform autonomously
and using only technologies compatible with the space.

In the study [Faessler et al., 2016], Matthias and his team describe
how an aerial microrobotic device can autonomously and visually describe
a specific trajectory and at the same time build a three-dimensional map
of the area over which it flies. The processor it uses is the same as that of
a mobile phone, which due to its low weight is passively safe and can be
deployed close to humans, for rescue tasks.

Another use of a navigation system based on vision, internationally
recognized by researchers, can be seen in [Tweddle et al., 2016]. This
study describes the VERTIGO vision system, a hardware update to the
SPHERES satellites that allows the investigation of navigation based on
vision in the environment of 6 degrees of freedom and microgravity of
the International Space Station (ISS). This vision system includes stereo
cameras, designed to be used by researchers in numerous experiments.

The weaknesses of a vision-based global navigation system are shown in
[Smith et al., 2018]. This evaluation also compares it with the introduction
into the system of Deep Learning techniques, and concludes that it is very
efficient to apply this novel system to provide samples of the environment
to the global planning system, so that it makes smarter decisions. In
particular, simulations and tests on a real mobile robot show that the
number of samples obtained by Deep Learning can be reduced by an order
of magnitude and preserve navigation performance.
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2.4 Self-localization using vision

The probabilistic location algorithms based on grids with laser or sonar
information were successfully applied in small known environments ([Bur-
gard and Fox, 1997]). They use discretized probability distributions and
update them from sensor data and movement orders, accumulating infor-
mation over time and providing a robust position estimate. Particle filters
use sampled probability functions and extend the techniques to larger envi-
ronments, using them even with visual data such as input ([Dellaert et al.,
1999]). At the beginning, the maps were provided in advance ([Royer et al.,
2007]), but in recent years the SLAM techniques address the location si-
multaneously with the construction of the map ([Blosch et al., 2010]).

These SLAM (Simultaneous Localization and Mapping) techniques try
to locate the robot accurately in unknown environments where no map
is available; and to create this it is necessary to be perfectly localized
([Fuentes-Pacheco et al., 2015]). That is, SLAM solves the most complex
cases, in which the environment is unknown and there is no information
about the exact location of the robot. The way to proceed in these situa-
tions is to generate a map while maintaining the location simultaneously.
For this, the robot only has the information provided by the measurements
obtained by its sensors, as well as the information that can be extracted
from the robot’s own movement. In this context there are therefore several
points of uncertainty that must be taken into account ([Atanasov et al.,
2015]): sensor noise, inaccurate robot displacement, environmental sym-
metries, partial observability, dynamic environment, etc.

There are many SLAM techniques based on particle filters. In addition,
perhaps the most successful approach in recent years is the MonoSLAM
of A. Davison ([Gerardo Carrera and Davison, 2011]). The detection of
relevant points in the image and an extended Kalman filter allows the
system to continuously estimate the position and orientation of the 3D
camera and the 3D position of those points. The location results are
impressive. The quality of the maps, mainly as a collection of 3D points,
was not as good at first, but they have improved it even with dense real-
time maps ([Newcombe and Davison, 2010, Weiss et al., 2011]).
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Genetic Algorithms (GA) have also been proposed for robot localization
tasks. For example, in [Tong and Meng, 2007] the location of a robot
with legs is modeled as the optimization of an objective function, and
the GAs are used for that optimization using the vision data as input.
In [Duckett, 2003], Duckett combines an Extended Kalman Filter and a
genetic algorithm to locate a robot within a known environment using
ultrasonic sensors; this technique uses the EKF to obtain a seed and then
searches within the seed neighborhood for the most accurate solution with
a GA. SLAM approaches also include genetic algorithms, such as [Moreno
et al., 2002], where the best trajectory of a robot is calculated with a GA
according to the odometry of the robot and laser measurements.

In [Jensfelt and Kristensen, 2001], Jensfelt and Kristensen present an
active global localization strategy that uses a Kalman filter (KF) to track
multiple robot posture hypotheses. Its approach can be used even with
incomplete maps and the computational complexity is independent of the
size of the environment.

Gartshore ([Gartshore et al., 2002]) develops a map construction frame-
work and a characteristic position detector algorithm that processes im-
ages online from a single camera. The system does not use coincidence
approaches. Instead, calculate the probabilities of finding objects in each
location. The algorithm begins to detect the boundaries of the objects for
the current frame using Harris edge and corner detectors. The detected
characteristics are projected again from the 2D image plane taking into
account all possible locations at any depth. The positioning module of the
system calculates the position of the robot using odometry data combined
with the extraction of image characteristics. The color or gradient of the
edges and the characteristics of previous images help to increase the confi-
dence of the presence of the object in a certain location. The experimental
results tested in indoor environments establish the size of the grid cells at
25mmx25mm. The robot moves 100mm between consecutive images.

In [Mariottini and Roumeliotis, 2011], Mariottini and Roumeliotis present
a strategy for active navigation and location based on the vision of a mobile
robot with visual memory where previously visited areas are represented
as a large collection of images. Clarifies the location by taking into account
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the sequence of distinctive images, while simultaneously navigating to the
original image.

2.5 Educational Robotics

Educational robotics encompasses a wide range of robotic platforms
designed for use in the Teaching-Learning process (T-L) in an educational
context. The literature on the subject is increasing ([Sklar et al., 2003,
Goldman et al., 2004, O’Hara and Kay, 2003, Eguchi, 2012]), as are the
congresses on this subject and the realization of different international
projects, as already commented in Section 1.3.

In the basic definition of Robotics, in educational terms, two funda-
mental branches have to be considered: (1) hardware, which represents
the physical body of the robot and includes sensors, actuators and the cen-
tral microcontroller; and (2) software or programming of the robot, whose
language may or may not depend on the platform used. The actuators
are the mechanisms that allow the robot to interact with the environment
that surrounds it and which are, essentially, motors and servos. The sen-
sors are the mechanisms that report information on the outside world to
the robot, for example: laser, infrared, ultrasound, contact and camera.
The central microcontroller is the chip that performs the processing of the
data received by the sensors to conveniently command the actuators.

There are many teaching environments used to teach robotics to chil-
dren, from those focused on primary education to more powerful ones ori-
ented to secondary education and high school. They are usually composed
of a concrete robotic platform, that is to say a robot, which is programmed
in a certain language using software tools. Different exercises, challenges or
projects are then proposed to the students (practice activities). They teach
the basic operation of sensors, actuators and the rudiments of program-
ming. These teaching environments are used as a tool within an specific
way of teaching robotics classes, that is, of a particular methodology.

Four elements are identified that characterize the numerous ways of
teaching robotics to adolescents and the most used environments: hard-
ware platform, software language and infrastructure, concrete practices
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and methodology. Several illustrative examples will be described in this
section and the proposed teaching proposal will be framed in Chapter 4.

2.5.1 Hardware platforms

The robots used in pre-university education usually incorporate a lim-
ited processor, sensors and simple actuators. There are frequent infrared
sensors (photodetectors), ultrasound, contact, sound, light sensors, etc.
The usual actuators include LEDs, screens, small loudspeakers and fun-
damentally motors. These motors can be of several types: DC motors,
stepper motors or servomotors. They are usually connected to the robot’s
processor using direct cables or simple connectors (such as RJ25).

Some platforms have a closed mechanical design, others allow some
flexibility from pre-built blocks that can be connected in multiple ways,
or parts with sensors or actuators where which to mount in each case and
in what position can be decided by the students. Other platforms do not
have any a priori mechanical design. They are open-ended, and provide
the learning material with the students.

Figure 2.3: LEGO robots: Mindstorm Ev3 and WeDo

Some widely used platforms are the LEGO one in their different mod-
els: MindStorms RCX, NXT, EV3 and WeDo (Figures 2.3 left and right)
([Jiménez et al., 2010, Navarrete et al., 2016]).
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Figure 2.4: Arduino free hardware microcontroller board

Another option widely used, both in secondary and high school, are
plates with Arduino processors (Figure 2.4) to which low-cost sensors and
loose servos are connected ([Araujo et al., 2015, Jamieson, 2012, Navarrete
et al., 2016, Chaudhary et al., 2016, Filippov et al., 2017]). It allows
students to interact with a real robot, sensors and real actuators at an
affordable cost. It also offers many didactic possibilities, such as those
described in ([Junior et al., 2013, Plaza et al., 2016, Balogh, 2010, Afari
and Khine, 2017, Beyers and van der Merwe, 2017]).

Figure 2.5: Robots Thymio, VEX IQ and VEX CORTEX

Another prominent platform is that of the Thymio robot ([Mondada
et al., 2017, Magnenat et al., 2014]), open hardware, and the Thymio-
II (IniRobot [Roy et al., 2015], Figure 2.5 left). In addition, VEX robots
robots and robotic kits are used with certain frequency in education ([Demetriou,
2011]): IQ and CORTEX models (Figure 2.3 middle and right).

It is worth mentioning the Spanish manufacturer robots BQ Zowi (Fig-
ure 2.6 left), based on Arduino, and PrintBot evolution (Figure 2.6 right),
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Figure 2.6: BQ robots: Zowi and PrintBot

Figure 2.7: Meet Edison robot and Makey-Makey board

based on the ATmega328P microcontroller. Also worth noting are Meet
Edison’s robots1 (Figure 2.7 left); these are small robots created by an Aus-
tralian company that allow younger children to start managing and pro-
gramming a robot. Finally, we have the Makey-Makey2 (Figure 2.7 right)
plates, which allow transforming any electrical current, however weak, into
a signal that is interpreted and used to simulate for example a joystick or
the keys of a piano; it is usually used in a simulated physics environment
called Flabby Physics3.

In addition to real robots, simulated robots are also used in pre-university
education. For example, the TRIK-Studio environment includes a simple
2D simulator for the TRIK robot ([Filippov et al., 2017, Stone and Farkhat-

1https://meetedison.com
2https://makeymakey.com
3http://flabbyphysics.com

https://meetedison.com
https://makeymakey.com
http://flabbyphysics.com
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dinov, 2017]). Another important example is the 3D simulator used in
Robot Virtual Worlds (RVW)4 ([Witherspoon et al., 2017]), which simu-
lates robots from different manufacturers (VEX, LEGO and TETRIX).

2.5.2 Languages and software environments

Typically, each robot has a software environment that allows program-
ming in a certain language. The environment usually includes code editors,
utilities to download in real robot and even simulators in some occasions.
As for languages, simple languages are used to facilitate programming by
children and include instructions for ordering commands to actuators, to
read sensor measurements, loops, conditional and sequencing instructions.

Figure 2.8: Programs in graphic language Scratch and in EV3-software

A successful option is the graphic languages of LEGO, specific to their
robots, for example the old RCX-Code, RoboLab (built within LabVIEW),
NXT-G and the latest EV3-software (Figure 2.8 right). All contain blocks
of action, sensors, flow control, operations with data, etc.

Another visual alternative is the Scratch language5 (Figure 2.8 left)
([Beyers and van der Merwe, 2017, Olabe et al., 2011, Plaza et al., 2017])
or variants such as Blockly (for example with the robot RoBOBO ([Naya
et al., 2017])), as Bitbloq (for BQ-Zowi) or as VPL (for Thymio). All these
also have graphic blocks that typically connect in sequence in a graphic
editor.

Another option is simple text languages, such as the Arduino language
with the Arduino IDE editor (Figure 2.9). JavaScript is also used, as

4http://www.robotvirtualworlds.com/
5https://scratch.mit.edu/

http://www.robotvirtualworlds.com/
https://scratch.mit.edu/
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Figure 2.9: Program in Arduino IDE environment

with the educational robot TRIK ([Stone and Farkhatdinov, 2017]) and
its TRIK Studio environment, which also has support for its own visual
language.

Languages such as C++, which are used successfully at university level,
are not recommended for adolescents due to their complexity. However,
similar languages to C are used, without object orientation. For example
NXC for LEGO robots ([Navarrete et al., 2016]).

In this line is the ROBOTC6 environment, which uses the C language
and a graphical variant of it (ROBOTC-graphical) to program robots from
different manufacturers (VEX IQ, VEX CORTEX, LEGO EV3, LEGO
NXT and Arduino) and simulated robots in RVW. In particular it is used
in the Carnegie Mellon Robotics Academy ([Witherspoon et al., 2017])
with different exercises and competitions.

6http://www.robotc.net

http://www.robotc.net
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Figure 2.10: Languages used in primary and secondary education in the UK,
2015

Sentance ([Sentance, 2015]) analyzed the use of programming languages
in UK schools through a survey of 1, 159 teachers of Technology (Figure
2.10). The most widely used language is Scratch (95 % in primary and
secondary), followed by Python (18 % in primary, 84 % in secondary).

2.5.3 Exercises

Robotic teaching has a marked practical character. By its very na-
ture, it lends itself to learning by doing. Thus, in addition to the theo-
retical content, emphasis is usually placed on certain projects or exercises
that students have to tackle and solve using the appropriate robot and
its software environment. Performing these projects means that students
encounter specific problems and that to solve them, they learn a range of
robotic knowledge.

Exploring the existing literature we have found a set of exercises that
are frequently used in different teaching environments and academic pro-
posals, in an almost cross-curricular way. One of the classic projects is
behavior follows-lines ([Filippov et al., 2017, Stone and Farkhatdinov,
2017, Navarrete et al., 2016, Jiménez et al., 2010]). In this, the robot
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has IR sensors pointing to the ground, which is white but has a thick
black line. Another is the avoidance of obstacles ([Stone and Farkhat-
dinov, 2017, Navarrete et al., 2016]), where the robot has an ultrasound
sensor that allows it to detect objects that interfere with the movement of
the robot. The student’s program must then order the motors to stop and
turn until they find a free space for the new advance.

There are also several exercises aligned with tests within some cham-
pionships, such as the game of sumo between two robots ([Filippov et al.,
2017]), and several related to robotic football ([Filippov et al., 2017]).
These exercises allow a competitive playful approach that increases the
motivation of the students.

Other interesting examples are that of the robot that follows a wall
([Stone and Farkhatdinov, 2017]) or that escapes from a labyrinth ([Filip-
pov et al., 2017]).

2.5.4 Methodologies

Teaching methodologies underpin the cognitive processes that take
place in students when they learn. They are different ways of motivat-
ing students. All of them seek to reach out to the students, capture their
attention and/or awaken interest in the subject ([Bain, 2007, Vega, 2011]).
Several stand out: (a) the traditional approach, (b) constructivism, (c)
project-oriented learning, (d) cooperative learning, (e) problem solving,
and other derived methodologies. Rather than mutually exclusive, they
are complementary. One usually makes use of one or the other according
to the objectives to be achieved in class. The nature of teaching robotics
means it is usual to emphasize the practical approach.

The traditional approach is based on master classes, whose teaching-
learning process is radically marked: the teacher teaches, the student re-
ceives ([Dewey, 2007]). They usually include teaching material for theory
and practical exercises, with instructions that students follow.

Constructivism considers that by providing students with the necessary
tools, they can build their own procedures to solve a problematic situa-
tion, which implies that their ideas can be modified and learning can be
continued.
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Project-oriented learning also considers the student more responsible
for their own learning. In this case, it is focused on applying to real projects
the skills and knowledge that they have acquired in the master class theory
sessions ([Morón, 2015]). A frequent project is the participation in robotic
competitions where the students’ robots (by groups or by centers) have
to compete with those of other students passing tests. This participation
helps motivate them.

Cooperative learning ([Schul, 2011]) focuses on assessing the educa-
tional potential derived from the interpersonal relationships of any group,
so that the work is carried out in common, balancing and taking advantage
of the skills of its components.

Problem Based Learning ([Acosta-Nassar, 2014]) is mainly based on
constructivist theory, so it follows its fundamental principles. The im-
portance of this methodology lies in its influence when reorganizing the
information stored in the student’s cognitive structure, which is modified.
In this very modification, learning takes place.

Within the European Erasmus+ project, the most commonly used
methodologies in the field in Finland were studied ([Opoku and Lehti-
nen, 2015]). The constructivist approach and problem-based learning are
mostly used in the Finnish pre-university education system. There is
a great advance in the results of the PISA report ([OECD, 2015]) the
paradigm shift in the Teaching-Learning process ([Tirri, 2014]), where the
teacher is not the only transmitter of knowledge, but also becomes a guide
in the self-learning of the adolescents, who can give free rein to their cre-
ativity thanks to robotics ([Jormanainen and Erkki, 2013]).

They clearly differentiate between formal sessions, in which the teachers
deal with content that they consider necessary for the student, and non-
formal ones, in which the students themselves perform the learning process
by their own means ([Tirri and Kuusisto, 2013]) .

In addition to specific teaching, Robotics is also used in Finland as a
vehicular subject. In this 2017-18 school year, included in the secondary
curriculum is that all students must know how to program robots at least in
a simple way, with LEGO MindStorms. Thus, for example, they introduce
a series of specific skills to be developed from 1st to 9th grade in Maths.



Chapter 3

Robotic vision systems

This chapter shows the developments carried out on a dynamic
visual memory to store the information gathered from a moving
camera on board a robot, an attention system to choose where to
look at with this mobile camera, and a visual localization algo-
rithm which uses this visual memory. All the experiments which
are shown in this chapter, and much more, are publicly availablea.
The organization of this chapter is as follows. The first Section (3.1)
introduces the design of the visual perceptive system developed,
its components and connections. The next three sections describe
its three building blocks: the visual memory component (Section
3.2), the visual attention module (Section 3.3) and the localization
component (3.4). Finally, several experiments are shown in the last
Section 3.5, which were carried out with simulated and real Pioneer
and Nao robots to validate the system and each of its components.

ahttp://jderobot.org/JulioVega_PhD

Cameras are one of the most relevant sensors in autonomous robots.
Two challenges with them are to extract useful information from captured
images and to manage the small field of view of regular cameras.

In this chapter, a novel visual perceptive system is shown, which was
developed for an autonomous robot composed of three modules. First, a

http://jderobot.org/JulioVega_PhD
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short term dynamic visual memory of robot surroundings. It gets images
from a mobile camera, extracts edge information and offers a wider field of
view and more robustness to occlusions than instantaneous images. This
memory stores 3D segments representing the robot surroundings and ob-
jects. The memory contents are updated in a continuous coupling with
the current image flow. Second, a gaze control algorithm was developed to
select where the camera should look at every time. It manages the move-
ment of the camera to periodically reobserve objects already stored in the
visual memory, to explore the scene, and to test tentative object positions
in a time sharing fashion.

These two modules working in conjunction build and update an at-
tentive visual memory of the objects around the robot. Third, a visual
localization algorithm was developed which uses the current image or the
contents of the memory to continuously estimate the robot position. It
provides a robust localization estimation and was specifically designed to
bear with symmetries in the environment.

3.1 Design

The perceptive system developed is designed for autonomous robots
that use a single mobile camera, like that on the head of humanoids or
in robots with pan-tilt units ([Vega et al., 2013]). The block diagram of
the robot control architecture is showed in Figure 3.1. The three build-
ing blocks (visual memory, gaze control and localization algorithm) were
grouped into two main software components: active_visual_memory and
localization. They receive data from robot sensors, like camera and
encoders, and extract refined information like description of the objects
around the robot or the robot position. This information is provided to
other actuation components like the navigation algorithm or other control
units.

First, the active_visual_memory component builds a short term vi-
sual memory of objects in the robot’s surroundings. The memory is built
analyzing each camera image looking for relevant objects (like human faces,
segments, parallelograms, arrows, etc.) and updating the object features
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Figure 3.1: Block diagram of the proposed visual system

already stored in the memory, like their 3D position. The memory is dy-
namic and is continuously coupled with camera images. The new frames
confirm or correct the object features stored in memory, like their 3D rel-
ative position to the robot, length, etc. New objects are introduced in
memory when they appear in images and do not match any known object.

This memory has a broader scope than the camera field of view and
objects in memory have more persistence than the current image. Regular
cameras typically have 60 degrees of scope. This would be good enough for
visual control but a broader scope may improve robot responses in tasks
like navigation, where the presence of obstacles in the robot’s surroundings
should be taken into account even if they lie outside the current field of
view.

This memory is intended as local and short-term. Relative object po-
sitions are estimated using robot’s odometry. Being only short term and
continuously correcting with new image data there is no much time to ac-
cumulate error in the object estimated relative position. Currently, the
system only deals with objects on the floor plane and uses a single camera.
It can be extended to any 3D object position and two cameras.

Second, in order to keep this short term visual memory consistent with
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reality, the system has mechanisms to properly refresh and update it ([Vega
and Cañas, 2011]). The camera is assumed to be mobile, typically mounted
over a pan-tilt unit. Its orientation may be controlled and changed during
robot behavior at will, and so, the camera may look towards different
locations even if the robot remains static. In order to feed the visual
memory, an overt attention algorithm was designed to continuously guide
camera movements, choosing where to look at every time ([Vega et al.,
2012a]). It was inserted inside the active_visual_memory component
and associates two dynamic values to each object in memory: salience and
life (quality). Objects with low life are discarded and objects with high
salience are good candidates to look at.

The position of objects already in memory are themselves foci of at-
tention in order to refresh their perceived features. Random locations are
also considered to let the robot explore new areas of its surroundings. In
addition, new foci of attention may also be introduced to check the pres-
ence of some hypothesized objects. For instance, once the robot has seen
three vertices of a parallelogram, the position of the fourth one is computed
from the visual memory and ordered as a tentative focus of attention for
the camera.

Third, a vision based localization algorithm was developed in the lo-
calization component. It uses a population of particles and an evolution-
ary algorithm to manage them and find the robot position ([Vega et al.,
2012c]). The health of each particle is computed based on the current
image or based on the current contents of the visual memory. The local
visual memory provides information about robot’s surroundings, typically
more than the current instantaneous sensor readings. In this way, the vi-
sual memory may be used as a virtual sensor and its information may be
used as observations for the localization algorithm. Because of its broader
scope it may help to improve localization, especially in environments with
symmetries and places that look like similar according to sensor readings
([Vega et al., 2012b]).

These two software components and the three building blocks will be
described in detail in the following sections.
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3.2 Visual memory

The goal of the visual memory is to do a visual tracking of the various
basic objects in the scene surrounding the robot. It must detect new
objects, track them, update their relative positions to the robot and remove
them from the memory once they have disappeared.

Figure 3.2 shows the main modules of the visual memory building block.
The first stage of the visual memory is a 2D analysis, which detects 2D
segments present in the current image. These 2D segments are compared
with those predicted from the current visual memory 3D contents. The
3D object reconstruction module places relevant 2D segments in 3D space
according to the ground-hypothesis which, as a simplifying hypothesis, let
is assumed that all objects are flat on the floor (it will be showed in detail
in Section 4.2.2). Finally, the 3D memory module stores their position in
the 3D space, update or merge them with existing 3D segments, calculates
perceptual hypotheses and generates new predictions of these objects in
the current image perceived by the robot.

Figure 3.2: Modules of the Visual Memory

The visual memory also creates perceptual hypothesis with the stored
items, allowing the system to abstract complex objects ([Vega et al., 2010]).
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For instance, it groups a set of 3D segments into the parallelogram concept
if some geometric properties are hold (Code 3.1).

The visual memory was coded inside the active_visual_memory soft-
ware component, running iteratively at a frequency of 5Hz. In each itera-
tion a motion prediction is made for objects in the visual memory (Code
3.2) according to robot encoders, images are acquired and displayed, image
processing occurs and the memory contents are updated. To save comput-
ing power, robot odometry can be used to trigger the image processing and
the system only analyzes frames when the robot has moved away a certain
distance or angle from the position where the last image processing was
done.

3.2.1 2D Image Processing

The main goal of this module is to extract 2D straight segments as a
basic primitive to get object shapes. In prior implementations it is used
the classic Canny edge filter and Hough transform to extract lines, but it
was not accurate and robust enough. Usually its outcome was not fully
effective, line segments were often disconnected as can be seen in Figure
3.3. In last releases this was replaced with a Laplace edge detection and
the Solis’ algorithm [Solis et al., 2009] for 2D extraction, improving the
results. Solis’ algorithm uses a compilation of different image process-
ing steps such as normalization, Gaussian smoothing, thresholding, and
Laplace edge detection to extract edge contours from input images (Code
3.3). This solution is surprisingly more accurate, robust, faster and with
less parameters for detecting line segments at any orientation and location
than the widely used Hough Transform algorithm.

The OpenCV library is used to implement these techniques. A com-
parison can be seen in Figure 3.3, where the Solis algorithm extracts many
more 2D segments. The detected segments are shown as blue lines. While
the Hough approach is able to recognize just a really small set of segments,
the Solis one gets most of them. The floor used in this image is a textured
surface and so some false positives appear. The steps and parameters used
in Hough algorithm is shown in Code 3.4.

The 2D analysis system is connected directly to the 3D visual memory



Chapter 3. Robotic vision systems 42

Figure 3.3: Differences between Canny+Hough (left) and Solis algorithm (right)

Figure 3.4: 3D projection on the image plane (left) and matching between
predicted and observed segments (right)

contents to alleviate the computational cost of image analysis. Before ex-
tracting features of the current image, the system predicts inside the 2D
image the appearance of those objects already stored in the 3D memory
which are visible from the current position. An own projective geome-
try library, relied on the book [Richard and Zisserman, 2003], is used to
do this. Each stored 3D visible object is projected on the image plane
as shown in Figure 3.4 (left). The system refutes/corroborates such pre-
dicted segments, comparing them with those coming from the 2D analysis
on observed images (Code 3.5). This comparison provides three sets of
segments, as seen in Figure 3.4: those that match with observations, those
that do not match, and observed segments that are unpredicted, that is,
without an homologous in the 3D memory. Matched segments will be used
to update the information of their homologous in 3D memory. Unpredicted
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observed segments will be located in 3D and inserted in the visual memory
as new 3D segments.

3.2.2 Reconstruction with 3D segments

This module is responsible of obtaining 3D instantaneous information
from 2D segments and objects in the current image. To do this we rely on
the idea of ground-hypothesis, assuming that all the objects are flat on the
floor. This simplifying assumption makes it easier to estimate the third
dimension from a single camera. This module can be replaced with other
3D techniques and full 3D estimation in case of using a stereo pair.

Figure 3.5: C0 coordinate system

There are four relevant 3D coordinate systems in this approach. First,
the absolute coordinate system, its origin lies somewhere in the world where
the robot is moving. Second, the system located at the base of the robot
(Figure 3.5). The robot odometry gives its position and orientation with
respect to the absolute system, with some noise. Third, the system relative
to the base of the pan-tilt unit to which the camera is attached to (Figure
3.6). It has its own encoders for its position inside the robot at any given
time, with pan and tilt movements with respect to the base of the robot.
And fourth, the camera relative coordinate system (Figure 3.7), displaced
and oriented in a particular mechanical axis from the pan-tilt unit. All
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Figure 3.6: C1 and C2 coordinate system

Figure 3.7: C3 coordinate system

this mathematical devolpments are described in detail in Section 4.2.3.
The visual memory is intended to be local and contains accurate rel-

ative position of objects around the robot, despite their global world co-
ordinates are wrong. For visual memory purposes the robot position is
taken from the encoders, so it accumulates error as the robot moves along
and deviates from the real robot location in the absolute coordinate sys-
tem. The segment and object positions computed from images take into
account such robot location. This way, the segment and object positions
in visual memory are absolute, accumulate error and deviate from their
real coordinates in the world, but subtracting the robot position measured
from the encoders their relative position are pretty accurate. There is no
problem with this as long as the visual memory does not intend to be a
global map of the robot scenario. The visual memory is going to be used
from the robot point of view, extracting from it relative coordinates of ob-



Chapter 3. Robotic vision systems 45

jects: for local navigation and as a virtual observation for the localization
algorithms.

Once the 3D segments are got, and before including them on the 3D
memory, some post-processing is needed to avoid duplicates in memory
due to noise in the images (Code 3.6). This post-processing compares the
relative position between segments, as well as its orientation and proximity,
maybe merging some of them. The output is a set of observed 3D segments
situated on the robot coordinate system. Figure 3.8 shows the segments
detected in the current image, the predicted segments from the current
position, and all the objects (parallelograms and arrows) formed by these
segments and recognized by the system in the 3D observed scene.

Figure 3.8: Scene situation with three instantaneous images and 3D scene re-
construction

3.2.3 Inserting segments into the 3D visual memory

3D visual memory comprises a dynamic set of lists which stores infor-
mation about the different types of elements present in the scene (position,
type or color). The most basic element is the 3D segment. The visual
memory also can establish relationships between them to make up more
complex elements such as human faces, arrows, parallelograms, triangles,
circles or other objects (Code 3.7).
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As mentioned before, the 2D analysis returns different subsets of seg-
ments, as the result of comparison between observed and predicted seg-
ments from 3D memory. If a segment is identified in the current image
and it does not match the predictions, the system creates a new one in
3D. For matched segments they are located in 3D merged with the 3D seg-
ments already stored in the visual memory. They will be nearby segments
with similar orientation and so the system combines these segments into a
new one taking the longest length of its predecessors, and the orientation
of the more recent, as probably it is more consistent with reality (the older
ones tend to have more noise due to errors in robot odometry). The 3D
segments have an attribute named uncertainty which increases whilst the
segment remains in memory and is also taken into account and updated
(Code 3.8). To make this fusion process computationally lighter, the sys-
tem has a 3D segment cache of the full 3D segment collection with only
the segments close to the robot (in a radius of 4m).

As it will be described later (Section 3.3.4), the 3D segments have an
attribute named life which decreases whilst the segment remains in memory
and is not matched with any observation. Every time there is a matching,
the life of the corresponding 3D segment is increased. If the uncertainty
on a 3D segment falls below a given threshold it is deleted from visual
memory.

3.2.4 Complex primitives in visual memory

Visual memory manages human faces, simple 3D segments and other
primitives like parallelograms and arrows.

3.2.4.1 Human faces

Human faces are detected using the Haar Classifier offered by OpenCV
(Code 3.9). This classifier is a machine learning based approach, an algo-
rithm created by Paul Viola and Michael Jones ([Viola and Jones., 2001])
which is trained from many positive images (with faces) and negatives
images (without faces). Figure 3.9 shows an example of tracking paying
attention to a single face. Figure 3.10 shows an example doing the same
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but with several faces in the surrounding scene.

Figure 3.9: Tracking and paying attention to a single face

Figure 3.10: Tracking and paying attention to several faces

3.2.4.2 Segments and parallelograms

The segments and their corresponding vertices are used to detect paral-
lelograms checking the connection between them and the parallelism con-
ditions. The analysis of the angles formed by each segment provides infor-
mation about how the segments are connected to each other. The visual
memory can estimate the position of a possible fourth vertex using the
information about edges and the other three vertices. In addition, the
parallelogram primitive can be used to merge incomplete or intermittent
segments (Code 3.6). This capability makes the algorithm robust against
occlusions, which occur frequently in the real world.
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Figure 3.11 illustrates an example of occlusion that is successfully
solved by the algorithm. Figure 3.11-(b) shows the observation of incom-
plete parallelograms. The results of reconstruction of parallelograms can
be seen in Figure 3.11-(a), with the extracted four parallelograms spread
on the floor. The robot, after several snapshots with incomplete parallelo-
grams, captures the real ones in 3D avoiding the noise in the observations.
In this example, one threshold of Solis detection algorithm was increased
to demonstrate the robustness of the algorithm against noise and incom-
plete detections of complex objects in the scene. From the input image in
Figure 3.11-b, there are many noisy 2D instantaneous segments extracted
(Figure 3.11-c) and therefore in the corresponding 3D segments (Figure
3.11-a), but parallelograms are perfectly detected in the visual memory
(red objects in Figure 3.11-a).

Figure 3.11: Complex primitives in visual memory: parallelograms with occlu-
sion
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3.2.4.3 Arrows

Similarly, other objects such as arrows can be abstracted (Code 3.10).
These objects are crucial to the system, because they help the robot to
navigate in the direction indicated by the arrow (Figure 3.8).

3.3 Visual attention

The second building block of the visual perception system is the visual
attention. It uses two main object attributes: salience and life to decide
where to look at every moment and to forget objects when they disappear
from the scene (all the visual attention system objects initial attributes
are shown in Code 3.11). In addition, this block includes a mechanism to
control the camera movements for object tracking and exploring of new
unknown areas from the scene.

3.3.1 Gaze control: salience dynamics

Each object in the visual memory has its own 3D coordinates in the
scene. It is desirable to control the movement of the pan-tilt unit towards
that position periodically in order to reobserve that object. To do so, the
dynamics of salience and attention points is introduced. The position of
different 3D segments and objects in the visual memory are attention can-
didate points. Each one has a salience that grows over time and vanishes
every time that element is visited, providing so the mechanism of inhibi-
tion of return described in Section 2.2, following the equation 3.1 (Code
3.8).

Salience(t) =
{

0 if object attended
Salience(t− 1) + 1 otherwise (3.1)

Equation 3.1: Objects saliency

The system continuously computes the salience of all attention points
and chooses the most salient one to control the gaze. The pan and tilt
orders that make the camera look at it are then computed and commanded
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to the pan-tilt unit. When a point is visited, its salience is set to 0. An
element that the system has not visited recently gets more salience than
one which has just been attended. If the salience is low, it will not be
visited now. The system is thus similar to the behavior of a human eye, as
pointed by biology studies [Itti and Koch., 2005]: when the eye responds
to a stimulus that appears in a position that was previously treated, the
reaction time is usually higher than when the stimulus appears in a new
position.

After a while the most salient element is recomputed again and so
the focus of attention is changed, implementing a kind of time sharing
gaze control. The designed algorithm allows so to alternate the focus of
the camera between the different objects in the scene according to their
salience. It is assumed that an object will be found near the location where
it was previously observed the last time. If the object motion were too fast
then the reobservations would not match with the current object location.

In the system all objects have the same slope in the saliency dynamics,
the same preference of attention and so all of them are observed with the
same frequency. Objects could have different priorities whether rates of
growth of salience is assigned, causing the pan-tilt unit to look more times
at the objects which salience grows faster.

3.3.2 Tracking of a focused object

When the gaze control chooses the attention point of a given object,
the system will look at it for a certain time (3 seconds), tracking it if it
moves spatially. For this tracking it is used two proportional controllers to
command the pan and tilt speeds and thus continually keep that object in
the center of the image, previously translated from Cartesian coordinates
to Polar coordinates (Code 3.12).

The controller follows the equations 3.2 and 3.3, where: Kp is the P
control gain, Tt is the Tilt of the target, T is the current Tilt, Pt is the Pan
of the target, P is the current Pan, Mt is the maximum Tilt acceptable
error, Mp is the maximum Pan acceptable error, εp is (Pt − P ) and εt is
(Tt − T ).
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v(Pan) =


0 if εp < 0.3
Kp · (Pt − P ) if 0.3 ≤ εp < Mp

Kp ·Mp if Mp < εp

(3.2)

Equation 3.2: Pan speed controller

v(Tilt) =


0 if εt < 0.1
Kp · (Tt − T ) if 0.1 ≤ εt < Mt

Kp ·Mt if Mt < εt

(3.3)

Equation 3.3: Tilt speed controller

3.3.3 Exploring new areas of interest

The robot capability to look for new objects in the scene is interesting.
This search is especially convenient at the beginning of operation, when
there are many unknown areas of the scene around the robot with objects
of interest. For that search the system periodically inserts (every forced-
SearchTime) attention points with high salience in the visual memory. Due
to its high salience they will be quickly visited with the camera and so that
location checked whether any object of interest is found around it. In such
a case that object will enter into the visual memory and into the regular
gaze sharing.

The scanning points can be of two types: random and systematic ones.
Random points are distributed uniformly within the pan-tilt range. Sys-
tematic scanning points follow a regular pattern to finally cover the whole
scene around the robot. With them, the system ensures that eventually
all areas of the scene will be visited.

There will be a proliferation of points of exploration in the beginning,
when there are few objects in memory to reobserve. As the robot discovers
objects, the desire to explore new areas will decrease in proportion to the
number of already detected objects.

3.3.4 Representation of the environment: life dynamics

As already mentioned in previous sections, the objects may eventually
disappear from the scene, and then they should be removed from the mem-
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Figure 3.12: P-controller mechanism

ory in order to maintain coherence between the representation of the scene
and the reality. To forget such old elements, it was implemented the life
dynamics that follows the equation 3.4.

Life(t) =


min(MAXLIF E , Life(t− 1) + ∆)

if object observed
Life(t− 1) − 1

otherwise

(3.4)

Equation 3.4: Life dynamics

Where ∆ is a bonus factor used when the element is a human face,
because this kind of element it is considered more relevant for the visual
attention system.

Life of unobserved 3D segments or objects decreases over time. Every
time an object or 3D segment is observed in the images (just because the
gaze control visits it or visits one near object), its life increases, with a
maximum saturation limit. This way when the life of an object exceeds
a certain threshold, that means it is still on the scene, whereas when it is
below it that means it has gone and so, is deleted from visual memory.

3.3.5 Attention module operation

The visual attention module is fully bottom-up. The objects surround-
ing the robot guide the movements of the camera, just to reobserve them,
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to track them or to explore the environment looking for them. Period-
ically the system updates the salience and life attributes of the objects
that are already stored in memory following previous equations. It checks
whether any of them is already outdated, because its life is below a certain
threshold. If not, it increases its salience and reduces its life.

Figure 3.13: Finite state machine attention system

It was implemented following a finite-state-machine (Figure 3.13) that
determines when to execute the different steps of the algorithm: select next
goal (state 0), complete the saccadic movement (state 1), analyze image
(state 2) and track the object (state 3). In the initial state the system
asks whether there is any attention point to look at (in case it has an
object previously stored in memory) or not. If so, it goes to state 1. If
not, it inserts a new scanning attention point into memory and goes back
to state 0. In state 1 the task is to complete the movement towards the
target position. Once there, the automaton goes to stage 2 and it analyzes
whether there are relevant objects in the images or not. After a while it
returns to state 0 and starts again.
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3.4 Localization

A new approach to solve robot self-localization was specifically de-
signed to deal with symmetries. It is an evolutionary algorithm, a type
of meta-heuristic optimization algorithm that is inspired by the biological
evolution.

In this kind of algorithms, candidate solutions are so-called ”individ-
uals”, which belong to a population that evolves over time using genetic
operators, such as mutation or crossover. Each individual is a tentative
robot position (X,Y, θ) and it is evaluated with a quality function which
calculates its ”health”, that is, a measure to know how good its localization
is with regard to the optimal solution. It was defined two different health
functions, one based on instantaneous measurements of robot sensors and
another one based on the visual memory contents.

Races are sets of individuals around a given location, they perform
a fine-grain search around it. The algorithm has R races which compete
among each other to be the race containing the best pose estimation. Each
race has several associated parameters like the number of iterations without
being deleted, the number of iterations containing the best pose estimation,
etc.

The main idea of the algorithm consists of keeping several races com-
peting among each other in several likely positions. In case of symmetries
from observations, the algorithm will create new races on various positions
where the robot might be located. After some iterations, predictably, new
observations will provide information to reject most of the races and the
algorithm will obtain the real robot pose from the best race. On each
iteration of the algorithm it performs several steps to estimate the current
robot pose (Figure 3.14). They are described in detail in the following
sections.

• Health race calculation using the information obtained after analyz-
ing images.

• Explorer creation: New individuals are randomly spread; explorers,
with the aim to find new candidate positions where new races could
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be created.

• Race management: To create, merge or delete races depending on
their current state.

• Race evolution: To evolve each race by using genetic operators. Be-
sides, if the robot is moving, all races are up-to-date taking into
account this movement.

• After calculating each race health, one of them is selected to set the
current robot pose estimation.

Figure 3.14: Basic diagram of evolutionary algorithm

We have created two branches of the proposed evolutive localization
algorithm. The first one takes data directly from the current camera im-
age. Its health function is described in Section 3.4.2. The second one
takes data from the local visual memory, its 3D segments. Its health func-
tion is described in Section 3.4.3. Current implementation of the visual
memory component only creates 3D segments lying on the floor, but the
localization algorithm is ready for accepting 3D segments in any position
and orientation.
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3.4.1 Analyzing images

When the localization algorithm uses the instantaneous camera im-
ages, it first detects lines inside the images following the same technique
described in Section 3.2.1. This time the algorithm does not discard seg-
ments over the horizon (Code 3.13), as it does not require that objects
lie on the floor. Also, some post-processing in the image is performed to
clean and refine the segments. The post-processing associates a label to
each segment depending on the main colors at both sides of the segment.
Segments with unknown type are rejected. After labelling each segment,
the algorithm tries to merge segments with the same type if their extremes
are close to each other (Code 3.6), joining consecutive segments together
(Figure 3.15). Too small segments are discarded.

Figure 3.15: Image analysis before merging (left) and after merging (right)

Instead of using these lines directly as input data, the algorithm divides
them into sampling points to make the comparison between lines easier,
as it will be explained in Section 3.4.2. It is created a grid with different
cell sizes and a single new point is saved where the detected lines intersect
with this grid (Figure 3.16). The size of this grid cells changes because
it is required to analyze the upper part of the image more deeply than
the lower one, since further objects will be at the top of the image and its
resolution will be smaller. All these selected sampling points will be the
input data to calculate the health of each individual.
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Figure 3.16: Image grid (left) and points selected (right)

3.4.2 Health calculation from real-time images

The health of an individual placed at certain location is computed
comparing the theoretical set of visible objects and segments from that
location (theoretical observation) with objects and segments currently ob-
served (real observation). The more similar the predicted segments and
the observed ones are, the more likely such location is the correct one.

Figure 3.17: Detected lines in current image and theoretical image

The theoretical observations are generated ad-hoc for each particular
location, projecting lines from the environment map into the camera placed
at that location (Figure 3.17). It contains the lines the robot would see
if it were placed at that location (Figure 3.17 (right)). It is assumed that
the map of the environment is known.

For each sampling point in the observed lines (Figure 3.17 (left)) the
Euclidean distance di in pixels to the closest theoretical line with the same
label is computed (Code 3.14). After calculating di for all points, the indi-
vidual’s health is computed as the average distance, following the equation
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3.5, where N is the number of points and M is the maximum distance al-
lowed in pixels (set to 50 pixels for a 320x240 image size).

H = 1 −
∑N

i=0
di
N

M

Equation 3.5: Points health

We will show in Section 3.5.2.4 several experiments to analyze the
health function behavior in different situations.

3.4.3 Health calculation with Visual Memory

It is not necessary to analyze each image, in case of using the visual
memory; just the current visual memory contents from the
active_visual_memory component, that is, the set of 3D segments inside,
relative to the robot. So it is not able to compare lines in image as it was
done previously. Besides, it has to be taken into account that lines may
not be detected completely or they may be divided into several small lines.
Thus, the equation 3.5 is followed to calculate the health of an individual,
where all lines belonging to the visual memory are covered. For each line
its extremes are obtained and calculated the Euclidean distances djs and
dje to the closest theoretical line with the same label. This is similar to
health function with instantaneous images but in 3D. After calculating djs

and dje for each line, the health can be calculated as follows, where N is
the number of lines andM is the maximum distance allowed in meters (set
to 0.5 meters).

H = 1 −
∑N

i=0
(

djs +dje
2 )
N

M

Equation 3.6: Lines health

3.4.4 Explorer creation

Explorers are individuals that do not belong to any race and that try
to find likely positions with good health. There are two ways to spread
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explorers around the environment: randomly or following a predesigned
pattern of search positions. In order to be truly general and avoid the
over-fitting of the algorithm the random approach was chosen.

When explorers creation is performed, the algorithm creates E explorer
individuals, calculates their health and arranges them according to their
health. Then, the bestM explorers are promoted to become a candidate to
create a new race. The number of explorers created changes dynamically
depending on the current algorithm status: if the robot is lost, E is in-
creased, and decreased it if its location is reliable. Besides, since explorers
creation is time consuming, when current location is reliable the explorer
creation is not executed at each algorithm iteration, but once every certain
iterations.

3.4.5 Race management

In the long term the algorithm manages several races and needs a policy
to decide when to create a new race, delete it, or merge two races. The
algorithm uses two parameters of each race for that: ”victories” and ”age”.
A race increases its ”victory” counter in an iteration when its health is
higher than that of the rest of races. At the race creation this parameter is
set to 0. This number can also decrease if the winner in a given iteration
is another race. This parameter is useful to select the race that finally sets
the current robot pose estimation in each iteration. The age parameter
shows the number of algorithm iterations since its creation. It was created
with two objectives. First, it preserves new races from dying too soon to
avoid creating races that will be deleted in the next iteration. When a
race is created this race can not be deleted or replaced (although it may
be merged) until its age reaches RACELIFE, whose value that works
best is being 3. Second, it avoids deleting a race because of wrong sensor
information. If a race has had the highest health in an iteration, the
algorithm will not delete it at least until 9 iterations after that. This
provides some stability to races and avoids the continuous creation and
deletion of races.

The followed approach has a maximum number or races R that avoids
the exponential increasing of computation time related to the number of
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races. Whenever the explorers creation is executed and there are new
candidates to become a race, we have to decide when to create a new race
and when to replace an existing one. If the maximum number of races R
has not been reached, for each candidate we find out if an existing race is
located in the same position (X,Y, θ). In such case, we do not try to create
a new race, but we assume that the existing race already represents this
candidate, and its age is increased. If candidates are innovative enough,
we create a new race. If the maximum number of races is reached, the
candidate will replace a victim race if the health of the candidate is greater
than that of the victim and the victim’s victories parameter falls below 0.
If no race can be replaced, candidates are ignored.

In case two races evolving towards the same location, we consider that
they have led to the same solution, so we merge them. This merging
consists of deleting the race with lower victories. If both have the same
victories, we keep the best race according to its health.

A race will be deleted when its victories are 0 and its health is below
0.6. In such a case the race is not at the real robot pose anymore, the
algorithm considers it wrong and deletes it.

3.4.6 Race evolution

When a race is created from an explorer, all its individuals are created
applying a random thermal noise to the explorer who created the race.
From then on, in the next iterations, its individuals evolve through three
genetic operators: elitism, crossover and mutation. With elitism, the algo-
rithm selects the best individuals of each race, arranging them according
to their health. They are saved in the next iteration without any change.
With crossover, the algorithm randomly selects several pairs of individuals
and calculates their average with their values (X,Y, θ) for the next iter-
ation. With mutation, the algorithm selects an individual randomly and
applies a thermal noise to its position and orientation.

Besides, in case the robot has moved since the last iteration, we apply
a motion operator to all races and individuals at the beginning of each
iteration using robot odometry. Once all the individuals of each race have
evolved, the algorithm calculates the final pose of the race as the average
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of its elitist individuals, to avoid abrupt changes.

3.4.7 Selecting the robot pose estimation

After evaluating all the existing races, the algorithm chooses one of
them in each iteration to be the current pose of the robot. The selected
race will be the one with more victories and its pose will determine the
robot pose calculated by the algorithm.

The first step is selecting the race with greatest health in the current
iteration (Ri). If the race selected was the same in the previous iteration
(Rp), we increase the victories of Ri and we decrease the victories of the
rest. However, if Ri and Rp are different, we only change the races victories
if the difference between Ri health and Rp health is greater enough. This
distinction is made because we want race changing to be difficult if Rp was
the selected race during a lot of iterations. With this behavior, we try to
help the races which were selected in the previous iterations and we only
change the winner race when the health difference is big enough (what
would mean that the current localization is wrong).

3.5 Experiments

To verify the different approaches of visual memory, visual attention
and visual localization, several experiments were conducted. The exper-
imental real platforms were an ActivMedia Pioneer 2DX robot equipped
with a Logitech Autofocus camera (2 megapixels) and a Nao Robot from
Aldebaran Robotics (v3 model). Besides, we have used Gazebo as robot
simulator. All the experiments are implemented on C++ with Jderobot
robotics software platform, which uses ICE as communication middle-ware.

The visual system is primarily intended as underlying technology for
service robot applications at real people homes. The service robot using vi-
sion will need to perceive obstacles around it, even beyond the current field
of view, and to know its position in the house to lunch proper actions. For
the real tests we have used the attentive visual memory and localization
algorithm in an office scenario with doors, corridors, lights, etc. without
any robot-specific landmark. We have preferred this real life environment,
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as is, over simplified ones like, for instance, those in the RoboCup. More-
over, the features of RoboCup competition, with highly dynamic situations
around the robot, are different from those at real homes ([Perdices et al.,
2010]). The proposed algorithms were tested so far on a moving robot in
static or low dynamic scenarios, with few moving objects around or slow
movements.

3.5.1 Attentive visual memory experiments

3.5.1.1 Robot in the middle of a room

For the first experiment, the robot is in the middle of a room (see Fig-
ure 3.18-a). Then the robot turns around itself. Figure 3.18-b shows a
instantaneous view from the room, where robot is able to detect a simple
line on the floor. After a few seconds, the robot has turned a full cir-
cle, having stored all the information about its surrounding environment.
Thus, we can see in Figure 3.18-c, how the short-term memory provides
more information than an instantaneous image.

Figure 3.18: (a) Situation; (b) Instantaneous image; (c) Short-term memory

3.5.1.2 Robot navigating a curve

This experiment shows how the robot is unable to navigate using only
the instantaneous information received from the camera. The situation is
shown in Figure 3.19-a, the robot approaches to a curved area, while nav-
igating through a corridor. If the robot used only instantaneous images
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(Figure 3.19-b), it would be able to see only just some lines in front of
itself (Figure 3.20-a), but with short-term memory it can observe that the
path in front of itself is a curve (Figure 3.20-b). In addition, robot can
quickly explore its surrounding environment thanks to the visual atten-
tion mechanism, which forces the system to explore unknown areas of the
environment.

Figure 3.19: (a) Situation; (b) Current on-board image

Figure 3.20: (a) Information in current field of view; (b) Short-term memory

3.5.1.3 Robot occlusions

Here, the situation is presented to solve a temporary occlusion. This
happens very often in real environments where there are dynamic objects
which can obstruct the robot field of view.
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Figure 3.21: (a) Situation; (b) Short-term memory got after a while

The initial situation is shown in Figure 3.21-a. After a few seconds,
robot has recovered environment information thanks to the short-term
memory and the visual attention system (as displayed in Figure 3.21-b).

Figure 3.22: (a) Situation; (b) Field of view

Then another robot appears, as shown in Figure 3.22-a, temporarily
occluding the field of view of the robot (Figure 3.22-b), so the robot is
unable to see anything. This situation continues for some time until the
second robot moves away from our robot (Figure 3.23-a,b).

This situation is solved by the system with the persistence of the short-
term memory, and so, the robot can make control decisions taking into
account information of areas beyond the robot that is occluding its camera.
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Figure 3.23: (a) Situation; (b) On board current image

As we presented before, the memory is continuously refreshed and updated
over time. If it is inconsistent, that is, what the robot sees does not match
the information stored in memory, the system has some persistence before
changing the memory contents.

3.5.1.4 Attentive visual memory on a humanoid robot

In this experiment we have tested the whole system including visual
memory, visual attention algorithm and visual localization on a real robotic
platform such as Nao humanoid robot. The robot is in the middle of the
department corridor gathering information about its environment. It is
able to move autonomously around the corridor; furthermore, it is moving
its neck in order to detect all segments in a few seconds. We can see in
Figure 3.24 some snapshots and the short-term memory built with them.

Figure 3.24: Visual memory with 3D segments coming from four images of robot
surroundings

The local visual memory updating and the attention module run in it-
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erations. The average iteration time including all computations (2D image
processing, matching with predictions, 3D reconstruction, segment inser-
tion, complex primitives management, etc.) was 80 ms.

3.5.2 Visual localization experiments

We have performed several experiments to validate the evolutionary
algorithm as well, especially with real robots. The localization algorithm
is map-based. The map in these experiments was introduced in the robot
as a collection of 3D segments at certain positions, stored in a file.

3.5.2.1 Testing MCL algorithm behavior

We have implemented a Monte Carlo localization algorithm [Fox et al.,
1999] with the same health calculation (observation model) and motion
operator (motion model) that we explained in Section 3.4. We performed
a theoretical experiment to analyze MCL behavior within symmetric en-
vironments. We placed two particle populations with the same number of
particles (125) in front of two identical doors of the environment, placing
each populations at the same distance from each door and updating MCL
particles with the same observation (Figure 3.25):

Figure 3.25: Observation taken to update MCL particles

Since both populations are located at the same distance from each door,
and observations are identical, MCL should keep both populations until
new information is obtained. However we show in Figure 3.26 the real
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behavior of the algorithm, where one of the populations is always ruled
out after a while. In vertical axis the number of particles of each race is
displayed (different colors for different runs). The horizontal axis displays
the iteration number. In the experiments, MCL was able to keep both
populations with enough particles only once for more 250 iterations (about
30 seconds). In most of the runs one of the two populations eventually
gained all the particles of the algorithm.

This bias towards one of the populations happens because MCL picks
up the particles of the next population randomly in the "roulette" step. By
chance, this randomness may choose more particles from one population
than from the other, and then this last population has even fewer proba-
bility of providing samples at the next iteration, decreasing gradually the
particles coming from it, until such population is finally ruled out.

Figure 3.26: Monte Carlo particles evolution

When we performed this experiment with the evolutive approach, it
created a race in front of each door and kept the races separated from
each other all the time. This way, both races are really kept until new
information is provided.

There are other solutions to solve this bias in the MCL, for instance
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using omnidirectional cameras. We have preferred to improve the local-
ization algorithm and still use regular monocular cameras as they appear
more frequently in the robot equipment and other perceptive algorithms
work with and require these regular cameras.

3.5.2.2 Typical execution in humanoid robot

The evolutionary algorithm has several parameters to be configured,
such as the maximum number of races (10), the number of explorers (30),
and the percentages of the genetic operators previously explained (20%
elitism, 20% crossover and 60% mutation). The maximum number of races
was a crucial factor. A high number of races improves the accuracy of the
calculated localization, but it also increases the algorithm execution time.
We have selected a value, 10, that offers a good balance between efficiency
and accuracy.

The first experiment was performed with a real Nao robot travelling
through a corridor (Figure 3.27). It shows how the algorithm is able to
follow the real movement of the robot starting on a known position. At
first, the robot is located in a known position, afterwards we move the
robot around the environment and measure its localization error. The
red line in Figure 3.27 shows the calculated positions, the green line the
real robot path, and the brown area is the measured error. The average
error was 11,8 cm and 2,1 degrees. The algorithm is able to follow the
robot movement even when its instantaneous observations do not provide
enough information due to robot odometry. Besides, we can emphasize
that the trajectory followed by the robot is very stable and is always close
to the real location of the robot. The ground truth location of the robot
was calculated manually measuring the distance from the robot to known
objects, such as doors or corridor lines. These distances were calculated
each 5 seconds and interpolated in between.

The evolutionary visual localization algorithm runs in iterations. The
average iteration time including all processing (health computation, race
management, explorer creations, etc.) was 110 ms.
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Figure 3.27: Nao robot travelling a corridor for experiments (left) and estimated
localization and position error over time (right)

3.5.2.3 Dealing with symmetries and kidnappings

The second experiment (Figure 3.28) shows how the algorithm works
with symmetries and kidnappings. At first instant (1.a), we locate the
robot in front of a door, so the algorithm creates several races where the
robot may be located. The algorithm selects one of them (a wrong one)
but keeps another one on the right location. Then the robot moves and ob-
tains more information from the world and finally rules the wrong location
out and selects the correct one (at 1.b instant). Afterwards, we kidnap
the robot to another location (2.a) and it takes a while until the robot
changes its estimation to the new right location. This happens because
the location’s reliability changes gradually to avoid changing with false
positives, but after a while, it changes to the new position (2.b). A second
kidnapping is performed (3.a), this case is similar to the first one: first, it
selects a wrong localization (3.b), but after some iterations it changes to
the correct one (3.c). The average error after selecting the correct race was
22,5 cm and 5,8 degrees. We also measured the time spent until the algo-
rithm calculates a new plausible pose after a kidnapping (recovery time).
In this experiment it took 21 secs.
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Figure 3.28: Position error over time

3.5.2.4 Health function based on instantaneous images

To validate the health function, we have implemented a debugging
mechanism to show graphically the value returned by the health function
in different positions. In Figure 3.29 we show the value returned in all
positions (X, Y), where red areas are the ones with highest probability
and white areas with the lowest. As we can see, the position with highest
probability is likely with the input image.

Figure 3.29: Observed image (left) and probabilities calculated with theta equals
to 0 radians(right)
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In case of symmetries we obtain high probabilities in several positions.
In Figure 3.30 we show what would happen if we obtained an image in
front of a door, then we would obtain high probabilities in front of each
door of the environment:

Figure 3.30: Observed image in front of a door (left) and probabilities calculated
for any theta (right)

The localization algorithm was tested in more complex scenarios, with
occlusions and false positives. In case of occlusions the algorithm keeps
a good behavior, since the followed approach does not penalize the prob-
ability if an object is not detected in the image when it should be. The
light negative impact of occlusions is a higher probability in some more
field areas (compare Figure 3.31 and Figure 3.32). However, false positives
affect very negatively to health function and the calculated position can
be totally wrong (compare Figure 3.31 and Figure 3.33).

3.5.2.5 Health function based on visual memory

In case of using visual memory instead of instantaneous images for the
health function, the calculated values will be similar to previous health
function, but we will get two benefits: there will be less symmetries, be-
cause we will get more information about the environment, and temporal
occlusions will affect even less to the health function.

We have performed an experiment to compare the localization algo-
rithm with and without visual memory. We placed the robot in front of
two consecutive doors but without observing both at the same time. At
first, the robot only detects the first door, and afterwards we move the
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Figure 3.31: Observed image (left) and calculated probabilities without occlu-
sions or false positives for any theta (right)

Figure 3.32: Observed image (left) and calculated probabilities with occlusions
for any theta (right)

robot sideways so that it does not detect the first door any more and it
starts observing the second one.

The localization algorithm without visual memory is not able to locate
the robot always in the proper place. It creates a race in front of several
doors once the first door is detected, but not in front of all of them. When
the second door is observed, there may be two possibilities:

• If a race was created in front of two consecutive doors when the first
door was observed, the algorithm would choose this race because the
second door would fit with that position.
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Figure 3.33: Observed image (left) and calculated probabilities with false posi-
tives for any theta (right)

• If it was not the case, the algorithm would select a race in front of
any door. Since it can not remember that there was another door
before, then, most of cases it would pick up a wrong position.

However, when the second door is detected using the visual memory,
the algorithm would be able to select the correct race even in the second
case, since it wouldn’t forget the first door. We show in Figure 3.34 the
health map and position estimation calculated with the visual memory.

Figure 3.34: Health values for any theta (left) and estimated position (right)
calculated with visual memory
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3.6 Conclusions

In this chapter a visual perception system for autonomous robots was
presented. It processes the images from a mobile camera and builds a short
term local memory with information about the objects around the robot,
even if they lie outside the current field of view of the camera. This visual
memory stores 3D segments and simple objects like parallelograms with
their associated properties like position, uncertainty (inverse of life), color,
etc. It allows to make better navigation and even localization decisions
since it includes more information than the current image, which can even
be temporary occluded.

On the one hand, an overt visual attention mechanism was created
to continuously select where the mobile camera should look at. Using
a salience dynamics and choosing the most salient focus of attention the
system shares the gaze control between the need to reobserve objects on the
visual memory and the need to explore new areas, providing also inhibition
of return.

On the other hand, we have developed a visual self-localization tech-
nique that uses an evolutionary algorithm. It keeps a population of par-
ticles to represent tentative robot positions and the particle set evolves
as new visual information is gathered or with robot movements. It was
especially designed to deal with symmetries, grouping particles into races.
There is one race for each likely position and inside it individuals do the
fine grain search. It can work both with just the current image or the
contents of the visual memory.

This visual perception system was validated both on real robots and
in simulation. The memory nicely represents the robot surroundings using
the images from the mobile camera, which movement is controlled by our
attention mechanism. The memory is dynamic but has some persistence
to deal with temporary occlusions. The localization works in real time,
provides position errors below 15cm and 5 degrees and is robust enough to
recover from kidnappings or estimation errors in symmetric environments.

We are working in extending the visual memory to manage stereo pairs
and RGB-D sensors as inputs and to deal with objects at any 3D posi-
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tion, not just the floor. The localization algorithm is designed and ready
for that, but the current visual memory implementation works with one
regular camera and does not provide full 3D segments at any position,
it assumes all the objects lie on the floor. This limitation also causes
that painted lines or color changes on the floor, which are traversable,
are wrongly considered as obstacles to avoid. More experiments are also
required in more challenging scenarios, with more dynamic obstacles or
people around the robot and with faster movements. We are also studying
how to deal with more abstract objects like tables and chairs into the visual
memory. Regarding localization we are working on introducing a mono-
SLAM EKF for each race of the evolutionary algorithm and on improving
it to extract localization information from abstract objects, not only 3D
points.
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void Memory::hypothesizeParallelograms () {
for(it1 = this->controller->segmentMemory.begin(); it1 !=

this->controller->segmentMemory.end(); it1++) {
squareFound = false; it2 = it1; it2++;
while ((it2 != this->controller->segmentMemory.end()) &&

(!squareFound)) {
if (geometry::haveACommonVertex((*it1),(*it2),&square)) {

dist1 = geometry::distanceBetweenPoints3D ((*it1).start,
(*it1).end);

dist2 = geometry::distanceBetweenPoints3D ((*it2).start,
(*it2).end);

ang = geometry::angleSquare (square);
if(((dist1<MAX_TAM_SEG)&&(dist2<MAX_TAM_SEG))&&
((dist1>MIN_TAM_SEG)&&(dist2>MIN_TAM_SEG))&&
((ang > (DEGTORAD*80))&&(ang < (DEGTORAD*100)))) {

// it is a parallelogram
geometry::GetLastPointSquare (&square);
squareFound = true;
it3 = this->controller->parallelograms.begin ();
coincidencia = false;
while ((it3 != this->controller->parallelograms.end ())

&& (!coincidencia)) {
igualQue = geometry::areTheSameParallelogram (square,

(*it3), COMP_PARAL_THRES); // threshold to compare
contieneOContenido = this->contieneOContenido (square,

(*it3));
coincidencia = (igualQue || contieneOContenido);
if (!coincidencia) it3++; }

square.life = MAX_LIFE;
square.saliency = MIN_SALIENCY;
square.timestamp = actualInstant;
if (coincidencia) {

int whichIsTheMax = geometry::getMaximizedParallelogram
(square, (*it3));

if (whichIsTheMax == 1) {
this->controller->parallelograms.erase (it3);
this->controller->parallelograms.push_back

(square); }
this->controller->fittedParallelograms1_3D.push_back

(square); } else {
this->controller->parallelograms.push_back (square);
this->controller->newParallelograms1_3D.push_back

(square); } } }
it2++; } } }

Code 3.1: Parallelograms abstraction function
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inline void makePrediction (IplImage *img) {
while (p != NULL) { // p is the list of segments in memory

if (p->segment->isValid == 1) {
// projection means to translate a point from 3D to 2D
project(p->segment->start.position, &p1, robotCamera);
project(p->segment->end.position, &p2, robotCamera);

if(displayline(p1,p2,&gooda,&goodb,robotCamera)==1) {
// it’s projectable, inside the visual space
// optical coordinates are translated to pixels
// All of them are bad predicted at the beginning
p->segment->isWellPredicted = FALSE;
pt1.x=(int)gooda.y;
pt1.y=SIFNTSC_ROWS-1-(int)gooda.x;

pt2.x=(int)goodb.y;
pt2.y=SIFNTSC_ROWS-1-(int)goodb.x;

if (showPredictions == TRUE)
// All of them are red in the beginning
cvLine(img, pt1, pt2, CV_RGB(0,0,255), 3, 8, 0);

my2y3DSeg = NULL;
my2y3DSeg = (struct Segment2y3DList*)

malloc(sizeof(struct Segment2y3DList));
my2y3DSeg->segment2D.start.x = pt1.x;
my2y3DSeg->segment2D.start.y = pt1.y;
my2y3DSeg->segment2D.start.h = 1.;
my2y3DSeg->segment2D.end.x = pt2.x;
my2y3DSeg->segment2D.end.y = pt2.y;
my2y3DSeg->segment2D.end.h = 1.;
my2y3DSeg->segment3D = p->segment;
my2y3DSeg->next = NULL;

if (last2y3DSegment != NULL) {
last2y3DSegment->next = my2y3DSeg;
last2y3DSegment = last2y3DSegment->next;

} else { // list = NULL, so it’s initialized
seg2y3Dlist = my2y3DSeg;
last2y3DSegment = seg2y3Dlist;

} } }
p = p->next;

} }

Code 3.2: Motion prediction for objects in visual memory
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/*Convert to Gray Image*/
cvCvtColor (&image, IplTmp1, CV_RGB2GRAY);

/*Normalize image*/
cvNormalize(IplTmp1, IplTmp1, 0, 255, CV_MINMAX);

// Make a average filtering
cvSmooth(IplTmp1,IplTmp2,CV_BLUR,3,3);

//Laplace
cvLaplace(IplTmp2, IplLaplace, 3);
cvConvertScale(IplLaplace,IplTmp1);

/*Perform a binary threshold*/
cvThreshold(IplTmp1,IplTmp2,ThressValue,255,CV_THRESH_BINARY);

/*Find contours*/
cvFindContours(IplTmp2, storage, &contour,sizeof(CvContour),

CV_RETR_LIST, CV_CHAIN_APPROX_NONE);

/*Run through found coutours*/
while (contour != NULL) {

/*Check length*/
if (contour->total >= min_size_contour) {

/*Convert to array*/
WholePointArray = (CvPoint *)malloc(contour->total *

sizeof(CvPoint));
cvCvtSeqToArray(contour, WholePointArray, CV_WHOLE_SEQ);

// [...]

Code 3.3: Solis’ algorithm steps

cvCvtColor(src, gray, CV_RGB2GRAY);
cvCanny(gray, edge, sliderThreshold, sliderThreshold*3, 3);
// canny filter is used to extract borders
lines = cvHoughLines2 (edge, storage, CV_HOUGH_PROBABILISTIC,

distanceResolution, angleResolution, HOUGH_LINE_THRESHOLD,
HOUGH_MIN_DIST_SEG, MAX_GAP_BETWEEN_SEGMENTS);

// probabilistic Hough transformation is more efficient when
picture contains a few long linear segments

Code 3.4: Steps and parameteres used in Hough function
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// [...]
if (areTheSameSegment (seg1b, seg2b)) {

found = 1;
} else {

// Check every segment in memory, with segment. Calculate
intersection point between segment i and segment.start
perpendicular

ubi1 = distancePointLine (seg1b.start, seg2b, &proy1, &dist1);
ubi2 = distancePointLine (seg1b.end, seg2b, &proy2, &dist2);

found = overlapping (seg2b, proy1, proy2, ubi1, ubi2, dist1,
dist2, 1);

// If they’re parallel lines we finish checking
}
// if "found" is True means that actual segment was well predicted

Code 3.5: Refutation of predicted segments in memory
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inline int mergeSegment (Segment3D segment, int* areTheSame) {
// p is the list of segments in memory
while ((p != NULL) && (!found)) {

if (p->segment->isValid == 1) {
if (areTheSameSegment (*(p->segment), segment)) {

found = 1;
(*areTheSame) = 1;

} else {
// Check every segment in memory, with segment.

Calculate intersection point between segment i and
segment.start perpendicular

ubi1 = distancePointLine (segment.start, *(p->segment),
&proy1, &dist1);

ubi2 = distancePointLine (segment.end, *(p->segment),
&proy2, &dist2);

found = overlapping (*(p->segment), proy1, proy2, ubi1,
ubi2, dist1, dist2, 0);

// If they’re parallel lines we finish checking
}
if (found) { // refresh timestamp and travel time

p->segment->timestamp = segment.timestamp;
p->segment->traveled = segment.traveled;

}
}
p = p->next;

}
return found;

}

Code 3.6: Process to avoid duplicated segments in memory
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typedef struct {
HPoint3D p1;
HPoint3D p2;
HPoint3D p3;
HPoint3D p4;
HPoint3D centroid;
bool isValid;

} Parallelogram3D;

typedef struct {
HPoint3D center;
int isValid;

} Face3D;

typedef struct {
HPoint3D start;
HPoint3D end;
colorRGB color;
int isAttainable;

} Arrow3D;

struct elementStruct {
double lastInstant;
double firstInstant;
float latitude;
float longitude;
int scenePos;
float saliency;
float liveliness;
int type;
// 0 = virtual element; 1 = rectangle; 2 = face; 3 = arrow
int isVisited;
Parallelogram3D parallelogram;
Face3D face;
Arrow3D arrow;
struct elementStruct* next;

};

Code 3.7: Main visual memory elements
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void Attention::updateElements () {
std::vector<attentionElement>::iterator it;
float maxSaliency = -9999.;

for(it = this->elements.begin(); it != this->elements.end();
it++) {

(*it).liveliness -= LIFE_DECREMENT;
(*it).saliency += SALIENCY_INCREMENT;

if (((*it).saliency > maxSaliency)) { // attainable element
maxSaliency = (*it).saliency;
maxSaliencyElement = &(*it);

}

if ((*it).liveliness < LIFE_TO_DEAD) {
this->elements.erase (it);
if (depuracion::DEBUG) printf ("updateElements: Deleting old

element of memory...\n");
} else if ((*it).saliency > MAX_SALIENCY) {

(*it).saliency = MAX_SALIENCY; // to avoid saturation
}

}

if (maxSaliencyElement != NULL) {
maxSaliencyElement->saliency = MIN_SALIENCY;
maxSaliencyElement->liveliness = MAX_LIFE;
maxSaliencyElement->lastInstant = actualInstant;

}
}

Code 3.8: Update visual memory elements function

cvCvtColor (&img, imgLocal, CV_BGR2GRAY);
cvClearMemStorage (storage);
faces = cvHaarDetectObjects (imgLocal, cascade, storage,

SCALE_FACTOR, MIN_NEIGHBORS, OPERATION_MODE, cvSize
(MIN_WINDOW_WIDTH, MIN_WINDOW_HEIGHT));

Code 3.9: Haar Cascade face detection OpenCV function
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inline void hypothesizeArrows () {
while (p != NULL) { // p is the list of segments in memory

if (p->segment->isValid == 1) {
dist1 = distanceBetweenPoints (p->segment->start.position,

p->segment->end.position);
if ((dist1<MAX_TAM_ARROW) && (dist1>MIN_TAM_ARROW)) {
q = p->next;
found = FALSE;
while ((q != NULL) && (!found)) {

if (q->segment->isValid == 1) {
dist2 = distanceBetweenPoints

(q->segment->start.position,
q->segment->end.position);

if ((dist2<MAX_TAM_ARROW) && (dist2>MIN_TAM_ARROW)) {
if (((dist1<MAX_TAM_ARROW) && (dist1>MIN_TAM_BASE)

&& (dist2>MIN_TAM_ARROW)) ||
((dist2<MAX_TAM_ARROW) && (dist2>MIN_TAM_BASE)
&& (dist1>MIN_TAM_ARROW))) {

if (haveACommonVertex(*(p->segment),
*(q->segment),&square)) {
ang = angleBetweenSegments(square);
if(((ang > (DEGTORAD*25))&&(ang <

(DEGTORAD*65))) || ((ang >
(DEGTORAD*115))&&(ang < (DEGTORAD*155)))) {

found = TRUE;
// square.p1 is the intersection point between

base and arrow. It gives the direction
buildSemiArrow (*(p->segment), *(q->segment),

square.p1.position, dist1, dist2,
&mySemiArrow);

buildArrow (mySemiArrow.base, &myArrow);
insertArrowOnAttentionSystem (myArrow);
if (DEBUG) printf ("Arrow Found!\n");
if ((!checkedArrow) && (myMaxSaliency != NULL)

&& (myMaxSaliency->type == 3) &&
(areTheSameArrow
(myMaxSaliency->arrow,myArrow))) {

// review arrow and it is there
checkedArrow = TRUE;

} } } } } }
q = q->next;

} } }
p = p->next;

} }

Code 3.10: Arrows abstraction function
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inline void initSaliencyParams () {
myElements = NULL;
myMaxSaliency = NULL;
myPrevMaxSaliency = NULL;
myActualElement = NULL;
seg2y3Dlist = NULL;
segPointList = NULL;
elementsStructCounter = 0;
completedSearch = FALSE;
analizedImage = FALSE;
checkedParallelogram = FALSE;
checkedFace = FALSE;
checkedArrow = FALSE;
completedTrack = FALSE;
myActualState = think;
timeToForcedSearch = TIME_TO_FORCED_SEARCH;
isForcedSearch = FALSE;
randomPosition = FALSE;
nextLatitude = 0;
nextLongitude = 0;
completedMovement = FALSE;
actualInstant = ((double) cvGetTickCount() /

((double)cvGetTickFrequency()))/1000000;
timeForced = actualInstant;
stopInstant = actualInstant;
timeToUpdateCache = actualInstant;
timeToMaintenance = actualInstant;
timeToSaveImage = actualInstant;
comeFromCenter = TRUE;
last_full_movement = right;
navigationTime = 0.;
imageNumber = 0;

}

Code 3.11: Visual attention system objects initial attributes
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void Attention::point2angle (HPoint3D p, HPoint3D cameraPosition,
double *longitude, double *latitude) {

float pan, tilt;

p.X = p.X - cameraPosition.X;
p.Y = p.Y - cameraPosition.Y;
p.Z = 0. - cameraPosition.Z;
p.H = 1.;

if (p.X == 0.) pan = 0.;
else pan = atan(p.Y/p.X);

if (p.X == 0.) tilt = 0.;
else // Z is always < 0 because is upper than point

tilt = atan (p.Z/p.X);

*longitude = pan * 180.0/M_PI;
*latitude = tilt * 180.0/M_PI;

}

Code 3.12: Translating from Cartesian coordinates to Polar coordinates
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void SolisDetector::process_horizon(cv::Mat &src) {
/*Calculate horizon line using kinematics*/
this->getHorizonLine(A, B, C);

for(col=marginx;col<ImageInput::IMG_WIDTH;
col=col+ImageInput::IMG_STEP) {
/*Starts from the horizon line*/
row = this->getHorizonPos(A, B, C, col);
while(row <= ImageInput::IMG_HEIGHT-1-marginy) {

rowend = ImageInput::IMG_HEIGHT-1-marginy;
ccolor = this->imagehandler->getColor(col, row);
if(ccolor != ImageInput::CGREEN) {

row+=step;
continue;

}
/*Get the size of the ground color*/
size = this->imagehandler->getSegmentSizeDown(col, row,

rowend, ccolor);
if(size >= num_green_pixels)

break;
row+=size;

}
borders[counter].x = (float) col;
borders[counter].y = (float) row;
borders[counter].h = 1.0;
counter++;

}
/*Calculate convex hull*/
this->calcConvexHull();

}

Code 3.13: Solis’ extra step to preprocess horizon

double geometry::distanceBetweenPoints2D(int x1, int y1, int x2,
int y2) {

return sqrt(G_SQUARE(x2-x1) + G_SQUARE(y2-y1));
}

Code 3.14: Getting Euclidean distance between segments extrems
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Educational framework

This chapter presents the teaching environment (JdeRobot-Kids)
that has been developed and that is aimed at improving the teach-
ing of Robotics to secondary students. It is based on the Python
programming language and on different robotic platforms. It con-
sists of a software infrastructure and a set of practical exercises that
complete an academic course. The software infrastructure offers
support for both real and simulated robots, one of which (PiBot)
has been specifically developed for this teaching environment. In
addition, the constructivist methodology that has been followed to
improve the current technological education in Robotics is also de-
scribed. The teaching proposal has been validated experimentally
with more than 2, 000 real students during the last two years. All
the experiments shown here and many more are publicly availablea.

ahttp://jderobot.org/JulioVega_PhD

The developed teaching environment1 includes a hardware platform
(Section 4.1), a software infrastructure (Section 4.2), as well as an edu-
cational program (Section 4.3) for a full academic year, and a suggested
specific pedagogical methodology (Section 4.4). All this was put into prac-
tice and was appropriately evaluated (Section 4.5).

1http://jderobot.org/JdeRobot-kids

http://jderobot.org/JulioVega_PhD
http://jderobot.org/JdeRobot-kids
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The central pillars of the design of this environment are: robots with
free hardware processors (Arduino and Raspberry Pi), the Python pro-
gramming language and a collection of practice activities of progressive
complexity.

4.1 Hardware platform

An Arduino-based robot, the MakeBlock mBot2 (Figure 4.2 left) was
chosen as the main reference hardware platform. Another more advanced
and powerful robot, based on Raspberry Pi, was developed specifically for
this framework. It was named PiBot.

4.1.1 Robot based on Arduino

The mBot, with its Arduino Uno processor, can be connected to the
sensors and motors that are commonly used in educational robotics. It
has different models depending on its connectivity: USB, 2.4G, Bluetooth.
It can be connected through the USB cable to the computer to download
programs. It is affordable, mechanically very compact and extensible. Kits
of mechanical parts, such as sensors or actuators, can be bought also at
low cost.

In addition, it has good support for programming in the mBlock graphic
language (Figure 4.1), which is based on Scratch 2.0, and in the Arduino
language, which has an extensive community of users all over the world
and proven software tools.

In addition to the real robot, the counterpart for the Gazebo simula-
tor (Figure 4.2 right) was also programmed in JdeRobot-Kids. Gazebo
is a free software 3D simulator that incorporates several physical engines
for realistic simulations and is a de facto standard in the robotics research
community, with more powerful robot models ([Cañas et al., 2014]). Specif-
ically, the graphic, mechanical model and a C ++ plugin that runs within
the simulator and that is able to communicate with external programs
were developed for mBot. This plugin allows the students’ programs to
collect readings from the virtual IR and ultrasound sensors, as well as to

2https://makeblock.es

https://makeblock.es
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Figure 4.1: Program in mBlock graphic language

Figure 4.2: Robot mBot real and simulated in Gazebo

send movement commands to the emulated motors. That is, it allows the
behavior of the robot in the simulated world to be controlled.

The initial motivation of giving support to the simulated robot is that
students and educational centers that do not have the physical robot can
nevertheless practice and learn or teach robotics with JdeRobot-Kids

([Vega et al., 2018]). In addition, thanks to this support, the problem
that always arises when introducing robotic artifacts in a classroom is mit-
igated: economic costs and hardware maintenance.

Likewise, a homemade robot was also built connecting sensors and ac-
tuators to a protoboard mounted on an Arduino and assembling them in
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a mechanical chassis. This shows the versatility of the teaching frame-
work, which is valid for different platforms as long as they incorporate the
Arduino microprocessor.

4.1.2 Robot based on Raspberry Pi

As already mentioned in Section 1.4, a more powerful platform is
needed and, above all, one that permits the use of a camera to implement
the vision algorithms included in the academic program of this educational
framework, and whose motivation has already been described in Section
1.1.3.

Figure 4.3: Robotic platform PiBot (left) based on Raspberry Pi 3 (right)

Figure 4.4: Assemblage of components of the robotic prototype, PiBot
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Thus, a robotic platform was developed, PiBot (Figure 4.3 left), whose
computational core is the Raspberry Pi 3 controller board (Figure 4.3
right). This was mounted on a chassis, to which were added a battery of
20, 000 mAh and two servos model Feedback 360◦ from the Parallax com-
pany (Figure 4.4), in addition to a caster. The main sensors mounted were
an ultrasound sensor model HC-SR04 (Figure 4.5 left) and the Raspberry
PiCamera camera (Figure 4.5 right) mounted on another servo, giving it
a degree of freedom of movement. The main technical details are included
in Table 4.1. Other sensors that are also supported are the bumper and
the infrared sensors.

Figure 4.5: Ultrasonic sensors model HC-SR04 and Raspberry PiCamera camera

As with the mBot robot previously described, for PiBot the counterpart
for the Gazebo simulator was also programmed in JdeRobot-Kids (Figure
4.6).

Figure 4.6: PiBot robot simulated in Gazebo
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PiCamera parameters Values
Sensor type Sony IMX219PQ[7] CMOS 8-Mpx
Sensor size 3.674 x 2.760 mm (1/4" format)
Pixel Count 3280 x 2464 (active pixels)
Pixel Size 1.12 x 1.12 um

Lens f=3.04 mm, f/2.0
Angle of View 62.2 x 48.8 degrees

SLR lens equivalent 29 mm

Table 4.1: PiCamera (v2.1 board) technical intrinsic parameters

Several factors led to the development of this hardware platform based
on Raspberry Pi. First, the power and versatility offered by a controller
that has a complete and functional operating system based on Linux;
specifically, the Raspbian Stretch distribution3, Desktop version with graph-
ical interface (GUI) was used. Secondly, it provided the possibility of
controlling a powerful camera, PiCamera, connected to the board by its
own dedicated data bus. And finally, the freedom offered by the board
to connect and control varied devices thanks to its numerous ports GPIO4

(General Purpose Input/Output), configurable to serve as input and output
of data ([Balachandran, 2009]).

4.2 Language and software infrastructure

Arduino is normally programmed by Arduino IDE or by Scratch (or
some of its variants such as mBlock of mBot). In JdeRobot-Kids, Python
was chosen as a programming language because of its simplicity, its ex-
pressive power and because it is widely used in higher levels of education
and programming. It is a text language, interpreted and object oriented.
This language is easier to learn than the Arduino language (very similar
to C/C++) and at the same time it has great power. It is also used in
university education, together with more powerful libraries.

Two questions arise with this approach: (a) the difficulty of learning
to program in a programming language that is not visual; and (b) the

3https://www.raspberrypi.org/downloads/raspbian
4https://www.raspberrypi.org/documentation/usage/gpio

https://www.raspberrypi.org/downloads/raspbian
https://www.raspberrypi.org/documentation/usage/gpio
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high economic and logistical cost of acquiring a considerable amount of
robotic equipment for a high school class, which usually has around thirty
students.

As the Python language is not supported by the manufacturer of the
mBot, an entire infrastructure was created in JdeRobot-Kids ([Vega and
Cañas, 2016]). The Arduino microprocessor is too limited to run an on-
board Python interpreter, so other options had to be explored. The chosen
design is shown in Figure 4.7 and gives priority to simplicity of use, which
required making the underlying infrastructure quite sophisticated.

Figure 4.7: The student uses the JdeRobot-Kids.py library in his program

An specific library was developed that provides the programming in-
terface (API), JdeRobot-Kids.py5. This simple and natural interface in-
cludes methods to read the measurements from the sensors and methods
to give commands to the actuators of both the mBot and the PiBot (Table
4.2).

The use is as simple as programming an application in Python to use
these methods to control the robot. In this way, students concentrate on

5https://github.com/JdeRobot/JdeRobot/blob/master/src/interfaces/
python/JdeRobotKids.py

https://github.com/JdeRobot/JdeRobot/blob/master/src/interfaces/python/JdeRobotKids.py
https://github.com/JdeRobot/JdeRobot/blob/master/src/interfaces/python/JdeRobotKids.py
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the algorithm they are developing, avoiding the low level details such as
ports, connectivity with the robot, etc. which are stored in the library
configuration file.

Acting Sensory
mover (V, W) leerIntensidadLuz
avanzar (V) leerUltrasonido

retroceder (V) leerIntensidadSonido
girarIzquierda (W) leerPotenciometro
girarDerecha (W) leerMandoIR

parar dameSonarVisual
moverServo (θ) dameImagen
encenderLed dameObjetoDeColor
apagarLed

escribirTexto (T)
playTono (Fs)

Table 4.2: JdeRobot-Kids.py programming interface

The most important API methods for JdeRobot-Kids.py are detailed
in Table 4.2. They allow access to each of the usual sensors, for example
US sensor, IR sensors or light sensors, and also to the camera (in the case
of PiBot). With respect to the motors, each of them can be governed
individually (raw methods). Movement orders for the whole robot (cooked
methods) can also be sent, which are simpler to use. In this case, it is the
library which translates the desired combined movement into the orders
for each of the two motors that carry it out.

The students program their exercises in Python by writing the file
myAlgorithm.py, for example, with a text editor. From this program all
the methods provided by this library may be used. JdeRobot-Kids.py

includes below two different modules that exactly perform the same API
functions. One module implements the interface for the management of
the real robot and another for the simulated robot in Gazebo, for both
mBot and PiBot. The final robot in each case is selected by specifying it
on the library configuration file. As the programming interface is the same
in both cases, the application is identical and works interchangeably on
the physical platform and on the simulated one.
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4.2.1 Modules for mBot

The module for the real robot is called mBotReal and was programmed
as a Python library that runs on the computer and communicates continu-
ously with the physical robot mBot via the Firmata protocol6, in which an
intermediary program is executed on the native Arduino firmware (Figure
4.8).

Figure 4.8: Connection of the JdeRobot-Kids.py library with the real mBot and
the simulated mBot

The orders issued from the student’s application arrive at the library,
which transmits them (via USB or via Bluetooth 2.4G) —following the
Firmata protocol— to the intermediary program on board the robot, writ-
ten in Arduino language, which executes them on the motors. The read
requests of sensors from the application arrive at the library, which takes
the last readings received from the intermediary program on board and
delivers them to the application.

The second module developed, mBotGazebo, allows access to the simu-
lated robot inside Gazebo (Figures 4.7 and 4.8). In this case the methods of
the API JdeRobot-Kids.py are translated to send messages to the Gazebo
developed plugin, in C ++, which controls the sensors and actuators emu-
lated in Gazebo. These messages were implemented with the ICE commu-
nications middleware. The simulator works on Linux computers natively
and on MS-Windows or MacOS computers using docker containers.

4.2.2 Modules for PiBot

To support PiBot, the developed robotic prototype, other homonymous
modules were programmed that include all the necessary functions to send
commands to the servos and read values from the most common sensors,

6https://github.com/firmata/protocol

https://github.com/firmata/protocol
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such as ultrasound or infrared, for both the real robot (Figure 4.9 left) and
the simulated one (Figure 4.9 right).

Figure 4.9: Connection of the JdeRobot-Kids.py library with the real PiBot and
with the simulated PiBot

However, the greatest novelty of this prototype, as already discussed in
Section 4.1.2, is the support developed for the powerful camera mounted
on board, the PiCamera. A complete software library was implemented
so that the student may use this camera, or even a WebCam, as the main
sensor of this robotic platform.

The main use of this camera as a sensor is for navigation tasks in real
environments with obstacles. As already seen in Section 2.3, the state
of the art in the use of vision for navigation shows an extended use of a
stereo pair of cameras. However, based on the ground hypothesis already
successfully developed, and shown in Chapter 3, a single camera can be
used to estimate distances to objects and, furthermore, using it, the robot
can perform navigation by making intelligent decisions.

4.2.3 Modules for PiCamera

A library was developed to support the Raspberry PiCamera camera.
It contains an abstract model of the camera and implementations of several
projective geometry algorithms. An image server of any camera was also
implemented with the communications middle-ware ICE, piCamServer.

4.2.3.1 Pin-hole camera model

Firstly, the camera model for the PiCamera was implemented (Code
4.1). The camera model, assuming an ideal camera, is called Pin-hole
model. When an image is taken using a pin-hole camera, we lose some
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important information, the depth of the image; i.e. how far each point in
the image is from the camera, because it is a 3D-to-2D conversion. Thus,
an important question is how to find the depth information using cameras.
One answer is to use more than one camera. Our eyes work in a similar
way to the use of two cameras (two eyes). This is called stereo vision.
Figure 4.10 shows a basic setup with two cameras taking an image from
the same scene.

class PinholeCamera:
position = Punto3D() # camera 3d position in mm
foa = Punto3D() # camera 3d focus of attention in mm
roll = None # camera roll position angle in rads
fdistx = None # focus x distance in mm
fdisty = None # focus y distance in mm
u0 = None # pixels
v0 = None
skew = None # angle between the x and y pixel axes in rads
rows = None # image height in pixels
columns = None # image width in pixels
K = numpy.array ([(0,0,0,0),(0,0,0,0),(0,0,0,0)]) # camera

intrinsic parameters
RT = numpy.array ([(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0)]) #

camera rotation and translation matrix

Code 4.1: PiCamera class

Figure 4.10: Cameras taking an image from the same scene

4.2.3.2 Epipolar Geometry and ground hypothesis

As PiBot uses a single camera, the system can not find the 3D point
corresponding to the pixel x in an image because every point on the line
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OX projects to the same pixel on the image plane. Two cameras would get
two images and it would be then possible to triangulate the right 3D point.
In this case, to find the matching point in another image, it is not neces-
sary to search the whole image, but only along the epiline. This is called
Epipolar Constraint. Similarly, all points will have their corresponding
epilines in the other image. The plane XOO′ is called Epipolar Plane (see
Figure 4.10). The intersections between the plane XOO′ and the image
planes form the epipolar lines.

To convey a depth map from the robot to the surrounding objects
using a single camera, the ground hypothesis is assumed. It considers all
the objects are on the floor, on the ground plane, which is a known location
(on plane Z = 0). In this way, the 3D point corresponding to every point
in the single image can be obtained (Figure 4.11).

Figure 4.11: Ground Hypothesis assumes all objects are on the floor

Let us consider the pixels corresponding to the filtered border (Fig-
ure 4.12 top right) below the obstacles (Figure 4.12 top left), so that the
distances can be calculated later ((Figure 4.12 down). The code corre-
sponding to solve this feature is shown in Code 4.2.

4.2.3.3 Coordinate systems transformations

To compute the rays back-projecting from the pixels and the rays pro-
jecting from 3D points into pixels, the position of the camera needs to be
calculated. A camera is defined and positioned according to its matrices
K ∗R ∗ T (Table 4.3).
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Figure 4.12: Ground Hypothesis example

Camera parameters Definitions
K (3x3) intrinsic parameters
R (3x3) camera rotation
T (3x1) camera translation

X forward shift
Y left shift
Z upward shift

Table 4.3: Definition of pin-hole camera position parameters and orientation

Instead of matrices R and T , a single matrix RT (4x4) can be used,
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which includes RT , so would therefore be 4x4, as shown in Equations 4.1,
4.2, 4.3, corresponding to X, Y and Z rotation axes.

1 0 0 X
0 cos(θ) sin(θ) Y
0 −sin(θ) cos(θ) Z
0 0 0 1

 (4.1)

Equation 4.1: RT camera matrix rotating in X-axis


cos(θ) 0 −sin(θ) X

0 1 0 Y
sin(θ) 0 cos(θ) Z

0 0 0 1

 (4.2)

Equation 4.2: RT camera matrix rotating in Y-axis


cos(θ) −sin(θ) 0 X
sin(θ) cos(θ) 0 Y

0 0 1 Z
0 0 0 1

 (4.3)

Equation 4.3: RT camera matrix rotating in Z-axis

These three angles are used to build their three corresponding matrices,
which are subsequently multiplied.

Let us consider an example using R and T matrices separately. Given a
point in ground plane coordinates Pg = [X,Y, Z], its coordinates in camera
frame (Pc) are given by Equation 4.4.

The camera center is Cc = [0, 0, 0] in camera coordinates. Its ground
coordinates are computed in Equation 4.5, where R′ is the transpose of R
and assuming, for simplicity, that the ground plane is Z = 0.

LetK be the matrix of intrinsic parameters, whose PiCamera values are
obtained using the developed PiCamCalibrator7 tool (Code 4.3). Given
a pixel q = [u, v], it can be written in homogeneous image coordinates as

7https://github.com/JdeRobot/JdeRobot/tree/master/src/tools/
piCamCalibrator

https://github.com/JdeRobot/JdeRobot/tree/master/src/tools/piCamCalibrator
https://github.com/JdeRobot/JdeRobot/tree/master/src/tools/piCamCalibrator
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Pc = R ∗ Pg + T (4.4)

Equation 4.4: Camera frame coordinates

Cg = −R′ ∗ T (4.5)

Equation 4.5: Camera center in ground coordinates

Q = [u, v, 1]. Its location in camera coordinates (Qc) is shown in Equation
4.6, where Ki = inv(K) is the inverse of the intrinsic parameters matrix.
The same point in world coordinates (Qg) is given by Equation 4.7.

Qc = Ki ∗Q (4.6)

Equation 4.6: Pixel in camera coordinates

All the points Pg = [X,Y, Z] that belong to the ray going from the
camera center through that pixel, expressed in ground coordinates, are
then on the epipolar line given by Equation 4.8, where the θ value goes
from 0 to positive infinity.

Due to the ground hypothesis being assumed (see Section 4.2.3.2), this
epipolar line is intersected with ground plane (Code 4.4), where objects
are supposed to lie.

4.2.3.4 PiBot camera rotation and translation

Every time the camera is moved with respect to several axes (as shown
in Figure 4.13), camera matrices (Table 4.3) must be multiplied again and
again. Thus, the following steps are needed for a complete translation of
the camera:

(M1) Considering robot encoders with information of X, Y and Θ, the
robot is moved with respect to the absolute axis (0, 0) of the world,
and rotated with respect to the Z axis, so the RT matrix of the robot
would be as shown in Equation 4.3.

(M2) Assuming the camera is mounted over a Pan unit (servo), it will be
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Qg = R′ ∗Qc −R′ ∗ t (4.7)

Equation 4.7: Pixel translated to the 3D world coordinates

Pg = Cg + θ ∗ (Qg − Cg) (4.8)

Equation 4.8: Epipolar line in ground coordinates corresponding to the pixel

moved along the Z axis with respect to the base of the robot (which
is on the ground level).

(M3) Furthermore, the Pan axis is rotated with respect to the Z axis ac-
cording to the Pan angle (Equation 4.3).

(M4) The Pan support is also rotated with respect to the Y axis according
to the Tilt angle (Equation 4.2), needed to perceive close objects.

(M5) Finally, the optical center of the camera is translated in X and in Z
with respect to the Tilt axis.

Thus, to obtain the absolute position of the camera in world coordi-
nates, the five different matrices previously described are multiplied fol-
lowing Equation 4.9, and coded in Code 4.5.

Ma = M1 ∗M2

Mb = Ma ∗M3

Mc = Mb ∗M4

Md = Mc ∗M5

(4.9)

Equation 4.9: Obtaining camera position in world coordinates

The absolute position [X,Y, Z] of the camera is given by Md, in cells
[[0, 3], [1, 3], [2, 3]]. The camera position and orientation can be expressed
usingMd and Focus of Attention (FOA). In this case, a column correspond-
ing to the relative FOA [X,Y, Z] is multiplied by the Md matrix resulting
in an absolute FOA given by Equation 4.10.
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Figure 4.13: Robot and camera are continously moving with respect to several
axes

FOAabsolute = Md ∗ FOArelative (4.10)

Equation 4.10: Obtaining absolute camera position and orientation

4.3 Academic program

A plan of activities for the subject Programming, Robotics and Tech-
nology was designed and implemented in different years of Secondary Ed-
ucation and for a course of extracurricular activities. Since the students in
these year groups have no notion of computer programming, they have to
start from a very basic level until they ultimately achieve the development
of a complex project consisting of a classic robotics task.

The academic program was divided into four phases of progressive
learning:

1. 14 sessions: Basic notions of programming using the visual language
Scratch: loops, conditions, variables, etc.

2. 10 sessions: Introduction to Python language, with basic practice
activities using loops, conditions, variables, functions, etc.

3. 20 sessions: Robotics practice programming with sensors and actua-
tors individually.

4. 10 sessions: Programming behaviors in a robot. Final project that
encompasses all the above.

Each phase is described below, indicating what it includes and what
practical tasks students develop as the academic program progresses.
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4.3.1 Basics of programming

In the first part of the course, basic notions of computer programming
are acquired. In this way, students understand the way a computer works
internally; and, therefore, they understand the reason for the use of vari-
ables or functions. Furthermore, concepts such as loops or conditionals are
totally new to them. Hence, this first contact with the subject is so impor-
tant. Depending on the students, this usually lasts about four sessions.

After that, another five sessions are dedicated to materializing the basic
notions learned in a language close to them, an intuitive language, such
as the visual language Scratch, already shown in Section 2.5.2. Here some
aspects of syntax are presented in broad strokes, as well as novel concepts
that continue to appear, such as that of a counter, the use of sets or
vectors. They also understand why a variable must be defined, and other
minor topics. It is a very important phase where students internalize the
structure, organization and restrictions of a programming language.

The practical exercises that the students carry out in Scratch to achieve
the aforementioned objectives, which usually take about ten sessions, are
the following:

1. Introduction to Scratch. Designing an interactive character so that,
when clicked on, there will be some visual effect, a movement, a
sound, and a change of appearance.

2. Use of variables. Developing a game in which the previously designed
character picks up objects distributed around the scene.

3. Dynamic objects (loops). Adding to the game objects that move con-
stantly in some cyclic movement. In case they touch the character,
it will lose a life; if it reaches 0, the game ends.

4. Final project. Continuing the game with different screens (phases)
through which the character progresses and which will be accessed
through passages, pipes and secret access.
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4.3.2 Introduction to the Python language

In this second phase the basic notions of the Python language are
specified. It focuses on knowing keywords of the language, as well as purely
syntactic issues that are typical of Python. Here the students are already
prepared to perform some classic exercises of initiation to programming
such as:

1. Printing the numbers from 1 to 100.

2. Printing the numbers from 100 to 0.

3. Printing the even numbers between 0 and 100.

4. Printing the sum of the first 100 numbers.

5. Printing the odd numbers to 100 and how many there are.

6. Printing the natural numbers from 1 to another entered by keyboard.

The realization, correction and explanation of these exercises take ten
sessions.

4.3.3 Robotic practice activities: handling of sensors and
actuators

In this third phase the students carry out a total of ten activities di-
rectly related to Robotics. They begin assembling different components
on an Arduino board (in the case of the homemade prototype by pieces)
and review some basic concepts of electronics so that they have no prob-
lems when connecting the different devices. Step by step, they begin by
installing simple components on a protoboard mounted on Arduino, such
as a buzzer, or LEDs, and their corresponding software developments, to
move to more complex ones such as light, infrared or ultrasound sensors.
Once they have mastered the electronics of these components, they master
the use of the sensors and actuators already pre-installed in a mBot, as well
as the PiBot servos. Finally, they begin with the use of the camera as a
sensor and the treatment of images that it provides. All this covers about
twenty sessions, as follows:
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1. Arduino. Sound reproduction by buzzer (Figure 4.14 left).

Figure 4.14: Practice tasks with Arduino to handle buzzer and leds

2. Arduino. Use of push button with LED (Figure 4.15 left).

Figure 4.15: Practice task with Arduino to operate a push button with LED
and ultrasonic

Figure 4.16: Practice activity with PiBot to handle an ultrasonic sensor

3. Arduino. Ultrasonic sensor reading (Figure 4.15 right y Figure 4.16).

4. mBot. Use of push-button with LEDs (Figure 4.17 left) and micro-
phone (Figure 4.17 right).

5. mBot. Using LED array (Figure 4.18).
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Figure 4.17: Practice tasks with mBot to operate push-button and LED, and
microphone with LED to recognize sounds

Figure 4.18: Practice task with the LED matrix actuator

6. mBot and PiBot. Control of servos (Figure 4.19).

7. mBot. Gripper control on pan-tilt (Figure 4.20).

8. Reading from file and static image sample.

9. PiBot. Reading and displaying images from WebCam and PiCamera
(Figure 4.21).

10. PiBot. Visual sonar reading from PiCamera (Figure 4.22).
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Figure 4.19: Practice task with PiBot to operate a servo

Figure 4.20: Practice with the mBot claw actuator

4.3.4 Robotic practice activities: autonomous behaviors

The last step of this learning pyramid consists of a complete robotics
project where students combine everything previously learnt. For example,
some projects developed are:

1. Navigation following a line (Figures 4.23, 4.24 and 4.25).

2. Navigation avoiding obstacles by means of ultrasounds (Figures 4.26
and 4.27). Its implementation in JdeRobot-Kids is shown for any
platform in Code 4.6.

3. Navigation following the light projected by the flash of a mobile
phone.

4. Sumo fight between two mBots.
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Figure 4.21: Reading and displaying images from WebCam and PiCamera

5. Navigation by clapping.

6. Stone, paper or scissors game, using the LED array.

7. Following an object using a camera sensor (Figure 4.28).

8. Navigation avoiding obstacles using a camera sensor (Figure 4.29).

It takes another ten sessions to finish this final project.

4.4 Constructivist methodology in robotics

My own experience teaching robotics to pre-university students for sev-
eral years, the analysis of teaching methodologies carried out in Section
2.5.4, and especially the on-site study of how to implement this teaching in
Finland, within the European Erasmus+ project mentioned in Preamble,
have served to refine the proposed teaching methodology.

It is recommended to use the JdeRobot-Kids teaching framework within
the constructivist methodology described in this section. This is based on
the premise that knowledge is in the participants, and that these —which
could be called thinking subjects— have no alternative but to build their



Chapter 4. Educational framework 110

Figure 4.22: Example of visual sonar reading with 25 cm object shown using
3D scene simulator

Figure 4.23: Practice line tracking task in real and simulated mBot robot

own procedures or learning paths based on what their own experience dic-
tates.

The father of this approach is Ernst von Glasersfeld ([von Glasersfeld,
1995, Steffe and Gale, 1995]). According to this theory, students learn more
when they are given the opportunity to explore and create knowledge that
is of personal interest to them ([Lefoe, 1998]). This approach fits perfectly
with the teaching of robotics, since students can experiment with a physical
device, make mistakes and learn from them while working, thus building
their own knowledge ([Vega and Cañas, 2014]).

In the sessions described in the academic program there is no differen-
tiation between theoretical and practical. At the beginning of each class,



Chapter 4. Educational framework 111

Figure 4.24: Practice line tracking task in PiBot robot using infrared

Figure 4.25: Practice line tracking task in PiBot robot using vision

what was learned in the previous session is remembered, some concepts
that will be seen during the current session are mentioned, the objectives
that will be reached (or should be) by the end of the session are explained,
and all of this is contextualized with a challenge students have to pursue.
This takes between five and ten minutes of class time. Subsequently, they
are given full freedom to access all the available tools (computers, robots,
and components) so they can decide how to distribute the time and what
to do first. They can be corrected or advised if they stray from the path
that will lead them to reach the proposed objectives.

In this way, the teacher becomes a guide rather than a strict setter of
norms, guidelines and knowledge to be assimilated. Moreover, and contin-
uing with the philosophy of cooperative learning, students always work on
robotics in groups, because in this way they help each other and are not
frustrated by failures, because there will always be some members who are
sure of what to do.

Fifteen minutes before finishing the class, they are notified of the time
left to finish the session. They then know they have five more minutes
to finish, or save the work they are doing, since the last ten minutes are
always reserved for reflection on how each group has learned and what
each of them is learning individually. This final moment is suitable for
clarifying issues and introducing (if necessary) some detailed and theoret-
ical concepts. In this way the students acquire useful notions which are
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Figure 4.26: Navigation practice avoiding obstacles through US in Arduino and
in mBot

Figure 4.27: Navigation practice avoiding obstacles through US in PiBot

then fixed in their memory, since they have used them to solve a specific
difficulty which they have experienced. Thus, in addition to the teacher en-
suring they have a solid base of knowledge, the teacher becomes a learning
supervisor.

Following this line of constructivist learning, regular assessments of
knowledge lack meaning. In a certain way, evaluation is reversed, since
the students assess themselves daily by giving a grade as a group, on how
they consider they have been able to tackle the problem and solve it (in
their case), as well as individually evaluating their contribution to the
group. The teacher combines this student self-evaluation together with
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Figure 4.28: Navigation exercise of following a color object using vision in PiBot

Figure 4.29: Exercise of avoiding obstacles by visual depth estimation in PiBot

their own assessment, based on the observation of the class both at group
and individual levels, taking into account the potential of each student and
the degree of effort of each one.

At the end of each topic a session is dedicated to reviewing what has
been presented, what they have learned, what difficulties have been en-
countered and how they have been resolved. Likewise, the teacher com-
ments on both the group and individual work and, consequently, the grade
for each student in that unit. Thus, students are always aware of their
strengths and weaknesses so they can try to balance them in the following
units.

4.5 Deployment and results

In the 2016/2017 academic year, the proposed academic program was
deployed with the JdeRobot-Kids teaching framework at the Franciscanas
de Montpellier Foundation, which has six schools spread across Spain. In
addition, it was also deployed in annual extracurricular subjects at the
Ntra. Sra. Sagrado Corazón School in Madrid and the Villa de Móstoles
School. In the 2017/2018 academic year, this program was continued in
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the six schools of the Foundation and at Colegio Rihondo de Alcorcón.
As for the operating system used, 61.7% used Linux Ubuntu, 31.9%

Microsoft Windows, and a small percentage (6.4%) used mobile device
(iOS, Android). This was possible thanks to the fact that the proposed
teaching framework operates seamlessly in any operating system, which
greatly facilitated its deployment in the different educational centers.

The results were measured giving surveys to both, teachers and stu-
dents, during the last two courses (2016/2017 and 2017/2018). Specifi-
cally, 2, 050 students from the six schools of the Franciscan Foundation of
Montpellier, the Villa de Móstoles School and the Rihondo School of Alcor-
cón were surveyed. All of these were of Secondary Education, distributed
across curricular subjects (53.2%), extracurricular activities (36.2%), and
a small percentage of specific events (10.6%) that are usually organized in
the schools: Open Days, Family Days, etc. In total, nine teachers were
responsible for delivering this content (six from the Foundation and three
for extracurricular activities), who were also surveyed.

4.5.1 Student Surveys

In the question of whether it was easy to learn, more than 54% of
students gave scores of 8-10, while a little fewer than 26% gave scores of
5-7. Taking into account that their initial level was very low or zero, and
that the objectives of the educational proposal are quite ambitious, the
results are more than positive: the framework is easy to learn.

More than 70% reported finding robotics very interesting (scoring be-
tween 8-10). More than 60% scored the materials received, the JdeRobot-Kids

manual, between 8-10 while slightly fewer than 40% of students rated it
between 5-7. More than 70% found the practice activities performed, i.e.
the exercises, very interesting (8-10).

With all the above, the overall assessment given to the course with
JdeRobot-Kids is shown in Figure 4.30.
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Figure 4.30: General assessment of JdeRobot-Kids by students

4.5.2 Teacher Surveys

The evaluation of the teaching staff regarding the deployment of our
educational proposal is also very positive. The overall assessment of the
educational proposal presented here is shown in Figure 4.31

Figure 4.31: General assessment of the teaching staff on the educational pro-
posal

In Franciscanas Foundation, five teachers scored 4/4 on the question
of whether the students follow classes easily; another scored it with 3/4.

In all cases, they considered that the academic performance of their
students improved: half of the respondents consider that the academic
performance of their students improved, rating it 4/4, since the average
grade of the class improved 2 points; while the other half rated it 3/4,
given that in their cases the average score improved 1 point.

4.5.3 Discussion

The results were satisfactory. However, the surveys show slightly dif-
ferent ratings among students in the curricular and extracurricular classes.
Arguable, because in the first case the students had a more limited time
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and usually showed a high interest in the classes, while in the extracurric-
ular classes they had more time but tended to be less interested.

In two of the schools, there had been no previous use of robotics; in
two others little use, in another one moderate use and, finally, in two
others a considerable use. Another positive indication is that after the
deployment of our educational proposal, all the schools, without exception,
have embraced robotics with great enthusiasm and have also held various
competitions and workshops throughout the academic year.
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# Below objects’ border: camera image is processed from bottom to
top (i=rows) and from left to right (j=columns)

while (j < ANCHO_IMAGEN): # processing columns
i = LARGO_IMAGEN-1
esFrontera = None
while ((i>=0) and (esFrontera == None)): # processing rows

pos = i*ANCHO_IMAGEN+j # actual position

pix = bnImg[i, j] # value 0 or 255 (b/w border previously
filtered image)

if (pix != 0):
esFrontera = True
c = j - 1
row = i
v1 = row*ANCHO_IMAGEN+c

if (not((c >= 0) and (c < ANCHO_IMAGEN) and
(row >= 0) and (row < LARGO_IMAGEN))):

pix = 0
else:

pix = bnImg[row, c]
if (esFrontera == True):

pixel.x = j
pixel.y = i
pixel.h = 1
fronteraImg[i,j] = 255
# backproject and intersect it with plane Z = 0
pixelOnGround3D = getIntersectionZ (pixel)
fronteraArray[puntosFrontera][0] = pixelOnGround3D.x
fronteraArray[puntosFrontera][1] = pixelOnGround3D.y
puntosFrontera = puntosFrontera + 1

i = i - 1
j = j + 5

Code 4.2: Getting frontier border below objects in image
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images = glob.glob(’chess_board/*.png’)

for file_name in images:
image = cv2.imread(file_name)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
h, w = gray.shape[:2]

# find chess board corners
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)

# add object points, image points
if ret:

object_points.append(object_point)
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1),

criteria)
image_points.append(corners)

# draw and display the corners
cv2.drawChessboardCorners(image, (9, 6), corners, ret)
cv2.imshow(’image’, image)
cv2.waitKey(500)

# calibration
retval, cameraMatrix, distCoeffs, rvecs, tvecs =

cv2.calibrateCamera(object_points, image_points, (w, h), None,
None)

Code 4.3: PiCamera calibrator using OpenCV library
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def getIntersectionZ (p2d):
p3d = Punto3D ()
res = Punto3D ()
p2d_ = Punto2D ()

x = myCamera.position.x
y = myCamera.position.y
z = myCamera.position.z

p2d_ = pixel2optical(p2d)
result, p3d = backproject(p2d_, myCamera)

# Check division by zero
if((p3d.z-z) == 0.0):

res.h = 0.0
return

# Linear equation (X-x)/(p3d.X-x) = (Y-y)/(p3d.Y-y) =
(Z-z)/(p3d.Z-z)

xfinal = x + (p3d.x - x)*(zfinal - z)/(p3d.z-z)
yfinal = y + (p3d.y - y)*(zfinal - z)/(p3d.z-z)
zfinal = 0. # Ground plane Z = 0

res.x = xfinal
res.y = yfinal
res.z = zfinal
res.h = 1.0

return res

Code 4.4: Intersection between optical ray and below border of object
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thetaY = 86.7*DEGTORAD # camera is rotated 86.7 degrees over Y axis
thetaZ = 0*DEGTORAD # camera is not rotated over Z...
thetaX = 0*DEGTORAD # ...nor X axis

# R_y is a 3x3 rotation matrix
R_y = numpy.array

([(numpy.cos(thetaY),0,-numpy.sin(thetaY)),(0,1,0),
(numpy.sin(thetaY),0,numpy.cos(thetaY))])

# R_z is a 3x3 rotation matrix
R_z = numpy.array ([(numpy.cos(thetaZ),-numpy.sin(thetaZ),0),

(numpy.sin(thetaZ),numpy.cos(thetaZ),0),(0,0,1)])
# R_x is a 3x3 rotation matrix
R_x = numpy.array

([(1,0,0),(0,numpy.cos(thetaX),numpy.sin(thetaX)),
(0, -numpy.sin(thetaX),numpy.cos(thetaX))])

R_subt = numpy.dot (R_y, R_z)
R_tot = numpy.dot (R_subt, R_x)

# T is a 3x4 traslation matrix
T = numpy.array ([(1,0,0,0),(0,1,0,0),(0,0,1,-110)])
Res = numpy.dot (R_tot,T)
# RT is a 4x4 matrix
RT = numpy.append(Res, [[0,0,0,1]], axis=0)
# K is a 3x4 matrix with intrinsics values got from

piCamCalibrator tool
K = numpy.array ([(313.89382026,0,117.5728043,0),
(0,316.64906146,158.04145907,0),(0,0,1,0)])

Code 4.5: Operations with camera matrices to get absolute position
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from mBotReal import MBotReal
from mBotGazebo import MBotGazebo
from piBot import PiBot

if __name__ == "__main__":
ic = EasyIce.initialize(sys.argv)
props = ic.getProperties()
propPrefix = "JdeRobotKids"
robot = props.getProperty(propPrefix + ".Robot")

myJdeRobotKids = init(robot)

# TODO: add your code below here
print ("Codigo choca-gira con robot ", myJdeRobotKids.tipo)

vel = 100
while True:

val = myJdeRobotKids.leerUltrasonido()
print(val)
if (val < 10):
myJdeRobotKids.retroceder(vel)
time.sleep(0.5)
myJdeRobotKids.girarDerecha(vel)
time.sleep(0.3)

myJdeRobotKids.avanzar(vel)
time.sleep(0.3)

Code 4.6: Shock-tour using JdeRobot-Kids on any platform



Chapter 5

Conclusions

In this chapter the main conclusions and contributions of the pre-
sented work are recapitulated. It is organized in four sections. In
the first one, Section 5.1, the conclusions are presented, after eval-
uation of the academic environment put into practice. Then, in
Section 5.2, the contributions made in the central theme of the
thesis are listed. Section 5.3 takes a tour of the different publica-
tions that derive from this research. Finally, the future lines that
follow this dissertation are described in Section 5.4.

5.1 Conclusions

This research is focused on incorporating Robotics and robots with
vision in the classroom to train pre-university students, satisfying the de-
mands imposed by the Digital Age Society and the motivational needs
detected in students, who still study in a system of training still to be
adapted to the so-called Industrial Revolution 4.0.

Although there are numerous educational Robotics kits on the market,
most of them are aimed at younger students. They are generally based
on building their robotic platforms with their own programming environ-
ments, far from employing more standardized programming languages. In
addition, they usually have a somewhat low level of complexity, which
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means that these tools tend to be —in the short term— trigger a low level
of motivation in students. Furthermore, given the complexity involved in
the treatment of a sensor such as the camera, despite its great versatility,
it is not usually included in these educational environments.

Based on this, and in the first place, several algorithms have been im-
plemented that use a camera as the main sensor to solve the fundamental
problems of Robotics, such as navigation and location. Both fronts have
been solved by developing a visual memory in which the robot is able to
incorporate and abstract complex elements following different patterns: ar-
rows, parallelograms or human faces. On this visual memory, an attentive
system capable of attending to the different elements that surround the
robot is mounted. This has resulted in an autonomous and intelligent sys-
tem, which navigates through a changing and real environment, in which
it is constantly located. This visual perception system was validated in
both real and simulated robots. The memory accurately represents the
environment of the robot using the images of the mobile camera, whose
movement is controlled by the attention mechanism. Memory is dynamic
but has some persistence to treat temporary occlusions. The location works
in real time, providing position errors below 15 cm and 5 degrees and is
robust enough to recover from seizures or estimation errors in symmetric
environments.

Secondly, after investigating the market situation of the existing Robotics
educational kits and conducting an in-depth analysis what the future holds
in the short and mid-term in terms of demands of the labor market, the
author, as an experienced Secondary Education teacher, detected a defi-
ciency in the teaching-learning process of Robotics at pre-university curric-
ular level. Therefore, a complete educational environment was developed,
which includes:

• A robotic platform based on the free hardware controller board Rasp-
berry Pi 3. This platform was chosen for several reasons: low cost,
power, versatility, standardization and inclusion of a camera with
its own data bus, the PiCamera. Thus, a fully functional robot
was built, the PiBot, to which —thanks to the GPIO ports on the
board— various sensors and actuators have been connected, in addi-
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tion to its own camera.

• A software infrastructure developed in Python language, JdeRobot-
Kids, which facilitated students’ programming of the robot, with
simple and intuitive functions to handle the different sensors and
actuators, but at the same time of great potential, as those corre-
sponding to the handling of a camera as a sensor.

• A wide repertoire of practice activities that serve as a support to
students for their progression in the learning of the programming of
robots with vision.

• An academic program that includes the plan of activities for the sub-
ject Programming, Robotics and Technology in different Secondary
Education levels and for a course of extracurricular activities. This
program is divided into four phases, starting from a very basic level
up to the development of a project that solves a classic Robotics
task, such as a line-follow or crashes-turns robot using the camera as
a sensor.

The teaching environment JdeRobot-Kids was used in the Francis-
canas de Montpellier Foundation during the 2016/2017 and 2017/2018
academic years in the subject Programming, Robotics and Technology in
1st, 2nd and 4th years of Compulsory Secondary Education (CSO) and in
annual extra-curricular subjects at the Ntra. Sra. Sagrado Corazón School
in Madrid, as well as in extra-curricular subjects at the Villa de Móstoles
School during the 2016/2017 academic year and at the Rihondo School in
Alcorcón during the 2017/2018 academic year.

In total, the environment was followed by some 2, 050 students and a
dozen teachers in the last two academic years. Its impact was measured
through surveys and the results were very satisfactory (Section 4.5). They
show students and teachers received the subject well and were highly sat-
isfied. In addition, the robotic projects carried out by the students demon-
strate a high level of assimilation of concepts, while the dynamics of the
classes were very pleasant.
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5.2 Contributions

From this work derive, in addition to the publications listed in Section
5.3, numerous software and hardware developments related to Robotics
with vision and education in Robotics. The main ones are listed below:

(C1) Attentive visual system1 on a mechanical neck, which has allowed the
robots to have a perceptive system with a wide field of vision of the
entire surrounding scene, greater than the instantaneous field of view
of a camera. In addition, this system is essential to indicate to the
robot which is the next area to look at, in addition to focusing on
the object that is being focused on at a certain time, and follow it.

(C2) Visual memory2, which is responsible for maintaining information
about the different objects of interest that the robot finds in the en-
vironment it navigates, which allows it to make smarter decisions
in real time about the surrounding circumstances. It includes sev-
eral main developments: (a) the object detector, in charge of iden-
tifying basic forms (concepts) such as arrows, parallelograms and
human faces; (b) the element prediction mechanism, which allows
the system to predict previously memorized elements, alleviating the
computational cost; and (c) the algorithm for generating perceptual
hypotheses, responsible for abstracting complex objects, which has
allowed the perceptual system to successfully resolve possible occlu-
sions that can occur in a real environment.

(C3) Auxiliary vision library3, which includes all the functionality to sat-
isfy the different changes in coordinated systems between the objects
detected in the real world and the pixels corresponding to the 2D
image in a camera. The development of a class to completely ab-
stract the model of an ideal Pin-Hole camera, has allowed students
who start in robots with vision to perform complex vision practical
sessions without the need for advanced knowledge in the subject. It

1http://jderobot.org/VisualSonar
2http://jderobot.org/VisualMemory
3http://jderobot.org/RobotVision

http://jderobot.org/VisualSonar
http://jderobot.org/VisualMemory
http://jderobot.org/RobotVision
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also includes algorithms based on the Floor Hypothesis and the im-
plementation of the Solis line extractor ([Solis et al., 2009]), which
have allowed the distances to objects to be estimated using a single
camera.

(C4) Design and construction of PiBot45 as a robotic platform based on
free and standard hardware, specifically on the Raspberry Pi 3 board.
The power, versatility and inclusion of the PiCam camera with its
own dedicated data bus has allowed the development of vision al-
gorithms. In addition, the low cost of this platform allows schools
to acquire a considerable number of prototypes in order to satisfy
a whole class. The inclusion of powerful servos gives rise to a ro-
bust, reliable and agile mobile robotic platform to navigate in a real
environment.

(C5) Repertoire of practices in Python on mBot and Arduino standard.
It allowed students and teachers to have an extensive collection of
fully functional examples, implemented in a real language such as
Python, and all sensors and actuators that can be coupled to an
Arduino UNO board as well as those already included as standard
in mBot robot. This greatly facilitated the inclusion of Robotics in
Secondary Education classrooms.

(C6) Software infrastructure to support PiBot6, implemented in Python
language. It allowed the inclusion of the powerful robotic platform
PiBot in the classroom, which can be used by young students who
lack the necessary knowledge to manipulate such a sophisticated
robot. This infrastructure facilitates the complete management of
the robot: servos, sensors (ultrasound, infrared) and varied actu-
ators (push-buttons, LEDs) and, most importantly, a real camera,
such as the PiCam or any WebCam, which was supported by the

4http://jderobot.org/JulioVega_PhD#2018.03.03._Introducing_the_new_
PiBot_v3.0

5https://github.com/JdeRobot/JdeRobot/tree/master/assets/gazebo/models/
pibot

6https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/PiBot

http://jderobot.org/JulioVega_PhD#2018.03.03._Introducing_the_new_PiBot_v3.0
http://jderobot.org/JulioVega_PhD#2018.03.03._Introducing_the_new_PiBot_v3.0
https://github.com/JdeRobot/JdeRobot/tree/master/assets/gazebo/models/pibot
https://github.com/JdeRobot/JdeRobot/tree/master/assets/gazebo/models/pibot
https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/PiBot
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driver piCamServer7. This allowed students to program numerous
challenging practice activities, using a simple camera as the main
sensor.

(C7) Repertoire of practice sessions in Python on PiBot. Practice sessions
similar to those of the mBot but adapted to this other platform and
extended with several exercises that require using the camera on
board.

(C8) Full educational environment8. With all the above, a complete educa-
tional program was designed and followed, with an academic program
of adequate complexity for pre-university students. All the sessions
followed, with their contents and objectives, were detailed and orga-
nized, as well as the methodology that has been found to be the most
appropriate for the Teaching-Learning process of Robotics, based on
the experience of these years in Spanish schools and a research stay
in Finland.

In total, more than 200, 000 lines of code were implemented among
the different software developments described. The distribution of these is
reflected in Figure 5.1.

The progress of all the work carried out for this dissertation can be
followed in the dedicated Wiki9, where all the implemented codes can be
accessed. These works have been integrated into the JdeRobot10 plat-
form of the Robotics Group of the Rey Juan Carlos University under the
framework of several major projects: GuideRobot11, RobotVision12, Vi-
sualMemory13, VisualSonar14 and JdeRobot-Kids15.

The software contributions include the use of different languages such
as C, C++ and Python, as well as numerous libraries and tools, among which

7https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/
piCamServer_py

8http://kids.jderobot.org
9http://jderobot.org/JulioVega_PhD

10https://jderobot.org
11http://jderobot.org/GuideRobot
12http://jderobot.org/RobotVision
13http://jderobot.org/VisualMemory
14http://jderobot.org/VisualSonar
15http://kids.jderobot.org

https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/piCamServer_py
https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/piCamServer_py
http://kids.jderobot.org
http://jderobot.org/JulioVega_PhD
https://jderobot.org
http://jderobot.org/GuideRobot
http://jderobot.org/RobotVision
http://jderobot.org/VisualMemory
http://jderobot.org/VisualSonar
http://kids.jderobot.org
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Figure 5.1: Distribution of the lines of code implemented

the following stand out: Susan, XForms, Glade, GTK, FreeGLUT, OpenGL,
OpenCV, v4l, GSL, ICE , Math, PiGPIO, PyGame, IMUtils, NumPy, SVN, GIT,
UMLet, etc.

5.3 Publications

The publications that derive from this work are the following:

• Journals:

– Julio Vega, José María Cañas, Fran Pérez and Aitor Martínez.
(2018). JdeRobot-Kids: entorno docente de robótica para niños.
Revista Iberoamericana de Automática e Informática
Industrial (RIAI). Under review. Impact factor (JCR 2016):
0,500.



Chapter 5. Conclusions 129

– Julio Vega, Eduardo Perdices and José María Cañas. (2013).
Robot evolutionary localization based on attentive visual short-
term memory, pages 1268-1299. Sensors. ISSN: 1424-8220.
Impact factor (JCR 2013): 2,048.

– Julio Vega, José María Cañas and Eduardo Perdices. (2012).
Local robot navigation based on an active visual short-term mem-
ory, pages 21-30. Journal of Physical Agents. ISSN: 1888-
0258. Impact factor (SJR 2012): 0,171.

• Book chapters:

– Julio Vega, Eduardo Perdices and José María Cañas. (2012).
Attentive Visual Memory for Robot Localization, pages 408-438.
Robotic Vision: Technologies for Machine Learning and
Vision Applications. Ed. IGI-GLOBAL. ISBN: 978-84-694-
6730-5.

• Workshops:

– Julio Vega and José María Cañas. (2016). Entorno docente
con Arduino y Python para Educación Robótica en Secundaria.
JITICE 5thWorkshop, Educational Innovation and ICT.
ISBN: 978-84-697-0892-7.

– Julio Vega and José María Cañas. (2014). Curso de Robótica
en Educación Secundaria usando Constructivismo Pedagógico.
JITICE 4thWorkshop, Educational Innovation and ICT.
ISSN: 2172-6620.

– José María Cañas, Laura Martín and Julio Vega. (2014). Inno-
vating in robotics education with Gazebo simulator and JdeR-
obot framework. CUIEET XXII Congreso Universitario
de Innovación Educativa en Enseñanzas Técnicas. ISSN:
2172-6620.
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– Borja Menéndez, José María Cañas, Eduardo Perdices and Julio
Vega. (2013). Programming a Humanoid Social Robot Using
the JdeRobot Framework. RoboCity2030 11th Workshop,
Robots sociales. ISBN:978-84-695-7212-2.

– Julio Vega, Eduardo Perdices and José María Cañas. (2012).
Robot evolutionary localization based on attentive visual short
term memory. IEEE Intelligent Vehicles SymposiumWork-
shops, Perception in Robotics. ISBN: 978-84-695-3472-4.

– Julio Vega and José María Cañas. (2011). Attentive visual
memory for robot navigation. WAF2011 XII Physical Agents
Workshop. ISBN: 978-84-694-6730-5.

– Eduardo Perdices, José María Cañas, Julio Vega, Carlos Agüero
and Francisco Martín. (2010). Localización visual de robots en
la RoboCup mediante algoritmos evolutivos. Robocity 2030.
ISBN: 84-693-6777-3.

– Julio Vega, José María Cañas, Pablo Miangolarra and Eduardo
Perdices. (2010). Memoria visual atentiva basada en conceptos
para un robot móvil. Robocity 2030. ISBN: 84-693-6777-3.

– Julio Vega and José María Cañas. (2009). Sistema de aten-
ción visual para la interacción persona-robot. RoboCity2030,
Interacción persona-robot. ISBN: 978-84-692-5987-0.

5.4 Future lines

It is expected that the teaching environment developed, JdeRobot-Kids,
and the methodology followed will contribute in the long term to improving
results on educational indicators in Spain, to reduce the gap in educational
quality with other countries such as Finland.
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The main lines of work in the short term are the following: (a) to unify
the programming interface for the real PiBot and the existing one for
the simulated PiBot, so that students’ practical sessions can be executed
without modifications in the real robot or the simulated one; (b) to develop
new practical sessions with vision such as the detection and monitoring of
people’s faces, and materialize in the PiBot a visual attentive system and
a visual memory; and (c) to disseminate the developed environment.

Regarding this last point, during the month of July of this year a
Robotics workshop is to be taught at the Campus of Fuenlabrada of the
Rey Juan Carlos University. In addition, a manual is being prepared to
serve as a textbook for the teacher, with all the theoretical concepts of
Robotics and Electronics, the installation of the environment and the whole
repertoire of practical sessions developed for the different hardware plat-
forms: Arduino, mBot and PiBot. It is also intended to publish an article
in a high-impact journal with all these advances, and fundamentally with
the new platform developed, PiBot.

Looking to the next academic year, we intend to continue implement-
ing this teaching environment in the schools already using it. It will also
be extended to other schools such as the Carpe Diem Secondary School in
Fuenlabrada and many others where the environment will be followed in ex-
tracurricular activities thanks to collaboration with the company Logix516.

Work is also being done to extend the environment to a Web-IDE of
JdeRobot-Kids, which will allow students to work in the cloud, without
the need for them to install a library on their computer, greatly facilitating
work in the classroom. This will facilitate programming practices with the
real PiBot platform, by downloading in the Raspberry the code developed
in the IDE of the cloud; and with simulations, thanks to the simulator
incorporated in the web environment.

Finally, the project PyOnArduino17 is being developed, whose objective
is that the practice sessions developed in Python for mBot use a Python
library that runs on the personal computer and that is in continuous com-
munication (wired or wireless) with the mBot. That is, they do not run

16http://www.logix5.com/roboticaeducativa
17https://github.com/JdeRobot/PyOnArduino

http://www.logix5.com/roboticaeducativa
https://github.com/JdeRobot/PyOnArduino
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directly on the Arduino processor of the mBot, but on the PC. On board
the mBot, a data trafficator is executed that continuously captures the sen-
sors and sends them to the Python library on the PC; in turn, it receives
commands from the PC for the actuators and orders them to the engines
on board. A possible continuation of this thesis is to develop translator
from Python to Arduino language, so that student applications written in
Python can be translated into Arduino language and thus loaded on board
to actually run inside the mBot.



Apéndice A

Resumen en castellano

En este apéndice se resume el contenido de este trabajo en caste-
llano. Está organizado según los siguientes apartados. En la Sección
A.1 se muestra una descripción general de la situación del área de
Robótica, su papel en la sociedad actual y del futuro cercano y
de cómo la visión de robots es fundamental en esta nueva era de
robots inteligentes. La Sección A.3 proporciona un breve análisis
del auge en todo el mundo de la Robótica y la programación a
nivel educativo. En la Sección A.4 se presenta la propuesta educa-
tiva desarrollada en esta disertación. La Sección A.5 describe los
principales objetivos de este trabajo. En la Sección A.6 se hace un
recorrido por la estructura según la cual está vertebrada esta te-
sis. En los cuatro últimos apartados se recapitulan las principales
conclusiones y aportaciones del trabajo presentado. En la Sección
A.7 se presentan las conclusiones, previa evaluación del entorno
académico puesto en práctica. Seguidamente, en la Sección A.8, se
enumeran las contribuciones hechas en el tema central de la tesis.
La Sección A.9 hace un recorrido por las distintas publicaciones
que se derivan de esta investigación. Por último, las líneas futuras
que se abren paso tras esta disertación se describen en la Sección
A.10.
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A.1 Tecnología y Robótica

En la última década, la tecnología se ha convertido cada vez más co-
mún en la mayoría de los aspectos de la vida cotidiana e industrial. En
los hogares se dispone cada vez más de un mayor número de dispositi-
vos tecnológicos, tales como ordenadores, tablets, teléfonos inteligentes —o
smartphones—, sistemas de domótica, etc. Todos ellos intercontectados a
través de Internet. A nivel industrial, cada vez son más las factorías que
incorporan en sus cadenas de producción ya no máquinas autónomas, sino
robots inteligentes con sofisticados sistemas sensoriales, con la visión como
principal mecanismo de percepción.

A.1.1 La Robótica en el ámbito doméstico

En casa es habitual disponer de numerosos elementos tecnológicos; la
aparición de dispositivos robóticos en el mercado masivo como las aspira-
doras y mopas robóticas (Figura A.1-a,b), así como las numerosas aplica-
ciones y servicios de domótica existentes (Figura A.1-c), hacen que esta
tecnología esté cada vez más presente en la rutina diaria de la sociedad,
por no hablar de otras tareas automatizadas y que se dan frecuentemen-
te: sacar dinero del cajero automático del banco, el pago automático en
supermercados, o el uso masivo de Internet para comunicarnos, realizar
compras, llevar a cabo gestiones bancarias, y mucho más.

Figura A.1: iRobot Roomba y Jet Braava, y aplicación domótica Wattio

Por otro lado, los coches autónomos o los drones hacen más visible la
utilidad de esta tecnología y refuerzan su atractivo. Los grandes fabricantes
de automoción están empujando estos nuevos avances, tienen prototipos
avanzados de coches autónomos y grandes empresas de software como Goo-
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gle (Figura A.2) o Apple, o nuevas como Tesla se han posicionado muy bien
en este sector.

Figura A.2: Coche autónomo de Google y dron dedicado a tareas de agricultura

Por su parte, el uso de drones como ocio está quedándose en un segundo
plano para dar paso a su cada vez más extendido uso a nivel profesional
(Figura A.2) para labores de emergencia, eventos, búsqueda de personas,
control fiscal, vigilancia fronteriza, agricultura, vigilancia de tráfico, etc.
En España ya existen casi 3.000 empresas habilitadas en este sector y el
Ministerio de Fomento ha impulsado recientemente el Plan Estratégico del
uso de drones 2018-2021 ([Fomento, 2018]) para el desarrollo del sector
civil de los drones, que establece la hoja de ruta a seguir para impulsar el
desarrollo de este sector incipiente y con un alto potencial de crecimiento.

Debido a esta tendencia hacia la automatización de casi todas las tareas
cotidianas así como un aumento en la presencia de dispositivos robóticos
presentes en el día a día, cada vez se hace más imprescindible el conoci-
miento del uso de las tecnologías.

A.1.2 La Robótica y la Industrialización

La Robótica a nivel industrial tiene sus orígenes en la Revolución Indus-
trial de 1800 cuando, por primera vez, productos y servicios eran desarro-
llados por máquinas; teniendo como buque insignia la máquina de vapor,
que hizo que muchos empleados fueran reemplazados por ellas.

La segunda revolución industrial comenzó con la electricidad, a finales
del siglo XIX, cuyo principal concepto novedoso fue la línea de montaje,
que se utilizó por primera vez en la industria del automóvil (Figura A.3-a).

La tercera revolución industrial comenzó en la década de 1970 y se
distinguió por una mayor automatización a través de la electrónica. Co-
mienzan a integrarse en la sociedad los primeros ordenadores personales,
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Figura A.3: Revoluciones industriales: (a) Línea de montaje de Ford, (b) Pro-
ducción en serie de Porsche, (c) Robots inteligentes de Glory Ltd.

Internet y el acceso global a información. A nivel laboral el trabajo hu-
mano es reemplazado por máquinas que, programadas, fabrican productos
en serie (Figura A.3-b), donde la velocidad, la precisión y la fiabilidad son
primordiales.

La denominada Industrialización 4.0 supone la integración de siste-
mas robotizados complejos en las factorías (Figura A.3-c), la logística y
el llamado Internet de las cosas, donde sofisticados autómatas manejan
una inmensa cantidad de datos para tomar decisiones estratégicas para las
empresas.

El futuro a corto y medio plazo está/estará marcado por una produc-
ción industrial dominada por máquinas inteligentes. La presencia de hu-
manos en estas factorías inteligentes tiende a ser cada vez menor y llegará
a ser simbólica y puntual. No hay duda de que la capacidad de toma de
decisiones óptimas en tiempo real de una máquina, que maneja una enor-
me gran cantidad de datos simultáneamente, dista mucho de la capacidad
de un ser humano.

A.1.3 Robots inteligentes en entornos complejos

Estos robots móviles e inteligentes necesitan, además de una gran ca-
pacidad de cómputo, un complejo sistema sensorial para actuar inteligen-
temente ya no sólo en las factorías sino en la interacción robot-humano
a nivel general ([Vega and Cañas, 2009]). La automatización fija de cade-
nas de producción estructuradas deja paso al mundo impredecible y nada
estructurado de la realidad donde se hace evidente la necesidad de una
amplia gama complementaria de sensores y actuadores para lograr una
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completa autonomía ([Arbel and Ferrie, 2001]).
Esta lucha por la autonomía en entornos complejos, desestructurados,

impredecibles y cohabitados por los humanos constituye actualmente un
profundo campo de investigación en Robótica, la Robótica Inteligente, don-
de la percepción por visión, el razonamiento y la actuación están íntima-
mente ligados a realizar tareas útiles con poca intervención humana. Cabe
mencionar en este punto el asistente inteligente Duplex, que la compañía
Google presentaba en mayo de este año y que es fiel reflejo de cómo están
evolucionando las máquinas.

A.2 Visión en Robótica

La visión computacional es la rama de la Inteligencia Artificial que
incluye las técnicas y métodos aplicados a una cámara como sensor. Aunque
esta modalidad sensorial no ha sido la más empleada hasta hace unos años
en robótica móvil (sónar y/o láser han sido mayoritariamente usados como
sensores, Figura A.4-a,b), actualmente se ha convertido en el sensor que
más se está usando y —sin duda— se usará con mayor profusión a largo
plazo, debido a las posibilidades que ofrece y a la potencia de cálculo de los
ordenadores hoy en día. Son dispositivos de bajo coste y potencialmente
muy ricos, ya que ofrecen mucha información.

Figura A.4: Sensores láser de Hokuyo, ultrasonidos HC-SR04 y cámara PiCam

Pero la capacidad visual en robots, al contrario que en los animales, no
resulta una técnica fácil ([Ramachandran, 1990]). La principal dificultad
radica en extraer información útil del gran caudal de datos que vierte una
cámara (Figura A.4-c), para lo cual se necesitan buenos algoritmos. Aun-
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que debemos ser cautos a la hora de comparar un robot con un organismo
biológico ([Nehmzow, 1993]), lo que sí está claro es que la vista es el sen-
tido principal en que se apoyan los animales para moverse por el entorno
([Tinbergen, 1951]).

Figura A.5: Sistemas avanzados de percepción visual Bumblebee, Mobile Ranger
y Kinect

Aunque en el mercado existen diversos dispositivos de percepción que
combinan visión e infrarrojos para obtener una mayor información útil del
entorno sin necesidad de un gran procesamiento de los datos (Figura A.5,
en este trabajo de investigación se han usado cámaras sencillas, centrando
los esfuerzos en desarrollar complejos algoritmos capaces de extraer infor-
mación de interés de los datos vertidos por estas.

En la literatura existen diversos frentes de investigación abiertos en
cuanto a visión de robots. A continuación se describen los usos más habi-
tuales.

Detección de estímulos mediante redes neuronales

En las últimas décadas surgieron modelos de redes neuronales artifi-
ciales (RNA) postuladas de diversas teorías del funcionamiento de redes
neuronales biológicas. Desde entonces, han sido numerosos los trabajos
propuestos donde se aplican RNAs en diferentes áreas de la ingeniería. Un
área donde se utilizan ampliamente dichas redes es la de procesamiento
de imágenes, donde existe una gran cantidad de trabajos propuestos con
RNAs ([Schmidhuber, 2015]).

Por ejemplo, los coches autónomos aplican técnicas de redes neurona-
les para gestionar las trayectorias y los controles de posición y orientación
([Caceres et al., 2017]).
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Control visual

Otro uso extendido de la visión de robots es el control visual, por
ejemplo para detección de caras ([Vega and Cañas, 2009]), sistemas de
videovigilancia ([Srinivasan et al., 2006]), control de tráfico (cámaras con
sistema de detección de cinturón de seguridad, etc.), en coches autóno-
mos para detectar cambio de carril ([Cho et al., 2014]). También, existe
un enorme campo de investigación en Biometría, para reconocimiento de
firmas, caracteres y estudio del trazado de la escritura ([Pinto et al., 2015]).

Reconstrucción 3D

La adquisición de modelos tridimensionales es desde hace algunos años
uno de los frentes de investigación que presenta mayor actividad. El uso de
estos escenarios 3D es muy amplio, desde desarrollar entornos de realidad
virtual ([Barrera et al., 2005]) hasta videojuegos ([Richter et al., 2016]),
así como en la reconstrucción de edificios antiguos ([Murgul, 2015]) o mo-
dernos ([Fathi et al., 2015]) para su análisis.

Autolocalización visual

La autolocalización visual o basada en imágenes se refiere a la recupe-
ración de la posición y orientación de una cámara en el mundo en función
de las imágenes que graba. Esta aplicación es de interés en entornos donde
los sistemas basados en GPS no están disponibles o son imprecisos, como
en interiores o en ciudades densas ([Antequera et al., 2017]).

Así, aplicaciones que realizan sus tareas en interiores, como Roomba de
iRobot, emplean estas técnicas para saber en todo momento su posición
en el entorno en el que están efectuando su tarea y evitar, por ejemplo,
comportamientos poco inteligentes como repetir en zonas en las que ya ha
estado, etc.

También, los coches autónomos incluyen técnicas de autolocalización
visual ([Wolcott and Eustice, 2014]), lo que les permite navegar con segu-
ridad en zonas o momentos donde la recepción de satélites GPS es de poca
calidad, como ciudades con edificios altos, túneles o momentos en los que
por inclemencias meteorológicas es imposible visualizar estos satélites.
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Atención visual

A la hora de tratar y seleccionar detalles útiles de toda la información
percibida por una cámara, resulta crucial fijarse en cómo funcionan los
sistemas visuales de los organismos que existen en la naturaleza ([Zaha-
rescu et al., 2005]). Los humanos disponemos de un preciso sistema de
visión activa ([Bajcsy, 2009, Sawides et al., 2018]). Esto significa que po-
demos concentrarnos en determinadas regiones de interés de la escena que
nos rodea ([Marocco and Floreano, 2002]) gracias al movimiento de los
ojos ([Murray et al., 2003]) y/o de la cabeza ([Vega and Cañas, 2009]), o
simplemente repartiendo la mirada ([Arbel and Ferrie, 2001]) en distintas
zonas dentro de la imagen actual que estemos percibiendo ([Itti and Koch.,
2005]).

La atención visual es una tarea clave en la Robótica autónoma, pues un
robot con visión que interactúa en un entorno real ha de ser reactivo, por
lo que ha de incluir sistemas de visión rápidos que extraigan información
útil en tiempo real de los datos que vierte una cámara.

Memoria visual

Si un robot con visión además de tratar la información que recibe en
cada momento de su sistema visual puede almacenar esta en una memo-
ria, podrá tomar decisiones más inteligentes a la hora de moverse por el
entorno. Es por ello que en este frente de investigación existen desde hace
unos años numerosos trabajos.

Los coches autónomos, las aplicaciones domésticas como Roomba, o los
sistemas autónomos de navegación aérea incorporan esta memoria.

En el tema de la tesis se desarrollan métodos sobre qué y dónde se
encuentran los objetos que el robot va encontrando a su paso ([Zaharescu
et al., 2005]), lo que permitirá al robot navegar por el entorno circundante
de forma inteligente y estar localizado en él.
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A.3 Robótica educativa

Como se ha descrito en la Sección A.1.2 el avance de la Inteligencia
Artificial (AI), la Robótica y la automatización en la sociedad, el futuro
del trabajo y la industria en particular ([Mies and Zentay, 2017]) confluyen
en lo que ya se denomina la cuarta revolución industrial ([Schwab, 2016]).

Según los análisis de la Universidad de Oxford ([Frey and Osborne,
2013]) y la firma de servicios profesionales Deloitte ([Deloitte, 2015]), casi
la mitad de todos los puestos de trabajo serán ocupados por robots en los
próximos 25 años. Además, como señala en su último informe sobre econo-
mía global ([Institute, 2017]) el instituto Mckinsey(1), los robots realizarán
la labor de cerca de 800 millones de puestos de trabajos en 2030.

Figura A.6: Diferentes prototipos robóticos para trabajar distintas áreas educa-
tivas

Por ello resulta de vital importancia incorporar la Tecnología, y en
concreto la Robótica, en el sistema educativo preuniversitario ya que serán
los más jóvenes de ahora los que tengan que enfrentarse en una década a
un mercado laboral que demandará perfiles relacionados con la automa-
tización de sistemas ([UK-RAS, 2016]). Desde el punto de vista educati-
vo, la Robótica es un campo transversal donde concurren muchas áreas:
electrónica, física (Figura A.6-a), mecánica (Figura A.6-b), informática,
telecomunicaciones, matemáticas, etc.

Además, el uso de las tecnologías en las escuelas públicas y privadas
también ayudará a reducir la brecha digital que existe actualmente en to-

1https://www.mckinsey.com

https://www.mckinsey.com
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Figura A.7: Alumnos trabajando en un prototipo robótico

do el mundo. La brecha digital es el término para describir las grandes
diferencias en el uso de la tecnología entre los diferentes grupos étnicos y
socio-económicos ([Schiller, 1996], [Wresch, 1996]).

Por otro lado, esta pujanza creciente de la tecnología robótica reco-
mienda formar profesionales en este sector, que incluso lleven más allá las
fronteras actuales y ayuden a crear nuevas aplicaciones robóticas que sirvan
a las personas (Figura A.8-a,b) y al progreso de la humanidad (Figura A.8-
c). Actualmente la formación específica en Robótica aparece ligeramente
en educación secundaria y se realiza fundamentalmente en la universidad,
con titulaciones de grado y postgrados específicos.

Figura A.8: La Robótica como profesión para la sociedad

No obstante, es un hecho que la Robótica está cobrando una importan-
cia ascendente también en la educación preuniversitaria tanto en España
como en otros países occidentales, bien como campo de conocimiento en
sí mismo, bien como herramienta para exponer de modo atractivo la tec-
nología y otras materias a los niños. Además, la Robótica tiene poder de
motivación en los estudiantes y eso permite acercar la tecnología a los niños
y niñas ([Rodger and Walker, 1996]) usando la robótica como herramien-
ta para exponerles a conceptos básicos de ciencias ([Altin and Pedaste,
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2013]), tecnología, ingeniería y matemáticas (STEM Science, Technology,
Engineering and Math) ([Mubin et al., 2013]). Los alumnos aprenden, casi
mediante un juego (Figura A.7), nociones complejas difíciles de explicar o
asimilar mediante la clásica clase magistral ([Cerezo and Sastrón, 2015, Ji-
ménez et al., 2010]).

Por ejemplo, en docencia oficial la Comunidad de Madrid (Decreto
48/2015, de 14 de mayo, del Consejo de Gobierno) introdujo el curso
2015-16 la asignatura Tecnología, programación y robótica en el currícu-
lum oficial de Educación Secundaria Obligatoria. Además hay una deman-
da creciente de robótica para actividades extraescolares que está creando
un ecosistema de empresas que la satisfacen. Fuera de España la implanta-
ción de la Robótica en educación es un hecho. En los E.E.U.U. seis estados
(Iowa, Nevada, Wisconsin, Washington, Idaho y Utah) han anunciado pla-
nes e inversiones con este objetivo en los últimos cinco meses. Asimismo,
recientemente cuatro países: Canadá, Irlanda, Nueva Zelanda, y Rumanía
han anunciado planes en el mismo sentido, con una inversión que en to-
tal alcanza los 300 millones de dólares. Japón en su informe New Robot

Strategy ([Japan-Economic, 2015]) dejaba claro que invertir en la Robó-
tica es fundamental para el crecimiento del país.

En este crecimiento confluyen tanto la enseñanza de robótica en sí mis-
ma como la enseñanza de otras disciplinas (p.e. programación) utilizando
la robótica como herramienta vehicular ([Magnenat et al., 2014, Merkouris
et al., 2017, Kubilinskiene et al., 2017]).

Figura A.9: Campeonato robótico RoboCampeones
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Otra muestra de la importancia creciente de la robótica en la edu-
cación son los campeonatos robóticos para adolescentes, que motivan el
interés por la tecnología. Por ejemplo, el campeonato robótico RoboCam-
peones (Figura A.9) de la Comunidad de Madrid, que reunió a más de
2000 estudiantes en la última edición, con pruebas como el sigue líneas, el
sumo entre robots, etc. Igualmente, a nivel internacional también se orga-
nizan numerosos campeonatos para reunir a estudiantes de todo el mundo
a que aprendan, compartan experiencia y se diviertan mediante el desarro-
llo de artefactos robóticos. Cabría destacar la RoboCup Junior2 ([Eguchi,
2016, Navarrete et al., 2016, Kandlhofer and Steinbauer, 2014]), con prue-
bas como el rescate o el fútbol robótico. También la First LEGO League
(FLL) o las VEX Robotics Competitions3. En Finlandia el campeonato por
excelencia, que además concentra a estudiantes de toda Europa ([Jorma-
nainen and Korhonen, 2010]) y tiene acuerdos con centros de Sudáfrica
([Graven and Stott, 2011]), es el SciFest4.

También en la comunidad académica e investigadora han aparecido un
conjunto de congresos y conferencias que enfatizan el papel de la Robótica
en la Enseñanza. Por ejemplo Conference on Robotics in Education (RiE),
Workshop on Teaching Robotics with ROS (TRROS) dentro del European
Robotics Forum5. También son frecuentes números especiales sobre educa-
ción en robótica en varias revistas científicas. Finalmente, cabe destacar
algunas revistas de alto impacto que versan sobre Robótica y Educación:
Computers and Education, British Journal of Educational Technology, In-
ternational Journal of Robotics Research, Journal of the Learning Sciences
o Journal of Research in Science Teaching.

A pesar esta pujanza creciente en robótica educativa, existen en el
mercado pocos kits educativos que proporcionen un entorno docente útil
y motivador para estudiantes preuniversitarios. Los kits existentes están
enfocados a ser usados puntualmente en clase, con un bajo nivel de comple-
jidad, lo que resulta en una vida útil corta y una escasa motivación de los
alumnos, que alcanzan los desafíos planteados en unas pocas sesiones de

2http://rcj.robocup.org
3https://www.vexrobotics.com/vexedr/competition
4http://www.scifest.fi
5http://www.eu-robotics.net/robotics_forum

http://rcj.robocup.org
https://www.vexrobotics.com/vexedr/competition
http://www.scifest.fi
http://www.eu-robotics.net/robotics_forum
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trabajo. Tampoco existe ningún sistema, aún menos guiado, que mantenga
de forma constante la motivación y el nivel de desafío, ni donde la visión
juegue un papel importante.

A.4 Propuesta

Después de haber descrito en la Sección A.1 el papel que tiene la Robó-
tica en la sociedad de hoy y de cara a los próximos años y tras fundamentar
en la Sección A.3 la consecuente importancia que juega la educación como
medio por el cual las nuevas generaciones se han de preparar para el futuro
a corto y medio plazo, se ha identificado un enorme salto entre el nivel de
la formación académica que se imparte a nivel universitario en las carreras
del ámbito científico-tecnológico y el currículum oficial implantado en los
niveles preuniversitarios, concretamente en las asignaturas de ciencias de
los cursos de Educación Secundaria.

Por un lado, se propone con este trabajo adquirir un profundo bagaje,
para su posterior aplicación pedagógica sobre los principales problemas
inherentes a la Robótica, como son la navegación y localización, empleando
para ello la visión como sensor principal; así como el desarrollo de técnicas
de robots con visión, como el control visual, la memoria visual o un sistema
atentivo visual.

Por otro lado, para minimizar ese salto académico detectado entre la
formación preuniversitaria y la ofrecida por las universidades se propone
desarrollar un completo entorno docente de Robótica con visión inexisten-
te en la actualidad que integre: (a) una adecuada metodología pedagógica
acorde al nuevo perfil de Alumnado de la Era Digital, donde cada alumno
es más que nunca un individuo con sus propias inquietudes ([Rose and
Meyer, 2002, Selber, 2004]) dentro del enorme universo de posibilidades
que brinda esta Era de la Información ([Solove, 2004]); (b) una infraes-
tructura software que sea sencilla e intuitiva de manejar por los jóvenes
estudiantes pero a la vez potente y versátil, incorporando las suficientes
librerías de apoyo como para realizar las suficientes prácticas, en número y
en complejidad, de programación de robots con visión, como para motivar
continuamente a los alumnos ([Benitti, 2012]), así como diversos ejemplos
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que sirvan de muestra; (c) un experimentado programa académico que
pueda ser seguido durante un curso completo y que incluya las sesiones
suficientes y debidamente escalonadas para la correcta asimilación por los
estudiantes ([Ainley et al., 2008]); (d) una plataforma hardware versátil,
económicamente asequible por los centros de educación secundaria para
satisfacer las necesidades de una clase completa, pero a la vez estandari-
zada y potente, que permita la ejecución de algoritmos de Robótica con
visión.

En la actualidad no existe nada más allá que kits educativos principal-
mente enfocados para ser usados puntualmente en clase, siguiendo de este
modo un enfoque que consideramos obsoleto, y que en un corto intervalo de
tiempo resulta poco motivante para los estudiantes. De hecho, la mayoría
de estos kits existentes en el mercado están diseñados para que los alum-
nos más jóvenes despierten su interés por la Robótica, pero no para que los
alumnos que están en los cursos que preceden a la formación universitaria
adquieran una correcta y completa formación en programación, algo tan
demandado y extendido hoy día en casi cualquier carrera. Si bien es cier-
to que existen otros kits más especializados en determinadas áreas de la
Ciencia ([Schweikardt and Gross, 2006]), el entorno propuesto va más allá
y ofrece todas las herramientas necesarias tanto para el alumnado como el
profesorado ([Bers et al., 2002]) para desarrollar de forma versátil un curso
académico completo poniendo a su disposición numerosos y sofisticados
algoritmos, incluyendo visión, con un interfaz ameno e intuitivo.

A.5 Objetivos

El objetivo principal de este trabajo es el desarrollo, puesta en práctica
y evaluación de un completo entorno docente de Robótica. Este entorno
disminuirá la gran brecha detectada por este autor durante los años de
experiencia en docencia de las asignaturas científico-tecnológicas en los
niveles académicos preuniversitarios y los curricula de las carreras técnicas.
De este modo, las nuevas generaciones podrán estar mejor formadas en las
habilidades demandadas por la sociedad actual y de los próximos años.

El primer objetivo es desarrollar los algoritmos que den solución a los
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principales problemas existentes dentro del marco de los Robots con visión
y que abordarán cuestiones como la navegación y la localización usando
como sensor principal la visión. Esto supondrá a su vez determinar e imple-
mentar los problemas inherentes al tratamiento y selección de información
útil de una imagen, así como la generación de una compleja memoria visual
que vaya incorporando los elementos que se detecten en la escena circun-
dante al robot, resultando finalmente en un comportamiento por parte de
éste de mayor inteligencia, que es lo que se demandará en la Robótica de
los próximos años.

El segundo objetivo es integrar lo anterior en un completo entorno
educativo que incluirá todo un programa académico a seguir durante la
docencia de asignaturas como Tecnología y TICs en cursos preuniversita-
rios. Para ello desarrollaremos una infraestructura software que facilite a
estos alumnos la programación de robots con visión, de forma que ésta re-
sulte sencilla e intuitiva para desarrollar soluciones a los problemas clásicos
de robots: navegación, visión, etc.

Por otro lado, las plataformas robóticas físicas a considerar serán aque-
llas que tengan un bajo coste, para que resulte viable su adquisición por
los centros de Educación Secundaria para un aula completa. Es por ello
que los desarrollos se basarán en plataformas existentes en el mercado,
estandarizadas y de bajo coste. Además, y para satisfacer los anteriores
objetivos de poner en práctica algoritmos robóticos y de visión de robots,
se desarrollará una plataforma robótica física que permita computacional-
mente la ejecución de estos así como el manejo de una cámara como sensor
principal.

Este entorno educativo se pretende implantar en diferentes centros edu-
cativos de la Comunidad de Madrid, donde la Robótica está oficialmente
integrada en el currículum de Educación Secundaria durante más de un
curso académico. Se investigarán las diferentes metodologías pedagógicas
existentes en la literatura para analizar cuál puede ser la idónea para la
puesta en práctica del proceso de Enseñanza-Aprendizaje de la Robótica y
que, por tanto, será la elegida para llevar a cabo las sesiones que conformen
el programa educativo que desarrollemos.

Por último, se validará el entorno docente propuesto con estudiantes
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reales, se evaluarán los resultados académicos y de satisfacción por parte
del alumnado y los profesores que empleen el entorno educativo de esta
tesis frente a aquellos grupos que sigan los programas tradicionales de las
asignaturas de Tecnología y TICs. Analizaremos los resultados de esta eva-
luación y que serán obtenidos mediante entrevistas diarias, calificaciones
académicas obtenidas por los alumnos, así como encuestas sobre el grado
de satisfacción por ambas partes: alumnos y profesores.

A.6 Estructura de la tesis

Este documento de tesis tiene la siguiente estructura:
Se da comienzo con el presente Capítulo A en el cual se ha introducido

el contexto y la motivación de la tesis. En el Capítulo 2 se describe el estado
del arte de la Robótica con visión con sus distintos frentes principales de
investigación. También se estudia el estado del arte de Robótica educativa.

El Capítulo 3 describe los problemas inherentes a la navegación y loca-
lización de robots usando visión, así como los distintos desarrollos software
que hemos aportado para dar solución a los mismos con mecanismos de
atención selectiva y una memoria visual de corto plazo. Además, en este ca-
pítulo se exponen de forma detallada los procedimientos matemáticos que
hemos empleado para integrar una cámara convencional como un potente
sensor visual.

El Capítulo 4 está dedicado a describir el diseño y el desarrollo que
hemos llevado a cabo durante estos años de la infraestructura docente
hardware y software creada en esta tesis, siguiendo el currículum acadé-
mico elegido. Asimismo se hace un recorrido por las distintas corrientes
pedagógicas para, a continuación, describir la metodología en la que nos
hemos centrado. También se detallan los resultados de validación del en-
torno después de su implantación con más de 2000 estudiantes.

Por último, en el Capítulo 5 se detallan las conclusiones extraídas de
este trabajo. Todo ello acompañado por las publicaciones derivadas de esta
disertación. Se cierra el capítulo con las posibles líneas futuras a seguir.
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A.7 Conclusiones

Esta investigación está focalizada en incorporar la Robótica y los ro-
bots con visión en el aula para formar a los estudiantes preuniversitarios,
satisfaciendo las demandas que impone la Sociedad de la Era Digital y las
necesidades de motivación detectadas en los alumnos, que todavía estudian
en un sistema de formación aún por adaptar a esta denominada Revolución
Industrial 4.0.

Aunque existen en el mercado numerosos kits educativos de Robótica,
la mayoría de estos están enfocados a los alumnos más jóvenes. General-
mente se basan en construir de sus plataformas robóticas con sus propios
entornos de programación, lejos de emplear lenguajes de programación más
estandarizados. Además, normalmente tienen un nivel de complejidad no
muy elevado, lo que conlleva a que estas herramientas suelen resultar —a
corto plazo— en una escasa motivación por parte del alumnado. Por otro
lado, dada la complejidad que supone el tratamiento de un sensor como
la cámara, a pesar de su gran versatilidad no suele ser incluido en estos
entornos educativos.

En base a esto, y en primer lugar, se han implementado diversos algo-
ritmos que emplean una cámara como sensor principal para dar solución
a los problemas fundamentales de la Robótica, como son la navegación y
la localización. Ambos frentes han sido resueltos mediante el desarrollo de
una memoria visual en la que el robot es capaz de incorporar y abstraer
elementos complejos siguiendo diferentes patrones: flechas, paralelogramos
o caras humanas. Sobre esta memoria visual se monta un sistema atentivo
capaz de atender los distintos elementos que circundan al robot. Así se ha
conseguido un sistema autónomo e inteligente, que navega por un entorno
cambiante y real, en el cual se localiza constantemente. Este sistema de
percepción visual ha sido validado tanto en robots reales como en simula-
dos. La memoria representa muy bien el entorno del robot utilizando las
imágenes de la cámara móvil, cuyo movimiento es controlado por el meca-
nismo de atención. La memoria es dinámica pero tiene cierta persistencia
para tratar las oclusiones temporales. La localización funciona en tiempo
real, proporcionando errores de posición por debajo de 15 cm y 5 grados y
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es lo suficientemente robusta para recuperarse de los secuestros o errores
de estimación en entornos simétricos.

En segundo lugar, tras investigar la situación en el mercado de los kits
educativos de Robótica existentes y analizar profundamente qué depara el
futuro a corto y medio plazo en cuanto a demandas del mercado laboral
se refiere, el autor, como experimentado docente de Educación Secundaria,
detecta una deficiencia en el proceso de enseñanza-aprendizaje de Robó-
tica en el nivel curricular preuniversitario. Por ello, se ha desarrollado un
completo entorno educativo que incluye:

• Plataforma robótica basada en la placa controladora de hardware
libre Raspberry Pi 3. Esta plataforma ha sido elegida por varios mo-
tivos: bajo coste, potencia, versatilidad, estandarización e inclusión
de una cámara con su propio bus de datos, la PiCamera. Así se ha
construido un robot totalmente funcional, el PiBot, al que —gracias
a los puertos GPIO de la placa— se le han conectado diversos sen-
sores y actuadores, además de su propia cámara.

• Infraestructura software desarrollada en lenguaje Python, JdeRobot-
Kids, que ha facilitado al alumnado la programación del robot, con
funciones sencillas e intuitivas para manejar los distintos sensores y
actuadores, pero a la vez de gran potencial, como las correspondientes
al manejo una cámara como sensor.

• Amplio repertorio de prácticas que han servido de apoyo a los alum-
nos para su progresión en el aprendizaje de la programación de robots
con visión.

• Programa académico que incluye el plan de actividades para la asig-
natura Programación, Robótica y Tecnología en diferentes cursos de
Educación Secundaria y para un curso de actividades extraescolares.
Este programa se ha dividido en cuatro fases, partiendo de un nivel
muy básico hasta el desarrollo de un proyecto que de solución a algu-
na tarea clásica de Robótica, como por ejemplo un robot sigue-líneas
o choca-gira usando la cámara como sensor.
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El entorno docente JdeRobot-Kids se ha usado en la Fundación Fran-
ciscanas de Montpellier durante los cursos 2016/2017 y 2017/2018 en la
asignatura Programación, Robótica y Tecnología de 1.o, 2.o y 4.o de E.S.O.
y en asignaturas extraescolares anuales del Colegio Ntra. Sra. Sagrado
Corazón de Madrid. También en asignaturas extraescolares del Colegio
Villa de Móstoles en 2016/2017 y en el Colegio Rihondo de Alcorcón en
2017/2018.

En total, el entorno se ha seguido por unos 2.050 alumnos y una de-
cena de profesores en los dos últimos cursos académicos. Se ha medido su
impacto a través de encuestas y los resultados han sido muy satisfacto-
rios (4.5). Muestran una gran acogida y satisfacción entre los estudiantes
y los profesores. Además, los proyectos robóticos realizados por los alum-
nos demuestran un alto nivel de asimilación de conceptos, a la par que la
dinámica de las clases ha resultado muy amena.

A.8 Contribuciones

De este trabajo derivan, además de las publicaciones enumeradas en
la Sección A.9, numerosos desarrollos software y hardware relacionados
con la Robótica con visión y la educación en Robótica. A continuación se
enumeran los principales:

(C1) Sistema visual atentivo6 sobre cuello mecánico, lo que ha permitido
disponer en los robots de un sistema perceptivo con un amplio cam-
po de visión de toda la escena circundante al robot, mayor que el
campo visual instantáneo de una cámara. Además, este sistema es
fundamental para indicar al robot cuál es la siguiente zona a la que
dirigir la mirada, además de centrarla sobre el objeto al que se está
prestando atención en un determinado momento, y seguirlo.

(C2) Memoria visual7, que es la responsable de mantener información so-
bre los distintos objetos de interés que el robot va encontrando por el
entorno por el que navega, lo que le permite tomar decisiones más in-

6http://jderobot.org/VisualSonar
7http://jderobot.org/VisualMemory

http://jderobot.org/VisualSonar
http://jderobot.org/VisualMemory
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teligentes en tiempo real sobre las circunstancias que le rodean. Inclu-
ye varios desarrollos principales: (a) el detector de objetos, encargado
de identificar formas básicas (conceptos) como flechas, paralelogra-
mos y caras humanas; (b) el mecanismo de predicción de elementos,
que permite al sistema predecir elementos ya memorizados con an-
terioridad, aliviando el coste computacional; y (c) el algoritmo de
generación de hipótesis perceptivas, responsable de abstraer objetos
complejos, que ha permitido al sistema perceptivo solventar con éxito
las posibles oclusiones que se pueden dar en un entorno real.

(C3) Librería auxiliar de visión8, que incluye toda la funcionalidad para
satisfacer los distintos cambios de sistemas de coordenadas entre los
objetos detectados del mundo real y los píxeles correspondientes a la
imagen 2D que vierte una cámara. El desarrollo de una clase para
abstraer completamente el modelo de una cámara ideal Pin-Hole, ha
permitido a los estudiantes que se inician en los robots con visión
realizar complejas prácticas de visión sin necesidad de conocimientos
avanzados en la materia. Incluye además los algoritmos basados en
la Hipótesis suelo e implementación propia de extractor de líneas de
Solis, que han permitido estimar distancias a los objetos usando una
única cámara.

(C4) Diseño y construcción de PiBot910 como plataforma robótica basada
en hardware libre y estándar, concretamente en la placa Raspberry
Pi 3. La potencia, versatilidad y la inclusión de la cámara PiCam con
bus dedicado han permitido el desarrollo de algoritmos de visión; por
otro lado, el bajo coste de esta plataforma permite que los centros
educativos puedan adquirir un número considerable de prototipos
para poder satisfacer en número a un aula completa. La inclusión de
potentes servos dan lugar a una plataforma robótica móvil robusta,
fiable y ágil para navegar en un entorno real.

8http://jderobot.org/RobotVision
9http://jderobot.org/JulioVega_PhD#2018.03.03._Introducing_the_new_

PiBot_v3.0
10https://github.com/JdeRobot/JdeRobot/tree/master/assets/gazebo/models/

pibot

http://jderobot.org/RobotVision
http://jderobot.org/JulioVega_PhD#2018.03.03._Introducing_the_new_PiBot_v3.0
http://jderobot.org/JulioVega_PhD#2018.03.03._Introducing_the_new_PiBot_v3.0
https://github.com/JdeRobot/JdeRobot/tree/master/assets/gazebo/models/pibot
https://github.com/JdeRobot/JdeRobot/tree/master/assets/gazebo/models/pibot
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(C5) Repertorio de prácticas en Python sobre mBot y Arduino estándar.
Ha permitido que alumnos y profesores puedan disponer de una ex-
tensa batería de ejemplos totalmente funcionales, e implementados
en un lenguaje real como Python, de todos los sensores y actuadores
que pueden acoplarse a una placa Arduino UNO así como los que
ya tiene incluido de serie el mBot. Esto ha facilitado enormemen-
te la inclusión de la Robótica en el aula de centros de Educación
Secundaria.

(C6) Infraestructura software para dar soporte al PiBot11, implementada
en lenguaje Python. Ha permitido la inclusión de la potente plata-
forma robótica PiBot en el aula, y que pueda ser utilizada por los
jóvenes estudiantes que carecen de los conocimientos necesarios para
manipular un robot de ese calibre. Esta infraestructura facilita el ma-
nejo completo del robot: servos, sensores (ultrasonidos, infrarrojos)
y actuadores variados (pulsadores, leds) y, lo más importante, una
cámara real, como la PiCam o cualquier WebCam a las que se ha
dado soporte mediante el driver piCamServer12, lo que ha permitido
la programación por parte de los alumnos de numerosas y desafian-
tes prácticas, empleando de forma sencilla una cámara como sensor
principal.

(C7) Repertorio de prácticas en Python sobre PiBot. Prácticas similares a
las del mBot pero adaptadas a esta otra plataforma y extendida con
varios ejercicios que requieren usar la cámara a bordo.

(C8) Entorno educativo completo13. Con todo lo anterior, se ha diseñado y
seguido un programa educativo completo, con un programa académi-
co de complejidad adecuada para estudiantes de cursos preuniversi-
tarios. Se han detallado y organizado todas las sesiones seguidas, con
sus contenidos y objetivos, así como la metodología que se ha anali-
zado ser la más adecuada para el proceso de Enseñanza-Aprendizaje

11https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/PiBot
12https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/

piCamServer_py
13http://kids.jderobot.org

https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/PiBot
https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/piCamServer_py
https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/piCamServer_py
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de la Robótica, en base a la experiencia de estos años en centros
españoles y la estancia en centros finlandeses.

En total se han implementado más de 200.000 líneas de código entre
los distintos desarrollos software descritos. La distribución de las mismas
se refleja en la figura A.10.

Figura A.10: Distribución de las líneas de código implementadas

El progreso de todo el trabajo realizado para esta disertación se puede
seguir en la WiKi14 dedicada a tal efecto, donde además se puede acceder
a todos los códigos implementados. Estos trabajos han sido integrados en
la plataforma JdeRobot15 del Grupo de Robótica de la Universidad Rey
Juan Carlos bajo el marco de distintos grandes proyectos: GuideRobot16,

14http://jderobot.org/JulioVega_PhD
15https://jderobot.org
16http://jderobot.org/GuideRobot

http://jderobot.org/JulioVega_PhD
https://jderobot.org
http://jderobot.org/GuideRobot
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RobotVision17, VisualMemory18, VisualSonar19 y JdeRobot-Kids20.
Los aportes software incluyen el uso de distintos lenguajes como C, C++

y Python, así como numerosas librerías y herramientas entre las que cabe
destacar las siguientes: Susan, XForms, Glade, GTK, FreeGLUT, OpenGL,
OpenCV, v4l, GSL, ICE, Math, PiGPIO, PyGame, IMUtils, NumPy, SVN, GIT,
UMLet, etc.

A.9 Publicaciones

Las publicaciones que derivan de este trabajo son las siguientes:

• Artículos:

– Julio Vega, José María Cañas, Fran Pérez y Aitor Martínez.
(2018). JdeRobot-Kids: entorno docente de robótica para niños.
En revisión. Revista Iberoamericana de Automática e In-
formática Industrial, RIAI. Factor de Impacto (JCR 2016):
0,500.

– Julio Vega, Eduardo Perdices y José María Cañas. (2013). Ro-
bot evolutionary localization based on attentive visual short-term
memory, pages 1268-1299. Sensors. ISSN: 1424-8220. Factor de
Impacto (JCR 2013): 2,048.

– Julio Vega, José María Cañas y Eduardo Perdices. (2012). Local
robot navigation based on an active visual short-term memory,
pages 21-30. Journal of Physical Agents. ISSN: 1888-0258.
Factor de Impacto (SJR 2012): 0,171.

• Capítulos de libro:

– Julio Vega, Eduardo Perdices y José María Cañas. (2012). At-
tentive Visual Memory for Robot Localization, pages 408-438.

17http://jderobot.org/RobotVision
18http://jderobot.org/VisualMemory
19http://jderobot.org/VisualSonar
20http://kids.jderobot.org

http://jderobot.org/RobotVision
http://jderobot.org/VisualMemory
http://jderobot.org/VisualSonar
http://kids.jderobot.org
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Robotic Vision: Technologies for Machine Learning and
Vision Applications. Ed. IGI-GLOBAL. ISBN: 978-84-694-
6730-5.

• Congresos:

– Julio Vega y José María Cañas. (2016). Entorno docente con
Arduino y Python para Educación Robótica en Secundaria. JI-
TICE 5th Workshop, Educational Innovation and ICT.
ISBN: 978-84-697-0892-7.

– Julio Vega y José María Cañas. (2014). Curso de Robótica en
Educación Secundaria usando Constructivismo Pedagógico. JI-
TICE 4th Workshop, Educational Innovation and ICT.
ISSN: 2172-6620.

– José María Cañas, Laura Martín y Julio Vega. (2014). Innova-
ting in robotics education with Gazebo simulator and JdeRobot
framework. CUIEET XXII Congreso Universitario de In-
novación Educativa en Enseñanzas Técnicas. ISSN: 2172-
6620.

– Borja Menéndez, José María Cañas, Eduardo Perdices y Julio
Vega. (2013). Programming a Humanoid Social Robot Using the
JdeRobot Framework. RoboCity2030 11th Workshop, Ro-
bots sociales. ISBN:978-84-695-7212-2.

– Julio Vega, Eduardo Perdices y José María Cañas. (2012). Ro-
bot evolutionary localization based on attentive visual short term
memory. IEEE Intelligent Vehicles Symposium Works-
hops, Perception in Robotics. ISBN: 978-84-695-3472-4.

– Julio Vega y José María Cañas. (2011). Attentive visual me-
mory for robot navigation. WAF2011 XII Physical Agents
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Workshop. ISBN: 978-84-694-6730-5.

– Eduardo Perdices, José María Cañas, Julio Vega, Carlos Agüe-
ro y Francisco Martín. (2010). Localización visual de robots en
la RoboCup mediante algoritmos evolutivos. Robocity 2030.
ISBN: 84-693-6777-3.

– Julio Vega, José María Cañas, Pablo Miangolarra y Eduardo
Perdices. (2010). Memoria visual atentiva basada en conceptos
para un robot móvil. Robocity 2030. ISBN: 84-693-6777-3.

– Julio Vega y José María Cañas. (2009). Sistema de atención
visual para la interacción persona-robot. RoboCity2030, In-
teracción persona-robot. ISBN: 978-84-692-5987-0.

A.10 Líneas futuras

Se espera que el entorno docente desarrollado, JdeRobot-Kids, y la
metodología seguida contribuyan a largo plazo a mejorar los resultados
en los indicadores educativos de España, a reducir la brecha de la calidad
educativa con otros países como Finlandia.

La principales líneas de trabajo a corto plazo son las siguientes: (a)
unificar el interfaz de programación para el PiBot real y el existente pa-
ra el PiBot simulado, de modo que las prácticas de los alumnos puedan
ejecutarse sin modificaciones en el robot real o el simulado; (b) desarro-
llar nuevas prácticas con visión como la detección y seguimiento de caras
de personas, y materializar en el PiBot un sistema atentivo visual y una
memoria visual; y (c) difundir el entorno desarrollado.

Respecto a este último punto, durante el mes de julio del presente
año se imparte un taller de Robótica en el Campus de Fuenlabrada de la
Universidad Rey Juan Carlos. Por otro lado, se está elaborando un manual
para que sirva de libro de texto del profesor, con toda la parte de conceptos
teóricos de Robótica y Electrónica, la instalación del entorno y todo el re-
pertorio de prácticas desarrollado para las distintas plataformas hardware:
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Arduino, mBot y PiBot. También se pretende publicar un artículo en al-
guna revista de alto impacto con todos estos avances, y fundamentalmente
con la novedosa plataforma desarrollada, PiBot.

De cara al próximo curso se pretende seguir empleando este entorno do-
cente en los centros que ya se está usando; además se extendrá a otros cen-
tros como el Instituto Carpe Diem de Fuenlabrada y muchos otros donde
se seguirá el entorno en actividades extraescolares gracias a la colaboración
con la empresa Logix521.

También se está trabajando en la extensión del entorno a un Web-IDE
de JdeRobot-Kids, lo que permitirá a los estudiantes trabajar en la nube,
sin necesidad de que el alumno se instale ninguna librería en su equipo
de trabajo, facilitando enormemente el trabajo en el aula. Esto facilitará
las prácticas de programación con la plataforma PiBot real, mediante la
descarga en la Raspberry del código desarrollado en el IDE de la nube; y
con el simulado, gracias al simulador incorporado en el entorno web.

Y, por último, se está desarrollando el proyecto PyOnArduino22, cuyo
objetivo es que las prácticas desarrolladas en Python para mBot utilicen
una biblioteca en Python que se ejecuta en el ordenador personal y que
está en continua comunicación (alámbrica o inalámbrica) con el mBot.
Esto es, no ejecutan directamente sobre el procesador Arduino del mBot,
sino en el PC. A bordo del mBot se ejecuta un trasegador de datos que
continuamente captura los sensores y se los envía a la biblioteca Python
en el PC; a su vez recibe del PC comandos para los actuadores y se los
ordena a los motores a bordo. Una posible continuación de esta tesis es
desarrollar un traductor de Python a lenguaje Arduino, de modo que las
aplicaciones de los estudiantes escritas en Python se puedan traducir a
lenguaje Arduino y de este modo cargar a bordo para ejecutar realmente
dentro del mBot.

21http://www.logix5.com/roboticaeducativa
22https://github.com/JdeRobot/PyOnArduino

http://www.logix5.com/roboticaeducativa
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