
TESIS DOCTORAL

End-to-end Vision-based Autonomous
Driving using Deep Learning

Autor:

Sergio Paniego Blanco

Director:

José María Cañas Plaza

Programa de Doctorado en Tecnologías de la Información y
las Comunicaciones

Escuela Internacional de Doctorado

2024

Esta obra se encuentra sujeta a la licencia “Creative Commons Reconocimiento - No
Comercial - Sin Obra Derivada”.

Technology enables us to be more human

Acknowledgements

This doctoral thesis represents the result of many years of work in which I have learned
and grown as a person.

First of all, I would like to thank José María, my thesis supervisor, for his constant
support and trust throughout these years, which have been fundamental to this achieve-
ment.

My family, friends and partners, who have always shown their unconditional support
in my journey and who have always tried to guide me in the best way possible along the
way. Thanks to all of you, from the first to the last.

I would also like to thank all the people who have accompanied me along this path
at work, such as the teachers with whom I have collaborated, other coworkers, such as
colleagues who have gone through Kibotics, and students.

I cannot forget the co-authors of the research projects in which I have participated and
my final degree and master’s thesis students. His passion for the advancement of human
knowledge has been a constant source of inspiration and motivation for me.

My gratitude also extends to all the co-authors of the research works of which I have
been a part, because their passion and desire to advance human knowledge are something
that unites us and that we have reflected in our work.

Finally, I want to express my deepest gratitude to all those people who have believed
and believe in the system that has allowed me to advance to this point in my life. I am
especially grateful to all the teachers who have guided and taught me over the years,
dedicating their best to drive the progress of society. I also want to recognize those who
have dedicated their lives to the advancement of science and technology, and in particular,
those who believe in the transformative potential of artificial intelligence. His belief in
this discipline has been a constant source of inspiration to me, and has strengthened my
conviction that AI has the power to drive human progress and solve some of the most
pressing challenges of our time.

To all these people, my most sincere thanks. This work is yours as much as mine.

Español:

Esta tesis doctoral es la representa el resultado de muchos años de trabajo en los que

he aprendido y he crecido como persona.

En primer lugar, me gustaría agradecer a José María, mi supervisor de tesis por su
constante apoyo y confianza a lo largo de estos años que han sido fundamentales para este
logro.

Mi familia, amigos y parejas, que siempre han mostrado su apoyo incondicional en
mi trayectoria y que siempre han intentado guiarme de la mejor forma posible a lo largo
del camino. Gracias a todos vosotros, desde el primero al último.

También me gustaría agradecer a todas las personas que laboralmente me han acom-
pañado a lo largo de este camino, como los profesores con los que he colaborado, otros
compañeros de trabajo, como los compañeros que han pasado por Kibotics, y alumnos.

No puedo olvidar a los coautores de los trabajos de investigación en los que he partic-
ipado y mis estudiantes de trabajo de fin de grado y máster. Su pasión por el avance del
conocimiento humano ha sido una fuente constante de inspiración y motivación para mí.

Mi agradecimiento se extiende también a todos los coautores de los trabajos de in-
vestigación de los que he formado parte, porque su pasión y ganas de avanzar en el
conocimiento humano son algo que nos une y que hemos reflejado en nuestros trabajos.

Por último, quiero expresar mi más profundo agradecimiento a todas aquellas per-
sonas que han creído y creen en el sistema que me ha permitido avanzar hasta este punto
en mi vida. Agradezco especialmente a todos los profesores que me han guiado y en-
señado a lo largo de los años, dedicando lo mejor de sí para impulsar el progreso de la
sociedad. También quiero reconocer a aquellos que han dedicado sus vidas al avance de la
ciencia y la tecnología, y en particular, a aquellos que creen en el potencial transformador
de la inteligencia artificial. Su fe en esta disciplina ha sido una fuente constante de in-
spiración para mí, y ha fortalecido mi convicción de que la IA tiene el poder de impulsar
el progreso humano y resolver algunos de los desafíos más apremiantes de nuestra época.

A todas estas personas, mi más sincero agradecimiento. Este trabajo es vuestro tanto
como mío.

iv

Abstract

This thesis presents several significant contributions to the domain of AI-driven robotics
with computer vision in the application domain of autonomous driving. A key factor in
this work is the use of state-of-the-art deep learning techniques, which form the basis of
our contributions.

One initial contribution is our solution for traffic monitoring, TrafficSensor, using deep
learning for vehicle detection. From this project, we understood the robustness that deep
learning provides to perception and the importance of the efficient assessment of candidate
solutions for the advancement of the field.

To address this, we developed Detection Metrics, an open-source tool designed for
the comprehensive and automated assessment of deep learning visual object detection
models. Our experimental validation demonstrates its efficacy in both traffic monitoring
and the perception modules within autonomous driving systems.

Building upon this basis, we developed Behavior Metrics, another open source soft-
ware tailored for the online assessment of autonomous driving systems using simulation.
This tool facilitates detailed evaluation of autonomous driving systems for different tasks,
generating fine-grained metrics for the quantitative evaluation of the solutions. It supports
different autonomous driving tasks that include lane following, driving in traffic and point-
to-point navigation. It is focused on the massive and unattended automatic assessment of
solutions.

A key aspect of our contributions to the autonomous driving field lies in employing
end-to-end vision-based approaches coupled with imitation learning and deep learning.
These methodologies are rigorously validated through experimental testing. From this
baseline and beyond achieving the basic visual follow lane application using imitation
learning, we study the implications of the addition of visual memory and kinematic data
to some shallow deep learning models to understand how we can enhance their behavior
in a simple follow lane task, yielding new models with enhanced capabilities.

Furthermore, we explored the optimization of deep learning models for driving au-
tonomously to enhance both speed and efficiency without compromising quality. This
research aims to produce control models capable of maintaining high performance when
piloting the vehicle while being faster and more resource-efficient. For this contribution,
we thoroughly investigated various optimization techniques and conducted an in-depth

analysis of how they each contribute to the final driving system.

Finally, we present an innovative vision-based methodology leveraging imitation learn-
ing and deep learning to facilitate safe autonomous driving in complex traffic environ-
ments. This approach facilitates the creation of adaptable models adept at navigating
a spectrum of traffic scenarios while seamlessly extrapolating to situations never seen
during training. By employing familiar shallow deep learning models with slight modifi-
cations, we substantially broaden their utility and effectiveness in diverse contexts.

vi

Resumen

Esta tesis presenta contribuciones significativas en el dominio de la robótica impulsada
por IA con visión por computador en el ámbito de la conducción autónoma. Un fac-
tor clave en este trabajo es el uso de técnicas de aprendizaje profundo del estado de la
cuestión, que forman la base de nuestras contribuciones.

Una contribución inicial es nuestra solución para monitoreo de tráfico, TrafficSensor,
que aprovecha el aprendizaje profundo para la detección de vehículos. A partir de esta
contribución, entendemos la robustez que el aprendizaje profundo aporta a la percepción
y la importancia de la evaluación eficiente de las posibles soluciones para el avance del
campo.

Para abordar esto, desarrollamos Detection Metrics, una herramienta de código abierto
diseñada para la evaluación integral y automatizada de modelos de detección de objetos
visuales de aprendizaje profundo. Nuestra validación experimental demuestra su eficacia
tanto en el seguimiento del tráfico como en los módulos de percepción dentro de los
sistemas de conducción autónoma.

Sobre esta base, desarrollamos Behavior Metrics, otro software de código abierto dis-
eñado para la evaluación en línea de sistemas de conducción autónoma mediante sim-
ulación. Esta herramienta facilita la evaluación detallada de los sistemas de conduc-
ción autónoma para diferentes tareas, generando métricas detalladas para la evaluación
cuantitativa de las soluciones. Admite diferentes tareas de conducción autónoma como
seguimiento de carril, conducción con tráfico y navegación punto a punto. Una vez más,
este software se centra en la evaluación automática, masiva y desatendida de soluciones.

Un aspecto clave en las contribuciones que presentamos en el campo de la conduc-
ción autónoma radica en el empleo de enfoques basados en la visión extremo a extremo
junto con el aprendizaje por imitación y el aprendizaje profundo. Estas metodologías
están rigurosamente validadas mediante pruebas experimentales. A partir de esta idea
base y más allá de generar la aplicación visual básica de seguimiento de carril medi-
ante aprendizaje por imitación, estudiamos las implicaciones de incluir memoria visual y
datos cinemáticos a algunos modelos de aprendizaje profundo estrechos para comprender
cómo podemos mejorar su comportamiento en una tarea simple de seguimiento de carril,
produciendo modelos nuevos con capacidades mejoradas.

Además, exploramos la optimización de modelos de aprendizaje profundo para con-

ducir de forma autónoma con idea de mejorar tanto la velocidad como la eficiencia sin
comprometer la calidad. Esta contribución tiene como objetivo producir modelos de con-
trol capaces de mantener un alto rendimiento y al mismo tiempo ser más rápidos y efi-
cientes en el uso de recursos. Para esta contribución, investigamos exhaustivamente varias
técnicas de optimización y realizamos un análisis detallado de cómo cada una contribuye
en el sistema de conducción final.

Finalmente, proponemos un enfoque basado en la visión con aprendizaje por imitación
y aprendizaje profundo para una conducción autónoma segura en escenarios complejos
con tráfico. Este enfoque permite el desarrollo de modelos adaptables capaces de nave-
gar eficazmente en diversas condiciones de tráfico y que generalizan a situaciones nunca
vistas en entrenamiento. Para ello, se utilizan modelos de aprendizaje profundo estrechos
previamente conocidos con pequeñas modificaciones, ampliando su rango de aplicación
significativamente.

viii

Acronyms

Acronyms used in the thesis:

RL Reinforcement Learning

GPU Graphical Processor Unit

GUI Graphical User Interface

MVC Model-View-Controller

LIDAR Laser Imaging Detection and Ranging

COCO Common Objects in Context

Pascal VOC Pascal Visual Object Classes

CNN Convolutional Neural Network

YOLO You Only Look Once

AWS Amazon Web Services

LSTM Long Sort-Term Memory

ConvLSTM Convolutional Long Sort-Term Memory

RNN Recurrent Neural Network

MSE Mean Squared Error

MAE Mean Absolute Error

KLT Kanade-Lucas-Tomasi

ITS intelligent transportation system

SSD Single-Shot Detector

SSP Spatial Pyramid Pooling

PAN Path Aggregation Network

SORT Simple Online and RealTime Tracker

ROS Robot Operating System

AP Average Precision

AR Average Recall

mAP Mean Average Precision

AR Mean Average Recall

IoU Intersection Over Union

MPD Mean position deviation per km

VJ Vehicle longitudinal jerk per km

PCA Principal Component Analysis

PCQAT Sparsity and cluster preserving quantization aware training

RGB Red, Green, Blue

DARPA Defense Advanced Research Projects Agency

ALVINN Autonomous Land Vehicle In a Neural Network

GPS Global Positioning System

CPU Central Processing Unit

IMU Inertial Measurement Unit

RG Research Goal

TP True positive

TN True negative

FP False positive

FN False negative

NHTSA National Highway Traffic Safety Administration

WHO World Health Organization

x

CONTENTS

Contents

1 Introduction 1

1.1. Autonomous driving . 2

1.1.1. Introduction to autonomous driving . 2

1.1.2. Assessment and metrics . 7

1.1.3. End-to-end and modular approaches . 8

1.1.4. Tasks in an autonomous driving system . 10

1.1.5. Optimization in autonomous driving solutions 10

1.2. Traffic monitoring using computer vision . 11

1.3. Research Goals . 12

1.4. Contributions . 14

1.5. Structure of the document . 16

2 State of the art 17

2.1. Traffic monitoring . 17

2.2. Deep learning object detection, datasets and assessment 18

2.3. Autonomous driving and imitation learning . 21

2.3.1. Imitation learning and reinforcement learning for driving autonomously. . 23

2.4. Simulation in autonomous driving and assessment. Datasets 24

2.4.1. Datasets . 26

2.4.2. Assessment . 26

2.5. Memory-based approaches in end-to-end visual autonomous driving 27

2.6. Optimization of deep learning models for autonomous driving 27

3 Monitoring and assessing traffic with deep learning 30

xi

CONTENTS

3.1. Introduction. 30

3.2. TrafficSensor: a deep learning-based traffic monitoring tool 31

3.2.1. Deep learning-based detection and classification 32

3.2.2. Vehicle tracking . 37

3.3. Experimental validation . 43

3.3.1. Dataset . 44

3.3.2. Comparison of deep learning models. 46

3.3.3. Experimental validation in good lightning conditions 47

3.3.4. Experimental validation in poor conditions 48

3.3.5. Processing times . 50

3.4. Conclusion . 50

3.4.1. State-of-the-art enhancements . 50

4 Assessing object detection deep learning architectures with quantitative met-
rics 52

4.1. Introduction. 52

4.2. Detection Metrics tool kit . 53

4.2.1. Global architecture and workflows . 53

4.2.2. Headless evaluation . 55

4.2.3. Detection generation . 55

4.2.4. Evaluation of detections with objective metrics 56

4.2.5. Live detection visualization . 57

4.2.6. Dataset converter . 58

4.3. Experimental results and discussion . 58

4.3.1. Comparison of state-of-the-art detection networks 58

4.4. Conclusion . 60

4.4.1. State-of-the-art enhancements . 60

5 Assessing autonomous driving behaviors fine-grained metrics 62

5.1. Introduction. 62

5.2. Software description . 63

5.2.1. Supported driving tasks . 67

xii

CONTENTS

5.2.2. GUI and headless evaluation modes . 67

5.2.3. Autonomous driving evaluation metrics . 69

5.3. Illustrative examples . 71

5.3.1. GUI application example . 71

5.3.2. Headless application example. 71

5.4. Impact . 72

5.5. Conclusions. 72

6 Enhancing end-to-end autonomous driving control though kinematic input
and memory-based architectures 74

6.1. Introduction. 74

6.2. Kinematic-infused and visual memory end-to-end control based on imitation
learning . 75

6.2.1. Memory-less deep learning architecture . 76

6.2.2. Deep learning architectures with visual memory 77

6.2.3. Deep learning architectures with kinematic data as input 78

6.2.4. Training . 78

6.3. Measuring end-to-end imitation learning for robot control 79

6.4. Experimental validation . 80

6.4.1. Comparison of models using common ML metrics 81

6.4.2. Behavior in test scenario with top speed regulation 82

6.4.3. Studying the model without top speed limitation 82

6.4.4. Taking the control of a fast-moving car . 86

6.4.5. Robustness to sensory manipulation . 86

6.4.6. Visual memory length and density comparison 88

6.5. Conclusions. 92

7 Optimization of end-to-end autonomous driving control 94

7.1. Introduction. 94

7.2. Optimizing end-to-end imitation learning models for lane-follow robot con-
trol. 96

7.2.1. Baseline architecture . 96

7.2.2. Dataset and training . 97

xiii

CONTENTS

7.3. Experiments . 99

7.3.1. Model performance offline evaluation table 100

7.3.2. Robot control online evaluation table . 101

7.3.3. Inference frequency and quality of decisions in robot control performance 105

7.4. Conclusions. 107

8 End-to-end vision-based autonomous driving in traffic 109

8.1. Introduction. 110

8.2. Imitation learning for driving in traffic . 111

8.2.1. Dataset and versions . 112

8.2.2. Baseline model and its modifications. 113

8.2.3. Training procedure . 114

8.3. Experiments . 115

8.3.1. Typical execution without traffic . 117

8.3.2. Typical execution with traffic . 117

8.3.3. Generalization for different front vehicles 119

8.4. Conclusions. 121

9 Conclusions and future research 123

9.1. Conclusions. 123

9.2. Results summary . 125

9.3. Research contributions. 127

9.4. Future work . 128

9.4.1. Point-to-point end-to-end navigation using input commands. 128

9.4.2. Transferring current end-to-end solutions to a real-world vehicle 129

9.4.3. End-to-end autonomous vehicle driving modulated with text-based in-
structions . 130

9.4.4. Exploration of end-to-end autonomous driving in aerial vehicles 131

9.4.5. Exploration of end-to-end autonomous driving in unstructured environ-
ments. 131

9.4.6. Exploration of reinforcement learning approaches for end-to-end autonomous
driving . 132

xiv

CONTENTS

10 Resumen en castellano 133

10.1. Introducción . 134

10.2. Objetivos . 138

10.3. Antecedentes . 138

10.3.1. Monitorización del tráfico rodado . 138

10.3.2. Detección de objetos con aprendizaje profundo, conjuntos de datos y
evaluación . 139

10.3.3. Conducción autónoma y aprendizaje por imitación 140

10.3.4. Simulación en conducción autónoma, conjuntos de datos y evaluación . . 141

10.3.5. Aproximaciones de conducción autónoma extremo a extremo basadas
en memoria . 142

10.3.6. Optimización de los modelos de aprendizaje profundo para conducción
autónoma . 142

10.4. Metodología y resultados . 143

10.4.1. Monitorización del tráfico rodado con aprendizaje profundo 143

10.4.2. Evaluando arquitecturas de aprendizaje profundo para detección de ob-
jetos con métrics cuantitativas . 144

10.4.3. Evaluación de comportamientos de conducción autónoma con métricas
de grano fino . 146

10.4.4. Mejora del control de extremo a extremo en conducción autónoma me-
diante entrada cinemática y arquitecturas basadas en memoria. 147

10.4.5. Optimización del control extremo a extremo en conducción autónoma . . 150

10.4.6. Conducción autónoma extremo a extremo en tráfico 152

10.5. Conclusiones . 153

10.5.1. Contribuciones de investigación . 155

10.5.2. Trabajo futuro . 156

A Replicability and software, data, and models availability 158

A.1. Software availability. 158

A.2. Training code availability . 158

A.3. Models’ wights availability . 159

A.4. Datasets availability . 159

xv

CONTENTS

Bibliography 160

xvi

LIST OF FIGURES

List of Figures

1.1 Sensor ecosystem in an autonomous driving vehicle. Source [6]. 3

1.2 Detail of autonomy levels. 4

1.3 Examples of different autonomous driving vehicles. 5

1.4 Examples of vehicles used in autonomous driving competitions. 7

1.5 Diagram of end-to-end and modular approaches. Adapted from [26] and [25]. 9

2.1 Venn diagram of the fields that are the core of this thesis. 18

2.2 Object detection and image segmentation. Source: https://blogs.
nvidia.com/blog/drive-labs-panoptic-segmentation/. 20

2.3 Diagram of behavior cloning (imitation learning) and reinforcement learn-
ing. Adapted from [26]. 24

2.4 Learned policy has issues when it encounters a new situation. 24

2.5 CARLA and Gazebo simulators. 25

2.6 Optimization techniques diagrams. 29

3.1 Block diagram of TrafficSensor system. 32

3.2 Evaluation area. 33

3.3 Evaluation zones. 33

3.4 SSD MobilenetV2 network. 35

3.5 SSD network model. 35

3.6 VGG-16 model. 35

3.7 Yolov3 model. 36

3.8 Darknet-53 model. 36

3.9 Yolov4 object detector. 37

3.10 Execution flow chart of detected blobs. 38

xvii

https://blogs.nvidia.com/blog/drive-labs-panoptic-segmentation/
https://blogs.nvidia.com/blog/drive-labs-panoptic-segmentation/

LIST OF FIGURES

3.11 Flow chart of registered vehicles. 39

3.12 Vehicle associated 2D ellipse. 40

3.13 Proximity tracking ellipse. 41

3.14 Tracking with spatial proximity TrafficSensor. 41

3.15 Tracking with KLT in TrafficSensor. 42

3.16 Pyramidal KLT. 43

3.17 TrafficSensor dataset samples. 45

3.18 TrafficSensor with poor resolution (left) and bad weather (right) videos. . 49

4.1 Detection Metrics GUI. The user can select the tool to use from the tool kit
and enter the parameters directly using the graphical interface. In addition
to the GUI, the headless mode is also available using the command line
and a configuration file to access the functionality. 54

4.2 Detection Metrics illustrated as a black box diagram. Detection Metrics
receives a batch of datasets and deep learning models as input, calculates
all the metrics from combining the datasets and deep learning models and
finally outputs the metrics results. 55

4.3 General Detection Metrics architecture. The software provides three main
use cases: headless evaluation, live detection visualization, and dataset
converter. Each of them has a set of tools (in blue), that can be used
individually or combined. 56

4.4 Experiment pipeline using headless evaluation. Detection Metrics re-
ceives a set of deep learning models and a dataset and generates anno-
tations with Detector that are the input to Evaluator for obtaining the ex-
perimental results. 59

5.1 Behavior Metrics tool architecture. The configuration file describes the
setup of the evaluated experiment. 64

5.2 Some of the connections between Behavior Metrics and CARLA. 65

5.3 Details of the robot controller, three types are supported. 66

5.4 Behavior Metrics GUI architecture using CARLA simulator. It displays
two separate windows: the application GUI and the simulator. 68

5.5 Behavior Metrics headless evaluation mode. 69

5.6 Great, medium, short, and dangerous distances to the front car. 71

xviii

LIST OF FIGURES

6.1 Details of the deep learning architectures compared in this work. One
of them is memory-less and the other three are visual memory-based. A
variation of each of them also receives kinematic data input. Layers and
input data marked in red are the modifications proposed in this work based
on baseline architectures. 76

6.2 End-to-end autonomous driving pipeline using Behavior Metrics software
and a robot controller based on a deep learning model that controls the
vehicle based on its sensory data. 77

6.3 Set of urban environments in CARLA used. 77

6.4 Affine image date augmentation example. From the training example in
the left, new examples are generated modifying the steering command
accordingly. 79

6.5 Effective distance completed with 30 km/h restriction (top) and without
(bottom). The right y-axis shows the vehicle’s maximum speed (repre-
sented using black dots). NM: no memory. VM: visual memory. KI:
kinematic input. 85

6.6 Example of activating the vehicle autonomous driving system at a high-
speed situation. On the left, the model with visual memory and kinematic
input can restore the speed to the known point and continue driving. On
the right, the model with only visual memory is not able to restore the
speed and it collides due to the high speed. 88

6.7 Example of input data: normal (left), broken 50% (middle) and broken
90% (right). 89

7.1 End-to-end autonomous driving pipeline using Behavior Metrics software
and a robot controller based on a deep learning model that drives the ve-
hicle based on its sensory data. 95

7.2 PilotNet* architecture detail (left) and bird-eye view input example (right). 96

7.3 Optimization techniques diagrams. 99

7.4 Detail of each model’s GPU inference frequency. 105

7.5 Quality of the robot behavior (measured as % of successful runs) vs the
frequency of the control decisions . 107

8.1 Behavior Metrics evaluation software tool architecture with different ur-
ban scenarios and vehicles. 111

8.2 Detail of included vehicles in each dataset version. 112

8.3 PilotNet baseline model and its variations PilotNet* and PilotNet**. In
red, introduced changes are highlighted. 114

xix

LIST OF FIGURES

8.4 Activation heat map visualization from the last CNN layer of PilotNet**
model. 116

8.5 Detail of vehicles used for experimental validation. 121

9.1 Architecture developed for point-to-point end-to-end navigation. 129

9.2 Simulation vehicle used for validating the solutions. 130

9.3 Real-world vehicle used for transferring the solutions. 131

10.1 Diagrama de Venn con los campos que son el núcleo de esta tesis. 134

10.2 Diagrama de las aproximaciones extremo a extremo y modulares. Adap-
tado desde [26] y [25]. 137

10.3 Diagrama de la clonación de comportamiento (aprendizaje por imitación)
y del aprendizaje por refuerzo. Adaptado de [26]. 141

10.4 La política aprendida presenta problemas en situaciones no vistas durante
el entrenamiento. 141

xx

LIST OF TABLES

List of Tables

3.1 Dataset samples. 44

3.2 Dataset images. 45

3.3 Dataset distribution. 46

3.4 Training dataset. 46

3.5 GEFORCE RTX 3070 specifications. 46

3.6 Results of trained networks . 47

3.7 Results of good conditions video . 48

3.8 Results of bad weather video . 48

3.9 Results of poor quality video . 49

3.10 Processing time . 50

4.1 Comparison of official network results with results generated using De-
tection Metrics. Our software is used to replicate the official results of
common network architectures programmed in different deep learning
frameworks, probing the software capabilities for working with different
frameworks and providing common metrics that match the official results.
✘: official results do not give that information. 59

6.1 MAE and MSE metrics comparison for each trained model using test data
from the dataset. Four different architectures are tested with different
input data considerations: bird-eye view (BEV) and velocity sensory data.
✔: supported. ✘: unsupported. 81

6.2 Comparison of models (columns) in different test environments consider-
ing some measured metrics (rows) provided by Behavior Metrics. Values
in bold highlight the most interesting results. ✔: supported. ✘: unsup-
ported. 83

xxi

LIST OF TABLES

6.3 Comparison of models in different test environments without top speed
limit considering metrics from Behavior Metrics. Bold values (excluding
Successful experiments) indicate changes in results from previous exper-
iment results. Values in red bold and bold for Successful experiments
highlight the most interesting results. ✔: supported. ✘: unsupported. . . . 84

6.4 Comparison of models in a high-speed scenario where the model takes
control when the ego vehicle is already at a speed of 70 km/h. For the
Average speed, we only consider experiments without collisions. This
experiment is tested in Town02. Values in bold highlight the most inter-
esting results. ✔: supported. ✘: unsupported. 87

6.5 Comparison of model performance modifying the input sensory informa-
tion. For the Average speed, we only consider experiments without colli-
sions. Values in bold highlight the most interesting results. ✔: supported.
✘: unsupported. 89

6.6 Comparison of model performance with different visual memory lengths.
For the Average speed and Position deviation mean per km, we only con-
sider experiments without collisions. Values in bold highlight the most
interesting results. ✔: supported. ✘: unsupported. 90

6.7 Comparison of model performance with different visual memory densi-
ties. For the Average speed and Position deviation mean per km, we
only consider experiments without collisions. Values in bold highlight
the most interesting results. ✔: supported. ✘: unsupported. 91

6.8 Comparison summary of model performance across presented experi-
ments. The addition of at least kinematic input data improves the final
behavior and adding both types generates gains in certain scenarios. ✔:
successful. ✘: failure. 92

7.1 Summary of optimization configurations and their supported techniques,
including the development framework. ✔: supported. ✘: unsupported. . . 98

7.2 Offline evaluation of baseline models and their optimized versions. 102

7.3 Comparison of models and their optimized versions in a test environment
considering some measured metrics provided by Behavior Metrics. 104

7.4 Comparison summary of best models performance with the improvement
rate observer. 106

8.1 Offline evaluation measures of the model’s performance. 115

8.2 Metrics for two different towns and models in free-road conditions. Suc-
cess rate: the higher the better; the rest: the lower the better. 117

xxii

LIST OF TABLES

8.3 Metrics for two different towns and models in in-traffic conditions 118

8.4 Metrics for the distance to the front vehicle. 119

8.5 Success rate metric for each of the 12 vehicles. 120

xxiii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The autonomous driving field aims to generate vehicles that drive safely without human
intervention. This field resonates profoundly with considerations of safety, accessibility,
and societal advancement. It combines, among others, the fields of robotics, artificial in-
telligence (AI), and computer vision. It has received enormous attention in recent years,
both in academia and industry, and is expected to have a broad impact on day-to-day
life in the coming years [1]. The field development could potentially generate a series of
benefits, from improved traffic safety and security to more optimized mobility for individ-
uals and freights globally. The important advancements generated in the field come from
several sides. In the last few years, the artificial intelligence field has experienced an enor-
mous growth. This progress has been possible thanks to the availability of high-intensity
computational units, called graphical processor units (GPUs), curated datasets’ high avail-
ability, and deep learning (DL) algorithms’ development. This leverage has affected many
fields but some of the most positively affected have been robotics and computer vision.

The main motivation underpinning the adoption of autonomous driving is its potential
to mitigate the prevalent issue of road traffic accidents, predominantly attributable to hu-
man errors. According to the National Highway Traffic Safety Administration (NHTSA),
around 94% of motor vehicle accidents were caused by human driver errors [2] in a study
conducted from 2005 to 2007. Another major problem is road traffic injuries. They caused
an estimated 1.35 million deaths worldwide in 2016, as reported by the World Health Or-
ganization [3] (WHO). By their continuous environmental monitoring and instantaneous
response capabilities, autonomous vehicles hold the promise of substantially reducing the
incidence of vehicular accidents, thereby safeguarding human lives and improving pub-
lic health outcomes. Among the reasons for researching on autonomous driving, we can
think about the reduction of the driver’s stress, improving productivity and mobility due
to the fact of releasing humans from the activity of driving. Regarding costs and property,
the idea would be to reduce the operative costs and incorporate shared property of the
vehicles. Other associated costs such as parking or pollution would also see a reduction.
Monitoring the traffic flow is also an idea worth pursuing to reduce traffic accidents.

1

CHAPTER 1. INTRODUCTION

Some examples from companies developing autonomous driving solutions already
suggest this advancement towards an increase in safety conditions. For example, Waymo,
which is a subsidiary of Alphabet Inc (the parent company of Google), has already con-
ducted an experiment where they prove that autonomous driving vehicles are safer than
vehicles commanded by a human [4]. The results claim that in 3.8 million miles (around
6 million kilometers) driven, the Waymo Driver incurred zero bodily injury claims in
comparison with the human driver baseline of 1.11 claims per million miles (cpmm).
Similarly, it reduced property damage to 0.78 cpmm in comparison with the human driver
baseline of 3.26 cpmm. Cruise is another important company developing autonomous
driving vehicles. They have also released a similar report [5] were they claim a 65%
reduction in collisions for their autonomous vehicles in San Francisco in comparison to
human ridehail driving.

Furthermore, the advent of autonomous driving heralds a paradigm shift in transporta-
tion equity, fostering inclusivity and accessibility for individuals until now constrained by
mobility limitations or residing in underserved locales.

1.1. Autonomous driving

This section serves to provide context for the thesis. To achieve it, we break it down
into several parts. Initially, we provide a general context about the autonomous driving
field. After that, we discuss the necessity for precise metrics when evaluating computer
vision and autonomous driving solutions. Following this, we outline the two main ap-
proaches to developing autonomous driving systems: end-to-end and modular methods.
We then detail the various tasks involved in autonomous driving. Finally, we emphasize
the importance of creating optimized deep learning solutions, especially in the context of
autonomous driving systems that demand high-quality and swift responses.

1.1.1. Introduction to autonomous driving

In this subsection, we provide a general view of the autonomous driving field. We provide
a general view of how autonomous vehicles are mobile robots. After that, we describe the
different levels of autonomy and provide some historic breakthroughs that have been of
importance for the advancement of the field. Following that, we provide details about the
range of applications of autonomous vehicles and we finish by looking at the research
community’s current developments to understand the trends in the field.

We may consider an autonomous vehicle as a mobile robot in terms of hardware (see
Fig. 1.1) and software. A modern vehicle is equipped with a series of advanced sensors
and actuators, as a robot. For example in terms of sensors, they typically include GPS,
IMUs, LIDARs, ultrasonic sensors, cameras, or radars. In terms of actuators, we can
consider the throttle, brake, steering wheel, or turn signals as part of them. These com-

2

CHAPTER 1. INTRODUCTION

ponents are supplemented by computational units such as CPUs and GPUs, essential for
processing the vast amount of data collected by the sensors.

Figure 1.1: Sensor ecosystem in an autonomous driving vehicle. Source [6].

Levels of autonomy

The autonomy of the vehicles is typically categorized into 6 differentiated levels, as de-
scribed by the SAE J3016 Standard [7], from level 0 where no automation is implemented
in the vehicle to level 5 where we can consider the vehicle to be fully autonomous, without
the need for human intervention under any circumstances. Presently, some commercial
solutions operate at levels 2 to 3, with a few level 4 vehicles already developed by com-
panies (e.g. Waymo, Cruise, Wayve, Tesla, Motional, AutoX, etc.). These solutions en-
compass various applications, including autonomous taxi services [8], smart automated
parking capabilities [9], and driver assistance systems [10] [11]. It is anticipated that
advancements in technology will further extend the capabilities and applications of au-
tonomous vehicles in the coming years [12].

Providing further details about the levels of autonomy (see Figure 1.3):

• [Driver only] Level 0: No automation is implemented in this level.

3

CHAPTER 1. INTRODUCTION

• [Assisted] Level 1: Almost no automation is implemented. Only one task can be
performed automatically at a time, like lane centering or speed control (lateral or
longitudinal control).

• [Partial automation] Level 2: at this level of autonomy, minimal automation is
implemented. The vehicle is capable of performing two tasks autonomously at a
time, such as lane centering and adaptive cruise control.

• [Conditional automation] Level 3: the automation starts to grow broadly at this
level as the vehicle is mostly self-driven and only requires human intervention in
extreme environments or in the event of a detected failure.

• [High automation] Level 4: no human intervention is needed at this point. The ve-
hicles are completely autonomous but only in certain areas. The most advanced
vehicles at this point belong to this category, being fully autonomous but only
deployed in certain restricted cities or highly controlled scenarios, like Waymo,
Cruise, or Wayve solutions.

• [Full automation] Level 5: on the most advanced level, the vehicles can drive au-
tonomously in all conditions, without restrictions on location. However, this level
still presents numerous challenges requiring attention from both academia and in-
dustry. Given the substantial disparity between levels four and five, further subdi-
vision may be warranted to accurately capture the complexities and advancements
within this tier of autonomy.

LEVEL 0

No automation

LEVEL 1

One automatic
task at a time

LEVEL 2

Two automatic
tasks at a time

LEVEL 3

The vehicle
controls most
driving tasks

LEVEL 4

The vehicle
controls all

driving tasks
under certain

conditions

LEVEL 5

The vehicle
controls all

driving tasks
under all

conditions

Figure 1.2: Detail of autonomy levels.

History

Although we have already described part of the most recent advances, the history of au-
tonomous driving development began decades ago. The first example of a vehicle con-
trolled by a computer was presented in 1986, called Navlab 1 1. Its development started

1https://www.youtube.com/watch?v=ntIczNQKfjQ

4

https://www.youtube.com/watch?v=ntIczNQKfjQ

CHAPTER 1. INTRODUCTION

in 1984 in Carnegie Mellon University. In 1989, ALVINN [13] (Autonomous Land Ve-
hicle In a Neural Network) was released. This project was one of the first that proposed
controlling a real vehicle using a shallow neural network. This work was quite limited but
still is a grand landmark in the development of autonomous driving solutions.

Another example is the DARPA Grand Challenge [14] and DARPA Urban Challenge,
competitions organized by the Defense Advanced Research Projects Agency (DARPA) of
the United States. The first edition of this challenge was held in 2004, and its goal was
to spur the development of the technologies needed to create the first fully autonomous
ground vehicles capable of completing a substantial off-road course within a limited time.
In the first edition (DARPA Grand Challenge), none of the robot vehicles finished the
route but in the following edition, some of them completed the course with the Stan-
ley [15] vehicle winning the first place (see Fig 1.3 for some example of autonomous
driving vehicles). This edition did not incorporate other vehicles into the route, unlike the
DARPA Urban Challenge, where other vehicles were included, and they were expected
to adhere to human traffic laws and rules.

z

NAVLAB 1 WAYMO NAYVA WAYVE

TESLACRUISESTANLEY WAABI

Figure 1.3: Examples of different autonomous driving vehicles.

In parallel to the development of fully autonomous vehicles, we can also mention
the development of advanced driver-assistance systems (ADAS) which are the piece that
permits the middle levels of autonomy we mentioned. These systems are common in any
modern vehicle and its history goes back to the 1970s. This set of technologies is oriented
towards assisting drivers to operate their vehicles safely. As of 2021, the research firm
Canalys estimated that around 33% of new vehicles sold in major markets included ADAS
features [16]. These robotic technologies include autoparking, lane change, lane keeping,
or adaptive cruise control assistance among other examples.

Range of application

In the field of autonomous driving, we can encounter a diverse range of environments of
application, each of them requiring particular approaches for success. An idea common
to all of them is that safety is a key issue and that the systems must be robust to a vast

5

CHAPTER 1. INTRODUCTION

range of weather, lighting, and traffic conditions. We can find urban scenarios, roads, or
highways but also unstructured scenarios like forests where the needs are different. In the
development of the contributions presented in this thesis, we focus on urban, road, and
highway scenarios, which are probably the most common approximations that an agent
may encounter.

When considering autonomous vehicles, we may think about a typical utilitarian car,
but the range of vehicles where these solutions should work is wider. It should also include
4x4, SUVs, motorcycles, trucks, and any other type of vehicle that we may consider to
be enhanced by this approach. Although the majority of research efforts are focused on
4-wheeled cars, there are examples of efforts on other types of vehicles, like Waabi with
trucks [17] or Navya with logistics solutions and autonomous shuttles 2. In addition to the
type of vehicles, the area of application is also wide. We may consider autonomous taxis
to be one of the most relevant examples but the development of autonomous vehicles is
applicable in other areas such as logistics, industrial, medical, or even racing applications.

In robotics, there are already solutions for robot navigation that are advanced and re-
liable like Nav2 [18] that can be used to generate point-to-point navigation in different
types of settings and scenarios. This may raise the question of why we need special-
ized approaches for autonomously driving vehicles instead of using these technologies.
While these solutions demonstrate notable capabilities, they may encounter challenges
in dynamic environments characterized by rapid movements, such as scenarios involv-
ing swiftly moving robotic vehicles that could be driving at 120km/h alongside other
dynamic elements like humans and vehicles. In such contexts, the system’s ability to
respond promptly may be constrained, thereby limiting its applicability for autonomous
driving.

Growing research community

Looking at the amount of attention that the field is attracting inside the research commu-
nity is another way of understanding the incremental advancements that it is experiencing.
Many of the principal international conferences on computer vision, robotics and artifi-
cial intelligence have included workshops or tutorials to address this topic lately, which
indicates a high pace of development and high interest for the problem 3 4 5 6 7.

The interest in the autonomous driving field, also called self-driving vehicles, is also
evidenced in the numerous competitions aimed at advancing it. Notable examples in-
clude DuckieTown [19], AWS DeepRacer [20], and F1TENTH [21], among others (see
Fig. 1.4.)

2https://www.navya.tech/en/
3https://waabi.ai/cvpr-2023/
4https://opendrivelab.com/challenge2024/
5https://cvpr2023.wad.vision/
6https://sites.google.com/view/icra2023av/home
7https://opendrivelab.com/sr4ad/iclr23

6

https://www.navya.tech/en/
https://waabi.ai/cvpr-2023/
https://opendrivelab.com/challenge2024/
https://cvpr2023.wad.vision/
https://sites.google.com/view/icra2023av/home
https://opendrivelab.com/sr4ad/iclr23

CHAPTER 1. INTRODUCTION

F1TENTHAWS DeepRacer DuckieTown

Figure 1.4: Examples of vehicles used in autonomous driving competitions.

Although these ideas are appealing, many challenges remain open, as described in
detail in [1]. For example, the advancement and deployment of autonomous driving gen-
erates new security and public health issues, like software failures which may lead to
catastrophic consequences [22], hacking [23], or the reduction of the use of seat bells due
to the false feel of security. Additionally, new stressors are present, like the lack of access
to specific places for example due to the lack of maps or complicated weather conditions.
As we see, the situations are very heterogeneous with variable dynamics, type of spaces,
weather, or light conditions.

Autonomous driving solutions are currently expensive and generate new property
forms, like a shared approach. In addition to these examples, the overall cost of au-
tonomous driving technology is not yet proved to be cheaper than the traditional one so
more advancements are required to meet that point and make it feasible. Another contro-
versial point is the number of labor forces involved in the actual driving of an autonomous
driving vehicle, where sources [24] now point that the amount of people needed to drive
a vehicle autonomously is 1.5 per vehicle, where they act as assistants in complicated
situations, even increasing the baseline and setting a worse scenario.

1.1.2. Assessment and metrics

The field of deep learning includes a broad spectrum of methodologies aimed at evaluat-
ing solutions derived from research. This process is essential to guarantee the robustness,
efficacy, and safety of the proposals. For example, each presented dataset usually incor-
porates a leaderboard mechanism where researchers and practitioners rank their solutions
against standardized metrics. This method is used as a catalyst for advancing the field and
facilitating the generation of cutting-edge results. Therefore, meticulous attention to the
selection and validation of metrics becomes imperative for the advancement of knowledge
in this domain.

This idea applies to all the different deep learning areas, such as the ones that are
the focus here, computer vision, robotics, and autonomous driving. In the context of ob-
ject detection and computer vision, where the accurate identification and interpretation

7

CHAPTER 1. INTRODUCTION

of visual information are fundamental, rigorous evaluation methodologies serve as axles
for assessing the performance and generalization capabilities of algorithms across diverse
datasets and scenarios. This allows proficiency in tasks such as object recognition, local-
ization, tracking, semantic segmentation, or even autonomous driving.

In the context of this thesis, our major focus revolves around the examination of end-
to-end autonomous driving systems, which orchestrate vehicular behaviors based on input
data. The rigorous assessment of these behaviors assumes critical significance in elucidat-
ing the inherent strengths and vulnerabilities. The input data can include LIDAR, camera,
or other sensors. Given the complexity and real-world implications of autonomous driving
technologies, rigorous evaluation methodologies are essential to gauge the performance
and reliability of these systems across diverse operational scenarios. These evaluation
frameworks should be more generalist and also focus on specific driving tasks subjecting
these systems to thorough testing under diverse environmental conditions, including vari-
ations in weather, lighting, and traffic patterns, researchers can ascertain their robustness
and resilience in real-world scenarios. This iterative evaluation process not only fosters
continuous improvement in system performance but also instills confidence among stake-
holders, including regulators, manufacturers, and end-users, regarding the reliability and
safety of autonomous driving technologies.

Inside the evaluation procedures, we distinguish between offline and online evaluation
methodologies, with the latter being addressed in depth in this thesis. The offline eval-
uation (open-loop evaluation) refers to the assessment concerning the common metrics
prevalent in deep learning evaluation such as accuracy or mean squared error. The online
evaluation (closed-loop evaluation) refers to the assessment of the system in simulation or
real scenarios where the system will be deployed. In the online evaluation environment,
the system is evaluated within the context of its interaction with the surrounding environ-
ment, necessitating consideration of external factors and dynamic changes. Unlike offline
evaluation, where system performance is observed in isolation, online evaluation provides
insights into how the system’s decisions and actions influence and are influenced by the
broader environment. This distinction is paramount, as a suboptimal decision made by the
system in an online setting can have immediate repercussions, a consequence not readily
apparent in offline evaluations. This is addressed in detail in this document.

1.1.3. End-to-end and modular approaches

In the context of developing an autonomous driving solution, there are two common ap-
proaches: end-to-end or modular systems (see Fig 1.5 for a diagram of each approach).
The majority of the solutions presented in industry and academia implement a modular
approach. This approach consists of a series of modules that communicate with each
other and that are specialized in certain tasks. These modules are therefore individually
developed and integrated into the onboard vehicle [25]. For example, one module can be
responsible for generating object detection candidates (bounding boxes) from the input

8

CHAPTER 1. INTRODUCTION

(camera, LIDAR), another module can be responsible for localizing the vehicle precisely
and generating planning paths and a third module can be responsible for the end control
of the vehicle. As we can see, the driving task is divided into subtasks that are addressed
by each submodule.

Localization

Perception Module X

Planning

Mapping

Module Y Planning

END-TO-END

Decision-making

Perception

Taffic sign
detection

Object
detection

Risk
assessment

and monitors

Mapping and Planning

Global
planning

Map
Monitoring

Control

Lateral
controller

Longitudinal
controller

SENSOR INPUT

Camera LIDAR HD Map +
Route

GNSS + IMU

SENSOR INPUT

Camera LIDAR HD Map +
Route

GNSS + IMU

MODULAR SYSTEM

Figure 1.5: Diagram of end-to-end and modular approaches. Adapted from [26] and [25].

On the other hand, there are end-to-end solutions. These solutions directly generate
the final control or planning from the raw input data. In this case, the system typically
includes a deep learning fully differentiable model that predicts the control commands or
planning based on the input data [26]. In this case, the model propagates feature represen-
tations across components. The tasks are jointly and globally optimized in this process.

The first approach is typically more prone to the propagation of errors since an error
in one module can affect negatively the rest of the subsystems and the final output. These
systems are also more complex, leading to a possible sub-optimal use of compute power
and they can be redundant. As an advantage, this design presents more interpretability
and is easier to debug. In comparison, the end-to-end models are typically more simple
and efficient thanks to the combination of tasks into a single model. They are also op-
timized for a common task, in comparison to the first approach where each sub-system
targets one particular problem. They can potentially offer emergent capabilities due to
this data-driven optimization paradigm, where scaling the training resources could lead to
improvements.

An important consideration is that the end-to-end paradigm does not inherently imply
a single black box system solely producing planning or control outputs. Rather, it can
adopt a modular structure with intermediate representations and outputs akin to classi-
cal approaches. In practice, many cutting-edge systems leverage a modular design while
simultaneously optimizing all components collectively, thereby attaining heightened per-
formance levels.

In the context of this thesis, we research end-to-end autonomous driving solutions
for different approaches, testing their limitations and presenting innovations while adding
pieces to the end-to-end system to increase its range of applicability.

9

CHAPTER 1. INTRODUCTION

1.1.4. Tasks in an autonomous driving system

In autonomous driving, a multitude of driving subtasks are combined into the final au-
tonomous driving system, encompassing functions such as autonomous parking, lane fol-
lowing, intersection negotiation, and more. Each task presents its own unique set of
challenges and addressing all of them with a safe and reliable solution is the final goal
of this paradigm. Fundamentally, lane following represents a foundational task, where
the vehicle drives while maintaining itself within designated lane markings while adapt-
ing to dynamic conditions like turns. From this task, we may move to a more complex
task like driving in traffic situations, where the lane following task is complemented by
management of traffic flow. Building from this task, we may also include point-to-point
navigation or interpretation of traffic signals and signs.

The spectrum of potential tasks and scenarios is vast, with the research community
addressing these challenges through platforms like the CARLA Leaderboard 8, where
participants address situations like lane merging, lane changing, negotiation at traffic in-
tersections, negotiations at roundabouts, handling of traffic lights and traffic signs, yield-
ing to emergency vehicles or comping with pedestrians, cyclist, and other elements. The
complexity inherent in these tasks arises from the need for robust perception, accurate
decision-making under uncertainty, and seamless integration of multiple sensory modal-
ities. Moreover, the dynamic and unpredictable nature of real-world driving scenarios
further compounds the challenges, necessitating sophisticated algorithms and compre-
hensive validation frameworks to ensure the reliability and safety of autonomous driving
systems. Thus, the multifaceted nature of autonomous driving tasks underscores the com-
plexity and depth of research required to realize fully autonomous vehicles capable of
navigating diverse environments with precision and reliability.

In this thesis, we build the end-to-end autonomous driving system from the most fun-
damental task of lane following and adding more complexity to the environment with
other vehicles throughout the document. We explore the tasks in depth to generate a safe
solution that is fast and optimized for different environments. We focus on the simplicity
of model development to address these tasks.

1.1.5. Optimization in autonomous driving solutions

Inside robotics and particularly in the field of autonomous driving, we need solutions
that are fast and reliable. The performance of a robot application not only depends on
the quality of the control decision but also their frequency. Ideally, we seek to generate
high-quality decisions at a rapid rate. Some autonomous vehicles or robots are equipped
with high-performance hardware but there are other systems where this is not true. A
possible option in those cases is updating to faster-computing hardware but it is sometimes
not feasible. Consequently, solutions for autonomous driving must be optimized while

8https://leaderboard.carla.org/

10

https://leaderboard.carla.org/

CHAPTER 1. INTRODUCTION

upholding stringent safety standards.

This optimization is also important when thinking about translating a solution from a
simulation environment to a real vehicle. This is typically clear when using deep learn-
ing models inside autonomous driving systems. Given the disparities in hardware, prior
consideration of optimization during the research and development stages of autonomous
driving systems can facilitate seamless integration into different hardware configurations.
As elucidated in the preceding discussion on online evaluation methodology, the impor-
tance of optimized models becomes evident, as suboptimal decisions may precipitate
complex scenarios, necessitating the imperative of a swift system.

Within this thesis’s scope, we explore optimization techniques tailored specifically for
autonomous driving, presenting novel contributions in this realm.

1.2. Traffic monitoring using computer vision

Traffic monitoring plays a pivotal role in urban planning, transportation management, and
public safety. It involves the systematic observation and analysis of vehicular movement
within traffic scenarios to ensure efficient traffic flow, enhance safety measures, and facil-
itate informed decision-making.

At its core, traffic monitoring encompasses the classification, identification, and speed
measurement of various types of vehicles navigating through diverse traffic conditions.
This process involves leveraging advanced technologies such as computer vision, machine
learning (deep learning), and sensor networks to accurately detect, classify, and track
vehicles in real-time.

One of the primary goals of this field is to provide insight into traffic patterns, conges-
tion areas, and potential safety hazards. This information can be used by transportation
authorities to optimize traffic signal timing, plan infrastructure improvements or deploy
resources effectively. They are also crucial in enhancing public safety by detecting and
responding to traffic violations, accident, and emergencies promptly. Automated surveil-
lance systems equipped with intelligent algorithms can detect anomalies in traffic be-
havior, such as sudden stops, erratic lane changes, or speeding vehicles, enabling swift
intervention by law enforcement agencies or emergency responders.

This field also serves as a gateway to understanding the utility of autonomous driv-
ing solutions in enhancing safety or improving transportation in general. It also shows
the importance of assessing the solutions broadly with fine-grained metrics as we have
described in Section 1.1.2.

11

CHAPTER 1. INTRODUCTION

1.3. Research Goals

After the presentation of the context of this thesis, we can briefly introduce the research
goals and the experimentally validated contributions that they include. The ultimate goal
is to progress the field of autonomous driving and with it, in the adjacent fields of com-
puter vision, artificial intelligence, and robotics. We frame these contributions in the field
of AI-driven robotics with computer vision, inside the application domain of autonomous
driving. The following research goals (RG) have been identified and addressed throughout
the thesis, which contribute to the ultimate goal:

• [RG1] Study the state of the art of autonomous driving systems, focused on
end-to-end systems and related fields: this goal entails conducting an in-depth
literature review of the autonomous driving field with special interest in the end-
to-end systems to gain insights about the current point of development and the
questions that still need to be addressed to enhance the field. This objective ne-
cessitates a meticulous literature review within the autonomous driving field, with
a keen emphasis on end-to-end systems, to gain nuanced insights into the current
state of progress, emerging trends, and persisting research questions that warrant
further exploration for the field’s advancement. Concurrently, we analyze the state-
of-the-art for traffic monitoring and object detection in computer vision, elucidating
key advancements, challenges, and potential avenues for improvement.

• [RG2] Validate computer vision in a driving setting generating a traffic moni-
toring tool: After the review of the autonomous driving and object detection field
through a state-of-the-art study, we need to explore the field, combining computer
vision and artificial intelligence. We experiment with the safety-critical scenarios
that need to be addressed in autonomous driving developing a system for visual
monitoring of the traffic using state-of-the-art computer vision techniques. Lever-
aging state-of-the-art computer vision techniques, this endeavor serves as an initial
step toward understanding the evolving needs of the field. This investigation poses
a foundational research question, positioning our study as a gateway to further ex-
ploration and innovation within the domain.

• [RG3] Generate an object detection assessment software to validate solutions:
It is critical to generate fine-grain metrics and understand them in-depth to produce
research that is worth it for the community. In this case, we generate a software
application for research experiments that includes functionality for validation of
object detection solutions comparing them to a series of compatible datasets that are
common in the research community. This development continues the introduction
into the computer vision field, which is critical for autonomous driving, and also
into the evaluation of computer vision systems.

• [RG4] Generate an autonomous driving behaviors assessment software to con-
duct the experiments and generate quantitative data: After studying the im-

12

CHAPTER 1. INTRODUCTION

plications of the assessment in the evaluation of a deep learning system and un-
derstanding the strong safety needs for driving, we need to develop an assessment
system for autonomous driving systems. These systems should generate fine-grain
metrics that help the research to compare different autonomous driving solutions
in different tasks and settings. This evaluation is focused on simulation, thanks to
the availability of high-detail simulators for autonomous driving like CARLA. The
software should give support for different autonomous driving tasks like follow-
ing the lane, driving with traffic, or navigating and respecting the traffic lights and
signals between different target points.

• [RG5] Generate end-to-end autonomous driving agents for visual lane follow-
ing that enhance their behavior based on the addition of visual memory and
kinematic input to visual deep learning imitation learning models: as we have
already described, there are typically two approaches for developing autonomous
driving systems, modular and end-to-end. In this case, based on the literature re-
view conducted, we identify the trend towards developing end-to-end systems in
research in contrary to generating modular approaches due to its simplicity. Based
on that the goal is to generate an end-to-end autonomous driving system that using
one single camera as input can generate final control commands that drive the vehi-
cles safely. In addition, the goal includes introducing other data types, the current
speed of the vehicle, and understanding whether it helps the system understand fur-
ther the environment and how to proceed. Also, it includes exploring deep learning
architectures for this end-to-end system that include memory capabilities.

• [RG6] Develop optimized end-to-end autonomous driving control visual lane
following models that leverage the latest deep learning optimization techniques:
for this goal, we would like to explore the broad range of optimization techniques
that compose the state-of-the-art in deep learning and apply them to autonomous
driving systems. In this case, the research goal includes leveraging these techniques
in the search for findings that can generate advancements in the field by producing
systems with the same quality of behavior but in the most optimal way. This study
should be extensive to different autonomous driving architectures or tasks while
maintaining its simplicity.

• [RG7] Enhance the control behavior of the autonomous driving vehicle for vi-
sual lane following with traffic: in the realm of autonomous driving, there are a
lot of possible tasks that a vehicle can address like following a lane, parking au-
tonomously, overtaking a vehicle... for this particular goal, we focus on introducing
traffic to a simulated autonomous driving scenario and we study how to enhance
the system behavior in this situations. For this goal, the vehicle should be able to
drive applying an end-to-end schema following the lane and also considering traffic.
This traffic could be different types of vehicles with different shapes, colors... The
driving should be safe enough to meet the strong standards needed in research and

13

CHAPTER 1. INTRODUCTION

industry, keeping a safe distance at all times.

1.4. Contributions

Following the description of several research objectives, we summarize the contributions
stemming from the concepts outlined in the preceding section. They will be discussed in
detail in Chapter 9, but this enumeration helps to have a global outline of the thesis.

1. A systematic study of the state of the art in the autonomous driving field: We
reviewed around 200 papers focused on autonomous driving research and related
fields. The related fields include traffic monitoring, object detection, autonomous
driving systems and imitation learning, simulators, datasets, and assessment of so-
lutions, and optimization in deep learning. This extended study has helped us to
understand in-depth the current landscape of the field and to generate the rest of the
research goals and contributions studied in this document.

2. TrafficSensor, a tool for monitoring traffic in highway scenarios using com-
puter vision: We have developed a system for monitoring traffic in highway sce-
narios based on state-of-the-art computer vision techniques. In this study, we have
studied the safety enhancement that computer vision can give in traffic manage-
ment. This study represents and initial step towards the introduction of the au-
tonomous driving ecosystem, comprehending the safety implications of the field
and how it can be improved using these tools.

3. Detection Metrics, an open source software for the assessment and comparison
of object detection models and datasets that eases the research process: in the
route towards developing an end-to-end system for autonomous driving based on
computer vision, we have developed Detection Metrics, a software tool for assess-
ment of object detection models and datasets. In this case, we understand the impli-
cations of a proper evaluation in advancing deep learning research and autonomous
driving research. Our study demonstrates its research value for improving the work
of a researcher in comparing different object detection models fast and unattended,
also serving as an assessment tool for the previous TrafficSensor contribution.

4. Behavior Metrics, an assessment and comparison tool for different autonomous
driving tasks that generate fine-grained quantitative data useful for research:
as part of the contributions of this thesis, we developed Behavior Metrics, a software
tool for the online assessment of autonomous driving solutions through fine-grain
metrics. After studying the monitoring of traffic and developing an assessment tool
for object detection models, we understand the need for similar software for com-
parison of autonomous driving solutions for different tasks. These tasks include
following the lane, driving with traffic, and navigating a simulated environment.
Each task comes with its evaluation metrics that are specifically designed for them,

14

CHAPTER 1. INTRODUCTION

in addition to the common metrics that are general to all the tasks. Based on this
premise, we have developed this tool that is a contribution to the thesis. It gen-
erated quantitative experimental data that a researcher can use for comparing dif-
ferent autonomous driving systems objectively. This tool is designed to ease the
work of a researcher, providing tools for unattended experimental batch validation
or for quantitative evaluation through a simulation view. Our study demonstrates
its validity and research value with the following studies described in the following
points.

5. Empirical study of the improvement to the basic visual lane following with
the addition of visual memory and kinematic input: as part of the contributions
of the thesis, we have explored the addition of current speed and visual memory
to end-to-end autonomous driving system based on visual input. In this case, the
target task is lane following in an urban scenario meeting all the safety standards
needed. We explore whether or not introducing the current speed to the system as
input and adding visual memory capabilities improves the final behavior of the sys-
tem. We conduct extensive ablation studies and use the system in extreme scenarios
to explore the actual advantages that this addition can introduce to the final system.
Our study demonstrates that adding visual memory and current speed data is help-
ful in certain scenarios for an end-to-end control system even in a simple task of
following the lane in a simulated urban scenario.

6. Empirical study of model optimization for the controllers of the autonomous
driving vehicles, generating several optimized models that improve the au-
tonomous driving system on various fronts: another contribution of this thesis is
the study of deep learning optimization techniques for improving the autonomous
driving deep learning models keeping the quality of their decisions. As part of
the contribution, we have generated a series of optimized models for end-to-end
lane following in a simulated urban scenario that are faster in inference time and
smaller in size while maintaining their decision quality. Our study demonstrates the
importance of optimizing deep learning models for autonomous driving to reduce
inference time and model size while meeting high safety standards. This particular
contribution is critical for edge devices where the hardware capabilities are more
limited.

7. Generation of an end-to-end shallow model capable of driving in traffic scenar-
ios based on vision input: another contribution of this thesis is the empirical study
of including traffic in an urban scenario where the autonomous vehicle has to drive
and including traffic information inside the model. We study and prove that simple
end-to-end models can drive autonomously in a traffic situation maintaining a safe
distance from other vehicles while also driving at a normal pace following the lane.
For this task, we also study the evaluation metrics that can be helpful to understand
and compare the system and include them in Behavior Metrics.

15

CHAPTER 1. INTRODUCTION

1.5. Structure of the document

Each contribution is thoroughly developed in its dedicated chapter. As they constitute
distinct self-contained projects and papers aimed at the final goal of advancing the field
of autonomous driving, certain sections may be duplicated or slightly overlapped across
separate chapters.

The structure of the remainder of this thesis is outlined as follows:

1. Chapter 2: a detailed state-of-the-art description is conducted. This literature re-
view is divided into different subfields relevant to the research.

2. Chapter 3: presents TrafficSensor, a system for monitoring traffic in highway sce-
narios using computer vision.

3. Chapter 4: provides a detailed description of Detection Metrics, a software tool
for the assessment of object detection models and datasets.

4. Chapter 5: presents BehaviorMetrics, a software tool for the online assessment of
autonomous driving solutions using fine-grained metrics.

5. Chapter 6: presents the study conducted to understand the enhancement of au-
tonomous driving behavior using kinematic input and memory-based architectures.

6. Chapter 7: provides an in-depth description of the optimization of the end-to-end
autonomous driving solutions for control.

7. Chapter 8: describes the study conducted for enhancing end-to-end control in sit-
uations where traffic is involved.

8. Chapter 9: presents the conclusions outlined from all the previous contributions
and proposes some promising and solid future lines of work.

16

CHAPTER 2. STATE OF THE ART

Chapter 2

State of the art

The autonomous driving field has suffered an impressive advancement in recent years,
both in industry and academia. This PhD thesis builds upon the existing body of knowl-
edge in autonomous driving research and also in the rest of the fields that affect this one,
leveraging insights from related disciplines such as computer vision, artificial intelligence,
and robotics (see Fig. 2.1).

Our review begins with an examination of literature concerning traffic monitoring and
object detection, laying the groundwork for further exploration in autonomous driving.
Subsequently, we investigate the intricacies of the autonomous driving domain, exploring
topics such as simulators and solution assessment. Additionally, we explore optimization
techniques for deep learning and other optimization methodologies, which form a crucial
component of our contributions. To provide a comprehensive overview, this chapter is
structured into six main sections, each focusing on a distinct aspect of the state-of-the-art
in autonomous driving research and traffic monitoring.

2.1. Traffic monitoring

One classic problem within computer vision research is traffic monitoring [27] [28] [29]
[30] [31]. This entails the tracking and classification of vehicles, for example on high-
ways, to monitor them. Numerous studies have been dedicated to vehicle classification,
employing vision-based techniques [32] [33] [34] [35] [36] [37]. Before the advent of
deep learning, traffic surveillance using video cameras was significantly limited, primar-
ily focusing on rudimentary tasks such as passive monitoring or basic automatic pro-
cessing [38] [39] [40]. However, the emergence of deep learning has led to significant
advancements in this field, notably in handling occlusions [41] [42] [43].

The classification of vehicles is intricately linked to monitoring traffic [44] [45] [46]
[47] [48] [49] [50]. Traditionally, background subtraction has been a commonly employed
technique for vehicle detection [51] [52] [53] [54] [55] [56] [57][58] [59]. Additionally,
monitoring involves tracking vehicles, with many solutions relying on feature-based ap-

17

CHAPTER 2. STATE OF THE ART

Robotics

Computer visionAI

This PhD
thesis

Figure 2.1: Venn diagram of the fields that are the core of this thesis.

proaches [60] [61] [62] [63] [64] [65]. The Scale Invariant Feature Transform (SIFT) [66]
technique is often utilized to extract and utilize these features in numerous works dedi-
cated to traffic monitoring [60] [67]. Alternatively, some approaches utilize 2D/3D mod-
els for this purposes [68] [69] [70]. Moreover, Kalman filters are employed in certain
studies within the literature for vehicle tracking [71] [72]. Oriented FAST and Rotated
BRIEF (ORB) [73] is an efficient and viable alternative to SIFT and SURF [74].

As our objective encompasses both classification and localization of objects, the uti-
lization of object detection techniques becomes imperative [75] [76]. Numerous studies
within the realm of traffic monitoring have centered around object detection, predom-
inantly leveraging deep learning methodologies [77] [78] [79] [80] [81] [82] [83] [84]
[85] [86].

2.2. Deep learning object detection, datasets and assessment

The field of object detection has experienced significant popularity in recent years, owing
to notable advancements evident in the proliferation of high-quality literature reviews on
the subject [87] [88] [89] [90] [91] [92] [93] [94]. The extensive adoption of object detec-
tion in real-world applications underscores its significance. Its utilization spans various
domains, including autonomous driving systems [95] requiring a comprehensive under-
standing of surrounding objects, as well as applications such as in-camera filters and ef-
fects, particularly those reliant on recognizing specific objects like faces [96]. Moreover,
object detection finds practical utility in scenarios within the retail sector, facilitating tasks
such as inventory management and customer analytics [97].

18

CHAPTER 2. STATE OF THE ART

Before the emergence of deep learning techniques, object detection relied on tradi-
tional approaches, primarily utilizing image processing methods and specific object fea-
tures to identify objects within images [98]. In this conventional approach, the object de-
tection pipeline typically involved several stages. Initially, features such as edges and tex-
tures were extracted from the image. Subsequently, a classifier, often based on algorithms
like Support Vector Machines or Random Forests, was trained using these extracted fea-
tures. Following training, a sliding window technique was commonly employed, where
the classifier would analyze different portions of the image to predict the presence of
objects. Finally, post-processing techniques were applied to refine and consolidate the
detected objects, generating the final set of detections.

Analogous to the advancements witnessed in autonomous driving research, the progress
in object detection owes much to the availability of high-quality open datasets. No-
table examples include COCO [99], ImageNet [100], Pascal VOC [101], Princeton [102],
Spinello [103] and Open Images Dataset [104]. In addition to these widely used datasets,
there exists a plethora of specialized datasets tailored to specific subfields, such as small
object detection [105] [106], human detection in crowded scenarios [107], or traffic sign
detection [108] [109]. These datasets are typically curated using annotation software [110]
during the construction process. Within the realm of object detection, few-shot learning
has emerged as a topic of significant interest among researchers, demonstrating notable
advancements [111] [112].

In addition to object detection, computer vision encompasses other key areas such
as image classification [113] [114] and image segmentation [115] [116] [117] [118]. In
autonomous driving, object detection and image segmentation are used for the perception
part of the system, while object detection locates and classifies objects in the image, and
image segmentation classifies each pixel (see Fig. 2.2 for an example).

Each of these tasks includes a specific set of evaluation metrics used to measure the
effectiveness of a model and for a fair comparison of several approaches. These include
Precision, Recall, Accuracy, Intersection over Union (IoU), F1-score, mean average pre-
cision (mAP), or mean average recall (mAR), among others. Precision, Recall, and Ac-
curacy are based on the number of true positives (TP), true negatives(TN), false positives
(FP), and false negatives (FN). A review of their equations is provided below:

Precision:
Precision =

T P
T P + FP

(2.1)

Recall:
Recall =

T P
T P + FN

(2.2)

Accuracy:

Accuracy =
T P + T N

T P + T N + FP + FN
(2.3)

19

CHAPTER 2. STATE OF THE ART

Figure 2.2: Object detection and image segmentation. Source: https://blogs.
nvidia.com/blog/drive-labs-panoptic-segmentation/.

IoU (Intersection over Union):

IoU =
Intersection area

Union area
(2.4)

F1-Score:
F1 = 2 ×

Precision × Recall
Precision + Recall

(2.5)

Mean Average Precision (mAP):

mAP =
1
N

N∑︂
i=1

APi (2.6)

Mean Average Recall (mAR):

mAR =
1
N

N∑︂
i=1

ARi (2.7)

Mean Absolute Error(MAE):

MAE =
1
n

n∑︂
i=1

|yi − ŷi| (2.8)

Mean Squared Error (MSE):

MSE =
1
n

n∑︂
i=1

(yi − ŷi)
2 (2.9)

20

https://blogs.nvidia.com/blog/drive-labs-panoptic-segmentation/
https://blogs.nvidia.com/blog/drive-labs-panoptic-segmentation/

CHAPTER 2. STATE OF THE ART

All of the current state-of-the-art solutions inside computer vision heavily rely on deep
learning methodologies. The development process of a deep learning model involves sev-
eral steps, with one crucial step being the selection of a deep learning framework [119]. In
recent years, popular frameworks such as TensorFlow [120], Caffe [121], Darknet [122],
Keras [123] or PyTorch [124] have been commonly employed for this purpose. The use
of deep learning has been indispensable in this PhD thesis using specially PyTorch and
Tensorflow frameworks in the majority of the research contributions.

Focusing on object detection, another critical aspect involves selecting the appropri-
ate architectural technique. These techniques are usually divided into two groups, two-
stage or one-stage. The first group includes multiple stages from the input to the gen-
eration of the final bounding box candidates while the second group directly generates
the detection and location in a single forward pass. Noteworthy advancements in recent
years have introduced architectures such as Faster Regional-CNN [125] (two-stage), Sin-
gle Shot MultiBox Detector [126] [127] [128] (one-stage), and You Only Look Once
(YOLO) [129] (one-stage). This last one, YOLO, has experimented with a huge devel-
opment and several new versions have been released (YOLO9000 [130], YOLOv3 [131],
YOLOv4 [132], YOLOv5 [133], YOLOv9 [134]...). More recent developments have
shown interesting results using Tranformers-based architectures, showing a promising di-
rection with DETR [135], Swin Transformer [136] or DINO [137], among others [138],
and indicating a potential direction for future research. All the ideas detailed here are use-
ful in the perception of autonomous driving agents and traffic monitoring, as we describe
in the contributions.

2.3. Autonomous driving and imitation learning

The field of autonomous driving combines artificial intelligence, robotics, and computer
vision, as we have already mentioned in Chapter 1 (see Fig. 2.1). In that chapter, we have
already introduced the main reasons for the latest advancements. We have also discussed
the main components of an autonomous vehicle, including the actuators, sensors, and pro-
cessors [139]. We have presented some of the tasks that autonomous driving addresses,
like obstacle avoidance [140], following the lane, or driving in traffic [141]. The solu-
tions for generating these systems typically fall into two groups, end-to-end or modular
approaches, as we have described in the previous chapter (see Fig. 1.5 for a detail).

The modular approach [142] [143] [25] combines several specialized modules, each
specific to particular activities of the driving procedure. They communicate among them
and their combination and that combined and communicated between them drives the
vehicle. The driving tasks are divided into several submodules: perception, planning,
mapping, control... [142] [143] [144] so the modular approach can implement a solution
for each of them that communicates and final are aggregated into the final solution. This
is the most widespread approach for solving autonomous driving applications, in part due
to its flexibility. One of the most used criticisms of the modular approach is that the errors

21

CHAPTER 2. STATE OF THE ART

in some modules are difficult to track and that they can lead to cascading errors in the
rest of the system. Conversely, the end-to-end approach receives criticism for its lack of
interpretability.

One of the most relevant open-source examples of a modular approach for autonomous
driving in active development is Autoware [145]. It is built using ROS and includes
modules for each autonomous driving activity like perception, planning, control... This
project supports more than 30 different types of vehicles. We may find other examples
like Stanford’s Junior [143] or Boss [142], which won the DARPA Urban Challenge with
a GPS, lasers, radars, and cameras as sensors.

In contrary, the end-to-end approaches [146] [147] [148] [149] [150] [151] directly
translate the input raw data provided by the sensors in the vehicle to final control com-
mands that drive the vehicle. Many developments of this idea have been published. For
example, [146] proposes an end-to-end model based on a CNN architecture, [152] pro-
poses this approach orienting its development towards planning, [147] an architecture to
explain the decisions of an end-to-end architecture, or [153] in which they predict the
HD map to improve the driving capabilities.

Vision-based end-to-end autonomous driving has gained significant attraction in re-
cent literature but still presents some limitations [154]. Despite this, recent strides in-
dicate significant advancements. For example [26] proposes a combination with large
language models for driving. This vision-based approach is an integral segment of the ac-
cumulation of exteroceptive information about the surrounding environment of the vehi-
cle [155] [156]. It has been explored with Bayesian approaches [157], used for explaining
the decision [147], or used in real vehicles [158].

PilotNet [159] is a shallow deep learning model for vision-based end-to-end control
proposed by researchers at Nvidia. This solution employs a convolutional neural network
(CNN) [160] to extract features and generate control commands from input images. This
solution was further analyzed by augmenting fully connected layers to a CNN [161] to
reach the point of performance comparable to a human driver. Simulated images have
also been used [162] to study the significance of road-related features in the images.

Building upon this shallow model, numerous advancements have been released, en-
hancing both complexity and functionality. For instance, TCP [163] integrates a single
camera as input data, deviating from other methods that rely on a combination of sensor
data but still achieving great results in the CARLA Leaderboard. Another example is
ReasonNet [164], which combines temporal and global reasoning to facilitate informed
decision-making. Other recent examples of the end-to-end approach are NEAT [165], or
Transfuser [166], among others [167].

22

CHAPTER 2. STATE OF THE ART

2.3.1. Imitation learning and reinforcement learning for driving autonomously

Imitation learning [168] consists of generating a driving policy learning from expert
agent-gathered data (see Fig. 2.3). One relevant technique inside imitation learning, uti-
lized in this thesis, is called behavior cloning [169] [170]. In this technique, applying it
to autonomous driving, one or more expert agents drive while the data produced by their
actions are collected. This means that the input data from the sensors are collected and
the actions (controls) are also saved. With these data, a deep learning model is trained to
learn from the expert agents’ behavior and generate a model that can imitate their behav-
ior. Some successful uses of this technique have already been generated for autonomous
driving, like in [171] where they combine a successful behavior cloning policy with hard
constraint handling for those scenarios that are not found in the collected data that lead to
catastrophic safety-critical failures.

In a different example [172], the researchers include high-level input control com-
mands in the system because the baseline architecture does not allow control at testing
time. Introducing these commands, they generate a chauffeur-like control at test time.
Another study [165] presents NEAT, where they generate a representation of the seman-
tic, spatial, and temporal structure of the diving scene using imitation learning. In [166],
the researchers use this technique combining it with Transformers and generating a mech-
anism to integrate image and LIDAR representations into a global context that leads to a
safe driving behavior. In a separate contribution [167], they proposed a system to train
driving policies not only from a single expert agent but from the rest of the agents that
it observes. The previously presented examples of TCP [163] and ReasonNet [164] also
use imitation learning.

This technique is also applicable to other domains outside autonomous driving [173],
for example for gaming agents where the model is trained from data from the expert
agent in the same way. Generating a successful model necessitates a diverse range of
data points. However, the majority of cases recorded during normal driving experiences
may lack the relevance required, leading to an imbalanced dataset. Since the majority of
cases that we will be recording are of normal situations, the performance of the vehicle
in complicated situations or never-seen situations would deteriorate rapidly (see Fig. 2.4
for an example). To mitigate this issue, researchers have proposed solutions like using the
learned policy for querying the expert agent in difficult situations and aggregating these
extreme cases to the dataset, a strategy known as DAgger [174] or exposing the learned
policy to perturbations to generate valuable data [175]. Other possible approaches include
oversampling of extreme cases for balancing the dataset and using data augmentation
techniques, which are common in machine learning problems and are supported by the
deep learning frameworks, with dedicated packages like Albumentations [176].

Other techniques for driving autonomously use reinforcement learning (RL), which
is also capable of managing complex environments. In this area, the vehicle interacts
with the environment through exploration-exploitation and uses a reward function to learn

23

CHAPTER 2. STATE OF THE ART

Data buffer

Learn
π

πβ π

Deployment

Update
πk+1πk

πk+1

Behavior cloning (Imitation learning) Reinforcement learning

Figure 2.3: Diagram of behavior cloning (imitation learning) and reinforcement learning.
Adapted from [26].

Figure 2.4: Learned policy has issues when it encounters a new situation.

a policy [177]. These techniques include Q-learning [178], are also end-to-end [148],
have interesting results in racing [149], and can be deployed in real vehicles [179]. The
combination of reinforcement learning and deep learning, deep reinforcement learning
(DRL), has also been explored [180] and even the combination of imitation learning and
reinforcement learning shows a promising direction [181].

2.4. Simulation in autonomous driving and assessment. Datasets

In the development and research of robotics systems, simulators are commonly used to
generate solutions rather than directly developing in real robots or vehicles. The simu-
lators facilitate easier and more cost-effective iterative development, testing, and debug-
ging of solutions, validating the research hypothesis. They give access to ground truth
data from sensors and actuators, easing the validation of solutions. Using simulators, re-

24

CHAPTER 2. STATE OF THE ART

GazeboCARLA

Figure 2.5: CARLA and Gazebo simulators.

searchers can generate synthetic datasets that include ground truth data at a cost-effective
rate. They also allow the assessment of solutions.

Regarding autonomous driving, a diverse array of simulators are available, playing
a pivotal role in this research field [164] [163]. SUMO [182] is an open-source simu-
lator specialized in traffic that pursues simulating efficiency and management strategies.
TORCS [183] is a racing simulator. Gazebo [184] is an open-source general-purpose
robotics simulator that has also been employed for autonomous driving research [185].
CARLA [186] is an open-source simulator, specialized in realistic simulation of urban
driving and is widely used. It is run using Unreal, a real powerful game engine. It is
easily customizable, offering a wide selection of common day-to-day vehicles, sensors,
and maps for validating autonomous driving solutions. The system features a rule-based
expert agent designed for autonomous vehicle navigation, which can be leveraged to gen-
erate synthetic datasets. An alternative to this expert agent, named Roach, has been de-
veloped using reinforcement learning techniques [187].

DeepDrive [188], Baidu Apollo [189], Autoware [145], AirSim [190] or Udacity’s
Self-Driving Car Simulator [191] are other possible options, with their strengths and lim-
itations. Even video games have been used as simulators for the development of au-
tonomous driving solutions [192] [193].

Certain simulators, including Gazebo and CARLA (see Fig. 2.5), are compatible with
ROS [194] [195], which serves as the global standard for robotics middleware. ROS,
being open-source streamlines the development of applications and facilitates a seamless
transition from simulation to real-world robots. This integration enables researchers and
developers to leverage the robust capabilities of ROS for controlling and interfacing with
simulated environments, thereby accelerating the development and testing of robotics so-
lutions.

25

CHAPTER 2. STATE OF THE ART

2.4.1. Datasets

Besides simulators, datasets play a crucial role in the development of autonomous driving
systems. In this field, there are a diverse range of publicly available datasets that support
the training of deep learning models for various tasks, as previously mentioned, signif-
icantly contributing to the field’s recent advancements. For visual perception, we have
nuScenes [196], BDD100K [197], KITTI [198] [199] or Cityscapes [200], for planning
nuPlan [201] or for lane following (lane keeping) commaAI [158] or Udacity datasets
[202]. These datasets, along with others [203] [204], have become benchmarks for re-
searchers and developers in the field.

2.4.2. Assessment

Given the wide range of traffic scenarios and driving tasks that are part of autonomous
driving and the security standards needed [205], robust evaluation metrics are imperative.
While common deep learning metrics like mean squared error (MSE) or accuracy are
suitable for validating static supervised data, they may prove inadequate for assessing the
performance of a fully autonomous driving system or task-specific systems. These offline
metrics fail to capture the dynamic nature of driving tasks over time intervals, such as lane
following, obstacle avoidance, intersection traversal, and automated parking.

Hence, there is a need for a complementary evaluation framework that considers the
temporal aspects of driving tasks. For instance, a failure in a single control iteration of the
autonomous vehicle could potentially lead to a collision later, despite only manifesting
in one frame. Therefore, evaluating system performance requires metrics that account
for the system’s behavior over time and its ability to handle various dynamic scenarios
effectively.

This question has already been addressed in the literature and a vast range of met-
rics and evaluation strategies can be found for different parts of the autonomous driving
systems and different situations [206] [207] [208] [209].

CARLA simulator already generates metrics that can be used for validating solutions
(Driving Score, Infraction penalty...). CARLA Autonomous Driving Leaderboard 9 is an
assessment framework and challenge built on top of the simulator for evaluating and rank-
ing solutions for autonomous driving in urban scenarios and routes. This framework is
designed for broadly testing and validating fully autonomous driving solutions in a vari-
ety of traffic scenarios simultaneously, so it can be overly challenging or even unsuitable
when considering developing solutions for specific driving tasks or researchers starting
in autonomous driving. Furthermore, it presents limitations for assessing the autonomous
driving tasks supported by Behavior Metrics (described in Chapter 5) and lacks the level
of detail in the metrics. Therefore, alternative approaches for assessing autonomous driv-
ing solutions may be necessary [210].

9https://leaderboard.carla.org/

26

https://leaderboard.carla.org/

CHAPTER 2. STATE OF THE ART

2.5. Memory-based approaches in end-to-end visual autonomous driving

We have outlined the primary approaches for developing autonomous driving systems,
encompassing typical inputs and outputs. An intriguing avenue of research within the
end-to-end approach involves integrating memory capabilities. This memory can mani-
fest within the deep learning architecture through dedicated memory modules or directly
within the input data. For instance, [211] proposed the addition of temporal analysis using
memory-based deep learning models, examining the importance of LSTMs and convolu-
tional layers with LSTMs respectively. Memory-based solutions have been explored in
previous research publications as well. For example in [212], researchers used a combi-
nation of CNN and LSTM layers, and in [213] an [214], they used similar approaches
combining ConvLSTM modules for extracting the temporal information of the data input
for generating the control commands of the vehicle. Long Short-Term Memory (LSTMs)
networks [215] are a special type of recurrent neural networks (RNN), that are special-
ized in learning temporal dependencies that are present in the dataset. A variation of the
LSTMs is Convolutional LSTMs (ConvLSTMs) [216], which incorporate convolutions to
learn temporal dependencies from sequences of images. Additionally, Conv3D convolu-
tions are commonly employed architectural layers when learning temporal dependencies
is crucial, like in video classification.

Regarding enhancements to incorporate memory into the system through input modi-
fications, notable techniques include juxtaposing images [13] or amalgamating multiple
images from different time steps into a composite image with increased channels.

2.6. Optimization of deep learning models for autonomous driving

The vision-based solutions are usually generated using deep learning models, which are
high-demanding computational solutions. An important component in this scenario is
the available computing hardware as the performance of robot applications depends not
only on the quality of the model decisions but also on their frequency. Some autonomous
vehicles or robots are equipped with high-performance hardware while others are not.
An option in this case is to update to faster-computing hardware, but this is not always
feasible. A possible solution is to optimize the deep learning model with different tech-
niques [217].

There are an extensive number of optimization techniques, including quantization of
the computations [218] [219], pruning of some parts of the model [220], fine-tuning (re-
training) with optimization aware techniques, or clustering some components (see Fig. 2.6
for a detailed diagram). These techniques are usually included in the most common
deep learning development frameworks such as PyTorch or TensorFlow. For instance
[120] [221] [124] used them for building their models and some of them have been also
further optimized for certain hardware devices, such TensorRT for Nvidia GPUs [222].
These techniques are usually combined in the development of an optimized efficient deep

27

CHAPTER 2. STATE OF THE ART

learning model, always considering the trade-off between the optimization percentage and
quality of the model outputs.

Some studies have addressed the optimization of autonomous driving systems [223],
but they have not considered deep learning models as potential controllers. In this thesis,
however, we focus on utilizing deep learning models as controllers and we explore this
optimization, filling a gap in the existing research literature.

This comprehensive review of the state-of-the-art across various fields central to the
thesis serves as an introduction, providing essential context for the ideas discussed in the
subsequent chapters. In the following chapters, we will examine the contributions made
for the thesis, commencing with the examination of traffic monitoring using computer
vision.

28

CHAPTER 2. STATE OF THE ART

Clustering

Pruning

01010101 01010101

01010101 01010101

Quantization

01010101

Figure 2.6: Optimization techniques diagrams.

29

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Chapter 3

Monitoring and assessing traffic with
deep learning

Monitoring of real-time traffic on highways, roads, and streets may provide useful data
both for infrastructure planning and for traffic management in general. This area of re-
search has been already addressed in computer vision, as we present in Chapter 2. This
area has experienced a rise in recent years, particularly thanks to the advancements in
deep learning for object detection and classification. In this chapter, we present Traf-
ficSensor, which is one of the contributions of this thesis. It is an open-source system
that employs deep learning techniques for automatic vehicle tracking and classification
on highways using a calibrated and fixed camera. For this purpose, a new traffic image
dataset was created to train the models, which includes real traffic images in poor lighting
or weather conditions and low-resolution images. The proposed system consists mainly
of two modules, one responsible for vehicle detection and classification and the other
for vehicle tracking. After a test and comparison phase of different object detection ap-
proaches trained on the new traffic dataset, YOLOv3 and YOLOv4 were selected. The
second module combines a simple spatial association algorithm with a more sophisticated
KLT (Kanade-Lucas-Tomasi) tracker to follow the vehicles on the road. Several exper-
iments have been conducted using challenging traffic videos to validate the system with
real data. The experimental results demonstrate that the proposed system successfully
detects, tracks, and classifies vehicles in real-time on a highway. This paper has been
published in a journal [224] and in this chapter we describe it. The open-source software
described in available online for replicability and extension [225].

3.1. Introduction

The rise of vehicles in circulation raises several challenges of environmental, economic,
and infrastructure management types. This situation creates the need for reliable mon-
itoring techniques. The intelligent transportation systems (ITSs) goal is to monitor the

30

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

different vehicle transport networks smartly, using dedicated sensors and advanced video
cameras. This data may be used for coordination of the traffic networks, minimizing con-
gestion, and enhancing mobility. Video cameras are usually used on ITSs systems due to
their simple installation and maintenance combined with their rich nature of information.
This makes them one of the best solutions when it comes to surveillance and monitor-
ing. Depending on the conditions of the ITS system, it will be necessary to use moving
cameras instead of fixed ones. Additionally, this system made use of other sensor types
like radars for speed enforcement or inductive loops and laser and infrared sensors for
vehicle classification, as discussed in Chapter 2. The systems that use such technology
try to classify the vehicles by extracting certain information such as the vehicle’s length
and distance between axles. They have some drawbacks, like an intrusive installation and
the fact that not all of them provide the possibility of multilane monitoring. Additionally,
the cost of installation is usually high and the data extracted from these systems is basic
and cannot be used to extract high-level traffic data such as vehicle orientation, position...

Previously, the utilization of video cameras in traffic surveillance was primarily con-
fined to passive monitoring tasks or rudimentary automated processing. However, signif-
icant strides have been made in this domain, chiefly attributed to advancements in deep
learning techniques. Presently, sophisticated systems capable of detecting vehicles in
both routine and challenging scenarios have become feasible, even in situations charac-
terized by high vehicle density. This advancement serves as the foundation for execut-
ing high-level tasks such as automated traffic management, automatic incident detection,
law enforcement, monitoring of weather conditions, and handling various other incidents.
Building upon these advancements, we have developed a vision-based traffic monitoring
system named TrafficSensor. It incorporates a robust vehicle detection and classification
algorithm, along with a novel technique for addressing occlusions [41] [42] [43]. This sys-
tem marks the evolution from a previous iteration [98] [226], achieving higher reliability
and performance even in challenging lighting or weather conditions and with poor camera
resolutions, all while maintaining real-time operation. By employing a fixed camera, the
system effectively detects and monitors vehicles. This work, a significant contribution
to the thesis, signifies our entry into the field of autonomous driving. In the subsequent
sections, we detail the system’s creation, conduct experimental validation, and discuss the
results.

3.2. TrafficSensor: a deep learning-based traffic monitoring tool

TrafficSensor is a software tool designed for real-time traffic monitoring, capable of classi-
fying vehicles into seven categories: motorcycles, cars, vans, buses, trucks, small trucks,
and tank trucks. It comprises three main blocks: vehicle detection, vehicle classifica-
tion, and vehicle tracking, as depicted in Fig. 3.1. These blocks are implemented as two
separate modules, as detections and their classification are performed jointly due to the
utilization of deep learning techniques. The tracking mechanism prioritizes spatial prox-

31

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

imity, resorting to the KLT algorithm if spatial proximity tracking fails. All detected blobs
are continuously tracked over time.

In TrafficSensor, detection, classification, and tracking are conducted within a desig-
nated image area referred to as the evaluation area. This region, indicated by the user in
the image, specifies the area on the road where detections should be focused, as illustrated
in Fig. 3.2. While TrafficSensor is primarily designed to monitor outgoing traffic flow, its
functionality can be extrapolated to handle incoming traffic flow as well.

3.2.1. Deep learning-based detection and classification

The system receives input images captured from the monitored video stream. These im-
ages are then fed into the deep learning model, which detects and classifies various ve-
hicles present. Information is continuously stored at each moment, allowing for effective
tracking based on data recorded from the previous instance. TrafficSensor is compatible
with deep learning models trained using various frameworks such as TensorFlow, Dark-
net, and Keras, enabling it to accurately detect and classify different vehicles appearing in
the images.

Figure 3.1: Block diagram of TrafficSensor system.

In the detection and classification block, the system implements the following criteria:

• Within the evaluation area, two zones are defined (Fig. 3.3). Zone 1 corresponds
to the half of the evaluation area where vehicles enter. Detection and classification
are generally more straightforward in this zone due to better visibility of vehicles.
Zone 2 refers to the half through which vehicles exit the evaluation area. This zone
poses greater complexity as vehicles tend to be smaller compared to those in Zone
1.

32

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Figure 3.2: Evaluation area.

• Vehicles always enter the evaluation area through Zone 1. They cannot suddenly
appear in the middle of the road. Thus, no new vehicle can be detected in Zone 2.

• If a vehicle is not detected in Zone 1 during a five-frame sequence, it will be con-
sidered a false positive and subsequently discarded.

• Any vehicle within Zone 2 is considered valid. If a vehicle is not detected using
deep learning, the KLT algorithm will be employed for localization.

Figure 3.3: Evaluation zones.

Three different frameworks (TensorFlow, Keras, and Darknet) and four deep learning
models have been tested to evaluate the optimzal configuration for the final TrafficSen-
sor application. Specifically, the SSD MobileNetV2 network with TensorFlow, the SSD
VGG-16 network with Keras, and YOLOv3 and YOLOV4 with Darknet.

• SSD MobileNetV2 network: the SSD MobileNetV2 network (Fig. 3.4) utilized in
this study was trained using the COCO dataset. To use this network, we used the

33

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

configuration file ssd_mobilenet_v2_coco.config. This network architecture com-
bines the Single Shot Multibox Detector (SSD) with MobileNetV2. MobileNetV2
extracts feature maps that are then utilized for classification and detection tasks in
subsequent layers. The SSD aspect employs a convolutional feed-forward network
to generate a set of bounding boxes at fixed sizes and scores the presence of object
class instances within these bounding boxes. Finally, non-maximum suppression is
applied to produce the final detections.

• SSD VGG-16 network: another SSD network has been used with VGG-16 as
its base network, pretrained using ImageNet. Fig. 3.5 shows this network model.
VGG-16 consists of 16 layers, of which 13 are convolutional, 2 are fully connected,
and a softmax layer that is used to classify. Fig. 3.6 illustrates the architecture of
the VGG-16 network.

• YOLOv3: You Only Look Once (YOLO) imposes strong spatial constraints on
bounding box predictions. Each cell in the grid only predicts N bounding Boxes
(N being a fixed parameter) and can only have one class. This spatial limitation
restricts our model’s ability to predict nearby objects effectively. YOLOv3 [131]
(see Fig. 3.7 comprises a total of 107 layers, organized into two groups responsible
for feature extraction and object detection

– Feature extraction (from layers 1 to 75): it is the Darknet-53 network trained
using ImageNet, comprising 53 convolutional layers (Fig. 3.8). This network
has 416x416x3 images as input shape and features as output 3D 13x13x1024
and incorporates 23 residual layers. When a neural network increases in depth
its precision tends to degrade in terms of propagating its characteristics, lead-
ing the greater losses in training. The residual layers mitigate this problem.

– Objects detection (from layers 76 to 107): the model takes the 3D features
(13x13x1024) as input and conducts object detection. A distinguishing feature
of YOLOv3 is its ability to detect objects on three different scales, enhancing
its effectiveness. It extracts features at three scales (13x13x39, 26x26x30,
and 52x52x39), which are then processed by the final YOLO layer for object
classification and bounding box regression.

• YOLOv4: this is the fourth iteration of the YOLO architecture that continues to
enhance the previous versions with the latest advances introduced in the literature.
It comprises three main components: backbone, neck, and head (Fig. 3.9). For the
backbone, it uses CSPDarknet53 [227], for the neck SSP [228], and PAN [229] and
YOLOv3 for the head. This network allows real-time object detection on a conven-
tional GPU, thanks to its improvements in speed compared to other approaches and
even its previous versions.

34

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Figure 3.4: SSD MobilenetV2 network.

Figure 3.5: SSD network model.

Figure 3.6: VGG-16 model.

35

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Figure 3.7: Yolov3 model.

Figure 3.8: Darknet-53 model.

36

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Figure 3.9: Yolov4 object detector.

3.2.2. Vehicle tracking

The execution flow of the tracking module is shown in Fig. 3.10, which shows the steps
conducted when a new blob is detected inside the image, and in Fig. 3.11, which illustrates
the procedure that is applied on already to previously registered vehicles. The tracking
process emphasizes associating current detections with vehicles stored from the previous
instant. Various considerations are taken into account:

• If a vehicle reaches the end of the evaluation area, it will be removed from tracking.

• Vehicles stored at instant (t-1) are analyzed to match them with vehicles detected
at instant (t). This matching process pairs vehicles from (t) and (t-1) based on the
minimum Euclidean distance between their centers.

• If the vehicle at instant (t) associated with the vehicle from instant (t-1) is not within
the circular or elliptical area around the center of the vehicle from instant (t-1), it
will not be matched.

• If spatial proximity fails to pair a vehicle from instant (t-1), the KLT algorithm will
be employed.

Spatial proximity and the KLT algorithm are employed for vehicle tracking. While
spatial proximity effectively distinguishes between vehicles, real-world videos often present
challenges such as occlusions and detection difficulties for small or distant vehicles. In
such cases, the feature-based tracking algorithm KLT is utilized, complementing the ro-
bustness of deep learning methods.

Spatial proximity tracking

Typically, the difference in pixels between a vehicle’s position in instant (t-1) and instant
(t) is minimal. Consequently, a vehicle at instant (t) will likely be located in a vicinity
very close to its position at instant (t-1). When searching for a vehicle at instant (t), it
is expected to be found within a small circular radius around its position at instant (t-
1). Spatial proximity tracking in TrafficSensor is based on the method described in [98].

37

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Detection and
Classification (Deep

Learning)

Detected Blob

Can we estimate its positionUse ellipse

Is the blob
associated with spatial

proximity? Use circle (spatial
proximity)

Associate vehicle with
blob

Is the blob in Zone 1?

False detection (false
positive)

New vehicle

YesNo

NoYes

Yes

No

Figure 3.10: Execution flow chart of detected blobs.

38

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

No

Yes

Registered vehicles

Near to the exit
of the evaluation area?

End of tracking

Associated with
a blob detected

by spatial proximity?

Associate the blob
with that vehicle

Is the vehicle in Zone 1?

Its blob is geneated
with KLT

Does it carry
5 sequences without being

detected?

It is discarded
(false positive)

No

No

No

Yes

Yes

Yes

Figure 3.11: Flow chart of registered vehicles.

39

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

This method estimates the area where a vehicle should be located based on its position
at instant (t-1). As vehicles progress along the road, this estimated area is continuously
updated.

At first, the area is taken as a circle because the system does not have enough data
about its orientation. But as the vehicle advances, the system has enough information to
know its orientation, and so, it takes the areas as an ellipse whose center corresponds to the
center of the vehicle in (t-1). It is considered that we have enough information to estimate
its orientation when we have the position of the vehicle in 6 frames. Linear regression
is used to calculate the orientation of the vehicle based on the position the vehicle will
take as it progresses. Once we have information about the orientation, we will define the
search area as an ellipse whose center is the same as the vehicle in t-q and whose direction
is calculated with the following Equation 3.1:

ρ(ri) = 2(

√︃
1 +

r2

2
− 1) (3.1)

The pairings between the vehicles detected at time (t) and the vehicles stored from
time (t-1) are limited to vehicles that fall within the area of the circle of the ellipse that
is obtained based on the position of the vehicle at time (t-1). The ellipses are defined
as Cxc,yc,ω, where ω is the orientation and (xc, yc) is the center of the vehicle. These
parameters are illustrated in the Fig. 3.12.

Figure 3.12: Vehicle associated 2D ellipse.

The 2D vehicle, whose center is B(x, y), will be inside the ellipse Cxc,yc,ω, if it accom-
plish the Equations 3.2 and 3.3:

Cω = arctan(
ax

ay
) (3.2)

(︄
cos(Cω)(Bx −Cxc) + sin(Cω)(By −Cyc)

b

)︄2

+(︄
cos(Cω)(By −Cyc) − sin(Cω)(Bx −Cxc)

a

)︄2

≤ 1

(3.3)

40

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

where ax and ay are the components of the orientation vector. Fig. 3.13 shows the
tracking between two consecutive vehicles.

Figure 3.13: Proximity tracking ellipse.

Fig. 3.14 shows an example of TrafficSensor where the tracking of two vehicles by
space proximity is shown. The vehicle identified as 2 in the image of the instant (t-1) is
associated with the closest vehicle to its position in the current image (t).

Figure 3.14: Tracking with spatial proximity TrafficSensor.

To be identified as the same vehicle, a detection in instant (t) must fall within a certain
area around the blob detected in instant (t-1). In cases where two vehicles may fall within
this area, the Euclidean distance between the center of the blob at instant (t-1) and the
center of the blob at instant (t) is taken into account. The blob at instant (t) that is closest
to the blob at instant (t-1) and is within the specified area is considered the same vehicle as
in instant (t-1). In other words, if the distance between the blobs at (t-1) and (t) is minimal
and falls within the predefined area, they correspond to the same vehicle in consecutive
moments.

41

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

KLT tracking

The follow-up tracking primarily relies on spatial proximity, with the KLT algorithm serv-
ing as a fallback in challenging scenarios, thereby enhancing the robustness of our system.
KLT is applied in all sequences to continually update feature points. In cases where a ve-
hicle is not detected due to occlusion or distance, KLT proves effective, even over a small
number of consecutive frames.

For KLT to be effective, knowledge of the vehicles’ center of mass and their visual fea-
tures is required. Based on the feature points of the vehicle at instant (t-1), KLT calculates
matches for each feature point, generating a new set of feature points corresponding to the
vehicle in question. Achieving accurate matches relies on a voting mechanism involving
the associated feature points of an object. An example is illustrated in Fig. 3.15.

Figure 3.15: Tracking with KLT in TrafficSensor.

KLT is a feature-tracking algorithm known for its use of differential and local methods
to analyze the neighborhood of each pixel. The algorithm operates under the assumption
that the optical flow remains constant within a given neighborhood. By employing the
method of least squares, the equation of optical flow is solved for all pixels within this
neighborhood. The calculation of velocity vectors is achieved through the following equa-
tion:

⎡⎢⎢⎢⎢⎣uv
⎤⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎣ ∑︁

i I2
xi

∑︁
i IxiIyi∑︁

i IxiIyi
∑︁

i I2
yi

⎤⎥⎥⎥⎥⎦−1 ⎡⎢⎢⎢⎢⎣−∑︁
i IxiIti

−
∑︁

i IyiIti

⎤⎥⎥⎥⎥⎦ (3.4)

The vector (u, v) is the displacement vector of the optical flow. Ix is the mean of
gradient in x between two consecutive images, that is, if I(t) is the image of the instant
current and I(t + 1) is the image at the next instant, the Ix of these frames is:

Ix =
Ix(t) + Ix(t + 1)

2
(3.5)

where Ix(t) is the gradient in the x axis of the image I(t) and Ix(t + 1) is the gradient
in x of the image I(t+1). Iy is the mean of the gradients in y of the image I(t) and I(t+1):

42

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Iy =
Iy(t) + Iy(t + 1)

2
(3.6)

It is the difference between I(t) smoothed and I(t + 1) smoothed:

It = I′(t + 1) − I′(t) (3.7)

KLT is applied in the form of kernels of size ω x ω throughout from the image. The
size of the kernels must be defined according to the amount of movement that the im-
age has. A small kernel would be ideal for evaluating small displacements of a point.
Using a large kernel increases the risk of getting an error, but there are cases where the
displacement of a point is very big and this is necessary.

TrafficSensor uses the pyramidal implementation introduced in [230]. On it, the KLT
algorithm is applied recursively over an image pyramid, as illustrated in Fig. 3.16.

Figure 3.16: Pyramidal KLT.

3.3. Experimental validation

The proposed system is validated with a dataset of real traffic images, which has been
divided into training and test subsets. Additionally, the four studied deep learning archi-
tectures for the detection and classification module of TrafficSensor have been quantita-
tively compared using an open-source tool, named Detection Metrics, so the one could be
selected for the final system. This assessment software is also part of the contributions
of this thesis and is presented comprehensively in Chapter 4. While utilized specifically
for this work, it is applicable to various object detection applications. Furthermore, the
final system undergoes testing and validation under varying lighting conditions, includ-
ing poor visibility and adverse weather conditions commonly encountered in real-world
deployments.

43

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

3.3.1. Dataset

To train and evaluate the networks, a new dataset was curated. This dataset includes
images in good weather conditions, images in bad weather conditions (with fog and rain),
and poor-quality images. This dataset consists of the following:

• The dataset compiled in [231], comprising 3460 good-quality images.

• The GRAM Road-Traffic Monitoring (GRAM-RTM) database, as introduced in
[71]. This database features images extracted from three videos: M-30 (7520
frames) captured on a sunny day, M-30 HD (9390 frames) recorded under cloudy
conditions in a similar location, and Urban1 (23435 frames) taken at a bustling in-
tersection. From this extensive dataset, 3646 images from the M-30 HD video and
2348 images from the M-30 video were utilized.

• Images sourced from publicly available online cameras, comprising 615 images
depicting rainy conditions and 705 images of poor quality.

In total, the dataset used consists of 9774 images. All of them were manually an-
notated with LabelImg tool10, using seven categories: car, motorcycle, ban, bus, truck,
small, truck, and tank truck. In these 9774 images, we have a total of 48914 samples
distributed as shown in Table 3.1.

Table 3.1: Dataset samples.

Class Sample

Car 38976
Motorcycle 1886
Van 5631
Bus 401
Truck 963
Small-Truck 938
Tank-Truck 119

Table 3.2 shows the number of images that exist for each type of image (good condi-
tions, bad weather, and poor quality) and Fig. 3.17 shows some illustrative images of our
database.

Of these 9774 images, one part was used in training and another in the test. Table 3.3
shows the distribution of images according to training and test.

The training dataset for the neural networks was partitioned into train and validation
subsets. Out of the 9246 images, 7401 were allocated for training and 1845 for validation.

10https://github.com/HumanSignal/labelImg

44

https://github.com/HumanSignal/labelImg

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Table 3.2: Dataset images.

Type Number of images

Good conditions 8406
Bad weather 663
Poor quality 705

Figure 3.17: TrafficSensor dataset samples.

45

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Table 3.3: Dataset distribution.

Type Training images Test images

Good conditions 6717 389
Bad weather 1892 71
Poor quality 637 68
Total 9246 528

Table 3.4 provides a breakdown of the number of images used for training based on their
quality and weather conditions (good quality, poor quality, and bad weather).

Table 3.4: Training dataset.

Type Train Images Validation Images Total

Good conditions 5323 1394 6717
Bad weather 1568 324 1892
Poor quality 510 127 637
Total 7401 1845 9246

3.3.2. Comparison of deep learning models

The performance of the four trained deep learning models was assessed using images
captured under good conditions. Additionally, the pre-trained versions of YOLOv3 and
YOLOv4 were tested without fine-tuning for our dataset. These experiments were con-
ducted using a Nvidia GPU GeForce RTX 3070. Table 3.5 provides the main features of
the GPU used.

Table 3.5: GEFORCE RTX 3070 specifications.

GPU engine specifications

Nvidia CUDA cores 5888
Base clock (GHz) 1.5
Boost clock (GHz) 1.73

Memory specifications

Memory speed 14 Gbps
Standard memory configuration 8 GB GDDR6
Memory interface width 256 bit
Memory bandwidth (GB/sec) 448

The quantitative results obtained from the experiment are presented in Table 3.6. It

46

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

is evident that the YOLO networks outperform SSD MobileNetV2 and SSD VGG-16.
Notably, all trained networks exhibit similar detection speeds. However, the use of pre-
trained weights leads to longer detection times, likely due to these weights being trained
with a broader range of classes.

Furthermore, the quality results, measured by mAP and mAR, are inferior when using
pre-trained weights compared to trained weights, as anticipated. This underscores the
importance of re-training the network using a suitable database tailored to the specific
detection requirements.

Table 3.6: Results of trained networks

Neural network Framework
Performance Mean inference

time (ms)mAP mAR

ssd300adam.h5 Keras 0.7478 0.7831 13
ssd_mobilenet.pb TensorFlow 0.5484 0.61361 10
yolov3voc.weights Darknet 0.8926 0.9009 15
yolov3voc_pre_trained.weights Darknet 0.4577 0.5843 34
yolov4.weights Darknet 0.9056 0.9670 13
yolov4_pre_trained.weights Darknet 0.4799 0.5879 24

Indeed, YOLOv4 demonstrates notable enhancements in both detection quality and
speed compared to YOLOv3. One key aspect contributing to this improvement is YOLOv4’s
utilization of data augmentation, allowing it to interpret the same information from var-
ious perspectives. This augmentation involves pixel-level modifications in the training
images, such as changes in color, texture, black or white patches, cuts, and other alter-
ations. These modifications enable the algorithm to enhance its precision and flexibility
without compromising its speed performance.

In our tests, YOLOv4 exhibited a 13% increase in speed compared to YOLOv3, a
result closely aligned with the findings reported by the authors of YOLOv4 [132], who
reported a speed increase of 12%.

3.3.3. Experimental validation in good lightning conditions

For the final implementation of TrafficSensor, YOLOv3 and YOLOv4 were selected as
they yielded the best results. To validate these final networks, the quality of the whole sys-
tem was measured with Detection Metrics and the created testing dataset. Furthermore,
for comparison purposes, the quality of the initial baseline system, TrafficMonitor [98],
which lacks deep learning layers, was evaluated using the same dataset and measurement
tool. In addition, TrafficSensor was compared to Deep SORT (Simple Online and Real-
time Tracking with a Deep Association Metric) [232], which is an algorithm commonly
employed in object tracking. It is an extension to SORT (Simple Online and RealTime

47

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Tracker) [233] that incorporates appearance information through a pre-trained associa-
tion metric. All systems were evaluated with the same good-condition videos and images.

Table 3.7: Results of good conditions video

System mAP mAR

TrafficSensor YOLOv3 0.8926 0.9009
TrafficSensor YOLOv4 0.9056 0.9670
TrafficMonitor 0.4374 0.5940
Deep SORT 0.8164 0.8689

The results obtained are shown in the Table 3.7. YOLOv4 and YOLOv3 have simi-
lar results although YOLOv4 is slightly better. This result was expected as the authors
of YOLOv4 [132] indicated that the quality of the detections was superior to that of
YOLOv3.

The results of TrafficSensor outperform those of TrafficMonitor. In the successive
tests with TrafficMonitor, it became evident that it struggles with distant vehicles, often
misclassifying cars as motorcycles and facing difficulty in distinguishing between cars
and vans. Particularly, small vans are frequently misclassified as cars. This issue arises
from the classification process, which relies on 3D models. Consequently, a small 3D van
model may closely resemble the 3D model of a car, leading to misclassifications

In Deep SORT, the YOLOv3 Darknet network trained with our dataset was used and
the results obtained by TrafficSensor and Deep SORT are very similar. TrafficSensor
performs slightly better because it predicts the position of vehicles when they are not
detected. Deep SORT uses Kalman Filter to predict and track, but predictions are used to
improve detections, not to predict if there is no detection.

3.3.4. Experimental validation in poor conditions

The final TrafficSensor system was also evaluated with bad weather conditions and poor
quality videos, as shown in Fig. 3.18. The Table 3.8 and Table 3.9 show the obtained
experimentals results.

Table 3.8: Results of bad weather video

System mAP mAR

TrafficSensor YOLOv3 0.9899 0.9926
TrafficSensor YOLOv4 0.9904 0.9949
TrafficMonitor 0.2407 0.3162
Deep SORT 0.9801 0.9824

48

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

Figure 3.18: TrafficSensor with poor resolution (left) and bad weather (right) videos.

Despite being in rainy conditions the system can work successfully and with very
good results. In this test, it can be seen that TrafficMonitor is not so robust, because it is
not able to function correctly with rain. In the case of Deep SORT, again the results are
similar to TrafficSensor.

Table 3.9: Results of poor quality video

System mAP mAR

TrafficSensor YOLOv3 0.9439 0.9444
TrafficSensor YOLOv4 0.9902 0.9911
TrafficMonitor 0.4479 0.6303
Deep SORT 0.8852 0.8910

With all the experimental results gathered, it can be concluded that TrafficSensor ex-
hibits robustness against poor-quality images and bad weather conditions. In addition, it
can continue tracking vehicles when they are far away from the camera. It works better
with nearby vehicles, as they are easier to detect, but it is still able to detect and track
distant ones with great quality.

Comparing the experimental results in the videos, the performance with poor quality
videos and unfavorable weather conditions is slightly better than for good quality videos.
This can be explained since the minimum requirements we set for good-quality images are
higher than those for bad weather conditions and poor-quality videos. We do not expect
the system to be able to detect distant vehicles in bad weather conditions and poor-quality
videos. It is not even easy for humans to classify such vehicles. The images in the dataset
have been labeled following this approach.

When evaluating the results obtained by Deep SORT, they are similar to those of
TrafficSensor. TrafficSensor has greater precision since in cases where the neural network
is not capable of detecting, it predicts such detection using the tracking algorithm.

49

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

3.3.5. Processing times

In the TrafficSensor system, three main processes can be identified: image processing
(obtaining images, displaying images, obtaining data from the delimited road), detection,
and tracking. Their computing time performance, both with both YOLOv3 and YOLOv4,
has been monitored and evaluated. Table 3.10 illustrates the obtained results.

Table 3.10: Processing time

Function with YOLOv3 (ms/call) with YOLOv4 (ms/call)

Image processing 10 10
Detection algorithm 15 13
Tracking algorithm 18 18

3.4. Conclusion

TrafficSensor is a solution for vehicle surveillance using deep learning. It distinguishes
between seven possible classes. Four different state-of-the-art deep learning models are
studied and tested experimentally. A new dataset is created and used to train and evaluate
the system, which includes a variety of images with poor quality or adverse weather con-
ditions, more challenging for the system. TrafficSensor proves to be robust to bad weather
conditions, and blurred or low-resolution traffic images. This improvement is achieved by
training with the new specialized dataset and the combination of spatial correspondence
tracking and KLT tracking on deep learning-based detections.

Both YOLOv3 and YOLOv4 deep learning architectures are selected for TrafficSen-
sor since they are the ones that perform better. Comparing the two options, YOLOv4
outperforms YOLOv3.

In this work, we explore a problem in computer vision and begin to understand the
possibilities of the field of autonomous driving. We developed a system for traffic moni-
toring and we can see the need for an automation system to increase security of improve
the mobility of people. In the following chapter, we describe in detail Detection Metrics,
which is the tool used in this chapter for assessment.

3.4.1. State-of-the-art enhancements

Since the inception and publication of this contribution, notable advancements have emerged
within the state-of-the-art. While these recent contributions are not explicitly incorpo-
rated within this work, we acknowledge their significance. For instance, within the field
of object detection, the YOLO architecture has undergone continuous evolution, with new

50

CHAPTER 3. MONITORING AND ASSESSING TRAFFIC WITH DEEP
LEARNING

iterations being introduced (YOLOv5, YOLOv9...). Concurrently, there have been devel-
opments utilizing Transformer-based architectures (DETR, Swin Transformer, DINO...).
These concepts are further elucidated in Chapter 2.

51

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

Chapter 4

Assessing object detection deep learning
architectures with quantitative metrics

In the previous chapter, we explored the monitoring of traffic using state-of-the-art com-
puter vision techniques. For that contribution, we developed a comparison tool that was
used during the research process for the objective assessment of the object detection ap-
proaches that we were exploring. This comparison tool is Detection Metrics, which is
a contribution of this thesis and is presented in this chapter. It has been published in
a journal [234]. The most relevant international object detection datasets are supported
along with the most widely used deep learning frameworks. Different network models
from different frameworks can be compared fairly. This process is useful when devel-
oping deep learning applications or research. A set of tools is provided to manage and
work with different datasets and models, including visualizations and conversion between
several common formats. Detection Metrics automates the process of experimental val-
idation launching the processes as batches, saving the researchers time. Using it, new
domain-specific datasets can also be created from videos or webcam inputs. The tool is
open source [235], and can be audited, extended, and adapted to particular requirements.
In the previous chapter, we show how it has been validated experimentally for a research
project, but it has also been used to compare the performance of some of the most relevant
state-of-the-art deep learning models for object detection.

4.1. Introduction

In the field of computer vision, object detection stands as a fundamental task, involving
the precise localization and classification of objects within images. As detailed in Chap-
ter 2, recent advancements in computer vision owe much to various factors, including
the availability of extensive high-quality datasets dedicated to object detection, the evo-
lution of deep learning architectures, particularly convolutional neural networks, and the
accessibility of powerful GPU hardware.

52

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

The development process for a deep learning-based object detector typically entails it-
erative experimentation, involving adjustments to model hyperparameters and fine-tuning
to optimize performance. To facilitate this process, Detection Metrics has been developed
as a contribution within this thesis. This tool provides objective performance metrics,
allowing researchers to systematically evaluate different deep learning models on large
datasets and determine the most effective approach for specific use cases.

Given its broad applicability, Detection Metrics can be employed across various ob-
ject detection tasks. For example, it can be used for assessment of traffic monitoring deep
learning solutions or the perception module of an autonomous driving system. It com-
prises a suite of tools, each offering unique features to facilitate the objective comparison
of different deep learning models for object detection

4.2. Detection Metrics tool kit

Detection Metrics is a multi-platform command-line and graphical software application
that provides several tools for comparison of object detection architectures objectively.
Its GUI is based on the Qt framework (see Fig. 4.1) and written in C++. The application
is natively built for Ubuntu and provided for the most common operative systems as a
Docker image. Thanks to this technology, the functionality is the same independently of
the platform used. It supports TensorFlow 2, Keras 2, PyTorch 1, Caffe2, and Darkent.
It also supports commonly used object detection datasets like COCO, ImageNet, Pascal
VOC, Princeton RGB, Spinello, and Open Images.

The application supports three use cases: headless mode, live detection, and use as
ROS Node inside a distributed application. When used as a ROS Node, it acts as an ex-
ecutable node integrated into the distributed robotics application. This node can perform
live detections, share them with other ROS Nodes, capture datasets, and store metrics.

4.2.1. Global architecture and workflows

The simplified architecture of the application can be illustrated as a black box (see Fig. 4.2).
It usually receives a combination of datasets and a group of deep learning models and it
generates the objective metrics for the experiment generation predictions using the deep
learning models over the datasets provided. We call this workflow headless. Inside the
black box, the application uses several tools that can also be used independently, es-
pecially when using the graphical part of the application. This use case allows the re-
searchers to run several trained models over a batch of datasets easily at the same time,
comparing their experimental performance and obtaining an idea of what is the best model
for the problem at hand.

Going into the detail of the architecture, six differentiated building blocks integrate the
toolset, as displayed in Fig. 4.3. They are the Viewer, Detection, Evaluation, Deployer,

53

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

Figure 4.1: Detection Metrics GUI. The user can select the tool to use from the tool kit
and enter the parameters directly using the graphical interface. In addition to the GUI, the
headless mode is also available using the command line and a configuration file to access
the functionality.

Labeling and Converter. These six parts can be combined in three divided sections. Two
of them are the main workflows or modules.

The second use case is live detection visualization. The main difference with the
headless evaluation is that the sources for the live detection can be videos or live streams
(e.g. cameras). They generate the predictions online and these predictions can be saved
or even modified with the Labeling functionality. Finally, the Converted remains discon-
nected from the main pipelines. It is used to convert datasets to other formats.

Viewer is a tool used to display annotated datasets that are not part of the main work-
flows. When evaluating using the GUI, the researcher can view the detection that the
model is generating and compare them with the ground truth since both are displayed. It
supports several dataset types: COCO, ImageNet, Pascal VOC, Princeton RGB, Spinello,
and Open Images dataset. It also supports displaying and labeling depth images (for the
datasets that give support to this feature) by converting them into a human-readable depth
map.

The images are displayed along with their corresponding detected object with each
bounding box and label. The bounding box and label have different colors for different
classes. When used separately from the evaluation, it provides slightly different function-
ality. Given a set of images and annotations, it displays them one by one. Additionally, the
final annotated images that Viwer displays can be further filtered based on some specific

54

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

Detection
Metrics

Datasets

Metrics
Deep

learning
models

Figure 4.2: Detection Metrics illustrated as a black box diagram. Detection Metrics re-
ceives a batch of datasets and deep learning models as input, calculates all the metrics
from combining the datasets and deep learning models and finally outputs the metrics re-
sults.

classes (i.e., only particular classes will be labeled and only images containing those spe-
cific classes will be displayed). This option can be interesting when looking for images
that contain objects belonging to specific classes.

4.2.2. Headless evaluation

The headless evaluation is one of the main use cases of the application. This mode is ac-
cessible directly via the command line. A researcher can determine a set of experiments
that will run independently and unattended (fully autonomous), retrieving the final exper-
iment report with the objective metrics that will help detect flaws and advantages for each
model in each scenario.

This mode receives a batch of datasets and deep learning models, generates the predic-
tions for each combination of models and datasets, and outputs objective metrics. Inside
this process, three Detection Metrics tools are involved: Viewer, Detector, and Evaluator.
When working detached as headless, these three tools work together as one but they are
additionally available separately when using the GUI application.

4.2.3. Detection generation

Detector tool is responsible for generating a new annotated dataset with the predicted
labels obtained from a deep learning model. The generated dataset contains the images
with the predicted object detections, their position in the image, and probabilities for the
predictions. Different inference frameworks are supported: TensorFlow, Keras, Darknet,
Caffe, and PyTorch. When this tool is run, it also communicates with the Viewer to show
the detections with the ground truth, giving an intuition of the performance visually.

To provide the different frameworks support, Detection has interfaces for each of
them, connecting the actual framework to the tool in an agnostic way that prevents the
user from facing any complexity. Thanks to the modularity of the Detector tool and the
fact that the project is open-source, new deep learning frameworks may be added seam-

55

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

VIEWER

DETECTOR DEPLOYER

CONVERTER

EVALUATOR

LABELLING

Input images

Annotations

Generated
annotations

Object detection
model

Generated
annotations

Input source

Input images

Annotations

Input images

Annotations

HEADLESS EVALUATION

LIVE DETECTIONS VISUALIZATION

DATASET CONVERTER

Figure 4.3: General Detection Metrics architecture. The software provides three main use
cases: headless evaluation, live detection visualization, and dataset converter. Each of
them has a set of tools (in blue), that can be used individually or combined.

lessly. In addition, the scientist saves time since they create the experimental description
structure and it runs autonomously without explicitly considering the differences of the
underlying frameworks or dataset structures and only focuses on the experimental results.

4.2.4. Evaluation of detections with objective metrics

Evaluator can evaluate two annotated datasets with the same dataset format on a fully
autonomous basis considering one as the ground truth and the other as the generated
detections dataset. Evaluator support mAP and mAR metrics. It outputs these metrics for
each class and a range of IoU thresholds.

Every object detection in an image will be evaluated, comparing the detection in both
datasets. Since the evaluation procedure in the application is written in C++, it provides
faster performance than the original COCO toolbox written in Python. This procedure is
done for every image in the dataset, loading, comparing, and then releasing the resource,
making a fair comparison.

When running in headless mode, the set of experiments is evaluated after the two
previous steps, and then creates a report in csv format with the experimental information.

Using the GUI, Evaluator can also be used independently, providing additional fea-
tures. The valuation can be further filtered by a specific object class from the detected
dataset, so only the classes selected will be considered during the evaluation. There are

56

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

two types of IoU available in Evaluator: bounding boxes and masks. Additionally, the
different person classes available in some of the dataset class names can be merged into
just one person class that contains all the different ones.

4.2.5. Live detection visualization

The second main use case is live detection visualization. One of the main differences
between this use and the headless is the input source. For the Deployer, the main tool
used for this use case, the input can be a video file or even a stream of images coming
from a video camera.

Once the configuration is decided, the tool displays a video player that plays the input
while displaying the objects detected with their class names in real time. If the input is a
video file, two video players are displayed, one of them with the raw video and the other
one with the video and detected objects, similar to Detector. This video player offers
typical play/pause functionality and goes backward or forward in the playback frame by
frame. Another feature provided by Deployer is the confidence threshold (minimum value
to consider the detection) that can be adjusted to different values to show the differences
in the inferences in real time. This will affect the real-time detection in the video since
then, if the threshold is set to a high value the number of objects that will be found in a
frame will probably be lower and the other way around.

The predicted labels can be saved to an output file if needed, setting an output folder,
which may be used to create a new dataset with annotations from a video record or web-
cam output.

Labels correction on demand

Deployer comes with some labeling tools. This functionality is provided in the video
player created when using Deployer:

• The first feature is the possibility of adjusting the bounding boxes generated. The
user can adjust the size and position of a certain detection bounding box stopping
the video when the error is found and adjusting the distribution of the box to the
object.

• The second feature is changing the class name for every detected object. This means
that a user can select a detected bounding box in the video image and change the
class name in real time to one of the class names provided or to a completely dif-
ferent one, also having the chance of adjusting the probability of the selection.

• The third feature is related to the previous ones and is adding new detections. The
user can draw a new bounding box in a stopped frame and then give this a class
name and probability.

57

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

This workflow can be interesting for generating new datasets, creating proposals using
the assistance of a deep learning model, and adjusting them by hand.

4.2.6. Dataset converter

The dataset format is usually specific for a certain implementation, so the purpose of
this tool is to convert a dataset format into another format. This tool receives as input
a dataset with the object’s class names that are supported by it and the type of dataset
format it implements. It needs the type of dataset as input to create a reader, a tool that
understands the format for a specific dataset. The format implementation of the wanted
dataset to be converted is also needed, so Detection Metrics creates a writer, another tool
that knows how to create a specific dataset format. Converter allows filtering by classes
and mapping between corresponding classes. This means that in the case that the object
class names in the input and output datasets are different, the application tries to map from
the input class names to the output ones, considering the common class name connection
between the common datasets and also considering synonyms.

The converted dataset can be split into test and train parts. To do so, a training ratio is
provided to the tool and it divides the dataset into two separate parts. This option can be
useful to create divisions of the converted dataset.

After the conversion is completed, Viewer functionality can be used to display the
converted dataset and make sure the process is completed successfully or it also can be
used with the different tools provided by Detection Metrics.

4.3. Experimental results and discussion

In this section, we present an experiment conducted using Detection Metrics. We have
also used this tool for the contribution presented in Chapter 3 that has been published [224]
[98]. In the experiment, we compare the performance of the most well-known state-of-
the-art detection networks and validate the published results from the original network
authors.

4.3.1. Comparison of state-of-the-art detection networks

In this experiment, four different pre-trained object detection networks are evaluated using
Detection Metrics. The goal is to compare the results obtained by the toolkit with those
published by the original authors. The selected networks include several popular object
detection methods [89]: SSD, Faster RCNN, and YOLOv3. In the process, the Headless
evaluation mode of Detection Metrics (Fig. 4.4) was used. The measured performance
metrics are compared among them and also with those published by the authors.

The evaluation dataset is COCO minival, a small subset of COCO’s validation set.

58

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

DETECTOR
EVALUATOR

Input images

Annotations

Generated
annotations

Object detection
model

SSDInceptionv2

YOLOv3

Faster RCNN Resnet101

Faster RCNN Resnet50 FPN

COCO minival
Results

Figure 4.4: Experiment pipeline using headless evaluation. Detection Metrics receives a
set of deep learning models and a dataset and generates annotations with Detector that are
the input to Evaluator for obtaining the experimental results.

Table 4.1: Comparison of official network results with results generated using Detec-
tion Metrics. Our software is used to replicate the official results of common network
architectures programmed in different deep learning frameworks, probing the software
capabilities for working with different frameworks and providing common metrics that
match the official results. ✘: official results do not give that information.

Network Framework
Published

mAP
mAP using

Detection Metrics
Published

mAR
mAR using

Detection Metrics
Published Mean
inference time

Mean inference time
using

Detection Metrics

SSD
Inceptionv2

TensorFlow-Keras 0.24 0.27 ✘ 0.31 42 44

YOLOv3 Darknet
0.55

(IoU = 0.5)
0.47

(IoU = 0.5)
✘ 0.5 (IoU = 0.5) 29 31

Faster RCNN
Resnet101

TensorFlow-Keras 0.32 0.37 ✘ 0.43 106 122

Faster RCNN
Resnet50 FPN

PyTorch 0.35 0.37 ✘ 0.46 59 102

Since the dataset is part of the validation set, some networks could be biased towards
having greater performance than the real one (with a test dataset which they have not ever
seen) because they were trained on the COCO dataset. The experiments were run on an
Nvidia GeForce GTX 1080 GPU.

The selected networks are an implementation of SSD Inception v2, a Faster RCNN
Resnet 101, YOLOv3, and a Faster RCNN Resnet 50 FPN. The first and second are
downloaded from the TensorFlow detection model zoo [236]. It offers a broad variety
of pre-trained networks with metrics. For YOLOv3 the configuration and weights were
downloaded from the official documentation and the fourth is included in PyTorch vision
model zoo [237]. With this set of different networks, the wide variety of frameworks sup-
ported is shown in a real experiment, involving in this experiment TensorFlow, PyTorch,
and the YOLO-OpenCV module.

In Table 4.1, the results obtained are shown. For SSD Inception v2, YOLOv3, and
Faster RCNN Resnet101 networks the mean inference times are close to the ones provided
by the original researchers, slightly higher for the experiments conducted with Detection
Metrics. This is probably due to the different GPU used and computational load at the

59

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

time of the experiment on the computer. TensorFlow’s pre-trained networks and YOLOv3
official results were obtained using an Nvidia GeForce GTX TITAN X card. Regarding
the Faster RCNN Resnet50 FPN network the difference is significant, maybe because this
PyTorch’s pre-trained network was tested by its authors using 8 V100 GPUs and in the
experiment with Detection Metrics a single GPU was used.

Detection Metrics considers both AP and AR in the evaluation, providing these met-
rics from an IoU of 0.5 to 0.95 and the mean of each metric for that range. The mAP mea-
sured values are also approximately equal to those published by the original researchers,
with slightly better numbers when using Detection Metrics, in general. The numbers
confirm the results provided by the authors of each network. Regarding the network com-
parison, YOLOv3 is the best-performing network in mAP, as expected.

With this experiment, the use of Detection Metrics for the validation of the results of
widely used detection network models and their cross-framework comparison has been
illustrated.

4.4. Conclusion

Detection Metrics is an open-source software for the automatic assessment of deep learn-
ing object detection models. It is a contribution of this paper and has been published
in a journal [234]. We have described its two main workflows for working with object
detection networks and large datasets. They are the headless evaluation, which evaluates
automatically several models independently for a set of image datasets returning objective
metrics, and the live detection visualization, which allows real-time visualization of pre-
dictions. The workflows have been proved experimentally in Chapter 3 and Section 4.3.
The software is open-source, its code can be audited, modified, or extended for the par-
ticular needs of the project. The source code is accessible via [235].

In the following chapter, we present another contribution of the thesis, Behavior Met-
rics, where we understand the importance of the assessment software for benchmarking
solutions for autonomous driving, which is the core of the thesis. After we have under-
stood the importance of the assessment of solutions in order to compare them objectively
here, we move the area of application to autonomous driving, studying the assessment of
solutions in that field.

4.4.1. State-of-the-art enhancements

Since the development of this contribution and its publication, new contributions have ap-
peared that are relevant in the state-of-the-art. We do not include them in this development
but we acknowledge them. For example, concerning the object detection field, YOLO
architecture is continuously evolving and new versions have been released (YOLOv5,
YOLOV9...). In parallel, some developments that use Transformer-based architectures

60

CHAPTER 4. ASSESSING OBJECT DETECTION DEEP LEARNING
ARCHITECTURES WITH QUANTITATIVE METRICS

have also appeared (DETR, Swin Transformer, DINO...). This ideas are described in
Chapter 2.

61

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

Chapter 5

Assessing autonomous driving
behaviors fine-grained metrics

In this chapter, we describe one of the contributions of the thesis, Behavior Metrics [238],
which is published as a journal publication [239]. Behavior Metrics [240] is a software
tool that we have developed to help research in the autonomous driving field. The de-
velopment and validation of autonomous driving solutions require testing broadly in sim-
ulation. Addressing this requirement, we present Behavior Metrics for the quantitative
and qualitative assessment and comparison of solutions for the main autonomous driving
tasks. This software provides two evaluation pipelines, one with a graphical user interface
used for qualitative assessment and the other headless for massive and unattended tests
and benchmarks. It generates a series of quantitative metrics complementary to the sim-
ulator’s, including fine-grained metrics for each particular driving task (lane following,
driving in traffic, route navigation, etc.). It provides a deeper and broader understanding
of the solutions’ performance and allows their comparison and improvement. It uses and
supports state-of-the-art open software such as the reference CARLA simulator, the ROS
robotics middleware, PyTorch, and TensorFlow deep learning frameworks. BehaviorMet-
rics is available open-source for the community.

5.1. Introduction

As we have already discussed in chapter 1 and chapter 2, the autonomous driving field
has gained incremental popularity in recent years. The adoption of this robotics and AI
technology will significantly impact the future, emphasizing the critical need for reliable
and secure solutions.

We present here Behavior Metrics, a multi-platform open-source software for the as-
sessment of autonomous driving solutions in simulation for different driving tasks (cur-
rently lane following, driving in traffic, and navigation between points). It assists both
everyday users and researchers in developing and validating autonomous driving solu-

62

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

tions by augmenting simulator-generated metrics with enhanced evaluation metrics.

It supports both CARLA and Gazebo simulators using ROS as communication mid-
dleware. It can be used with different sensory inputs for the vehicle like a camera, LIDAR,
or any other type of sensory data input supported by the simulators, like the bird-eye-
view. They all are managed and added to the simulation using the configuration file. The
tool conducts comprehensive online evaluation across driving tasks, yielding objective,
fine-grained metrics superior to those provided by simulators. It offers both GUI-based
interaction and headless batch processing for large-scale testing.

Designed for the research and advancement of autonomous driving, it establishes a
unified framework for evaluation and facilitates the creation and automated execution of
extensive benchmarks across various vehicle types, dynamics, lighting conditions, and
scenarios. This enables fair comparison among different approaches, including deep
learning, reinforcement learning (RL), or explicit programming, providing valuable in-
sights for enhancing each method.

5.2. Software description

Behavior Metrics’ software architecture (Fig. 5.1) is based on a Model-View-Controller
(MVC) design pattern implemented in Python. The evaluation configuration is described
in a dynamic YAML configuration file, including the scenario, vehicle, driving task, sen-
sors, and vehicle robot controller. Using this configuration, Behavior Metrics conducts
the experimental evaluation, initiating the simulator with the ego vehicle, utilizing the ve-
hicle’s robot controller for driving, and ultimately generating comprehensive evaluation
metrics for performance insights. The user may change or include any part of the exper-
imental setup like scenario, vehicle (e.g. model), sensor... modifying the configuration
file.

The tool supports evaluation in two simulators, CARLA and Gazebo, through integra-
tion with ROS 1 Noetic. ROS manages communication between the application and the
simulators, allowing for reusable code between the simulators’ handlers.

Behavior Metrics communicates with the simulators using the publish/subscribe de-
sign pattern of ROS (details in Fig. 5.2). For example, the application subscribes to the
sensor nodes of the ego vehicle to extract the raw data that are then processed by the robot
controller and it publishes messages to control the vehicle that are translated to the actual
movement of the vehicle in the simulation. Behavior Metrics enables actions like playing
or pausing the simulation and controlling simulator processing steps (simulation speed).
The raw sensory and simulator data undergo processing to generate evaluation metrics for
assessment.

The vehicle controller (Fig. 5.3) is responsible for the ego vehicle motion. It reads the
sensory input provided by the sensors attached to the vehicle, like the camera, bird-eye-
view images, ground-truth segmentation camera, or odometry, and processes them. Based

63

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

BEHAVIOR
METRICS

CONTROL
COMMANDS

EVALUATION
METRICS

SENSOR
LISTENER

DEEP
LEARNING

MODEL

CONFIGURATION
FILE

+ + + +
SCENARIO VEHICLE TASK SENSORS CONTROLLER

CAMERA IMAGE

CARLA
SIMULATOR

ROBOT
CONTROLLER

LAUNCH

LAUNCH

CONFIGURE

COLLECT

SIMULATION
LISTENER

SIMULATION
CONTROLLER

Figure 5.1: Behavior Metrics tool architecture. The configuration file describes the setup
of the evaluated experiment.

64

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

Topic: /carla/ego_vehicle/collision
Message Type: carla_msgs/CarlaCollisionEvent

Topic: /carla/ego_vehicle/lane_invasion
Message Type:

carla_msgs/CarlaLaneInvasionEvent

Topic: /carla/control
Message Type: carla_msgs/CarlaControl

Topic: /carla/control
Message Type:

carla_msgs/CarlaEgoVehicleControl

Topic: /clock
Message Type: rosgraph_msgs/Clock

Topic: /carla/ego_vehicle/odometry
Message Type: nav_msgs/Odometry

Topic: /carla/ego_vehicle/rgb_front_image
Message Type: sensor_msgs/Image

ROS Node
Publisher

ROS Node
Subscriber

ROS Node
Publisher

ROS Node
Subscriber

ROS Node
Publisher

ROS Node
Publisher

ROS Node
Publisher

ROS Node
Publisher

ROS Node
Publisher

ROS Node
Subscriber

ROS Node
Subscriber

ROS Node
Subscriber

ROS Node
Subscriber

ROS Node
Subscriber

BEHAVIOR
METRICS

...
Figure 5.2: Some of the connections between Behavior Metrics and CARLA.

on the knowledge extracted from the input, it iteratively generates the control outputs that
are commanded to the actuators. Control commands may be generated using a deep learn-
ing model, an RL policy, or even an explicitly programmed algorithm. This abstraction
layer facilitates the use of different types of vehicles without any code modification. Be-
havior Metrics supports the most common deep learning frameworks (TensorFlow and
PyTorch).

It provides control over the simulation time speed, allowing for the selection of either
asynchronous or synchronous time modes, and even managing the simulation iteration
time-step. By default, the simulator operates asynchronously, making simulator time in-
dependent of Behavior Metrics and its vehicle robot controllers. Simulated time becomes
crucial for low-resource systems requiring more time for controller iterations. Spending
excessive time in this process could result in vehicle control malfunctions, even with cor-
rect decisions. Considering the vehicle speed and safety standards needed for autonomous
driving, the time spent per iteration is crucial. This flexibility enables researchers to test
solutions in a broader range of conditions, including simulating systems with limited re-
sources.

Behavior Metrics is compatible with all CARLA towns and allows the management of
traffic conditions (traffic lights, traffic signs), simulation start and end points, and weather
conditions. With this approach, Behavior Metrics can be used for a full autonomous

65

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

ROBOT CONTROLLER

Control commandsSensor input

DEEP
LEARNING

MODEL

REINFORCEMENT
LEARNING

POLICY

EXPLICITLY
PROGRAMMED
CONTROLLER

ROBOT CONTROLLER

ROBOT CONTROLLER

...
Figure 5.3: Details of the robot controller, three types are supported.

66

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

driving agent evaluation or an evaluation of a specific driving task like lane following
or driving in traffic. This precise level of control is particularly valuable for researchers
focusing on specific driving tasks, where detailed control is essential.

The software is designed to be highly versatile and cross-platform. It achieves this
using Docker [241], which facilitates effortless sharing across various operating systems.
It is encapsulated within a Docker image, enabling deployment on the most prevalent op-
erating systems. Moreover, the software’s core functionality is native to Linux, enabling
direct usage on Linux computers without relying on the Docker image. This approach
enhances user experience and flexibility.

5.2.1. Supported driving tasks

Behavior Metrics supports three distinct driving tasks with varying difficulty levels, con-
tributing to research advancements across different aspects of an autonomous driving ap-
plication: lane following, driving in traffic, and route navigation. The first involves accu-
rately staying within the lane without encroaching on adjacent lanes. The second consists
of an ego vehicle and a series of vehicles dispersed along the route, requiring the ve-
hicle to correctly follow the lane while maintaining a safe distance from potential front
vehicles. The third combines the previous ones adding a starting and ending point to the
experiment setup. The vehicle will drive between goal points while following the lane
and maintaining a safe distance from front vehicles. This task also considers traffic lights,
traffic signs, and intersections. Other driving tasks can be easily defined along with their
metrics since the software tool is provided open-source and its design is modular.

5.2.2. GUI and headless evaluation modes

The application provides two evaluation modes, the graphical user interface (GUI) mode
and the scripted mode (headless). The GUI mode generates a user interface, implemented
using the PyQt5 framework, based on a configuration file describing the simulation envi-
ronment (scenario, ego vehicle, traffic,...). Using this mode, users can seamlessly execute
experiments while visually monitoring the ongoing evaluation process (Fig. 5.4). Along-
side the classic simulator view, this interface displays sensor information and provides
convenient buttons for starting, stopping, or restarting the evaluation. This mode is typi-
cally employed for qualitative autonomous driving solution evaluation. After completing
the experiment, quantitative evaluation results are graphically displayed in a separate win-
dow and saved in files for future analysis.

In headless mode (Fig. 5.5) the user defines a configuration file with the evaluated
task, all the scenarios, robot controllers, and models to be evaluated, as well as the num-
ber of experiment repetitions. Behavior Metrics conducts the experiments as a batch,
without user intervention. No graphical part is displayed during the evaluation, and the
results are directly saved to files for subsequent analysis. In addition to results from each

67

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

BEHAVIOR
METRICS

CONTROL
COMMANDS

SENSOR
LISTENERBIRD-

EYE-
VIEW

ROBOT
CONTROLLER

DEEP
LEARNING

MODEL

BEHAVIOR METRICS GUI

CARLA SIMULATOR

EVALUATION
METRICS

CONFIGURATION
FILE

+ + + +
SCENARIO VEHICLE TASK SENSORS CONTROLLER

CONFIGURE

COLLECT

Figure 5.4: Behavior Metrics GUI architecture using CARLA simulator. It displays two
separate windows: the application GUI and the simulator.

68

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

SEGMENTED
IMAGE

ROBOT
CONTROLLER

CONTROL
COMMANDS

SENSOR
LISTENER

DEEP
LEARNING

MODEL

BIRD-EYE-
VIEW

ROBOT
CONTROLLER

OPTIMIZED
DEEP

LEARNING
MODEL

BIRD-EYE-
VIEW

ROBOT
CONTROLLER RL POLICY

Multiple robot controllers

ROBOT
CONTROLLER EXPLICITLY

PROGRAMMED
CONTROLLER

CAMERA IMAGE

CONFIGURATION
FILE

+ + + +

SCENARIO VEHICLE TASK SENSORS CONTROLLER

EVALUATION
METRICS

COLLECT
BEHAVIOR
METRICS

CARLA
SIMULATOR

CONFIGURE

LAUNCH

Figure 5.5: Behavior Metrics headless evaluation mode.

of the experiments, this mode generates combined results for all the run experiments to-
gether, making it easier for the researcher to compare directly how a specific controller
behaves. Setting up configuration files in this manner enables Behavior Metrics to support
the creation of extensive benchmarks that can be automatically executed.

5.2.3. Autonomous driving evaluation metrics

Behavior Metrics generates a set of quantitative evaluation metrics that complement those
directly provided by the simulator and other evaluation frameworks like the CARLA
Leaderboard, offering a more informative and complementary perspective on the behav-
ior of a specific controller. The supplied metrics have been selected as they have been
required in several research works. Adding more metrics, such as the CARLA Driving
Score, is pretty straightforward as long as the raw data are generated by the simulator.

• Mean position deviation per km (MPD): average deviation, in meters, of the ego
vehicle from the center of the lane that it is traversing. Calculated using the mean
of all the points obtained using the minimum Euclidean distance (MinED) of each
traversed position (EgoVehiclePosition) to the center of the lane (centerOfLane).

MPD =
1
N

∑︂
i

MinED(EgoVehiclePositioni, centerOfLane) (5.1)

69

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

• Effectively completed distance: distance completed during the experiment in me-
ters that passes through checkpoints that bind its starting and end points. These
checkpoints are centered on the lane followed during the experiment, so it is an
indicator of how consistently the vehicle drives on the lane.

• Vehicle longitudinal jerk per km (VJ): metric that defines if the vehicle drives
smoothly or makes jerks in velocity during the experiment. It indicates whether the
conduction is aggressive or smooth. Approximated by calculating the mean of the
differences between the current and previous speeds(VehicleSpeed).

VJ =
1
N

∑︂
i

(VehicleSpeedi − VehicleSpeedi−1) (5.2)

• Robot controller iteration frequency.

• GPU inference frequency: number of GPU iterations per second when the robot
controller has a deep learning model that uses the GPU as the core computational
element.

• Collisions per km: number of collisions of the ego vehicle during the experiment
per kilometer.

• Lane invasions per km: number of lane invasions infractions committed by the
ego vehicle per kilometer.

• Distance to the front vehicle: this metric indicates how close the ego vehicle circu-
lates to other front vehicles and gives insight into whether it follows safety standards
or not. The distance is divided into four categories: great distance (20-50 meters),
medium distance (15-20 meters), short distance (6-15 meters), and dangerous dis-
tance (0-6 meters), and it is provided as the percentage of experiment time that the
ego vehicle spends on each category (see Figure 5.6).

• Route completion percentage: for route navigation task, percentage of route com-
pleted for each of the conducted experiments.

• Average speed: achieved by the ego vehicle during the experiment.

• Successful experiments: this metric is tuned depending on the task. In general,
an experiment is considered successful when the safety drive conditions are met
but for each specific task, this metric is slightly tuned. For a lane following, for
example, Behavior Metrics considers that the vehicle drives at a constant speed and
that it does not deviate above a threshold from the middle of the lane. For driving
in traffic, Behavior Metrics also considers that the car distance to the front vehicle
is not dangerous. For route navigation, Behavior Metrics measures whether the
vehicle has reached the goal position following the user’s directions.

70

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

Great distance Medium distance Short distance Dangerous distance

Medium distance

Great distance

Short distance

Dangerous distance

Figure 5.6: Great, medium, short, and dangerous distances to the front car.

5.3. Illustrative examples

The project repository contains example files for each component required for running
example evaluations, including the configuration files, robot controllers, and imitation
learning-based deep learning models for supported driving tasks in different simulators.
It includes examples for TensorFlow and PyTorch frameworks.

5.3.1. GUI application example

Using the configuration file edited by the researcher, Behavior Metrics generates the ex-
periment visual setup, including the Behavior Metrics and the simulator windows [242]
(Fig. 5.4). The configuration file is editable to customize the scenario, vehicle, task,
included sensors, or vehicle controller. The Behavior Metrics GUI incorporates function-
ality for initiating the evaluation, watching the sensor state, and the simulated ego vehicle
performance. Researchers can then commence the simulation and experiment recording.
Upon completion, researchers stop the recording and the simulator, and Behavior Metrics
visually presents the results and saves them in log files for subsequent detailed analysis.

5.3.2. Headless application example

In this case, the configuration file comprises a list of vehicle controllers, scenarios, and
experiment repetitions to evaluate. Behavior Metrics evaluates each of the combinations
in an unattended manner, without graphical information while evaluating [243] (Fig. 5.5).
Once the experiments conclude, Behavior Metrics furnishes results for each case and the
aggregated outcomes for all combinations.

71

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

5.4. Impact

This contribution impacts the field of autonomous driving, which is a relevant research
topic as proved by the presented state-of-the-art (see Chapter 2) and the CARLA Leader-
board challenge 11. It provides a common framework for testing autonomous driving so-
lutions (deep learning models, RL algorithms, etc.), and supports different driving tasks.

The two evaluation modes, GUI and headless, streamline the process of evaluating and
rapidly testing ideas, as well as supporting the iterative development of autonomous driv-
ing solutions. Furthermore, it facilitates a comprehensive evaluation for the comparison
of different solutions and models. It leverages CARLA, a highly regarded autonomous
driving simulator, thereby amplifying its impact.

Behavior Metrics has been effectively employed to evaluate end-to-end solutions ex-
ploring various concepts. These include assessing the significance of utilizing vehicle
controllers with memory and kinematic input, which is described in Chapter 6, studying
the impact of model optimization on controller iteration speed, and analyzing the resulting
behavior of the vehicle, which is described in Chapter 7 and has also been published in a
journal [244]. It has proved its capabilities in the evaluation of solutions for the driving in
traffic task, as described in Chapter 8, with specific metrics, such as distance to the front
vehicle. It has also served as an assessment tool for Google Summer of Code open-source
autonomous driving project [245] on route navigation capabilities through metrics like
route completion.

5.5. Conclusions

In this chapter, we have introduced and described Behavior Metrics, an open-source eval-
uation software designed for assessing autonomous driving solutions. It constitutes one
of the contributions of this thesis. We highlight the software’s potential utility for re-
searchers in assessing autonomous driving solutions across various driving tasks. the
included metrics, complementing simulator-provided metrics and unique to our solution,
provide a more comprehensive understanding of vehicle performance, contributing to the
development of improved solutions for diverse driving scenarios.

This software offers two distinct pipelines, setting it apart from other solutions: GUI
mode and headless mode. They empower researchers to qualitatively and quantitatively
test their solutions, facilitating comparisons with alternative approaches. Additionally,
our software supports state-of-the-art simulators and deep learning frameworks broaden-
ing its accessibility within the research community.

In the subsequent chapters, we present additional contributions to this thesis that lever-
age Behavior Metrics for the assessment and experimental validation of their research
questions. The software is open-source, its code can be audited, modified, or extended for

11https://leaderboard.carla.org/

72

https://leaderboard.carla.org/

CHAPTER 5. ASSESSING AUTONOMOUS DRIVING BEHAVIORS
FINE-GRAINED METRICS

the particular needs of the project. The source code is accessible via [238].

73

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Chapter 6

Enhancing end-to-end autonomous
driving control though kinematic input
and memory-based architectures

In this chapter, we introduce one of the contributions of this thesis [246], which is un-
der peer-review in a journal at the time of writing this document [247]. We have already
discussed the importance of monitoring the traffic using computer vision and how its im-
plications for road safety. After that, we have explored how we can evaluate and research
solutions for this monitoring and also for autonomous driving solutions. In this chapter,
we get deeper into the autonomous driving field.

We explore and compare various approaches to enhance the capabilities of an end-
to-end system for autonomous driving based on imitation learning adding visual memory
and kinematic data input. The comparison relies on fundamental error metrics (MAE,
MSE) and several external complementary fine-grain metrics based on the behavior of the
ego vehicle at several test scenarios in the CARLA simulator. The problem focused on
a lane-following application using different urban scenario layouts and visual bird-eye-
view input. The memory addition covers architectural modifications and different types
of sensory input. We show experimentally that incorporating visual memory capabilities
and kinematic input data makes the system more robust and able to handle a wider range
of challenging situations in terms of reduction of collisions and speed self-regulation. All
the work we present in this chapter is open-source, including model architectures, trained
model weights, comparison tools, and the dataset.

6.1. Introduction

We have already described the importance that the autonomous driving field has currently
and is expected to have in the coming years. As we discussed in Chapter 2, the solutions
for autonomous driving are typically divided into two groups: end-to-end and modular

74

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

approaches. In the first one, the raw input data is directly translated to control commands
or trajectory predictions in a single forward pass while in the second one, several mod-
ules communicate with each other to finally generate the output. The use of end-to-end
solutions has been around for a few years, from PilotNet. In this contribution, we explore
how the introduction of memory capabilities and kinematic data affects the end-to-end
system, contributing positively or negatively to the overall solution. For it, we consider
architectural changes and different types of input data.

We use the previously presented (see Chapter 5) software tool Behavior Metrics [238]
for the quantitative and qualitative assessment of the solutions. We introduce and compare
several deep learning architectural modifications that incorporate memory models and dif-
ferent sensory inputs to explore the potential benefits of different memory approaches in
solving the problem of end-to-end autonomous driving through imitation learning. We
also explore the inclusion of kinematic data as input to the models. The research hypothe-
sis that we explore is that adding visual memory capabilities to the deep learning architec-
ture and kinematic input data improves the quality of the generated robot control behavior
in terms of the system’s robustness for never-seen situations and speed self-regulation. We
analyze how much the addition of memory and kinematic data enhances driving behavior
and when it can have a significant impact. Our study is supported by a series of experi-
ments conducted in various simulated urban scenarios using the state-of-the-art CARLA
simulator for autonomous driving. The autonomous driving task explored is following the
lane. All models, architectures, and datasets mentioned are open-source [248].

6.2. Kinematic-infused and visual memory end-to-end control based on imitation
learning

This section introduces the system developed, which consists of different deep learning
architectures (see Fig.6.1), some of them with inner memory capabilities, trained using
imitation learning for a lane-follow problem and with a range of sensory input data. We
have used 8 deep learning architectures based on an end-to-end approach as shown in
Fig.6.1. They use as input at least a sensory image and generate motor commands for an
ego vehicle in a reactive control loop.

We focus our contributions on the implications in the final behavior of the robotics
system of the addition of visual memory and kinematic data to the models. The perception
data used as input is a simplified processed data from the sensory data. Instead of directly
using the frontal camera of the vehicle, for this work we used a bird-eye view of the
scenario, removing part of the complexity that the system needs to perceive (shadows,
weather, different textures...). The bird-eye view used is a segmented image including
only the key components of the scene (see Fig7.1) for an example. In this case, we only
need the car position information and the lanes that surround the vehicle. The approaches
are trained and tested in the variety of towns that CARLA includes.

75

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Input planes
3@66x200

BatchNormalization

Conv2D (24)

Conv2D (36)

Conv2D (48)

Conv2D (64)

Conv2D (64)

Flatten

50 Fully connected

10 Fully connected

Steer, throttle
and brake

5x5 kernel

5x5 kernel

5x5 kernel

3x3 kernel

3x3 kernel

PilotNet*

1164 Fully connected

100 Fully connected

BatchNormalization

Conv2D (8)

Conv2D (8)

Conv2D (8)

Flatten

50 Fully connected

10 Fully connected

3x3 kernel

3x3 kernel

3x3 kernel

ConvLSTM (8)

ConvLSTM (8)

ConvLSTM (8)

5x5 kernel

5x5 kernel

5x5 kernel

Reshape

DeepestLSTMTinyPilotNet*

Input planes
3x3@50x100

BatchNormalization

TimeDistributed(Conv2D (24))

TimeDistributed(Conv2D (36))

TimeDistributed(Flatten)

4 LSTM

4 LSTM

5x5 kernel

5x5 kernel

5x5 kernel

3x3 kernel

3x3 kernel

4 LSTM

4 LSTM

PilotNetx3 (TimeDistributed)

TimeDistributed(Conv2D (48))

TimeDistributed(Conv2D (64))

TimeDistributed(Conv2D (64))

BatchNormalization

Conv3D (24)

Conv3D (36)

Flatten

5x5x5 kernel

5x5x5 kernel

5x5x5 kernel

3x3x3 kernel

3x3x3 kernel

PilotNetx3 (Conv3D)

Conv3D (48)

Conv3D (64)

Conv3D (64)

50 Fully connected

10 Fully connected

1164

100 Fully connected

Fully connected

Input planes
4@66x200Kinematic sensory

input

Regular sensory
input

Input planes
3@66x200

Input planes
4@66x200

Input planes
3x4@50x100

Input planes
3x3@50x100

Input planes
3x4@50x100

Memory-less
architecture

Visual memory-
based architectures

Visual memory and
kinematic sensory

input

Visual memory
sensory input

Steer, throttle
and brake Steer, throttle

and brake
Steer, throttle

and brake

Figure 6.1: Details of the deep learning architectures compared in this work. One of
them is memory-less and the other three are visual memory-based. A variation of each
of them also receives kinematic data input. Layers and input data marked in red are the
modifications proposed in this work based on baseline architectures.

An imitation learning approach is used for training the neural architectures. In this
approach, an expert agent drives along the towns while the sensory information and the
behavior are recorded (behavior cloning). The sensory data in this scenario includes the
bird-eye view and the behavior includes normalized information about control commands
(throttle, steer, and brake). Using the information extracted from the expert agent as
supervised output for training, the final training agent should mimic the behavior of the
former, if the dataset varies enough. To give the models an understanding of different
situations, four urban scenarios were used for training the models: Town01, Town03,
Town05, and Town07 (see Fig. 6.3 for a top-view of each scenario). These towns include
different numbers of lanes, turn layouts, and road types like urban or highways. Town01 is
used for testing the trained models, as explained in depth in Section 6.4. The expert agent
used is the rule-based autopilot included in the simulator, which can drive in different
urban scenarios and has access to privileged simulation data. We used only one vehicle
model to maintain a similar visual structure and physical behavior when driving.

We have explored four different deep learning architectures: one without memory, and
three with visual memory. To augment our investigation, we have introduced additional
kinematic input data to the baseline models, resulting in a total of eight distinct models
(see Fig6.1 for a detailed view of each architecture and group).

6.2.1. Memory-less deep learning architecture

In the first group, we consider the architectures whose input only includes the visual
sensory information ad the current time, a single image, and no architectural modules
that could be considered as memory, such as LSTM cells. We include here PilotNet*.

76

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

BEHAVIOR
METRICS

BIRD-EYE-
VIEW

ROBOT
CONTROLLER

CONTROL
COMMANDS

SENSOR
LISTENER

DEEP
LEARNING
MODEL

EVALUATION
METRICS

COLLECT

Figure 6.2: End-to-end autonomous driving pipeline using Behavior Metrics software and
a robot controller based on a deep learning model that controls the vehicle based on its
sensory data.

(a) Town01. (b) Town02. (c) Town03. (d) Town05. (e) Town07.

Figure 6.3: Set of urban environments in CARLA used.

PilotNet [159] was proposed in a previous work on end-to-end imitation learning for
steering control. In this case, we have extended them to support throttling and braking
(PilotNet*), considering that this information is also available from the expert agent. This
architecture is specialized in understanding the context of an input sensory image and
generating control commands for the ego vehicle.

• PilotNet*: a powerful network that combines a convolutional backbone with some
connected layers and an output of the control commands.

6.2.2. Deep learning architectures with visual memory

In the second group, we describe three architectures with visual memory. We include
here DeepestLSTMTinyPilotNet* and two architectures especially created for this work.
DeepestLSTMTinyPilotNet [213] is an architecture that was proposed in a previous work
on end-to-end imitation learning for steering control where they only used one image as
input and two architectures created for this work that are extensions of PilotNet*. Again,
we have extended them to support throttling and braking (DeepestLSTMTinyPilotNet*),
considering that this information is also available from the expert agent. The two archi-
tectures created for this work (PilotNet*x3 (Conv3D) and PilotNet*x3 (TimeDistributed))

77

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

receive visual sensory information from the current time instant and additionally, informa-
tion from previous instants. We study whether this additional information helps vehicle
control in some scenarios or situations. We explore two different variations for extracting
knowledge from the visual data input, Conv3D and TimeDistributed.

• DeepestLSTMTinyPilotNet*: update of PilotNet architecture model making it
smaller, reducing the number of convolutional and fully connected layers. It has
some ConvLSTM layers that add some memory information. It only uses an im-
age as input, instead of taking full advantage of the LSTM modules using several
images as input.

• PilotNet*x3 (Conv3D): based on PilotNet*. In this variation, the convolutional part
is replaced by a 3D convolutional backbone that extracts the temporal information
and understands the content of the visual data. The second part of the architec-
ture maintains the PilotNet* structure and again generates the collection of control
commands for the vehicle.

• PilotNet*x3 (TimeDistributed): based on PilotNet*. In this variation, the model
extracts information from the provided visual data from each image, combining the
extracted features after the convolutional backbone and using LSTM modules for
extracting the temporal information. The final fully connected layers included in
PilotNet* are removed from this approach since the LSTM modules are enough
for finally generating the control commands for the vehicle and understanding the
global context.

6.2.3. Deep learning architectures with kinematic data as input

The previous four architectures have been also extended with an additional variation of
sensory input using kinematic data. In this variation, the same architectures are used
with a modification in the input sensory data, including information about the current
ego vehicle velocity (kinematic data). This exploration is motivated by the widespread
availability and easy access of this data in vehicles. We also consider the high safety
standards needed for an autonomous driving system and recognize the pivotal significance
assigned to the system’s speed in this matter. The additional information is included as an
additional channel to the visual data, without modifications to the described layers. For
the architectures with visual memory that receive more than one image as input, the ego
vehicle speed is added as a new channel in the images, including the current velocity at
the specific instant of each frame.

6.2.4. Training

The training procedure varies slightly between the approaches considering their data
structure, although we use the same amount of data for all the presented models. For

78

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

+ Steering

= Steering

- Steering

Figure 6.4: Affine image date augmentation example. From the training example in the
left, new examples are generated modifying the steering command accordingly.

the architectures considered memory-less, all the data collected from the expert is divided
and shuffled as in a common machine learning workflow. We collected data at a rate of 20
images per second, so (t, t−5, and t−10), which is the input for models that receive more
than one frame, is half a second. For the memory-based architectures, we first generated
mini-sequences using a sliding window of three data points with temporal relationships
before shuffling.

A collection of image data augmentations is included in the training procedure. We
include modifications of brightness, contrast, gamma channel, hue saturation, PCA color
augmentation, gaussian blur, and horizontal affine transformations. This augmentation
is conducted using Albumentations [176]. We found horizontal affine augmentations to
be important in the final behavior of the model and its generalization. Using imitation
learning, the model can learn the behavior displayed in the dataset but struggles when the
test data differs even a little bit from the training data distribution, as empirically proved
in previous works [174]. With horizontal affine augmentation, the model can generalize
better and provide good behavior in test scenarios that are slightly different from the rest
of the data distribution. For example when approaching a turn a few centimeters away
from the center of the lane (see Fig. 6.4). We use mean squared error as the loss function
during training.

6.3. Measuring end-to-end imitation learning for robot control

For measuring the quality of robot behavior in autonomous driving, the common metrics
used in machine learning are not enough to understand whether a model behavior is profi-
cient or not. Typically, MSE or MAE are used for calculating the loss of the model during
training and are commonly used. They are good indicators, but not enough to assess robot

79

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

application quality as they only measure the similarity of the model output and the super-
vised output at each instant. They do not take into account the future effect of control
decisions, so a deep learning model with low error loss may result in poor robot behavior.
In an end-to-end control system, previous decisions and current vehicle situations play
an important role in the next evolution of the situation. A previous inadequate decision
a few seconds ago could lead to a very difficult situation now. For assessment of such a
control system, the external global holistic metrics do take into account such effects and
others and provide a more reliable indicator of the quality of the robot behavior. They are
typically application-specific.

In addition to the common metrics, we use for the experimental validation Behavior
Metrics, a software tool that is a contribution of this thesis and that has been introduced
in Chapter 5.

6.4. Experimental validation

In this section, we present a series of experiments for the validation of the models and
understanding of the implications of memory in the behavior of the robot in different
situations. As described in previous sections, we have four different deep learning models
trained on imitation learning with two variations for each one. We use Behavior Metrics
with CARLA as software for the experimental validation of the modules, along with the
typical loss metrics discussed previously.

All the different experiments are easily reproducible, with the model’s weights, archi-
tectures, and Behavior Metrics available open-source[246]. TensorFlow has been used
for programming and training the different deep learning architectures. 2 Nvidia GeForce
RTX 3090 GPUs were used as hardware when running the experiments.

The number of control decisions per timestamp is important in this type of robotic
scenario but we do not study its implications experimentally in the present work as we
already study it in Chapter 7. We consider a scenario where the number of iterations of
the controller is high enough for the correct control of the vehicle.

We provide six experiments, where the eight models are evaluated to understand their
differences. The models are tested using a never-seen scenario (Town02). In addition,
we explore a lane-following scenario with no other vehicles of obstacles involved. Traffic
lights and signals are also ignored in these experiments since they remain out of the scope
of this study, the implications of including memory in the robot control. in the case of an
intersection, the vehicle learns to follow a policy of going straight through it, based on
the dataset provided by the expert agent and the imitation learning policy. The starting
position is random among a set of points for each town, considering that the vehicle can
drive lane-following for at least a few hundred meters without interfering with a situa-
tion that differs widely from the training dataset. We do not provide experimental results
comparison with the original PilotNet or DeepestLSTMTinyPirloNet architectures from

80

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Model
Visual

memory
Kinematic

input
MAE
test

MSE
test

PilotNet* ✘ ✘ 0.0507 0.0177
PilotNet* ✘ ✔ 0.0332 0.0086
DeepestLSTMTinyPilotNet* ✔ ✘ 0.0662 0.0196
DeepestLSTMTinyPilotNet* ✔ ✔ 0.0456 0.0094
PilotNetx3* (Conv3D) ✔ ✘ 0.0295 0.0082
PilotNetx3* (Conv3D) ✔ ✔ 0.0074 0.0079
PilotNetx3* (TimeDistributed) ✔ ✘ 0.0289 0.0077
PilotNetx3* (TimeDistributed) ✔ ✔ 0.0069 0.0086

Table 6.1: MAE and MSE metrics comparison for each trained model using test data from
the dataset. Four different architectures are tested with different input data considerations:
bird-eye view (BEV) and velocity sensory data. ✔: supported. ✘: unsupported.

the original papers since our architectures feature distinct output configurations, as elab-
orated previously in Section 6.2.2. Conducting a fair comparison is not feasible due to
these inherent differences.

6.4.1. Comparison of models using common ML metrics

In Table 6.1, the best values obtained for MAE and MSE in the test set of the supervised
dataset for each of the models are displayed. These values are better for the models whose
input is kinematic sensory data, with an 86% reduction in MAE and 53% in MSE. This
suggests that models with kinematic data are better at imitating the supervised datasets.
They adeptly encapsulate the correlation between inputs and outputs.

These results are relevant indicators, but not enough for a reliable comparison of the
models’ final control behavior due to the high variety of situations that the vehicle could
encounter at simulation test time and other variables that are involved in its quality such
as the number of control commands per second that the model can generate. Inferring
a single non-ideal control command to the robot actuators in a key moment may have
worse consequences in robot performance than many non-ideal commands in harmless
moments. To understand the complete behavior of the robot controller, a comparison in
simulation should be conducted. Even so, we include this comparison with the supervised
dataset since it is standard in machine learning research although for robotics applications
these metrics are not conclusive to indicate good performance, or good robot behavior. We
need further experimental validation for the validation of the models, which is conducted
in the following subsections.

81

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

6.4.2. Behavior in test scenario with top speed regulation

In this experiment, all the models are evaluated in the test scenario (Town02), as a lane-
following vehicle. Each experiment is conducted five times starting from a random posi-
tion in the test scenario. This is the most simple and common scenario, where the vehicle
follows a lane using a reactive controller which calls the inference of a neural model on
each iteration to generate the motor commands. The expert agent used for recording the
supervised samples included in the training dataset has a top speed of 30 km/h. In this
experiment, the models without kinematic sensory data also include a limit of 30 km/h
to make a fair comparison, the vehicle speed is truncated when this limit is reached. In
Section 6.4.3 the comparison without this top speed limitation is also studied.

In Table 7.3, we can see the results for the different models (columns) and the mea-
sured metrics (rows) in a test circuit, Town02. The Successful experiments metric is the
most informative, it represents the number of experiments completed by the vehicle with-
out collisions and without exceeding the maximum speed (30 km/h) out of the five runs.
We also require that the agent reaches the average speed of the expert agent which is
between 25 and 30 km/h to be considered successful.

The differences in this point are small. All the architectures can complete the experi-
ments successfully, without collisions, and with an adequate average speed. The Effective
completed distance is similar for all of them and the Positional deviation mean per km
from the center of the lane is low. The Vehicle jerk for both control commands and ve-
locity is also low, which translates to smooth and safe driving. The Controller iterations
frequency is also adequate for the experiment. Although some of the models experiment
some lane invasions, they are not problematic since the numbers are low and they do not
cause collisions.

6.4.3. Studying the model without top speed limitation

In the previous experiments, some robot controllers needed a maximum speed limit like
the one provided by the expert agent (30 km/h) to drive correctly. In this new experiment,
we explore how removing that top boundary affects the behavior of the models. The rest
of the experimental setup remains unchanged.

In Table 6.3, we can see the results of this experiment on Town02. We exclusively ac-
count for experiments without collisions in the table for all metrics, except for Collisions
per km and Lane invasions per km. We can observe that models without memory or with
only visual memory capabilities are more prone to collisions when the speed limit is not
controlled. Looking at their maximum speed or average speed, we can understand that
they are not able to learn how to maintain a safe speed (30 km/h), which leads to failure in
all the experiments. For the models with kinematic sensory data input, the results are the
same as in the experiment in Section 6.4.2, since the robot controllers using these models
were already able to drive without a top speed limit. The interpretation of these results is

82

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Map Town02

Model Pilotnet* DeepestLSTMTinyPilotNet*
Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔

Kinematic input ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔

Effective completed
distance (m)

820.6 868.9 830.6 846.6 902.6 875.2 889.0 852.3

Position deviation
mean per km (m/km)

0.25 0.26 0.22 0.33 0.24 0.25 0.29 0.29

Controller iterations
frequency (Hz)

18.32 18.40 18.25 18.05 17.10 17.05 17.65 17.51

Vehicle jerk
in control commands
per kilometer

0.31 0.19 0.16 0.15 0.18 0.12 0.19 0.12

Vehicle jerk
in velocity
per kilometer

0.34 0.33 0.30 0.31 0.33 0.49 0.34 0.51

Average speed (km/h) 24.71 26.78 25.01 26.41 27.51 26.77 27.15 26.21
Max speed (km/h) 31.35 30.08 31.30 29.92 31.57 31.25 31.50 30.98
Experiments with
collisions

0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

Collisions
per km

0 0 0 0 0 0 0 0

Lane invasions
per km

0 0.46 0 3.08 0 0.46 0 0

Successful
experiments

5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5

Table 6.2: Comparison of models (columns) in different test environments considering
some measured metrics (rows) provided by Behavior Metrics. Values in bold highlight
the most interesting results. ✔: supported. ✘: unsupported.

83

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Map Town02

Model Pilotnet* DeepestLSTMTinyPilotNet*
Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔

Kinematic input ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔

Effective completed
distance (m)

946.3 868.9 962.0 846.6 994.8 875.2 1083.0 852.3

Position deviation
mean per km (m/km)

0.23 0.26 0.21 0.33 0.28 0.25 0.28 0.29

Controller iterations
frequency (Hz)

17.34 18.40 16.11 18.05 17.09 17.05 17.65 17.51

Vehicle jerk
in control commands
per kilometer

0.28 0.19 0.15 0.15 0.18 0.13 0.17 0.12

Vehicle jerk
in velocity
per kilometer

0.26 0.33 0.22 0.31 0.25 0.49 0.21 0.51

Average
speed (km/h)

30.37 26.78 30.13 26.41 31.72 26.77 38.82 26.21

Max speed (km/h) 53.20 30.08 47.93 29.92 50.15 31.25 59.18 30.98
Experiments with
collisions

5/5 0/5 1/5 0/5 3/5 0/5 4/5 0/5

Collisions
per km

2.09 0.0 0.32 0.0 0.95 0.0 1.45 0.0

Lane invasions
per km

2.24 0.46 0.71 3.08 0.87 0.46 1.05 0.0

Successful
experiments

0/5 5/5 0/5 5/5 0/5 5/5 0/5 5/5

Table 6.3: Comparison of models in different test environments without top speed limit
considering metrics from Behavior Metrics. Bold values (excluding Successful experi-
ments) indicate changes in results from previous experiment results. Values in red bold
and bold for Successful experiments highlight the most interesting results. ✔: supported.
✘: unsupported.

that the kinematic data input is key for the robot to understand its state precisely and must
be included in the model as input for proficient behavior.

In Fig. 6.5, we provide the detail of Effective completed distance and Max speed met-
rics for each model for the case with and without top speed restriction. We can see that
models with visual memory and kinematic input can traverse a bit longer effective dis-
tances maintaining a safe top speed. We can also see that the standard deviation is small
and the number of atypical values is very low. The models’ behavior is always similar.
The black dots represent the mean maximum speed in the experiments. It remains similar
for the cases where the top speed is controlled (top graph) whereas it generates extremely
high value for models without kinematic input when it is not controlled (bottom graph).

84

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

P
ilo
tN
et
*-
N
M

P
ilo
tN
et
*-
K
I

D
ee
pe
st
LS
T
M
T
in
yP
ilo
tN
et
*-
V
M

D
ee
pe
st
LS
T
M
T
in
yP
ilo
tN
et
*-
V
M
-K
I

P
ilo
tN
et
x3
*
(C
on
v3
D
)-
V
M

P
ilo
tN
et
x3
*
(C
on
v3
D
)-
V
M
-K
I

P
ilo
tn
et
x3
*
(T
im
eD
is
tr
ib
ut
ed
)-
V
M

P
ilo
tn
et
x3
*
(T
im
eD
is
tr
ib
ut
ed
)-
V
M
-K
I

400

500

600

700

800

900

1000

1100

M
e
te
rs

NO MEMORY VISUAL MEMORY KINEMATIC INPUT VISUAL MEMORY AND KINEMATIC INPUT

0

10

20

30

40

50

60

70

k
m
/
h

(a) Effective distance completed with 30 km/h restriction.

P
ilo
tN
et
*-
N
M

P
ilo
tN
et
*-
K
I

D
ee
pe
st
LS
T
M
T
in
yP
ilo
tN
et
*-
V
M

D
ee
pe
st
LS
T
M
T
in
yP
ilo
tN
et
*-
V
M
-K
I

P
ilo
tN
et
x3
*
(C
on
v3
D
)-
V
M

P
ilo
tN
et
x3
*
(C
on
v3
D
)-
V
M
-K
I

P
ilo
tn
et
x3
*
(T
im
eD
is
tr
ib
ut
ed
)-
V
M

P
ilo
tn
et
x3
*
(T
im
eD
is
tr
ib
ut
ed
)-
V
M
-K
I

400

500

600

700

800

900

1000

1100

M
e
te
rs

NO MEMORY VISUAL MEMORY KINEMATIC INPUT VISUAL MEMORY AND KINEMATIC INPUT

0

10

20

30

40

50

60

70

k
m
/
h

(b) Effective distance completed without 30 km/h restriction.

Figure 6.5: Effective distance completed with 30 km/h restriction (top) and without (bot-
tom). The right y-axis shows the vehicle’s maximum speed (represented using black dots).
NM: no memory. VM: visual memory. KI: kinematic input.

85

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

6.4.4. Taking the control of a fast-moving car

In this experiment, the robot controller with the deep learning model is suddenly con-
nected to a vehicle that is already running at high speed, in this case, 50 km/h and 70
km/h. Once the vehicle reaches that speed, the model starts generating control commands
for the car (throttle, steer, and brake) and we test whether the model can control that
unseen extreme situation or not. In this situation, the vehicle should react fast to regain
control over the car. This situation falls outside of the training dataset distribution.

In Table 6.4, the results of the experiment are shown. We only consider architectures
with kinematic data as input, since we have already proved it to be necessary for proficient
control. We can see that the only models able to gain back control and reduce the speed
are the ones with visual memory and kinematic input for the 50 km/h case and only one
of them for the 70 km/h case. This is a clear sign of the advantages of adding both types
of features. In certain scenarios, both visual memory and kinematic input data help take
back control of the car. In the experiments, the vehicle reduces the speed to the learned
behaviors (less than 30 km/h) and then starts driving as usual, as shown in Fig. 6.6. We
can also see that a model with both memory types can take back the control, reducing the
speed to the known point (30 km/h). On the contrary, for the model without memory, the
ego vehicle continues driving at this top speed and control is not possible, quickly causing
a collision. For the extreme case of 70 km/h, we can see that only PilotNetx3*(Conv3D)
can control the car and reduce the speed to a known state. This could be attributed to the
enhanced memorization capabilities that Conv3D provides.

6.4.5. Robustness to sensory manipulation

The next experiment tests the robustness of the models to a series of perturbations in the
sensory data. In this case, we imagine a case where input data suffers some alterations,
as it could occur in a real-world situation, and test how the memory helps in the control
problem. Since the common input data for all the models is the visual data, we alter that
information and study its implications considering the memory capabilities. In this case,
we drop out randomly some parts of each of the visual data used as input. We again only
consider architectures with kinematic data input since we have already proved it to be
necessary.

In Table 6.5, the results of these experiments are displayed for Town02 for a percent-
age of dropout of 50% and 90% (see Fig. 6.7 for an example). We again only consider
Succesful experiments those without collisions and with an average speed close to the one
provided by the expert agent. We can see that with a percentage of 50% of dropout, only
two models are successful, PilotNet* and PilotNetx3*(TimeDistributed). The explanation
for these results could be that DeepestLSTMTinyPilotNet* and PilotNetx3*(Conv3D) are
reliant on the visual data that they receive (the first one includesConvLSTM layers and the
second one Conv3D layers) whereas the successful models while relying on visual data,

86

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Map Town02

Model Pilotnet* DeepestLSTMTinyPilotNet*
Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✘ ✔ ✔ ✔

Kinematic input ✔ ✔ ✔ ✔

Speed 50 km/h
Experiments with
collisions

5/5 0/5 0/5 0/5

Average
speed

- 27.18 27.07 26.82

Collisions
per km

46.51 0.0 0.0 0.0

Successful
experiments

0/5 5/5 5/5 5/5

Speed 70 km/h
Experiments with
collisions

5/5 5/5 0/5 5/5

Average
speed

- - 29.92 -

Collisions
per km

27.25 29.95 0.0 26.95

Successful
experiments

0/5 0/5 5/5 0/5

Table 6.4: Comparison of models in a high-speed scenario where the model takes control
when the ego vehicle is already at a speed of 70 km/h. For the Average speed, we only
consider experiments without collisions. This experiment is tested in Town02. Values in
bold highlight the most interesting results. ✔: supported. ✘: unsupported.

87

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Model with kinematic input and visual memory.
Successful recovery

Model with only visual memory.
Failed recovery

70km/h

30km/h

70km/h

0km/h

35km/h

START

MODEL
ACTIVATED

70km/h

70km/h

70km/h

0km/h

35km/h

START

COLLISION
70km/h

MODEL
ACTIVATED

Figure 6.6: Example of activating the vehicle autonomous driving system at a high-speed
situation. On the left, the model with visual memory and kinematic input can restore the
speed to the known point and continue driving. On the right, the model with only visual
memory is not able to restore the speed and it collides due to the high speed.

they are more prone to consider kinematic input. For the extreme case of 90%, only Pilot-
Netx3*(TimeDistributed) is still successful, which can be attributed to the visual memory
capabilities. Each model with visual memory includes different ways of introducing it,
and some of them are more important in certain extreme scenarios such as this one.

6.4.6. Visual memory length and density comparison

In this experiment, we evaluate the model’s memory capabilities in terms of the length and
density of the visual input data. Memory length refers to the amount of information that
the model receives. In this case, we evaluate the implications of adding more visual input
data. In Section 6.2.4, we describe that the visual memory used for training the models
is (t, t − 5, and t − 10) considering that the sensors and controller run using 20 frames
per second. Considering that the vehicle receives 20 frames per second, the default visual
memory used is 0.5 seconds long. In this experiment, we evaluate other possible visual
lengths (5 and 9 frames). 5 frames is 1 second of memory and 9 frames is 2 seconds
if we consider that the frame rate is the same. Similarly, memory density refers to the
time gap between frames. For the default configuration, we use (t, t − 5, and t − 10).
For the experiments, we test (t, t − 1, and t − 2) , (t, t − 10, and t − 20) and (t, t − 20,
and t − 40). The experiments are conducted using the models with visual memory that
receive several frames and considering the top speed boundary (PilotNetx3*(Conv3D)

88

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Map Town02

Model Pilotnet* DeepestLSTMTinyPilotNet*
Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✘ ✔ ✔ ✔

Kinematic input ✔ ✔ ✔ ✔

Percentage 50%
Experiments with
collisions

0/5 1/5 5/5 0/5

Average speed 26.12 22.54 - 25.96
Collisions
per km

0.0 1.52 72.75 0.0

Successful
experiments

5/5 0/5 0/5 5/5

Percentage 90%
Experiments with
collisions

5/5 0/5 5/5 0/5

Average speed - 5.19 - 25.18
Collisions
per km

23.68 0.0 12.31 0.0

Successful
experiments

0/5 0/5 0/5 5/5

Table 6.5: Comparison of model performance modifying the input sensory information.
For the Average speed, we only consider experiments without collisions. Values in bold
highlight the most interesting results. ✔: supported. ✘: unsupported.

Figure 6.7: Example of input data: normal (left), broken 50% (middle) and broken 90%
(right).

89

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Map Town02

Model
Pilotnetx3*
(Conv3D)

Pilotnetx3*
(TimeDistributed)

Visual memory ✔ ✔ ✔ ✔ ✔ ✔

Kinematic input ✘ ✘ ✘ ✘ ✘ ✘

Memory length (frames) 3 5 9 3 5 9
Collisions 0 0 1.0 0 0.8 1.0
Average speed 25.18 25.64 - 26.08 26.65 -
Position deviation mean
per km

1.13 1.75 - 1.12 2.02 -

Collisions
per km

0.0 0.0 1.30 0.0 0.0 6.25

Successful
experiments

5/5 5/5 0/5 5/5 1/5 0/5

Table 6.6: Comparison of model performance with different visual memory lengths. For
the Average speed and Position deviation mean per km, we only consider experiments
without collisions. Values in bold highlight the most interesting results. ✔: supported.
✘: unsupported.

and PilotNetx3*(TimeDistributed)).

In Table 6.6, we present the results for the different proposed memory lengths. We can
see that adding extra frames does not help for these models and they start failing when
adding them. They are more prone to collisions and if we look at the Position deviation
mean per km, we can see that adding more frames leads to more position deviation. Since
the models are simple and based on PilotNet, we can attribute these results to models
that are simple and that can not understand a lot of frames. Possibly, by modifying the
architectures further, they would be capable of understanding a broader range of frames,
but for this scenario, they are not needed.

In Table 6.7, we present the results for the different studied memory densities. A
memory with a small density (t, t−1, and t−2) can drive successfully and we can see that
when the space between frames is widened, the models are more prone to collisions and
its Position deviation mean per km is worse. Similar behavior is observed for the Position
deviation mean per km when the space between frames is too little (t, t − 1, and t − 2).
The best option for these models and scenarios is (t, t − 5, and t − 10).

Finally, after the six presented experiments, a summary of the results obtained in the
experiments is displayed in Table 6.8. We have proved that adding kinematic input data
and visual memory improves the general behavior and robustness of the deep learning

90

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

Map Town02

Model
Pilotnetx3*
(Conv3D)

Visual memory ✔ ✔ ✔ ✔

Kinematic input ✘ ✘ ✘ ✘

Memory densities (frames) t, t − 1, t − 2 t, t − 5, t − 10 t, t − 10, t − 20 t, t − 20, t − 40
Collisions 0.0 0.0 0.4 0.6
Average speed 24.96 25.18 26.59 26.07
Positions deviation mean
per km (m/km)

1.39 1.13 1.35 1.89

Collisions
per km

0.0 0.0 5.13 5.12

Successful
experiments

5/5 5/5 3/5 2/5

Model
Pilotnetx3*

(TimeDistributed)
Visual memory ✔ ✔ ✔ ✔

Kinematic input ✘ ✘ ✘ ✘

Memory densities (frames) t, t − 1, t − 2 t, t − 5, t − 10 t, t − 10, t − 20 t, t − 20, t − 40
Collisions 0.0 0.0 0.2 0.2
Average speed 25.94 26.08 26.63 26.01
Positions deviation mean
per km (m/km)

1.12 1.12 1.47 1.59

Collisions
per km

0.0 0.0 2.97 3.01

Successful
experiments

5/5 5/5 4/5 4/5

Table 6.7: Comparison of model performance with different visual memory densities.
For the Average speed and Position deviation mean per km, we only consider experiments
without collisions. Values in bold highlight the most interesting results. ✔: supported.
✘: unsupported.

91

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

ExperimentType Visual Visual memory Kinematic input
Visual memory

and kinematic input

Regular
lane-follow
(Section 6.4.2)

✔ ✔ ✔ ✔

Experiment
without top speed
(Section 6.4.3)

✘ ✘ ✔ ✔

High speed
experiment
(Section 6.4.4)

✘ ✘ ✘ ✔

Sensory Robustness
experiments
(Section 6.4.5)

✘ ✘ ✘ ✔

Table 6.8: Comparison summary of model performance across presented experiments.
The addition of at least kinematic input data improves the final behavior and adding both
types generates gains in certain scenarios. ✔: successful. ✘: failure.

model in the end-to-end control of an autonomous car for a lane-follow application. The
most robust models have been obtained by combining both visual memory and kinematic
input data.

6.5. Conclusions

In this chapter, we have presented one of the contributions of the thesis, where we present
and study four different deep learning architectures and a variation of each one for end-
to-end robot control based on imitation learning for an autonomous driving problem. We
have studied and proved how adding visual memory and kinematic input data to the mod-
els enhances the quality of the final control behavior for following the lane. These ar-
chitectures are PilotNet*, DeepestLSTMTinyPilotNet*, PilotNetx3* (Conv3D), and Pi-
lotNetx3* (TimeDistributed), with their variation with also kinematic input. Specifically,
we have studied how adding visual memory and kinematic input data to the models im-
proves the performance in certain situations, such as taking control of a fast-moving car in
high-speed scenarios never seen before or self-regulating the vehicle speed correctly. The
models have been tested extensively in various simulated urban scenarios with various
layout designs, proving the research hypothesis widely.

When adding kinematic input data, the system controls the speed better. When adding
both visual memory and kinematic input data, the vehicle can drive in even more situations
and is more robust to sensor failure or controlling never-seen situations like high-speed
experiments. We have proved that adding at least kinematic sensory data can help in the

92

CHAPTER 6. ENHANCING END-TO-END AUTONOMOUS DRIVING CONTROL
THOUGH KINEMATIC INPUT AND MEMORY-BASED ARCHITECTURES

final system compared to the situation where only instant visual perception is used, which
leads to a less complete context understanding.

We have also studied different visual memory lengths and densities for extracting
insight into how it affects the control system even for these simple deep learning architec-
tures. We have proved that a lower density of frames can cause failed experiments when
using simple architectures and that the length of the memory generates a comparable in-
fluence, causing failures when adding an excessive number of frames.

After this exploration conducted in this chapter, in the following chapter, we explore
the optimization of the deep learning models for end-to-end robot control for autonomous
driving using state-of-the-art techniques.

93

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Chapter 7

Optimization of end-to-end autonomous
driving control

In this chapter, which is another contribution of this thesis, we explore and compare a
variety of alternatives for model optimization to solve the visual lane-follow application
in urban scenarios with an imitation learning approach. This contribution has been pub-
lished as a journal article and also as a conference paper [244]. The optimization tech-
niques include quantization, pruning, fine-tuning (retraining), and clustering, covering all
the options available in the most common deep learning frameworks. The optimizations
provided by TensorRT which are specific to the hardware are also explored. For the com-
parison, following the same line as in previous chapters, we use offline metrics such as
mean squared error and inference time and additionally, we evaluate them in an online
setup using Behavior Metrics with CARLA, the software tool introduced in Chapter 5.

7.1. Introduction

In autonomous driving, vision-based solutions are usually generated using deep learn-
ing models, which are high-demanding computational solutions. An important compo-
nent with them is the available computing hardware as the performance of robot appli-
cations depends not only on the quality of the control decisions but also on their fre-
quency, the higher the better. Some autonomous vehicles or robots are equipped with
high-performance hardware, others are not. Updating to faster-computing hardware is
beneficial but it is not always a real option. A possible solution is to optimize the deep
learning model with different techniques [217].

These optimization techniques have already been discussed in Chapter 2. In this chap-
ter, we introduce and discuss several common model optimization techniques for end-to-
end autonomous driving control, in particular for the visual lane-follow application. We
apply and compare them to a baseline model to understand how the optimizations im-
pact the system performance and efficiency using an imitation learning approach [175].

94

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

CONTROL
COMMANDS

SENSOR
LISTENER

QUANTIZATION
PRUNING

CLUSTERING
FINE TUNING

+

BEHAVIOR
METRICS

OPTIMIZED
DEEP

LEARNING
MODEL

ROBOT
CONTROLLER

BIRD-EYE-
VIEW

EVALUATION
METRICS

COLLECT

Figure 7.1: End-to-end autonomous driving pipeline using Behavior Metrics software
and a robot controller based on a deep learning model that drives the vehicle based on its
sensory data.

We generate a new supervised dataset from expert data because the already available
ones are not directly suitable for the lane-follow application. Some studies have already
addressed similar questions [223] but they do not consider deep learning models as pos-
sible controllers, which is our focus and part of the innovation. Our study includes two
well-known deep learning frameworks (TensorFlow-Keras and PyTorch) with their opti-
mizations toolkits (TensorFlow Model Optimization Toolkit [221]) and the optimizations
provided by Nvidia’s TensorRT framework [222] for this particular hardware. The re-
search hypothesis is that by including optimization techniques, configuring and adapting
them accordingly to the deep learning model and the problem setup, we can obtain similar
quality levels of autonomous driving with smaller and faster models as compared to the
baseline model. We leave outside this study the finding of the best expert agent (we use
a good enough one) for driving and the comparison between classic and neural control,
since the focus is on the implications of the deep learning model optimizations alone. We
provide a series of experiments that validate this hypothesis, including both offline and
online model comparisons in test scenarios using the state-of-the-art CARLA simulator
for autonomous driving. The online experimental validation is conducted using Behav-
ior Metrics (see Fig. 7.1). We provide all models, architectures, modified software, and
datasets as open-source [249].

95

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Input planes
3@66x200

BatchNormalization

Conv2D (24)

Conv2D (36)

Conv2D (48)

Conv2D (64)

Conv2D (64)

Flatten

50 Fully connected

10 Fully connected

Throttle, steer
and break

5x5 kernel

5x5 kernel

5x5 kernel

3x3 kernel

3x3 kernel

PilotNet*

1164 Fully connected

100 Fully connected
Bird-eye-view input

Figure 7.2: PilotNet* architecture detail (left) and bird-eye view input example (right).

7.2. Optimizing end-to-end imitation learning models for lane-follow robot control

This section outlines the baseline deep learning model for lane-follow robot control using
imitation learning. It incorporates state-of-the-art optimization techniques prevalent in
deep learning model development and details the training process.

7.2.1. Baseline architecture

The baseline deep learning architecture is based on PilotNet end-to-end model [159],
replicating the architecture provided in the paper in both TensorFlow and PyTorch frame-
works. The model used is PilotNet*, the same architecture that has already been intro-
duced in Chapter 6. PilotNet* provides three control commands as outputs instead of the
one of PilotNet. Instead of only generating steering commands, as in the original work,
PilotNet* generates throttle, steering, and brake. Our architecture modifies the baseline
one only on the final part of the former model. In Fig. 7.2, a detailed diagram of the
modified architecture is provided.

As in the architecture presented in the previous Chapter 6, the perception data used as
input to the deep learning model is the bird-eye view of the vehicle in the scenario (see
Fig. 7.2 for an example). This bird-eye view simplifies the perception task that the model
has to conduct. Instead of having the immense entropy of a front-camera image, from
which the model has to extract relevant features, the bird-eye view is a segmented image
that includes only the pertinent classes for this particular problem (vehicles, pavement,
road lanes...), reducing the complexity. Even though the perception task is simplified,

96

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

the results and conclusions presented here are general, and applicable for more complex
perception setups (frontal camera vision) following the same ideas. They are simplified
only for the sake of the focus on model optimization.

7.2.2. Dataset and training

Following the imitation learning approach, the dataset used for training the deep learning
model is extracted from CARLA where an expert agent drives a car traveling through the
scenario (Town 01) keeping the lane. At the same time, the control decisions and the bird-
eye images are recorded. The raw dataset, which is the same we utilized in Chapter 6 is
imbalanced since the majority of cases involved in autonomous driving are usually driv-
ing straight forward and the amount of other cases, such as turn situations, remains small.
To reduce this bias, some techniques are already common, such as DAgger [174]. In this
case, we record turns more times to oversample the dataset with such cases. In addition,
we also use common machine learning training techniques like shuffling, normalization,
and data augmentation (modifications of brightness, contrast, gamma channel, hue sat-
uration, PCA color augmentation, gaussian blur, and horizontal affine transformations).
Horizontal affine transformation is really important for this particular problem. For this
transformation, the input visual data is displaced some points horizontally, generating
more examples that could be found online by the vehicle. Considering this transforma-
tion, the output is also altered accordingly.

The optimization techniques used are (for a detailed diagram of some of them see
Fig. 7.3):

• Quantization: approximation of neural network inner values that use floating-point
numbers to low bit width numbers. This optimization usually changes the floating-
point numbers to float16 or even int8 precision.

• Pruning: technique based on removing unnecessary connections or parameters of
the deep learning architecture for reducing the size of a neural network.

• Fine-tuning (retraining): some techniques also involve a few fine-tuning steps for
generating the optimized model. This process of fine-tuning is combined with the
rest of the optimizations to generate more precise final results.

• Clustering: group similar weights in a neural network. Similar to pruning but in
this case the weights are combined and represented with a single centroid value.

All these techniques improve the model efficiency, accelerating computations and re-
ducing the model size. A reduction in model size can be critical in computation systems
with sharp memory constraints. The acceleration of computations is also critical for sys-
tems with low computational capacity. From these base techniques, each deep learning
framework has support for some of them and their combinations, as detailed in Table 7.1.
Applying each optimization requires tuning for the particular problem and model.

97

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Optimization type Framework Quantization Pruning Fine-tuning Clustering

TensorFlow
Baseline (No optimizations) TensorFlow ✘ ✘ ✘ ✘

TensorFlow Model Optimization Toolkit (TF Lite)
Baseline in TF Lite (No optimizations) TF Lite ✘ ✘ ✘ ✘

Dynamic Rang
Quantization

TF Lite Int8+Float16 ✘ ✘ ✘

Integer Quantization TF Lite Int8 ✘ ✘ ✘

Integer (float fallback) Quantization TF Lite Int8+Float16 ✘ ✘ ✘

Float16 Quantization TF Lite Float16 ✘ ✘ ✘

Quantization Aware Training TF Lite Int8 ✘ ✔ ✘

(Random sparse) Weight pruning TF Lite ✘ ✔ ✘ ✘

(Random sparse) Weight pruning quantization TF Lite Int8 ✔ ✘ ✘

Cluster preserving quantization aware TF Lite Int8 ✘ ✔ ✔

Pruning preserving quantization aware TF Lite Int8 ✔ ✔ ✘

Sparsity and cluster preserving quantization
aware training (PCQAT)

TF Lite Int8 ✔ ✔ ✔

TensorFlow TensorRT
(TensorRT) Float32 Quantization TF TensorRT Float32 ✘ ✔ ✘

(TensorRT) Float16 Quantization TF TensorRT Float16 ✘ ✔ ✘

(TensorRT) Int8 Quantization TF TensorRT Int8 ✘ ✔ ✘

PyTorch
Baseline (No optimizations) PyTorch ✘ ✘ ✘ ✘

PyTorch Model Optimization Toolkit
Dynamic Range Quantization PyTorch Int8+Float16 ✘ ✘ ✘

Static Quantization PyTorch Int8 ✘ ✘ ✘

Quantization Aware Training PyTorch Int8 ✘ ✔ ✘

Local Prune PyTorch ✘ ✔ ✔ ✘

Global Prune PyTorch ✘ ✔ ✔ ✘

Prune+Quantization PyTorch Int8 ✔ ✔ ✘

PyTorch TensorRT
(TensorRT) Float32 Quantization PyTorch TensorRT Float32 ✘ ✔ ✘

(TensorRT) Float16 Quantization PyTorch TensorRT Float16 ✘ ✔ ✘

(TensorRT) Int8 Quantization PyTorch TensorRT Int8 ✘ ✔ ✘

Table 7.1: Summary of optimization configurations and their supported techniques, in-
cluding the development framework. ✔: supported. ✘: unsupported.

98

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Clustering

Pruning

01010101 01010101

01010101 01010101

Quantization

01010101

Figure 7.3: Optimization techniques diagrams.

7.3. Experiments

This section presents the experiments conducted for the evaluation of the differences be-
tween non-optimized and optimized deep learning models. The baseline model, Pilot-
Net*, has been implemented in two of the most popular deep learning frameworks, Ten-
sorFlow and PyTorch, to also understand their differences. With these two models, we
applied a series of framework-level optimizations and their combinations, tuning each
of them appropriately to gain insight into each optimization’s advantages. In addition,
hardware-level optimizations were also explored using the Nvidia TensorRT framework
that enhances model performance for Nvidia GPUs. We do not include a comparison
with prior baseline methods since to the best of our knowledge this is the first work that
compares different optimization techniques for end-to-end control in autonomous driving
based on visual perception.

The hardware used for this experimental validation includes 2 Nvidia GeForce RTX
3090 GPUs. All the presented experiments are easily reproducible, with all the com-
ponents released open-source [249], including the models’ weights, architectures and
dataset, software comparison tool, and simulator. Since the optimizations are state-of-
the-art and build the enhancements on some precise components of the models, the re-
sults may vary depending on how modern and powerful the test hardware is, but the ideas

99

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

described here are general and applicable to any type of hardware and software setup.

Experiments were conducted to gauge the impact of optimized models in robot control
and assess how control decision quality and frequency influence vehicle behavior. Various
optimizations were compared individually to determine their significance in performance.
The experiments focused on visual lane-following in urban scenarios without traffic or
obstacles, emphasizing model optimization’s importance. For clarity, only one CARLA
scenario with random starting positions was used although the results apply to similar
deep learning end-to-end control tasks.

7.3.1. Model performance offline evaluation table

Offline evaluation of the models gives a general idea of how the model performs. In
Table 7.2, we present the offline evaluation results for each of the optimized models.
This evaluation is conducted using batches of 64 images. During online testing, for each
inference, only one image is used as input. Considering the use of a GPU for inference,
the maximum gain in inference time is expected to be achieved with batches of several
images instead of only using one image for each timestamp because of the parallelism of
the GPUs.

In general, the model size is reduced when optimizing (compressed). The explanation
for this fact is that the optimizations reduce the complexity of the model, hence reducing
the space that it needs for storage. The optimization that causes the most reduction is
found for the models using int8 quantization (see Table 7.1 for details), due to the lower
precision of the numbers in the network, they need less memory space. For each opti-
mization, we fine-tune its parameters to their utmost limits, carefully balancing them on
the threshold just before a noticeable decline in quality occurs. For example, adjusting
aggressively clustering and pruning parameters to their maximum settings. The precise
parameter values are contingent upon each specific optimization and combination (com-
prehensively documented in the accompanying open-source code).

Looking at the GPU inferences frequency, optimized models generate much better
results than models without optimizations with a maximum gain of 135 times of improve-
ment (Baseline TF compared to (TensorRT) int8 quantization, which is the best result for
TensorFlow framework). If we do not consider TensorRT framework, models with int8
quantization (see Table 7.1 for details) generate the best results in terms of GPU infer-
ences frequency with 50 times faster results at best. Other combinations of optimizations
do not improve the frequency further. Since the operations are conducted with a lower
precision because it uses int8, the calculations are much faster and require less memory.
If we consider TensorRT, the frequency increases to the highest point (135 times faster at
best). It is due to the hardware-level optimizations of TensorRT, which are specific for
certain hardware combinations and include the already presented optimization techniques
with fine-grained adjustments for the hardware. Similarly to considering model size, the
introduction of clustering or pruning is ineffective in increasing further the GPU inference

100

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

frequency when quantization is involved.

With the MSE, we can check whether the model-generated results are close to the
supervised examples or not. Looking at the MSE evaluation results, the values remain
close to the baseline model, improving the results for certain optimizations. This is im-
portant since we can generate models of a similar quality in terms of MSE with lower size
and more GPU inference frequency. In this case, the best results appear when combin-
ing several optimizations or all available options, e.g., PCQAT (see Table 7.2 for detailed
values).

The only outlier appears in the TensoRT TensorFlow int8 quantization, which gener-
ates worse MSE values. An explanation for this is that the model optimization limit has
been surpassed, causing the final performance to drop significantly.

To summarize, the offline evaluation results show that optimizations provide more ef-
ficient models and the combination of all the optimizations generates the best results when
considering model size, MSE, and GPU inference frequency. These results are repeated
for both PyTorch and TensorFlow deep learning frameworks and their combinations with
TensorRT. It is also important to point out that by comparing the TensorRT framework
with deep learning framework-level optimizations, TensorRT generates the best results,
although it is hardware-specific and more complicated to apply for different hardware
combinations.

7.3.2. Robot control online evaluation table

In this experiment, we evaluate the baseline and each optimized model while driving a car
on an urban test scenario inside the CARLA simulator in regular conditions and generate
evaluation metrics with Behavior Metrics. Each model runs inside a vehicle controller,
driving for two minutes, five times, and starting from a random position in the map,
which allows the agent to drive that amount of time without encountering junctions or
other unconsidered scenarios in that run. An illustrative video with the baseline model
driving is available at [250]. In Table 7.3, we can see a summary of the results for each
model. We select only the most informative evaluation metrics retrieved from Behavior
Metrics for this particular experiment.

The controller frequency is always lower than the GPU inference frequency. The
controller is the core computational system that drives the vehicle and performs several
operations at each iteration. It receives the bird-eye image and transforms it before giving
it to the model for inference. Since the deep learning model is inside the controller,
the GPU inference frequency (model inferences alone) will always be higher than the
controller frequency. We can see that the number for GPU inference frequency is similar
to the ones obtained in the offline evaluation but slightly lower. This difference comes
from the introduction of other computational loads like the simulator and the number of
images used as input batch.

101

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Optimization type Model size (MB) MSE test
GPU inferences
frequency (Hz)

TensorFlow
Baseline (No optimizations) 18.35 0.015 22.38

TensorFlow Model Optimization Toolkit (TF Lite)
Baseline in TF Lite (No optimizations) 6.09 0.01590 610.91
Dynamic Range Quantization 1.54 0.01593 764.11
Integer Quantization 1.54 0.01591 1104.86
Integer (float fallback) Quantization 1.54 0.01588 1216.82
Float16 Quantization 3.05 0.015902 614.68
Quantization Aware Training 1.54 0.01317 1181.89
(Random sparse) Weight pruning 6.09 0.00919 609.92
(Random sparse) Weight pruning quantization 1.53 0.00911 755.86
Cluster preserving quantization aware 1.54 0.01202 1195.73
Pruning preserving quantization aware 1.54 0.00932 1179.22
Sparsity and cluster preserving quantization
aware training (PCQAT)

1.54 0.00859 1182.76

TensorFlow TensorRT
(TensorRT) Float32 Quantization 6.29 0.01079 2579.90
(TensorRT) Float16 Quantization 6.29 0.01079 2368.63
(TensorRT) Int8 Quantization 6.35 0.04791 2954.75

PyTorch
Baseline (No optimizations) 6.09 0.00435 229.83

PyTorch Model Optimization Toolkit
Dynamic Range Quantization 1.94 0.01206 675.54
Static Quantization 1.61 0.01207 1367.17
Quantization Aware Training 1.61 0.01109 853.94
Local Prune 6.12 0.01085 695.05
Global Prune 6.12 0.01096 705.23
Prune+Quantization 1.61 0.01094 852.60

PyTorch TensorRT
(TensorRT) Float32 Quantization 6.12 0.00957 4377.41
(TensorRT) Float16 Quantization 6.12 0.00957 3986.85
(TensorRT) Int8 Quantization 6.18 0.00969 4058.54

Table 7.2: Offline evaluation of baseline models and their optimized versions.

102

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

The controller frequency is always better for optimized models. Having more GPU
inference frequency is an indicator of possible higher controller frequencies. We can
observe that the numbers are better but considering the GPU inference frequencies, we
could expect even better controller frequency results. This situation occurs due to the
initialization times of the deep learning model. When using optimized models, in the
first iteration the deep learning model is loaded into the GPU so it is much slower than
all other iterations. Considering the big difference in GPU inference frequency, we can
ignore this difference, since it is expected to be negligible in the long term, for instance in
longer experiments.

Both baseline models generate excellent results for the number of successful runs,
completing all of them. The important point here is that the optimized models retrieve
similar results, finishing the experimental evaluations with efficient results too, but with a
higher model inference frequency. Looking at the number of GPU inference frequencies,
similarly, as we have observed in the previous experiment, int8 quantized models (see
Table 7.1 for details) are faster for both frameworks (see Fig. 7.4), generating 47 times
faster inferences for TensorFlow and 2.3 times faster at best for PyTorch. Looking at the
results of the position deviation and average speed metrics, are similar to those obtained
using the baseline models. The rest of the insights for the optimization selection described
in the previous experiment are also applicable in the online setting.

We have proved that the optimized models drive properly in an online test evalua-
tion, without a reduction in the quality of the decisions and increasing their pace. The
optimized models have the same overall behavior quality and are faster and smaller. The
results are similar for PyToch and TensorFlow, which proves that the ideas apply to sev-
eral configurations. If we consider TensorRT framework optimizations, they achieve the
best number considering GPU inference frequency while maintaining the overall behavior
quality, measured as successful runs. Considering int8 TensorRT optimizations, neither
of them works correctly, which can again be explained because of trying to improve the
model too much and reaching its optimization limit, which reduces the final online per-
formance.

A summary of the results is shown in Table 7.4, including the improvement rate
observed over the baseline model. We select the best-optimized models for each deep
learning framework as the model that combines the majority of optimization techniques
(quantization, pruning, fine-tuning, and/or clustering) since we have proved that t is the
best-performing one. We observe improvement for each optimized option compared to
the baseline, obtaining a gaining of a maximum of 47 times improvement in an online
evaluation of inference frequency and 5 times of controller frequency. We have proved
that optimizing the model is key for robot control efficiency.

103

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Model
Controller
frequency
(Hz)

GPU
inferences
frequency
(Hz)

Position
deviation
mean per
km (m)

Average
speed
(km/h)

Successful
runs

TensorFlow
Baseline (No optimizations) 15.94 20.25 0.33 20.5 100%

TensorFlow Model Optimization Toolkit (TF Lite)
Baseline TF Lite 70.36 438.30 0.25 23.5 100%
Dynamic Range Quantization 74.65 568.24 0.24 24.3 100%
Integer Quantization 75.43 771.83 0.24 23.1 100%
Integer (float fallback)
Quantization

76.49 868.64 0.26 23.1 100%

Float16 Quantization 69.63 432.42 0.26 22.8 100%
Quantization Aware Training 77.17 823.85 0.25 - 100%
(Random sparse) Weight
pruning

70.03 437.44 0.25 23.0 100%

(Random sparse) Weight
pruning quantization

74.27 575.97 0.26 27.1 100%

Cluster preserving
quantization aware

75.46 850.83 0.24 24.2 100%

Pruning preserving
quantization aware

76.27 837.16 0.24 26.5 100%

Sparsity and cluster
preserving quantization
aware training (PCQAT)

79.50 867.15 0.24 24.2 100%

TensorFlow TensorRT
(TensorRT) Float32 Quantization 79.10 1067.79 0.44 22.6 100%
(TensorRT) Float16 Quantization 62.03 967.09 0.49 22.9 100%
(TensorRT) Int8 Quantization 39.89 874.78 - 22.0 0%

PyTorch
Baseline (No optimizations) 69.92 437.93 1.41 20.9 100%

PyTorch Model Optimization Toolkit
Dynamic Range Quantization 72.28 579.97 0.24 23.1 100%
Static Quantization 77.74 1020.53 0.26 21.6 100%
Quantization Aware Training 76.37 1022.46 0.29 21.4 100%
Local Prune 70.43 474.88 0.28 24.1 100%
Global Prune 70.80 475.53 0.26 23.2 100%
Prune+Quantization 78.07 1014.47 0.26 25.8 100%

PyTorch TensorRT
(TensorRT) Float32 Quantization 67.78 1030.00 0.45 20.1 100%
(TensorRT) Float16 Quantization 68.94 1036.99 0.43 21.2 100%
(TensorRT) Int8 Quantization 76.11 1496.99 4.76 20.1 20%

Table 7.3: Comparison of models and their optimized versions in a test environment
considering some measured metrics provided by Behavior Metrics.

104

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Ba
se

lin
e

(N
o

op
tim

iza
tio

ns
)

Ba
se

lin
e

in
TF

Li
te

(N
o

op
tim

iza
tio

ns
)

D
yn

am
ic

Ra
ng

e
Q

ua
nt

iza
tio

n

In
te

ge
rQ

ua
nt

iza
tio

n

In
te

ge
r(

flo
at

fa
llb

ac
k)

Q
ua

nt
iza

tio
n

Fl
oa

t1
6

Q
ua

nt
iza

tio
n

Q
ua

nt
iza

tio
n

Aw
ar

e
Tr

ai
ni

ng

(r
an

do
m

sp
ar

se
)W

eig
ht

pr
un

in
g

(r
an

do
m

sp
ar

se
)W

eig
ht

pr
un

in
g

qu
an

tiz
at

io
n

Cl
us

te
rp

re
se

rv
in

g
qu

an
tiz

at
io

n
aw

ar
e

Pr
un

in
g

pr
es

er
vi

ng
qu

an
tiz

at
io

n
aw

ar
e

PC
Q

AT

(T
en

so
rR

T)
Fl

oa
t3

2
Q

ua
nt

iza
tio

n

(T
en

so
rR

T)
Fl

oa
t1

6
Q

ua
nt

iza
tio

n

(T
en

so
rR

T)
In

t8
Q

ua
nt

iza
tio

n

Ba
se

lin
e

(N
o

op
tim

iza
tio

ns
)

D
yn

am
ic

Ra
ng

e
Q

ua
nt

iza
tio

n

St
at

ic
Q

ua
nt

iza
tio

n

Q
ua

nt
iza

tio
n

Aw
ar

e
Tr

ai
ni

ng

Lo
ca

lP
ru

ne

G
lo

ba
lP

ru
ne

Pr
un

e+
Q

ua
nt

iza
tio

n

(T
en

so
rR

T)
Fl

oa
t3

2
Q

ua
nt

iza
tio

n

(T
en

so
rR

T)
Fl

oa
t1

6
Q

ua
nt

iza
tio

n

(T
en

so
rR

T)
In

t8
Q

ua
nt

iza
tio

n0

200

400

600

800

1000

1200

1400

G
PU

in
fer

en
ce

fre
qu

en
cy

Model GPU interence frequency

Tensorflow
Tensorflow Model Optimization Toolkit (TF Lite)
Tensorflow TensorRT
PyTorch
PyTorch Model Optimization Toolkit
PyTorch TensorRT

1

Figure 7.4: Detail of each model’s GPU inference frequency.

7.3.3. Inference frequency and quality of decisions in robot control performance

Most successful robots in the real world have an important reactive part, which usually
has one main control loop. This loop runs iterations at a given frequency, reading sensor
measurements and commanding low-level decisions to the actuators on each iteration. For
instance, in autonomous driving, there is usually a reactive local navigation controller.
When following an end-to-end approach, on each iteration, the sensor data are provided
as the input of the deep learning model, it is called for inference, and its outputs are
commanded to the vehicle actuators. The overall quality of the robot’s behavior depends
both on the quality of the control decisions at each iteration and on the frequency of those
iterations.

In this experiment, the visual lane-follow driving was the robotics application and the
robot controller was the baseline deep learning model PilotNet*, as it is a successful one.
All the control decisions were taken with that deep learning model and their quality is
assumed to be good. The settings, worlds, starting points, etc. were the same as in the
previous experiment, but many different frequencies of the controller were enforced, and
the corresponding overall quality of the lane-follow application was measured, in terms
of successful runs.

105

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Model Optimization Model size (MB) MSE test
Offline GPU

inferences frequency (Hz)
(improvement)

Controller
frequency (Hz)
(improvement)

Online GPU
inferences frequency (Hz)

(improvement)

Successful
runs

TensorFlow
Baseline - 18.35 0.015 22.38 15.94 20.25 100%

Best optimized
TF Lite

Sparsity and cluster
preserving quantization
aware training (PCQAT)

1.54 0.00859 1182.76 (x52) 79.50 (x5) 867.15 (x42) 100%

Best optimized
TF TensorRT

(TensorRT) Float16
Quantization

6.29 0.01079 2368.75 (x100) 62.03 (x3) 967.09 (x47) 100%

PyTorch
Baseline - 6.09 0.00435 229.83 69.92 437.93 100%
Best optimized
PyTorch

Prune+Quantization 1.61 0.01094 852.60 (x3) 78.07 (x1.2) 1014.47 (x2.3) 100%

Best optimized
PyTorch TensorRT

(TensorRT) Float16
Quantization

6.12 0.00957 3986.85 (x17) 68.94 (x1) 1036.99 (x2.3) 100%

Table 7.4: Comparison summary of best models performance with the improvement rate
observer.

To enforce different low controller frequencies, extra dummy computation loads were
introduced on each iteration. To enforce high controller frequencies, the simulator it-
self was stopped and resumed so more controller iterations took place at each second of
simulated time.

The results of this experiment are shown in Fig. 7.5. For that lane-follow application,
we found a lower limit of 10 Hz for the controller frequency, a turning point in the robot’s
performance. Below that frequency threshold, the robot simply fails. Above it, the per-
formance is pretty much the same. It is important to note that the only difference is the
frequency of the decisions, their quality is always good as they come from the same deep
learning model. The particular number of the frequency threshold for other applications
and scenarios may depend on many factors, such as the car speed (faster cars will require
a higher control frequency threshold), the complexity of the robot, and the dynamism of
the environment, but this profile seems to appear in many robotics contexts. For this ex-
periment, a simulated Tesla Model 3 with a stable speed of 30km/h driving in scenario
Town02 is used.

The results in Fig. 7.5 also show the potential benefit of optimizing the deep learning
models. For a given computing hardware, achieving faster models may increase the robot
controller frequency, and so increase the robot application performance. In limited hard-
ware, it may be even critical when regular models fall below the frequency threshold and
optimized ones may be above it.

Finally, with the available hardware GPUs already used in all the previous experi-
ments, we measured the performance at the maximum inference frequency of both the
baseline PilotNet* and of the best-optimized model from it. The baseline model reached
437Hz with PyTorch, far from the minimum 10Hz. The best optimized model reaches
1014Hz. They are shown as vertical dotted lines in Fig. 7.5. Similar increments were
obtained with TensorFlow. The particular values are not relevant, but they illustrate the
advantage of optimizing the deep learning model. In this particular visual lane-follow
application, the autonomous car moving slowly, is not critical, but in more demanding

106

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

Baseline model
maximum frequency

Optimized model
maximum frequency

1014.17it/s437.93it/s
0it/s

 S
uc

ce
ss

fu
l

ru
ns

Controller iterations
frequency

Increasing controller
iterations frequency

0 %

100 %

10it/s5it/s

Controller
turning point

Figure 7.5: Quality of the robot behavior (measured as % of successful runs) vs the fre-
quency of the control decisions

applications, higher car speeds, or even this one running on limited computing hardware,
may make the difference.

7.4. Conclusions

In this chapter and published contribution [244], we have presented and studied several
optimization techniques for deep learning models and applied them for the end-to-end
visual control of an autonomous vehicle based on imitation learning. The particular ap-
plication is lane-follow driving in urban scenarios. We have used optimized models and
proved experimentally that optimizations improve the final system performance thanks to
the speed-up in controller iteration frequency without losing quality on the control deci-
sions. We have applied these optimizations individually and combined, implementing all
variants in two different deep learning frameworks (PyTorch and TensorFlow). Hardware-
specific optimizations (TensorRT) were applied too.

These models have been tested and validated offline and online in a state-of-the-art
simulator for autonomous driving, CARLA. The experimental results show the impact
of each optimization on the final robot application performance. Combining all the op-
timization techniques and tuning them in consonance with the baseline model, the opti-
mized deep learning models drive with a similar quality of the control decisions but much
faster. The inference frequency of the best-optimized deep learning model is 47 times
faster than the baseline model in the online evaluation. And the robot controller with it
runs 3 times faster, so the optimizations have proven its relevance. The optimized models
can be used in a broader variety of hardware, especially low-resource and edge devices.
This adaptability extends beyond the conventional scope of autonomous driving research,
constituting a significant aspect of our innovation. We have proved these premises ex-

107

CHAPTER 7. OPTIMIZATION OF END-TO-END AUTONOMOUS DRIVING
CONTROL

perimentally using Behavior Metrics. These metrics complement the common MSE on
the supervised dataset and those directly provided by CARLA. Altogether they provide a
more informative description of the performance of the system.

The dataset, models’ weights and architectures, and comparison software tools are
provided as open-source materials for the research community, which makes easy the
replication of the presented results [249].

After exploring adding memory to the deep learning models that control the vehicles
autonomously and optimize them, in the following chapter we explore extending the end-
to-end coverage to more complex scenarios, particularly with traffic.

108

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Chapter 8

End-to-end vision-based autonomous
driving in traffic

This chapter presents another contribution to the thesis, which is under peer-review in a
journal at the time of writing this document [251]. We have explored different autonomous
driving ideas, specifically adding memory to the model to enhance its performance and
optimizing the autonomous driving systems prioritizing fast, small, and reliable models.
In this contribution, we present a shallow end-to-end vision-based deep learning approach
for autonomous driving in traffic scenarios. The primary objectives include following the
lane and maintaining a safe distance from possible preceding vehicles. In previous contri-
butions, we did not consider other vehicles but in this one, they are a primary component
of the research. The approach again leverages imitation learning, creating a supervised
dataset for robot control from the same expert agent demonstrator in CARLA simula-
tor. This dataset encompasses three different versions complementary to each other and
we have made it publicly available along with the rest of the materials. The PilotNet
neural model is utilized in two variants: the first one with complementary outputs for
brake and throttle control commands along with dropout; the second one incorporates
these improvements and adds the vehicle speed. Both models have been trained with the
aforementioned dataset. The experimental results demonstrate that the models, despite
their simplicity and shallow architecture, including only small-scale changes, success-
fully drive in traffic conditions without sacrificing performance in free-road environments,
broadening their area of application widely. Additionally, the second model adeptly main-
tains a safe distance from leading cars and exhibits satisfactory generalization capabilities
to diverse vehicle types. A new evaluation metric to measure the distance to the front vehi-
cle has been created and added to Behavior Metrics; an open-source autonomous driving
assessment tool built on CARLA that performs experimental validations of autonomous
driving solutions.

109

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

8.1. Introduction

We have already discussed extensively the importance of the field of autonomous driving
research to increase safety on the streets or improve the navigation of people in urban envi-
ronments by optimizing the number of possible vehicles. We have described the PilotNet
network in detail and have also enhanced its possible behavior with extensions (PilotNet*)
testing its memory capabilities and optimizing it for hardware constraint devices.

Even so, we would need to improve the range of applications of the end-to-end au-
tonomous driving system to be successful in real urban scenarios where the number
of possible tasks is enormous and includes following the lane, considering other traffic
agents, navigation... Also, previously we used a simplified perception system that lever-
aged bird-eye-view. In a real scenario, we would need to use other sensors available
since the simplified bird-eye view used in previous chapters is not feasible. In this case,
our research question faced in this chapter examines whether a visual end-to-end deep
learning imitation learning shallow model can successfully drive an autonomous driving
vehicle following the lane in urban scenarios without colliding with other agents. Conse-
quently, we prioritize simplicity in our models. We introduce and experimentally compare
two variants of the PilotNet model, called PilotNet* and PilotNet**. Both variants can
drive in simulation in the state-of-the-art simulator CARLA, keeping the lane and the lat-
ter also managing traffic conditions with front vehicles. These models generate throttle,
brake, and steering control from the visual information provided by a frontal camera in-
stalled onboard the vehicle. The models are trained using an imitation learning procedure
from a supervised dataset, generated from data collected from an expert agent driving in
a training scenario. Adding the throttle and brake to the baseline, the model can drive
following the lane in urban scenarios, also considering turns. Including the speed into
the model, the vehicle can also negotiate scenarios with leading vehicles, stopping when
encountering a vehicle in front and resuming driving when the short-term path is clear
again. The models are validated experimentally under different conditions in test urban
scenarios, using a variety of front vehicles and proving the generalization of the model
to never-seen situations. The online experimental validation is conducted using the com-
parison software tool Behavior Metrics (see Fig. 8.1. for architectural details), which we
have updated including evaluation metrics suitable for the presented problem of follow-
lane in traffic situations. As we have already addressed, these metrics complement the
common offline evaluation metrics used in machine learning, adding a broader context to
each evaluated model’s benefits and possible limitations. We consider online evaluation
as the one conducted in simulation and offline evaluation as the one conducted comparing
the model to supervised data. We keep other autonomous driving tasks out of the scope
of the present work, such as negotiating road intersections or considering traffic signals.

One contribution of the paper presented in this chapter is the proposal of slight modifi-
cations to the shallow baseline PilotNet model, which demonstrates that with small-scale
changes, it is possible to expand its application area widely. They allow the autonomous

110

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

CONTROL
COMMANDS

SENSOR
LISTENER

+
U

R
B

A
N

 S
C

E
N

A
R

IO
S

V
E

H
IC

L
E

S

DEEP
LEARNING

MODEL

CAMERA IMAGE

ROBOT
CONTROLLER

EVALUATION
METRICS

BEHAVIOR
METRICS

Figure 8.1: Behavior Metrics evaluation software tool architecture with different urban
scenarios and vehicles.

car to deal with different ahead vehicles in the same lane successfully, including those it
has never encountered before, slowing down or stopping before them, resuming the move-
ment, and following them when the safety standards are satisfied. We experimentally val-
idate this assumption extensively in Section 8.3 and its generalization to new scenarios.
Another contribution is the new fine-grain metric in the assessment tool that measures the
distance to other vehicles based on the data extracted from CARLA, which gives a better
intuition about how the robot controller behaves. We provide all models, architectures,
and datasets as open-source, along with the comparison software tool [252] for validation
and extension, which are also contributions. As a result, researchers may leverage this ad-
vancement to extend or develop an enhanced version of the models, architectures, dataset,
or software.

8.2. Imitation learning for driving in traffic

In this section, we will discuss the three primary components of our work. Including the
generated dataset versions for imitation learning, the modifications of the baseline deep
learning model PilotNet created for this work, and the training procedure followed in the
development of the final models.

111

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Traffic-1 Traffic-6

Figure 8.2: Detail of included vehicles in each dataset version.

8.2.1. Dataset and versions

The supervised dataset is collected on an urban scenario (Town02) of the CARLA simula-
tor [186] using an imitation learning approach. The expert agent is an integral component
of the simulator with access to privileged simulator data and it bases its behavior on hand-
crafted rules. It is set to follow a specific route keeping the lane and covering the urban
scenario while the visual data is generated by the camera, and the corresponding control
commands are recorded. The agent’s maximum velocity is approximately 30 km/h.

The route includes turning situations and some encounters with front vehicles but
without possible intersection situations or consideration of traffic lights/signals, which
are not in the scope of this work. For simplicity, we focus only on urban scenarios rather
than including highways. Nevertheless, the ideas presented here are also applicable to
these and other possible scenarios. Through this process, we generated a dataset of 140K
images along with supervised demonstration data. Approximately, 47% of them are im-
ages containing other vehicles present in it.

We include three dataset versions that complement each other. The first, Traffic-0,
does not consider any traffic factors. The second version, Traffic-1, includes the former
and traffic examples with only one type of front vehicle, a typical small urban car. The
third version, Traffic-6, encompasses both previous versions and examples with five other
vehicle types including two vans and three urban cars of different sizes and colors (see
Fig. 8.2. for details about which vehicles are included in each dataset version).

For training and testing, the ego vehicle is equipped with an onboard RGB camera

112

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

that is oriented forward, capturing images with dimensions of 480 pixels in height and
650 pixels in width (480x650).

The image that the deep learning model processes contains a significant amount of
information, but from that frontal image of the urban scenario, not all the content is rel-
evant. We crop the image to reduce its complexity. By cropping the image to exclude
elements such as the sky and buildings, which are not needed for generating control com-
mands in this simplified context, unnecessary data is effectively removed. In addition to
the cropping, the image is compressed. As a result, the input images are reduced to a size
of 66 pixels in height and 200 in width, representing only about 4% of the original image
size. This pre-processing optimizes the data and reduces the dataset size facilitating faster
training.

8.2.2. Baseline model and its modifications

The two models proposed for this project are variations of the baseline PilotNet model
[159] (see Fig. 8.3. for details about each architecture), built using the Tensorflow [120]
framework. The baseline PilotNet network consists of 9 layers which include a batch
normalization layer, 5 convolutional layers, and 3 fully connected layers. The first part of
the model is responsible for extracting features from the input visual data and the latter
part generates the final control commands from that extracted features.

We introduce enhancements to the baseline model, which are specific to the current
project. The primary motivation behind these modifications is to investigate whether a
shallow, established model can significantly broaden its applicability through minor en-
hancements.

In the first variant, called PilotNet*, an extra output is added alongside the steering
command. This new output generates control signals for the throttle and brake. The ar-
chitecture also includes regularization techniques, specifically batch normalization and
dropout layers [253] with a 0.1 rate. The batch normalization layers were already pro-
posed in the original PilotNet work while the dropout layers are inserted between the
final dense layers of the PilotNet* model to make it more suitable for supervised data
and prevent overfitting. The dropout rate is determined through experimental validation.
Increasing it further has been found to yield catastrophic results. The objective behind
the development of this model lies in determining whether a unified architecture can ef-
fectively handle multiple outputs of varied natures, such as throttle, steering, and brake,
thereby significantly enhancing the overall behavior of the model.

In the second model, called PilotNet**, we build upon the PilotNet* model by includ-
ing the vehicle’s velocity for each time step. This velocity is added to the input alongside
the image, resulting in a final input image of shape (66, 200, 4). The extra channel is
uniformly filled with the normalized speed, scaled between 0 and 1. In real cars, this
speed may be taken from an onboard speedometer. The rationale behind this addition is

113

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Input planes
3@66x200

BatchNormalization

Conv2D (24)

Conv2D (36)

Conv2D (48)

Conv2D (64)

Conv2D (64)

Flatten

50 Fully connected

10 Fully connected

Steer

5x5 kernel

5x5 kernel

5x5 kernel

3x3 kernel

3x3 kernel

PilotNet

1164 Fully connected

100 Fully connected

Input planes
3@66x200

BatchNormalization

Conv2D (24)

Conv2D (36)

Conv2D (48)

Conv2D (64)

Conv2D (64)

Flatten

50

10

Steer and
Throttle + brake

5x5 kernel

5x5 kernel

5x5 kernel

3x3 kernel

3x3 kernel

PilotNet*

1164 Fully connected + dropout

100 Fully connected + dropout

Fully connected + dropout

Fully connected + dropout

Input planes
4@66x200

BatchNormalization

Conv2D (24)

Conv2D (36)

Conv2D (48)

Conv2D (64)

Conv2D (64)

Flatten

50

10

5x5 kernel

5x5 kernel

5x5 kernel

3x3 kernel

3x3 kernel

PilotNet**

1164

100

Steer and
Throttle + brake

Fully connected + dropout

Fully connected + dropout

Fully connected + dropout

Fully connected + dropout

Figure 8.3: PilotNet baseline model and its variations PilotNet* and PilotNet**. In red,
introduced changes are highlighted.

to ascertain whether a model equipped with knowledge of its speed outperforms a model
lacking such information and to examine its impact on the system’s performance in the
presence of other vehicles in the scenario. In Fig. 8.3. details about each architecture are
displayed, showing their differences.

8.2.3. Training procedure

During the training procedure of each of the models, we introduce a dataset pre-processing
stage. In this stage, the data is transformed and prepared for training, including regular-
ization techniques such as data augmentation. We also include early stopping as a regu-
larization technique. In this case, we include data augmentation techniques for adjusting
brightness and contrast, modifying the image colors such as hue, saturation, and value
components, adding blur, and simulating various weather conditions like rain, snow, fog,
sun flare, and shadows. All these techniques are common in data augmentation frame-
works, like Albumentations [176] which is the one used here.

The generated dataset is imbalanced, including a lot of straight-lane samples where
the steering is not relevant. This situation is common in autonomous driving and some
techniques have been already presented to address this issue, like Dagger [174]. To over-

114

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Table 8.1: Offline evaluation measures of the model’s performance.

Model PilotNet* PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-1 Traffic-6

MAE 0.04685 0.04121 0.03842
MSE 0.01138 0.00930 0.00706

come these situations, we introduce oversampling of turn situations and generate more
data for particularly relevant urban areas, such as curves. By doing so, the dataset is more
balanced.

For training, the hardware used includes an Nvidia 3060 GTX GPU. This hardware is
the same used in the experimental validation of the presented models.

Table 8.1 presents the mean squared error (MSE) and the mean absolute error (MAE)
of the three proposed models. The loss function used for training is MSE. While these
metrics offer insight into how the models have been trained and their capabilities, they do
not suffice to draw a definitive conclusion regarding the overall performance and gener-
alization capabilities of each model in a robotics closed-loop problem such as this one.
To further expand the scope of assessment, the use of online evaluation metrics is cru-
cial. Behavior Metrics [238] assists in this endeavor by examining in detail the behavior
of each model in real-time scenarios and providing detailed insights into their respective
performance and adaptability.

To gain a better understanding of PilotNet**’s behavior and to effectively spot any
unusual behaviors, we utilize activation heat maps, a technique explored in prior stud-
ies [147]. This visualization method allows for an understanding of where the neural
network places its attention, providing useful insights into the decision-making process.
In this case, we obtained the activation heat map using the Grad-CAM [254] algorithm
for PilotNet** trained with Traffic-6. Fig. 8.4. visually represents the more relevant parts
detected by the activations of the last convolutional layer of the network. PilotNet**
recognizes the lane markings and edges and highlights the wheels of the front car. The at-
tention placed on the wheels is a result of training with diverse vehicles, enabling effective
generalization and reducing the risk of collisions with any on-road vehicle.

8.3. Experiments

In this section, we conduct an experimental validation of the two models: PilotNet* and
PilotNet** for the task of follow-lane in traffic situations. These experiments provide
relevant results about each model behavior in three different conditions: the first two fo-
cused on typical executions without and with traffic, and the third one testing the models’
generalization capabilities for obstacle avoidance with a varied set of vehicles.

115

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Raw input Heat map

Figure 8.4: Activation heat map visualization from the last CNN layer of PilotNet**
model.

For these experiments, we have used the CARLA simulator and Behavior Metrics
evaluation tool running at 10Hz. The hardware used for the experiments includes an
Nvidia 3060 GTX GPU. The evaluation takes place in Town02 where the training data
was collected; and in Town01, which was never used to train the model. We provide both
scenarios to showcase the differences between a circuit already employed in the dataset
generation and a never-seen scenario. For each experiment, models are trained with a
particular version of the dataset, also showcasing their differences.

The car starts from a fixed position in the urban scenario, driving clockwise and anti-
clockwise. These starting points form a closed loop route, so the vehicle can complete a
lap reaching the starting point again after some time.

We omit a comparison with prior baseline methods as our research question specifi-
cally focuses on whether a shallow visual-based end-to-end deep learning model, utiliz-
ing imitation learning, can autonomously navigate without colliding with other vehicles.
While existing state-of-the-art models are designed for a broader range of tasks, they of-
ten incorporate more sensors, deeper and more complex architectures, and utilize large
datasets. The contribution presented in Chapter 7 underscores the significance of small
and efficient deep learning networks for autonomous driving, networks suitable for de-
ployment across various devices with differing hardware capabilities and we prioritize the
simplicity of our models.

116

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Table 8.2: Metrics for two different towns and models in free-road conditions. Success
rate: the higher the better; the rest: the lower the better.

Town01 Town02
Model PilotNet* PilotNet** PilotNet** PilotNet* PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-1 Traffic-6 Traffic-1 Traffic-1 Traffic-6
Success Rate (%) 100 100 100 100 100 100
MPD 0.33 0.3 0.19 0.84 0.49 0.32
Lane Invasions 14.884 10.02 4.75 26.56 15.4 3.42

8.3.1. Typical execution without traffic

In this experiment, the model underwent three clockwise laps and three anticlockwise
laps, traversing designated routes within each town.

This experiment tests the follow-lane capacities of the models. Specifically, we con-
sider two models to see if they can still effectively follow the lane in the absence of
oncoming cars. The PilotNet* model trained with the Traffic-1 version of the dataset and
the PilotNet** model trained with the Traffic-1 and Traffic-6 versions of the dataset. The
results for these experiments are provided in Table 8.2, including the evaluation metrics
presented in the previous section. All three models drive successfully keeping the lane
without any missed attempts, but we can already see some differences. We can see that
PilotNet** trained with Traffic-6 and Traffic-1 is better in terms of mean position devi-
ation and lane invasions number than PilotNet*. This fact proves that adding speed is
valuable even in the simplest task of following the lane without traffic. Furthermore, for
the PilotNet**, training with a diverse dataset like Traffic-6, compared to Traffic-1, can
improve the vehicle’s perception of its surroundings in the town and reduce the possibility
of confusing certain urban sections with front vehicles, making its driving more confident
and smooth.

8.3.2. Typical execution with traffic

In this experiment, we test the models in a more difficult situation, with one front vehicle
to understand the implications of this new scenario. The typical execution with traffic
consisted of a total of 12 runs, with the same settings as without traffic. We evaluate the
model’s performance in a full lap simulation, specifically focusing on both lane-keeping
and obstacle avoidance. The additional vehicle moves independently around the scenario,
always preceding the ego vehicle, and it will drive slowly to disturb the ego vehicle as
much as possible. Although the ego vehicle ignores traffic lights and signals, the addi-
tional front vehicle considers traffic lights and follows their indications. As in the previous
experiment, the models are trained with the Traffic-1 and Traffic-6 versions of the dataset.
The front vehicle used in the Traffic-1 dataset is the same as the one used for this par-
ticular experiment. In Table 8.3, the results are shown. We can see a clear difference

117

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Table 8.3: Metrics for two different towns and models in in-traffic conditions

Town01 Town02
Model PilotNet* PilotNet** PilotNet** PilotNet* PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-1 Traffic-6 Traffic-1 Traffic-1 Traffic-6
Success Rate (%) 0 16 81 0 83 100
MPD 43.12 18.07 0.26 50.57 1.97 0.32
Lane Invasions 28.87 25.84 6.54 69.65 21.15 1.48

now between PilotNet* and PilotNet** where the latter outperforms the former. This dif-
ference in performance dealing with other vehicles ahead is what makes the PilotNet**
a promising model to be trained with Traffic-6 to generalize to different types of front
vehicles and is more promising than PilotNet* which fails in many runs.

We observe that the Success rate is higher for PilotNet** trained with Traffic-6, com-
pleting each experiment in Town02 and the majority of the experiments in Town01, which
is the actual test scenario. On the contrary, PilotNet* results are abruptly worse, without
any successful experiment. These results show that PilotNet* always collides with the
front vehicle at some point in the experiment. The results for the rest of the evaluated
metrics follow a similar pattern. Looking at MPD, we can see that PilotNet** generates
great results, so we can consider that it can follow the lane correctly while keeping a low
number of lane invasions.

Comparing both PilotNet** models trained with different datasets, we observe that
the version trained with Traffic-6 outperforms the one trained with Traffic-1. This is
evidenced by its more robust understanding of the environment, effectively distinguishing
between front vehicles and structures such as buildings. The discrepancy in performance
between Town02 and Town01 may stem from its inability to isolate the front vehicle from
the urban background

This experiment, not only highlights the importance of having a much more varied
dataset so that the model can drive with other vehicles in never-before-seen towns but
also proves the importance of adding the speed to the model architecture for optimal per-
formance in traffic situations. The rationale behind this approach is that by incorporating
the speed into the model, the ego vehicle can enhance its control over its speed with
greater precision compared to scenarios where this information is not considered. This
level of control allows the ego vehicle to swiftly respond to nearby vehicles by reducing
its speed when necessary, contributing to overall safety and smoother driving behavior.

In contrast, PilotNet* does not consider the speed of the ego vehicle during the ex-
periment. It generates control decisions solely based on instantaneous visual data, which
poses challenges in adjusting its velocity. The visual input appears to be deficient in crit-
ical information when encountering another vehicle, as the ego vehicle lacks crucial data
regarding its state and current speed.

118

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Table 8.4: Metrics for the distance to the front vehicle.

Town01
Model PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-6
Dangerous distance 6% 2%
Short distance 25% 16%
Medium distance 27% 30%
Great distance 42% 52%
Success rate 16% 86%

8.3.3. Generalization for different front vehicles

In the final experiment, we test the generalization capabilities of the models to never-seen
front vehicles. For this experiment, we discarded the PilotNet* model because of its poor
performance in the previous experiment. Instead, we use the PilotNet** trained for the
second experiment with the Traffic-1 dataset, and we compare it to a fine-tuned version
of PilotNet** trained with the Traffic-6 dataset.

To assess the generalization capabilities, it was unnecessary to conduct full-lap trials.
Instead, we tested the ego vehicle with a series of vehicles in front, which moved at a
significantly slow pace, stopping at red traffic lights and resuming driving when the lights
turned green.

In this experiment, a total of 12 distinct vehicles were employed, comprising 8 novel
vehicles unseen during the training phase, and 4 vehicles previously encountered in the
training dataset (see Fig. 8.5 for details of used vehicles). We conducted tests with each
leading vehicle traversing the same route in both clockwise and anticlockwise directions.
Finally, we carried out this experiment three times to ensure the results were reliable. This
gave us a total of 72 runs for each model concluding with a total of 144 runs. Each run
gave us two types of metrics: Success rate and Distance to the front car. The dangerous
distance should be avoided as it is deemed unacceptable in real-world scenarios which
we consider unsafe. Complying with these distances is crucial for safe driving in real
traffic. The Success rate metric measures cases where the ego vehicle encounters the front
vehicle without any collisions, indicating the ego vehicle’s ability to detect and respond
to obstacles in its path.

Table 8.4 presents the ratio of the ego vehicle’s distance behind the front car for a
one-kilometer distance, allowing us to assess the behavior of the ego vehicle. It may
be observed that the PilotNet** trained with Traffic-6 does a better job than PilotNet**
trained with Traffic-1 by spending less time at dangerous distances from the front car.

Additionally, we can analyze how the vehicle transitions from a far distance to a close
distance by examining the values in Table 8.4. The PilotNet** [255] trained with Traffic-6
exhibits a progressive descent of the speed from greater distances to closer ones, spending

119

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

Table 8.5: Success rate metric for each of the 12 vehicles.

Town01
Model PilotNet** PilotNet**
Training dataset Traffic-1 Traffic-6
vehicle.mini.cooper_s 50% 83%
vehicle.volkswagen.t2 0% 100%
vehicle.micro.microlino 50% 100%
vehicle.carlamotors.carlacola 0% 100%
vehicle.jeep.wrangler_rubicon 0% 100%
vehicle.citroen.c3 17% 100%
vehicle.toyota.prius 0% 83%
vehicle.dodge.charger_police 33% 83%
vehicle.kawasaki.ninja 0% 100%
vehicle.diamondback.century 0% 50%
vehicle.ford.ambulance 50% 66%
vehicle.carlamotors.firetruck 0% 66%

more time the farther it is from the front car and reducing its distance as it approaches,
which leads to the expected stopping behavior. On the other hand, the PilotNet** trained
with Traffic-1 shows almost the same amount of time spent on medium and short dis-
tances. It lacks progressive advancement and struggles when confronted with an obstacle
ahead.

Table 8.4 also shows the Success rate of each PilotNet** and the better generalization
capacities from the PilotNet** trained with Traffic-6 compared to the PilotNet** trained
with Traffic-1.

The fact that this performance is retrieved from Town01 proves that the models can
generalize to other never-seen scenarios. Again, we have also proved the importance of
adding speed to the architecture for a better understanding of the world that the vehicles
use for making their control decisions.

PilotNet** trained with Traffic-6 dataset demonstrates its capabilities in lane-keeping
and adaptive behavior when encountering vehicles of different shapes and colors. The ex-
perimental evaluation shows that it demonstrates an ability to understand its surroundings
and has proven its effectiveness in maintaining appropriate distances and avoiding colli-
sions with various vehicles, such as other cars and motorcycles, including vehicles that
the model has never seen before in training (displayed on the last 8 rows of Table 8.5).
The reasoning behind this result is that, due to exposure to a wider range of vehicles, the
model trained with Traffic-6 demonstrates improved generalization capabilities, as it gains
a deeper understanding of the concept of a vehicle and develops more optimal strategies
when encountering them.

However, there are also some limitations when faced with previously unseen road

120

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

vehicle.mini.cooper_s vehicle.volkswagen.t2 vehicle.carlamotors.carlacola

vehicle.jeep.wrangler_rubicon

vehicle.micro.microlino

vehicle.citroen.c3 vehicle.toyota.prius vehicle.dodge.charger_police

vehicle.kawasaki.ninja vehicle.diamondback.century vehicle.ford.ambulance vehicle.carlamotors.firetruck

Figure 8.5: Detail of vehicles used for experimental validation.

users, such as cyclists, ambulances, and firetrucks (see Fig. 8.5.). The Success rate for
each front vehicle, as displayed in Table 8.5, not only highlights the overall superiority of
the PilotNet** trained with Traffic-6 compared to Traffic-1, as indicated in Table 8.4 but
also underscores its mentioned limitations. Particularly noticeable are the lower Success
rates associated with the Diamondback Century (bicycle), ambulance, and firetruck.

Due to its reliance on the visual cues provided by the wheels of the leading vehicle,
as outlined in Fig. 8.4, the ego vehicle encounters difficulty in accurately determining
whether to stop or proceed when confronted with a cyclist ahead. This challenge arises
from the narrower tires typically found on bicycles compared to those of conventional
road vehicles.

The challenge posed by ambulance and firetruck detection, as depicted in the last
two images of Fig. 8.5, arises from the partial concealment of their wheels from the ego
vehicle’s perspective. This ambiguity complicates the model’s capacity to consistently
distinguish between car tires and other objects, although it occasionally manages to stop
for such vehicles.

8.4. Conclusions

In this contribution, we present a proposal for safe autonomous driving in traffic scenarios
following an end-to-end vision-based approach with imitation learning and deep learn-

121

CHAPTER 8. END-TO-END VISION-BASED AUTONOMOUS DRIVING IN
TRAFFIC

ing. We have generated a new supervised dataset with many examples of the onboard
camera images and the corresponding control commands recorded from the expert agent
demonstrations in free-road or in-traffic conditions within the CARLA simulator.

We have developed and described two deep learning models based on PilotNet, adding
in PilotNet* new dropout layers and outputs for controlling throttle, and brake, in addition
to the previous steering option and also including in PilotNet** the speed as input.

These shallow networks slightly modified from the baseline have been trained using
this supervised dataset using data augmentation and balancing the raw dataset. They have
been experimentally evaluated and validated, Beyond low values of the loss function in the
test dataset, the system has been validated online with the state-of-the-art Carla simulator,
in several Towns, using objective, holistic, and quantitative metrics from the Behavior
Metrics tool. For instance: mean position deviation from lane center, lane invasions, and
distance to the front vehicle.

The experimental results show that the PilotNet** model, when trained with the Traffic-
6 dataset, successfully drives the var in traffic conditions without sacrificing performance
in free-road conditions. It also keeps safety distance from the oncoming cars and even
properly generalizes to several types of front vehicles, including vehicles never seen be-
fore in the training stage. These results are observed with PilotNet** model proving that
those model modifications, despite being slight and applied to an apparent simple model,
are good contributions and enough to achieve the new desired ’drive in traffic’ capability
beyond the basic lane-following behavior.

122

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

Chapter 9

Conclusions and future research

In this chapter, we review the initial research goals and contributions outlined in Chapter 1
and subsequently offer the principal conclusions derived from this thesis. Furthermore,
we delineate potential avenues for future research within the field.

9.1. Conclusions

In this thesis, we have proposed several research goals in autonomous driving and traffic
monitoring. We have addressed them and made several contributions to these fields. We
started with a comprehensive literature review of the different fields involved in computer
vision, robotics, and artificial intelligence. Particularly, we have reviewed state-of-the-
art literature for object detection solutions based on deep learning and traffic monitoring
solutions. After that, we have reviewed the latest ideas inside the autonomous driving
field and specially the end-to-end approach for generating solutions. This has included a
review of the possibilities of the addition of memory to the system or other types of inputs
like the speed. Also, works regarding imitation learning, which is the primary training
technique used for deep learning models development have been reviewed. After that, we
explored the assessment of autonomous driving solutions in simulation and understood
the importance of the fine-grained metrics in addition to the baseline ones provided by the
simulator or even other leaderboards. Finally, we have explored the optimization of deep
learning models for autonomous driving, where we have presented the set of available
state-of-the-art techniques and the implications of their use.

Following the literature review, we have presented our first contribution, TrafficSen-
sor, in Chapter 3. This system is a solution for vehicle monitoring using deep learning.
The system is capable of recognizing seven different classes. To address this goal, a new
dataset was developed, and four different deep learning object detection models were eval-
uated. The system proved robust against different visual conditions and possible image
disturbances. From the comparison of models, YOLOv4 outperformed the rest and was
selected as the backbone for the construction of the monitoring application presented.

123

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

With the insights extracted from this research contribution, we elucidated some pivotal
concepts that lay the foundation for the rest of the research contributions. We discerned
that the robustness provided by deep learning solutions helps in the perception within the
domain of road traffic. Additionally, we also understood the importance of the assessment
of deep learning solutions efficiently.

Addressing these questions, we presented Detection Metrics, an original contribution
of this thesis. This open-source software is targeted toward the massive and unattended
automatic assessment of deep learning visual object detection models. This contribution
was used for the previous TrafficSensor validation and it was also validated in another
experiment. This software presented two main workflows for working with object detec-
tion models and large visual datasets. One of the most relevant contributions is found in
the headless evaluation, which evaluates automatically several models independently for
a batch of visual datasets, generating object metrics that help in the research process. We
proved experimentally that this software application is useful in both traffic monitoring
scenarios and perception modules inside an autonomous driving system.

Continuing with the development of the research and the lessons learned from these
previous contributions, we introduced Behavior Metrics, an open source tool for the on-
line assessment of autonomous driving systems. This tool is based on the importance
of generating fine grained evaluation metrics for autonomous driving tasks to help re-
searchers and practitioners evolve their solutions. It supports different autonomous driv-
ing tasks that include lane following, driving in traffic, and point-to-point navigation, with
their particular evaluation metrics. It is designed to be easily extended with more tasks.
This solution complements the simulator-provided metrics, offering two pipelines (head-
less and GUI mode) facilitating the experimental validation of solutions. This software
tool was used for the following presented contributions.

We continued exploring and contributing to the autonomous driving field. We pre-
sented four different architectures and a variation of each of them for end-to-end au-
tonomous driving based on vision and imitation learning. Beyond achieving the basic
visual follow lane application using imitation learning, the study explored the implica-
tions of the addition of visual memory and kinematic data to some apparently simple
deep learning architectures and exploring how these changes impacted on their behavior
for a lane following scenario. This study included ablation studies and exploration of ex-
treme situations to get more details about the areas where these new models were more
interesting. The study proved that the kinematic input data is key for the system’s inner
understanding of the world and to regulate itself in terms of speed. The addition of vi-
sual memory and kinematic data also proved interesting results in extreme situations like
controlling the vehicle at extreme speeds where the input data was corrupted.

Continuing the exploration of end-to-end autonomous driving systems, we then stud-
ied the possibilities that optimization of neural models adds to the performance of these
models and how they affect the final behavior. These models proved experimentally that

124

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

optimizations improve the final system performance thanks to the speed-up in controller
iteration frequency without losing quality on the control decisions. The study included
the available optimization techniques available at the most common deep learning de-
velopment frameworks, PyTorch and TensorFlow, along with hardware-level optimiza-
tion provided using TensorRT. These models proved to be faster and smaller in size, en-
abling its use on a broader range of hardware setups. This was one of the main concerns
that motivated this study, since many deep learning model solutions are typically much
hardware-intensive and require hardware that is very expensive or even the system has to
be deployed on smaller-capabilities hardware (edge devices).

In the last chapter and based on the previous contributions, we presented a proposal
for safe autonomous driving in traffic scenarios following an end-to-end vision-based ap-
proach with imitation learning and deep learning. For this contribution, we generated a
new dataset from an expert agent driving in free-road and in traffic conditions using the
CARLA simulator. Based on the ideas learned from previous contributions, we developed
a deep learning model capable of driving in traffic situations. The autonomous vehicle
adjusts its velocity according to preceding vehicles, halts when they do, and resumes mo-
tion upon their restart. This model, despite its simplicity and slight modification from its
baseline form, was able to drive autonomously meeting the high safety standards even in
traffic. These traffic included different types of vehicles with different visual appearance
and morphologies, proving that simple models with small modifications can broaden their
area of applicability significantly. Simplicity in this case is also a key factor and some-
thing that we seek. The end-to-end model has amplified its area of application along the
thesis while maintaining a simplicity focus.

9.2. Results summary

In this section, we summarize the key findings and contributions extracted from this thesis
linking them with the research goals outlined in Chapter 1.

• [RG1] Study the state of the art of autonomous driving systems, focused on
end-to-end systems and related fields: we conducted a detailed and informed lit-
erature review in Chapter 2. This literature review included a general exploration of
computer vision and object detection techniques based on deep learning. Then, a re-
view of autonomous driving solutions and the most advanced ones for addressing it
using end-to-end approach. After that, the tools for the development of autonomous
driving systems were explored, including the assessment of solutions, simulators,
datasets, and benchmarks. Finally, we explored in detail state-of-the-art of opti-
mization of deep learning models and the most useful techniques.

• [RG2] Generation of a traffic monitoring tool based on object detection: Traf-
ficSensor application was developed and presented for monitoring vehicles in the
real-world based on computer vision with commodity hardware. A combination of

125

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

object detection and tracking was proposed and validated experimentally using the
state-of-the-art model YOLOv4 to generate the system. The validation was con-
ducted extensively using Detection Metrics, which constitutes another contribution
of the thesis. This system was presented in Chapter 3.

• [RG3] Generation of an open-source object detection assessment software to
validate solutions and advance research: in Chapter 4, we presented Detection
Metrics. This is another point that we had as a research goal and that has been
successfully addressed. We generated an open-source software tool for assessing
object detection solutions effectively and unattended. With this tool, a researcher
could compare easily different models of a set of diverse object detection datasets
and generate reporting data to help discriminate between solutions.

• [RG4] Generation of an open-source autonomous driving assessment software
to conduct the experiments and generate quantitative data about the behavior
of the autonomous driving solutions: we successfully completed this task creating
the software tool Behavior Metrics. This tool was presented in detail in Chapter 5,
and constitutes one of the contributions of this thesis. It is capable of assessing
different autonomous driving solutions for a diverse set of tasks that include lane
following, driving in traffic, and point-to-point navigation. The fine-grained metrics
help the researcher in the validation of autonomous driving solutions, complement-
ing the simulators’ metrics.

• [RG5] Generate end-to-end autonomous driving agents for visual lane fol-
lowing that enhance their behavior based on the addition of visual memory
and kinematic input to visual deep learning imitation learning models: we
explored and presented different architectures and variations for end-to-end au-
tonomous driving based on vision and imitation learning. In this research, we
explored different possibilities for adding memory capabilities to the architectures
and also explored the addition of kinematic data as input. This study explored how
these complements on a fairly shallow model affected the system performance and
how they could amplify the capabilities in a lane following application. An abla-
tion study supported this study and we also explored extreme situations, proving
that the addition of memory capabilities and kinematic data caused the model to
amplify its scope of applicability and improved its general behavior. This research
was presented in Chapter 6

• [RG6] Development and study of optimized end-to-end autonomous driving
control models which improved their performance with the latest deep learn-
ing optimization techniques: this research goal was addressed in Chapter 7, where
we explored the possibilities that the optimization of deep learning models could
add to the final development of autonomous driving solutions. With this in-depth
study, we generated optimized models exploring the most used optimization tech-
niques available at deep learning frameworks and even exploring hardware-specific

126

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

optimization techniques with TensorRT. The generated models proved to be faster
and smaller while maintaining great decision quality.

• [RG7] Enhancement of shallow models for end-to-end autonomous driving
control including traffic situations with other vehicles in the same road: the
last research goal was explored in detail in Chapter 8. The goal included the addi-
tion of traffic to the simulated scenario and the study of the enhancement of fairly
shallow models to make them capable of addressing this task considering different
types of vehicles. We successfully achieved this research goal with a model capa-
ble of driving in traffic situations while maintaining a safe distance from preceding
vehicles.

9.3. Research contributions

Some of the results presented in this thesis have been published and shared with the
scientific community through collaborative papers with other researchers:

Journal and conference papers:

• S. Paniego, R. Calvo-Palomino, and J. Cañas, "Behavior Metrics: An Open-Source
Assessment Tool for Autonomous Driving Tasks," Software X, vol. 26, pp. 101702,
2024 doi: 10.1016/j.softx.2024.101702. [Online].
Available: https://doi.org/10.1016/j.softx.2024.101702 [239]

• S. Paniego, N. Paliwal, and J. Cañas, “Model optimization in deep learning based
robot control for autonomous driving,” IEEE Robotics and Automation Letters and
IEEE International Conference on Robotics and Automation (ICRA), vol. 9, no.
1, pp. 715–722, 2024. doi: 10.1109/LRA.2023.3336244. [Online]. Available:
https://doi.org/10.1109/LRA.2023.3336244 [244]

• S. Paniego, V. Sharma, and J. M. Cañas, “Open source assessment of deep learning
visual object detection,” Sensors, vol. 22, no. 12, 2022. doi: 10.3390/s22124575.
[Online]. Available: https://www.mdpi.com/1424-8220/22/12/4575 [234]

• J. Fernández, J. M. Cañas, V. Fernández, and S. Paniego, “Robust real-time traf-
fic surveillance with deep learning,” Computational Intelligence and Neuroscience,
vol. 2021, p. 4 632 353, Dec. 2021. doi: 10.1155/2021/4632353. [Online]. Avail-
able: https://doi.org/10.1155/2021/4632353 [224]

Manuscripts Under Peer-Review: (visited in March 2024):

• Enhancing End-to-End Control in Autonomous Driving through Kinematic-Infused
and Visual Memory Imitation Learning. Sergio Paniego, Roberto Calvo-Palomino,
and José María Cañas

127

https://doi.org/10.1016/j.softx.2024.101702
https://doi.org/10.1016/j.softx.2024.101702
https://doi.org/10.1109/LRA.2023.3336244
https://doi.org/10.1109/LRA.2023.3336244
https://www.mdpi.com/1424-8220/22/12/4575
https://www.mdpi.com/1424-8220/22/12/4575
https://doi.org/10.1155/2021/4632353
https://doi.org/10.1155/2021/4632353

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

• Autonomous Driving in Traffic with End-to-End Vision-based Deep Learning.
Sergio Paniego, Enrique Sinohara, and José María Cañas

Preprints:

• S. P. Blanco, S. Mahna, U. A. Mishra, and J. Canas, Memory based neural networks
for end-to-end autonomous driving, 2022. arXiv: 2205.12124 [cs.RO]. [256]

I have also engaged in additional research endeavors, although they do not contribute
to this thesis:

Workshop papers:

• P. F. de Cabo, R. Lucas, I. Arranz, S. Paniego, and J. M. Cañas, “RL-studio:
A tool for reinforcement learning methods in robotics,” in ROBOT2022: Fifth
Iberian Robotics Conference, Springer International Publishing, Nov. 2022, pp.
502–513.doi: 10.1007/978-3-031-21062-4_41. [Online]. Available: https://
doi.org/10.1007%2F978-3-031-21062-4_41. [257]

9.4. Future work

The presented thesis opens several avenues for future exploration based on the contribu-
tions described in this document. In this section, we will explore some of the possible
future works that we would like to continue exploring.

9.4.1. Point-to-point end-to-end navigation using input commands

We have described and generated contributions of end-to-end autonomous driving models
capable of driving following the lane autonomously and considering traffic in the scenario.
Following this idea and extending it, we would like to work on the addition of further ca-
pabilities to the system while maintaining its simplicity. In this case, we would like to
add the ability to understand input commands that indicate the action to be done in the
following intersection or desired exit [172]. This action can be extracted from a set of
fixed commands that the model receives and adapts its behavior based on them. These
commands can be one of continue straight, turn to the left, turn to the right, and follow
the lane. Follow lane is used for following continuously the lane in situations where in-
tersections are not present and continue straight when an intersection is near. The model
would continuously receive one of them based on the current situation and adapt. We
have already explored this idea as part of a Google Summer of Code project developed in
the summer of 2023 [245] generating a shallow model 12 with an image, ground-truth seg-
mentation, and other measurements as input and with the controls as outputs (see Fig. 9.1

12https://www.youtube.com/watch?v=PsmpY6ZeT4I&ab_channel=JdeRobot

128

https://doi.org/10.1007%2F978-3-031-21062-4_41
https://doi.org/10.1007%2F978-3-031-21062-4_41
https://doi.org/10.1007%2F978-3-031-21062-4_41
https://www.youtube.com/watch?v=PsmpY6ZeT4I&ab_channel=JdeRobot

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

Figure 9.1: Architecture developed for point-to-point end-to-end navigation.

for a detail of the architecture). We continue developing the system considering other
previous works that are current state-of-the-art that only use one camera as input [163],
following the case of our development.

9.4.2. Transferring current end-to-end solutions to a real-world vehicle

The contributions presented in this thesis are developed in simulated environments. While
we understand the importance and validity of such contributions, we would like to further
develop and validate the current ideas in real-world scenarios. We would like to transfer
the knowledge and contributions of the end-to-end model from simulation (see Fig. 9.2 for
an example of the simulation with the vehicle) to a real vehicle (see Fig. 9.3) following
the same philosophy of starting from a simple problem like a lane following scenario
and then adding complexity to the environment.The end-to-end approach has experienced
rapid growth in research and industry [26], as we have proved in this PhD thesis with
several contributions so we would like to continue with this line transferring the extracted
knowledge to a real-world vehicle. For this purpose, we are currently collaborating with
the Autonomous Mobility and Perception Lab (AMPL) from Universidad Carlos III de
Madrid. In this project, we are exploring the challenges and possibilities of developing
end-to-end imitation learning models for autonomously driving in real-world scenarios
with real 1:1 vehicles [258] [259].

129

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

Figure 9.2: Simulation vehicle used for validating the solutions.

9.4.3. End-to-end autonomous vehicle driving modulated with text-based instruc-
tions

In recent years, a lot of impactful research projects related to natural language processing
(NLP) and Large Language Models (LLMs) have been released. The revolution started
with the introduction of Transformers [260] and from them, many LLMs have been devel-
oped like BERT [261], GPT-3 [262], Llama 2 [263] or Mistral 7B [264]. These models
base their functionality on text data. We understand the importance of text as an input
source for the modulation of end-to-end autonomous driving model and would like to ex-
plore it in a subsequent future project. Several publications have already developed this
idea like LMDrive [265], GPT-4V Takes the Wheel [266], LLM-Driver [267], or Lin-
goQA [268]. The core idea consists of an end-to-end model that is capable of driving in
an urban scenario and uses the user text inputs as a source for adapting its behavior. This
idea is related to the commands of the previously presented (see Subsection 9.4.1) but for
this one, we would like to even explore further the field and generate a system with deeper
adaptation. This idea seems like a natural step in the development of a fully autonomous
driving system that can be deployed in the streets and is close to what would be a common
interaction of a taxi user with the taxi driver. While using a taxi, we usually command the
driver directly speaking so it seems a natural direction of research exploration. Ideally,
this future system should include speech recognition and natural language processing to
understand the instructions and then modulate the driving system.We may leverage mod-
els like BERT [261] for understanding the natural language command and translate it to
a fixed set of commands following the previously presented idea (see Subsection 9.4.1).
After that step is completed, we may even consider more advanced models like Llama2,
or Mistral. This project is expected to be addressed as part of Google Summer of Code

130

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

Figure 9.3: Real-world vehicle used for transferring the solutions.

2024 13.

9.4.4. Exploration of end-to-end autonomous driving in aerial vehicles

Another line that we would like to explore after concluding this thesis is the usage of
other types of autonomous vehicles that are controlled with the same end-to-end ap-
proach developed throughout this document. In this case, our target is aerial vehicles
(e.g. drones). The idea of using an end-to-end system for driving drones has already been
explored [269] [270]. We are currently exploring it in a bachelor thesis 14. Our goal would
be to translate our current end-to-end solutions to aerial vehicles and use the knowledge
extracted during this PhD thesis for making a smooth adaptation to drones. These aerial
vehicles have more degrees of freedom in comparison to ground vehicles and they have
high-speed dynamics that are a challenge for developing a successful application

9.4.5. Exploration of end-to-end autonomous driving in unstructured environments

The current developments focus on urban highways and road scenarios, generating re-
search that is useful in these particular conditions. For this future line, we would like

13https://jderobot.github.io/activities/gsoc/2024
14https://www.youtube.com/watch?v=jJ4Xdin1gg4&ab_channel=JdeRobot

131

https://jderobot.github.io/activities/gsoc/2024
https://www.youtube.com/watch?v=jJ4Xdin1gg4&ab_channel=JdeRobot

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

to explore the usage of end-to-end systems in unstructured environments like forests. In
those cases, the environmental complexity increased heavily and the solutions developed
here would need to be rethought. We would also focus on the perception in these partic-
ular scenarios. The terrains are uneven and the perception becomes more complex since
we have to consider vegetation (moss, leaves, forest...), different vehicles (caravan, truck,
motorcycle...), or constructions (fences, bridges, tunnels...) among others. Some datasets
for this approaches are already available like GOOSE [271] and Rellis 3D [272]We are
currently working on this line inside a project by Agencia Estatal de Investigación de
España ((GAIA) Gestión integral para la prevención, extinción y reforestación debido
a incendios forestales, Proyectos de I+D en líneas estratégicas en colaboración entre
organismos de investigación y difusión de conocimientos TRANSMISIONES 2023. Ref
PLEC2023-010303 (2024-2026)).

9.4.6. Exploration of reinforcement learning approaches for end-to-end autonomous
driving

The ideas presented in this thesis for building autonomous driving systems follow an
end-to-end imitation learning approach. For this future avenue, we would like to explore
reinforcement learning as a possible parallel path for also constructing autonomous driv-
ing systems and also combinations of reinforcement learning and deep learning, which
is usually referred as deep reinforcement learning (DRL). Pure deep learning approaches
exhibit some difficulties for autonomous driving in cases that are out of the data used
for training. When a vehicle finds a situation not present in the training data, resulting
in rapid performance degradation. To address this problem, the reinforcement learning
approach can help explore the situations that are not recorded in the dataset [181]. We
have already explored reinforcement learning in a previous contribution [257] in different
settings and we would like to explore it further by developing the autonomous driving
system and comparing its capabilities to the current end-to-end imitation learning model.
For instance, using Behavior Metrics for far evaluation, which already has functional-
ity for evaluating these types of approaches integrated. The development of end-to-end
autonomous driving systems based on reinforcement learning [179] or inverse reinforce-
ment learning [273] has already been explored previously, so we would build upon pre-
vious contributions. Again, the idea is to develop a solution, incrementally adding more
capabilities.

132

CHAPTER 10. RESUMEN EN CASTELLANO

Chapter 10

Resumen en castellano

El campo de la conducción autónoma busca generar vehículos que conduzcan de forma
segura sin intervención humana. Este campo combina, entre otros, la inteligencia artifi-
cial, la visión por computador y la robótica. Ha recibido mucha atención en los últimos
años, tanto en la academia como en la industria, y se prevé que esta tecnología tenga un
impacto amplio en la vida diaria en los próximos años [1]. El desarrollo de este campo
podría potencialmente generar beneficios en diferentes ámbitos, desde una mejora en la
seguridad en el tráfico como una movilidad optimizada tanto para los individuos como
para las mercancías. El desarrollo en este sector viene de diferentes ámbitos, por ejem-
plo de la inteligencia artificial, que en los últimos años ha experimentado un crecimiento
enorme. Este progreso ha sido posible gracias al acceso a unidades de procesamiento
gráfico (GPUs), la disponibilidad de conjuntos de datos de gran calidad y el desarrollo de
algoritmos de aprendizaje profundo. Muchos campos se han beneficiado de este progreso,
especialmente la robótica y la visión por computador.

La motivación principal de la adopción de la conducción autónoma es su potencial
para mitigar el problema prevalente de los accidentes de tráfico en las carreteras. Según
la NHTSA, el 94% de los accidentes de vehículos a motor fueron causados por error
humano, según un estudio conducido entre 2005 y 2007 [2]. Otro de los problemas im-
portantes es el número de accidentes de tráfico con heridos. Se estimaron 1.35 millones
de muertes en 2016 causadas por accidentes de tráfico, según la WHO [3].

Existen una gran variedad de razones para promover la investigación en conducción
autónoma. Podemos pensar en la reducción de estrés del conductor, la mejora de la pro-
ductividad o de la movilidad al liberar a los humanos de la actividad de conducir. Los
costes deberían reducirse al introducir la propiedad compartida de los vehículos como
una opción más. La monitorización de tráfico también puede ayudar a la hora de reducir
los accidentes de tráfico.

Algunos ejemplos actuales de compañías de conducción autónoma ya sugieren esa
mejora en la seguridad. Por ejemplo, Waymo ha presentado un estudio en el que prue-
ban que en 3.8 millones de millas conducidas (unos 6 millones de kilómetros), el Waymo

133

CHAPTER 10. RESUMEN EN CASTELLANO

Robótica

Visión por
computador

IA

Esta tesis
doctoral

Figure 10.1: Diagrama de Venn con los campos que son el núcleo de esta tesis.

Driver se vio envuelto en 0 reclamaciones por lesiones corporales, en comparación con
la base de los conductores humanos de 1.11 reclamaciones por millón de millas [4]. De
forma similar, la empresa Cruise publicó un informe [5] en el que afirman que sus vehícu-
los autónomos en San Francisco redujeron un 65% el número de colisiones en compara-
ción con los conductores humanos.

Esta tesis de doctorado está enmarcada en la robótica impulsada por la inteligencia
artificial con visión por computador, precisamente en el dominio de aplicación de la con-
ducción autónoma. Por ese motivo, las contribuciones que se presentan buscan avanzar
en este campo de investigación (ver Figura 10.1).

10.1. Introducción

En esta sección, proporcionamos un contexto sobre las ideas que son clave en esta tesis.

Conducción autónoma

El contexto sobre la conducción autónoma está dividido en diferentes temáticas que se
consideran relevantes para sentar la base sobre la que presentar las contribuciones de
investigación.

Los vehículos autónomos pueden considerarse robots móviles en cuanto al hardware
y software que incluyen. A nivel de hardware, un coche moderno incluye sensores (GPS,
LIDARs, IMUs, cámaras...) y actuadores avanzados (acelerador, volante, freno), como un
robot. También incluye unidades computacionales como CPUs y GPUs, esenciales para

134

CHAPTER 10. RESUMEN EN CASTELLANO

procesar los datos recolectados por los sensores.

Los niveles de autonomía de un vehículo autónomo se dividen en 6 categorías [7]
según el estándar SAE J3016, que van desde el nivel 0 en el que no hay ningún tipo de
automatización hasta el nivel 5, en el que el vehículo es completamente autónomo en
cualquier situación.

En el nivel 0, no existe automatización. En el nivel 1, el vehículo realiza una tarea
de forma autónoma como mucho en cada instante, como podría ser el control lateral o
longitudinal. En el nivel 2, la automatización es parcial, pudiendo realizar dos tareas de
forma autónoma simultáneamente. En el nivel 3, la automatización comienza a verse de
forma más marcada, con una conducción autónoma en una gran variedad de situaciones,
solamente requiriendo la intervención humana en casos extremos o cuando se detecta un
fallo. En el nivel 4, la intervención humana no es necesaria, siendo el vehículo totalmente
autónomo en ciertas zonas. En el nivel 5, el más avanzado, la automatización es total en
todas las condiciones.

A día de hoy existen soluciones que implementan soluciones de nivel 4, como com-
pañías tipo Waymo, Cruise o Wayve. Una de las soluciones más conocidas es la de los
servicios de taxi autónomo [8]. Se anticipa que estas tecnologías avanzarán más allá en
el futuro, extendiendo las capacidades y aplicación de los vehículos autónomos en los
próximos años [12].

Los primeros ejemplos de vehículos autónomos datan de los años 80, con el de NavLab
1 15 en 1986. A partir de ese primer desarrollo, muchos más ejemplos se han desarrol-
lado. Son destacables los ejemplos del DARPA Grand Challenge [14] y el DARPA Urban
Challenge, competiciones organizadas por DARPA y que fueron muy relevantes para el
avance del campo, siendo su primera edición en 2004. En paralelo con el desarrollo de la
conducción totalmente autónoma, también se han desarrollado los sistemas de asistencia
al conductor (ADAS). Estos sistemas aparecen en la década de 1970. En el año 2021,
la firma Canalys estimó que el 33% de los vehículos nuevos vendidos en los principales
mercados incluían este tipo de tecnologías [16].

Dentro del campo de la conducción autónoma, podemos encontrar una gran diversi-
dad de entornos de aplicación, cada uno de ellos teniendo sus aproximaciones particulares.
Una idea común para todas estas aplicaciones es que la seguridad es un requisito clave y
que los sistemas deben ser robustos ante una variedad enorme de tiempos atmosféricos,
condiciones lumínicas o de tráfico. Podemos encontrar escenarios urbanos, carreteras o
autovías, pero también escenarios no estructurados como bosques. En las contribuciones
presentadas, nos centramos en escenarios urbanos, carreteras y autovías, que son proba-
blemente los escenarios más comunes.

Otra idea a contemplar es la gran variedad de vehículos que existen y en las que las
soluciones deben funcionar. Aunque la gran mayoría de la investigación está enfocada a

15https://www.youtube.com/watch?v=ntIczNQKfjQ

135

https://www.youtube.com/watch?v=ntIczNQKfjQ

CHAPTER 10. RESUMEN EN CASTELLANO

coches, existen aplicaciones en otros vehículos como autobuses o camiones [17].

En robótica ya existen soluciones avanzadas y confiables para la navegación robótica
como Nav2 [18] que pueden ser utilizadas para generar una navegación entre puntos en
diferentes configuraciones y escenarios. Esto nos puede hacer pensar en la necesidad de
generar soluciones especializadas para conducción autónoma teniendo en cuenta que ya
existen soluciones de navegación. Aunque las soluciones para navegación en robótica
muestras capacidades muy destacables, pueden encontrar retos en entornos dinámicos
que se caractericen por los movimientos rápidos, como los escenarios de conducción
autónoma en la que se pueden encontrar vehículos robóticos conduciendo a velocidades
altas (120km/h) con otros vehículos e incluso humanos. En estos entornos, la habilidad
para responder de forma rápida de estos sistemas de navegación se puede ver compro-
metida, limitando su aplicación en conducción autónoma.

Evaluación y métricas

Dentro del campo del aprendizaje profundo, existen una gran variedad de tecnologías
enfocadas en la evolución de soluciones derivadas de la investigación. Este proceso es
fundamental para garantizar la robustez, eficacia y seguridad de las propuestas. Esta
idea aplica a todas las áreas dentro del aprendizaje profundo, incluyendo las ideas que
se presentan aquí con relación a la robótica, la visón por computador y la conducción
autónoma. En el contexto de esta tesis, nos centramos en la evaluación de soluciones
de visión por computador de detección de objetos y en la evaluación de soluciones de
extremo a extremo para la conducción autónoma.

Aproximaciones extremo a extremo y modulares

En el contexto del desarrollo de soluciones para la conducción autónoma, existen
dos aproximaciones principales: extremo a extremo y modular (ver Figura 10.2). La
mayoría de soluciones a día de hoy implementan una aproximación modular, que consiste
en una serie de módulos que se comunican entre ellos y que son especialistas en una
parte de la conducción en concreto (percepción, mapeo...). En el otro lado tenemos las
soluciones extremo a extremo, que desarrollan un sistema que transforma directamente
la entrada de datos cruda en salidas de control en un solo paso hacia delante. En esta
tesis, las contribuciones presentadas siguen la segunda aproximación, ya que buscamos la
simplicidad y la eficiencia a la hora de desarrollar una solución de conducción autónoma.

La primera aproximación es más propensa a propagar errores ya que un error en uno
de los módulos puede afectar negativamente al resto de los subsistemas y a su salida
final. Además estos sistemas son más complejos. Como ventaja, son más interpretables
y fáciles de depurar. En contraposición, los modelos extremo a extremo suelen ser más
simples y eficientes gracias a la combinación de tares en un mismo modelo. Además,
están optimizados para una tarea común en comparación con la aproximación modular.

Tareas en un sistema de conducción autónoma

Dentro de un sistema de conducción autónoma, existen una gran variedad de subtar-

136

CHAPTER 10. RESUMEN EN CASTELLANO

Localization

Perception Module X

Planning

Mapping

Module Y Planning

END-TO-END

Decision-making

Perception

Taffic sign
detection

Object
detection

Risk
assessment

and monitors

Mapping and Planning

Global
planning

Map
Monitoring

Control

Lateral
controller

Longitudinal
controller

SENSOR INPUT

Camera LIDAR HD Map +
Route

GNSS + IMU

SENSOR INPUT

Camera LIDAR HD Map +
Route

GNSS + IMU

MODULAR SYSTEM

Figure 10.2: Diagrama de las aproximaciones extremo a extremo y modulares. Adaptado
desde [26] y [25].

eas, que se combinan para formar el sistema de conducción autónoma final. Estas tar-
eas pueden incluir desde seguir el carril, pasando por la negociación de intersecciones o
el aparcamiento autónomo. En esta tesis, construimos nuestras contribuciones desde la
tarea básica de seguimiento del carril, añadiendo incrementalmente más complejidad y
prestaciones al sistema resultante y ampliando su área de aplicación.

Optimización de las soluciones de conducción autónoma

Dentro de la robótica y en especial en la conducción autónoma, las soluciones tienen
que ser muy rápidas y fiables para poder ser útiles, ya que los vehículos van a veloci-
dades altas, en entornos muy dinámicos y que incluyen otros vehículos o humanos. El
rendimiento de una aplicación robótica no solo depende de la calidad de las decisiones
de control, sino también de su frecuencia de iteraciones. Idealmente, buscamos generar
decisiones de gran calidad a un ritmo muy alto. Algunos sistemas tienen hardware de
altas capacidades que puede realizar este trabajo ágilmente de forma natural, pero existen
otros entornos que no cuentan con estas características. Una solución podría ser optimizar
los modelos neuronales utilizados para mejoras sus prestaciones, algo que es típico en los
sistemas de deep learning en la conducción autónoma. Esto es algo que se aborda en esta
tesis y que genera una de las contribuciones.

Monitorización del tráfico rodado con visión por computador

La monitorización del tráfico rodado juega un papel central en la planificación urbana, en
el manejo del transporte y en la seguridad pública. Esta monitorización busca clasificar,
identificar y medir la velocidad de diferentes tipos de vehículos. Este campo también
sirve como puerta de entrada para entender la utilidad de las soluciones de conducción
autónoma en la mejora de la seguridad y del transporte en general.

137

CHAPTER 10. RESUMEN EN CASTELLANO

10.2. Objetivos

El objetivo final es el progreso en el campo de la conducción autónoma y con él, en los
campos de la visión por computador, la inteligencia artificial y la robótica. Este objetivo
general lo articulamos en siete subojetivos concretos. Los subobjetivos de investigación
son:

• [RG1] Estudiar el estado de la cuestión en el campo de la conducción autónoma,
enfocado en los sistemas de extremo a extremo y campos relacionados.

• [RG2] Validar la visión por computador en un entorno de conducción generando
una herramienta de monitorización del tráfico rodado.

• [RG3] Generar una herramienta software de evaluación másica, automática y
cuantitativa de soluciones de detección de objetos.

• [RG4] Generar una herramienta software de evaluación activa de soluciones
de conducción autónoma para realizar experimentos y generar datos cuantita-
tivos sobre su rendimiento.

• [RG5] Generar agentes de conducción autónoma extremo a extremo visual
para seguimiento del carril que mejoren su comportamiento basándose en
añadir memoria visual y entrada cinemática a modelos de aprendizaje pro-
fundo con aprendizaje por imitación.

• [RG6] Desarrollar modelos extremo a extremo de control optimizados para
el seguimiento de carril visual que se aprovechen de las últimas técnicas de
optimización en aprendizaje profundo.

• [RG7] Mejorar el comportamiento de control de un vehículo que conduzca
autónomamente para el sigue carril visual con tráfico, es decir, en presencia de
otros vehículos.

10.3. Antecedentes

Esta tesis doctoral se construye encima de la base de conocimiento existente en conduc-
ción autónoma y el resto de campos relacionados. En esta sección realizamos una revisión
breve del estado de la cuestión en aquellos campos de interés para las contribuciones pre-
sentadas.

10.3.1. Monitorización del tráfico rodado

Un problema clásico en visión por computador es la monitorización del tráfico rodado
[27] [28] [29] [30] [31]. Esta tarea implica la clasificación y seguimiento de vehícu-
los en imágenes, por ejemplo en autovías, para monitorizarlos. Antes de la aparición

138

CHAPTER 10. RESUMEN EN CASTELLANO

del aprendizaje profundo, la vigilancia del tráfico utilizando cámaras estaba significa-
tivamente limitada, centrándose en tareas rudimentarias como la monitorización pasiva
o el procesamiento básico automático [38] [39] [40]. Sin embargo, la emergencia del
aprendizaje profundo ha supuesto un punto de inflexión, llevando a un avance significa-
tivo [41] [42] [43].

Como el objetivo de la monitorización de tráfico implica la localización y clasifi-
cación de objetos, la utilización de técnicas de detección de objetos se vuelve imper-
ativa [75] [76]. Numerosos estudios dentro del ámbito de la monitorización del trá-
fico se han centrado en la detección de objetos, aprovechando predominantemente la
metodología de aprendizaje profundo [77] [78] [79] [80] [81] [82] [83] [84] [85] [86].

10.3.2. Detección de objetos con aprendizaje profundo, conjuntos de datos y evalu-
ación

El campo de la detección de objetos ha experimentado una popularidad muy significativa
en los últimos años, debida a los notables avances y la proliferación de revisiones del
estado del arte sobre la materia en la literatura [87] [88] [89] [90] [91] [92] [93] [94]. El
campo de aplicación de la detección de objetos es muy amplio, por ejemplo se utiliza con
éxito en soluciones en conducción autónoma [95] o en detección de caras [96].

Antes de la adopción de las técnicas de aprendizaje profundo, la detección de obje-
tos se basada en técnicas tradicionales que principalmente utilizaban métodos de proce-
samiento de imágenes y caracterísitcas específicas de los objetos a identificar en las imá-
genes [98].

Análogo a los avances presenciados en la investigación de conducción autónoma, el
progreso este campo es debido también a la aparición de conjuntos de datos de gran cal-
idad, como COCO [99], ImageNet [100], Pascal VOC [101], Princeton [102], Spinello
[103] u Open Images Dataset [104]. En conducción autónoma, tanto la detección de ob-
jetos como la segmentación semántica se utilizan en la parte de percepción del sistema.
Cada una de estas tareas de visión por computador tiene sus propias métricas que sirven
para medir de forma efectiva el rendimiento de posibles soluciones y realizar una com-
paración justa con respecto a otras aproximaciones. Estas métricas incluyen la precisión,
la recuperación, la exactitud, IoU, mAP, mAR...

Todas las soluciones que ahora mismo forman parte del estado de la cuestión confían
en las metodologías de aprendizaje profundo. Estas metodologías han sido indispensables
en esta tesis doctoral, utilizando especialmente los frameworks PyTorch [124] y Tensor-
flow [120] en la mayoría de las contribuciones de invstigación. Algunos de los modelos
del estado de la cuestión de detección de objetos incluyen Faster Regional-CNN [125],
Single Shot MultiBox Detector [126] [127] [128] o You Only Look Once [129], con sus
mejoras incrementales con YOLOv3 [131], YOLOv4 [132], YOLOv5 [133], YOLOv9
[134]...

139

CHAPTER 10. RESUMEN EN CASTELLANO

10.3.3. Conducción autónoma y aprendizaje por imitación

El campo de la conducción autónoma combina inteligencia artificial, visión por com-
putador y robótica. Como ya hemos mencionado, las soluciones en este campo suelen
dividirse en dos grupos: modulares o de extremo a extremo. La solución más extendida
es la modular, en parte gracias a su flexibilidad [25]. Una de las críticas más recurrentes
a esta aproximación es que los errores en los módulos pueden llevar a errores en cascada.

de los ejemplos de código abierto más relevantes dentro de la aproximación modular
es Autoware [145], que está construída utilizando ROS e incluye módulos para cada una
de las actividades de conducción autónoma como percepción, planificación, control...

En cambio, las aproximaciones extremo a extremo [147] [148] [149] [150] [151] tra-
ducen directamente los datos crudos dados por los sensores del vehículo en comandos de
control finales que lo manejan. Las soluciones extremo a extremo basadas en visión han
ganado mucha atracción en la literatura reciente, pero aún presentan limitaciones [154]
como la poca explicabilidad.

PilotNet [159] es un modelo de aprendizaje profundo para el control extremo a ex-
tremo basado en visión desarrollado por investigadores de NVidia. Esta solución emplea
una red neuronal convolucional [160] para extraer las características y generar los coman-
dos de control desde la entrada de imágenes. A partir de este modelo relativamente simple,
otros modelos más actuales, complejos y potentes se han propuesto, como TCP [163] o
ReasonNet [164].

Aprendizaje por imitación

El aprendizaje por imitación [168] consiste en la generación de una política de conduc-
ción aprendida a partir de los datos recolectados de un agente experto (ver Figura 10.3).
Una técnica relevante dentro del aprendizaje por imitación es la clonación de compor-
tamiento. En esta técnica, uno o más agentes expertos conducen mientras los datos que
generan se guardan. Esto significa que los datos sensoriales y las acciones (controles) son
guardadas. Con esos datos, se entrenan modelos de aprendizaje profundo que imitan su
comportamiento [171]. Existe una gran variedad de casos de éxito de esta técnica dentro
de la conducción aútonoma [172] [165] [166] [167] [163] [164].

Generar un modelo de calidad necesita una gran cantidad de datos diversos. A la hora
de recolectarlos, esto no suele ser así, ya que los datos que se guardan suelen ser de situa-
ciones genéricas, sin mucho valor añadido, lo que puede conducir a generar conjuntos
de datos desbalanceados. Además, el rendimiento de un vehículo autónomo se deteri-
ora rápidamente en aquella situaciones que no estén reflejadas dentro de los datos (ver
Figura 10.4). Existen técnicas para mejorar este hecho, como DAgger [174] [175]. Los
vehículos también se pueden conducir utilizando aprendizaje por refuerzo [177] [178]
[148] [149] [179] o su combinación con aprendizaje profundo, llamada aprendizaje por
refuerzo profundo [180]. La combinación de aprendizaje por imitación y aprendizaje
profundo también muestra una línea prometedora [181].

140

CHAPTER 10. RESUMEN EN CASTELLANO

Data buffer

Learn
π

πβ π

Deployment

Update
πk+1πk

πk+1

Behavior cloning (Imitation learning) Reinforcement learning

Figure 10.3: Diagrama de la clonación de comportamiento (aprendizaje por imitación) y
del aprendizaje por refuerzo. Adaptado de [26].

Figure 10.4: La política aprendida presenta problemas en situaciones no vistas durante el
entrenamiento.

10.3.4. Simulación en conducción autónoma, conjuntos de datos y evaluación

En el desarrollo e investigación en sistemas robóticos, los simuladores son comúnmente
utilizados para generar soluciones en lugar de hacerlo con robots o vehículos reales [164]
[163]. Esto permite un desarrollo iterativo y barato, además de facilitar la depuración y la
validación de los sistemas. Dentro de la conducción autónoma, existen una gran variedad
de simuladores, entre los que destacamos destacamos Gazebo [184] y CARLA [186],
aunque existen alternativas como SUMO [182], TORCS [183], DeepDrive [188], Baidu
Apollo [189], Autoware [145], AirSim [190] o el simulador de conducción autónoma
de Udacity [191]. Los simuladores permiten generar datos sintéticos que se pueden uti-
lizar para generar conjuntos de datos accediendo a las etiquetas verdaderas de un modo
rentable. También permiten evaluar soluciones. Algunos simuladores, como CARLA y

141

CHAPTER 10. RESUMEN EN CASTELLANO

Gazebo, son compatibles con ROS [194] [195], el middleware de código abierto estándar
en robótica.

Dentro de los conjuntos de datos, existe una gran variedad de ellos dentro del campo
de la conducción autónoma. Entre ellos, para percepción visual destacan nuScenes [196],
BDD100K [197], KITTI [198] [199] o Cityscapes [200], para planificación nuPlan [201]
o para seguimiento de carril commaAI [158] o el conjunto de datos de Udacity [202].
Estos conjuntos de datos, junto con otros [203] [204], se han convertido en benchmarks
para los investigadores y desarrolladores.

Dada la gran variedad de escenarios y tareas de tráfico, además de las necesidades de
seguridad [205], son necesarias métricas de evaluación robustas. Las métricas comunes
pueden no ser suficientes (MSE, accuracy...) en este tipo de situaciones, ya que estas
métricas fuera de línea podrían fallar en capturar las dinámicas de las tareas de conduc-
ción a lo largo del tiempo. Por eso, es necesario tener un marco de trabajo complementario
a estas métricas, para poder realizar una evaluación eficaz. Esta cuestión ya ha sido abor-
dada en la literatura y es un problema conocido [206] [207] [208] [209]. Por ejemplo,
con CARLA tenemos en CARLA Autonomous Driving Leaderboard 16 que es un marco
de evaluación (también una competición asociada) que evalúa y hace un ranking de las
soluciones de conducción autónoma en una gran variedad de tareas y situaciones. Esta
forma de evaluación puede resulta demasiado gruesa o inadecuada para determinados
problemas, presentando limitaciones.

10.3.5. Aproximaciones de conducción autónoma extremo a extremo basadas en memo-
ria

Una línea de investigación dentro de la aproximación extremo a extremo busca añadir
capacidades de memoria a los modelos de control. Esta memoria se puede manifestar
dentro de la arquitectura de aprendizaje profundo por medio de módulos dedicados de
memoria (LSTMs, ConvLSTMs...) [212] [213] [214] o directamente dentro de la entrada
de datos (imágenes concatenadas, combinación de imágenes...) [13].

10.3.6. Optimización de los modelos de aprendizaje profundo para conducción
autónoma

Las soluciones basadas en visión para conducción autónoma normalmente se generan
utilizando aprendizaje profundo. Estas soluciones son muy exigentes a nivel computa-
cional. Un componente importante en estos sistemas es el hardware disponible porque el
rendimiento del robot móvil depende, no solo de la calidad de las decisiones sino también
de su frecuencia. Algunos vehículos autónomos tienen acceso a hardware de gran capaci-
dad, pero otros no. Por esto, se pueden utilizar técnicas de optimización de aprendizaje

16https://leaderboard.carla.org/

142

https://leaderboard.carla.org/

CHAPTER 10. RESUMEN EN CASTELLANO

profundo para conseguir modelos más pequeños y rápidos, pero con la misma calidad en
las decisiones que sus homólogos sin optimizar [217].

Hay muchas técnicas disponibles, desde cuantización [218] [219], pasando por la
poda [220], el ajuste fino con técnicas de optimización consciente o la agrupación de
partes. Los frameworks de Pytorch y Tensorflow incluyen estas optimizaciones [120]
[221] [124] con diferentes niveles de soporte e incluso existe optimizaciones enfocadas a
los dispositivos, como el uso de marco de trabajo de TensorRT para GPUs Nvidia [222].

10.4. Metodología y resultados

En esta sección, se presentan las contribuciones que son el núcleo de esta tesis doctoral.
Cada una de ellas constituye un proyecto autocontenido y un artículo de investigación
en el objetivo final de avanzar en el campo de la conducción autónoma. Para realizar la
presentación de las contribuciones, describimos la metodología y resultados de cada una
de ellas.

10.4.1. Monitorización del tráfico rodado con aprendizaje profundo

La monitorización en tiempo real del tráfico en autovías, carreteras o calles puede generar
datos interesantes para el planeamiento urbano y para el manejo del tráfico en general.
Este área ha tenido un gran desarrollo en los últimos años gracias al desarrollo del apren-
dizaje profundo. En esta subsección se presenta TrafficSensor, una de las contribuciones
de la tesis. Esta herramienta software de código abierto emplea técnicas de aprendizaje
profundo para hacer clasificación y seguimiento automático de vehículos utilizando una
cámara calibrada y fija al lado de una carretera en tiempo real. Esta herramienta marca la
evolución desde una versión previa con técnicas de visión artificial clásica, llamada Traf-
ficMonitor [98], consiguiendo una mayor fiabilidad y rendimiento incluso en condiciones
de iluminación o tiempo atmosférico peores.

Para conseguir este propósito, un nuevo conjunto de datos se ha creado para entrenar
los modelos, que incluye imágenes reales de tráfico en condiciones lumínicas malas o
en tiempo atmosférico adverso, además de imágenes en baja resolución. Este conjunto
de datos incluye siete categorías diferentes de vehículo para clasificar, formando un total
de 9774 imágenes. Las categorías de vehículos son: motocicleta, automóvil, furgoneta,
autobús, camión, camioneta y camión cisterna.

El sistema propuesto consiste principalmente de dos módulos, uno responsable de la
detección y clasificación y el otro del seguimiento de los vehículos en el tiempo. Después
de una fase de test y comparación en la que se evaluaron diferentes modelos de detección
de objetos, en concreto SSD MovileNetV2, SSD VGG-16, YOLOv3 y YOLOv4, estas
dos últimas opciones fueron seleccionados como modelos para realizar la detección. La
evaluación de los modelos se realizó en diferentes ambientes, como en condiciones de luz

143

CHAPTER 10. RESUMEN EN CASTELLANO

pobres o de tiempo atmosférico adverso.

En la parte del sistema dedicada a seguir los vehículos, se combina un algoritmo de
asociación espacial simple con un rastreador más sofisticado KLT para seguir a los ve-
hículos en la carretera. Ambos sitemas se ejecutan dentro de un área de las imágenes de
entrada designada por el usuario que se denomina área de evaluación. Varios experimen-
tos se realizaron utilizando vídeos de tráfico exigentes para validar el sistema con datos
reales. Los resultados del sistema experimental demuestran que el sistema propuesto de-
tecta, rastrea y clasifica los vehículos en tiempo real en autovías de forma exitosa.

Para realizar la evaluación de las soluciones de aprendizaje profundo entrenadas, se
utilizó la herramienta Detection Metrics, que se detalla en la siguiente subsección y en el
Capítulo 4.

Esta investigación se ha publicado en un artículo científico [224] y el software de
código abierto que hemos descrito también está disponible para replicarlo y extenderlo
[225]. Más detalles sobre esta contribución y sobre el sistema de TrafficSensor en el
Capítulo 3. Esta contribución marca el paso inicial hacia la conducción autónoma, com-
prendiendo las implicaciones de seguridad del campo y cómo puede ser mejorado a través
de este tipo de herramientas basadas en aprendizaje profundo.

10.4.2. Evaluando arquitecturas de aprendizaje profundo para detección de objetos
con métrics cuantitativas

Después de haber explorado la monitorización del tráfico con técnicas del estado de la
cuestión, dentro de esta contribución se presenta y desarrolla una herramienta para la
comparación y evaluación objetiva, masiva, cuantitativa y desatendida de modelos de de-
tección de objetos. Esta herramienta es Detection Metrics, que ya fue utilizada en la con-
tribución anterior para la parte experimental y que constituye una de las contribuciones
de esta tesis doctoral. El rango de aplicación de esta aplicación no está limitado a la mon-
itorización de tráfico rodado, sino que también se puede utilizar dentro de la percepción
de los sistemas de conducción autónoma con visión a bordo. Esta contribución ha sido
publicada en un artículo científico [234].

Dentro de la visión por computador, una de las tareas principales es la detección de ob-
jetos, que implica la localización y clasificación de objetos dentro de imágenes de forma
precisa, como ya se ha utilizado en la contribución anterior. En los últimos años, se ha
experimentado un gran avance en este campo, gracias a la disponibilidad de conjuntos de
datos de gran calidad, la evolución de las arquitecturas de aprendizaje profundo, como
las redes convolucionales profundas y la accesibilidad a hardware poderoso mediante las
GPUs. El desarrollo de soluciones de deep learning suele implicar experimentación y
desarrollo iterativo, ajustando los hiperparámetros de los modelos y realizando ajuste fino
para optimizar el rendimiento. A partir de estas necesidades, presentamos Detection Met-
rics, una aplicación software multiplataforma que da métricas de rendimiento objetivas

144

CHAPTER 10. RESUMEN EN CASTELLANO

y permite a los investigadores evaluar de forma sistemática diferentes modelos de apren-
dizaje profundo en conjuntos de datos de forma efectiva.

Detection Metrics ofrece soporte para los conjuntos de datos de detección de obje-
tos más relevantes internacionalmente (COCO, ImageNet, Pascal VOC, Princeton RGB,
Spinello y Open Images), así como los entornos de desarrollo de aprendizaje profundo
más utilizados (TensorFlow, Keras, PyTorch, Caffe2 y Darknet). Permite una compara-
ción de diferentes modelos neuronales implementados utilizando distintos entornos de
desarrollo de forma justa. Este proceso es útil para el desarrollo de aplicaciones de apren-
dizaje profundo o para investigación. Se proporcionan varias herramientas al investigador
para manejar y trabajar con diferentes conjuntos de datos y modelos, incluyendo la visu-
alización y la conversión entre diferentes formatos comunes.

La herramienta ofrece dos formas de lanzarse principales: por medio de la interfaz
gráfica (GUI) o sin ella (headless). El modo gráfico lanza una aplicación con la que el
usuario interactúa para acceder a todas las funcionalidades de la aplicación. Mientras
que para la segunda se lanza a partir de la consola con un archivo de configuración y per-
mite la evaluación objetiva, masiva, cuantitativa y desatendida. La aplicación proporciona
seis funcionalidades diferentes que son: Visualizador, Evaluador, Detector, Desplegador,
Etiquetador y Conversor. Cada una de ellas se puede utilizar de forma individual o com-
binada.

Esta herramienta automatiza el proceso de validación experimental, lanzando los pro-
cesos en lotes y ahorrando tiempo al investigador. Permite crear nuevos conjuntos de
datos de dominio específico a partir de la entrada de vídeo o webcam. Es de código
abierto [235], por lo que puede ser auditada, extendida o adaptada para las necesidades
particulares del proyecto.

Para la validación experimental de la herramienta, ya se ha descrito en la subsección
anterior que fue utilizada para su validación. Además de esta, se llevó a cabo una vali-
dación experimental comparando el rendimiento de alguno de los modelos del estado de
la cuestión más relevantes en detección de objetos, implementados en diferentes frame-
works, comparando los resultados obtenidos con los dados por los propios investigadores
en los artículos de investigación. Los modelos eran SSD Inceptionv2, YOLOv3, Faster
RCNN Resenet101 y FasterRCNN Resnet50 FPN. En esta validación se compararon los
resultados obtenidos utilizando Detection Metrics con respecto a los que proporcionaban
los desarrolladores para cada uno de ellos. Se encontraron resultados consistentes, lo que
subraya la efectividad de esta herramienta para la comparación objetiva de modelos de
detección de objetos, incluso cuando provienen de diferentes frameworks.

Para conocer todos los detalles sobre esta contribución, se puede revisar el Capítulo 4.

145

CHAPTER 10. RESUMEN EN CASTELLANO

10.4.3. Evaluación de comportamientos de conducción autónoma con métricas de
grano fino

Behavior Metrics [238] es otra contribución de esta tesis doctoral y ha originado una pub-
licación en una revista científica [239]. Es una herramienta software que ha sido desar-
rollada para ayudar en el desarrollo del campo de la conducción autónoma. El desarrollo
y validación activa de soluciones de conducción autónoma requiere de la realización de
pruebas de forma amplia en simulación. Para abordar este requerimiento, desarrollamos
el software Behavior Metrics para la evaluación cuantitativa y cualitativa de soluciones
de conducción autónoma para diferentes tareas de conducción. Este software provee dos
canales principales de evaluación, en la misma línea que en la contribución anterior: una
con interfaz gráfica de usuario (GUI) y otra sin interfaz gráfica para el test masivo y de-
satendido de soluciones.

Esta herramienta genera una serie de métricas cuantitativas, incluyendo métricas de
grano fino para cada tarea de conducción particular (seguimiento de carril, conducción
en tráfico...) que complementan a las proporcionadas por el propio simulador. Propor-
ciona un entendimiento profundo y amplio del rendimiento de las soluciones y permite su
comparación y mejora.

Tiene soporte para diferentes simuladores de conducción autónoma, en concreto Gazebo
y CARLA. Gracias al soporte de CARLA, que utiliza Unreal como motor, se proporcio-
nan simulaciones urbanas fotorrealistas, permitiendo generar soluciones con unas condi-
ciones más cercanas a los entornos reales. Para comunicarse entre la aplicación y el simu-
lador, se utiliza el middleware de robótica ROS, que facilita la integración de la aplicación
con otros simuladores o con posibles vehículos reales. Además de esto, soporta los prin-
cipales entornos de desarrollo de aprendizaje profundo PyTorch y Tensorflow. Behavior
Metrics es de código abierto y multiplataforma gracias a la tecnología Docker.

Para la ejecución de los experimentos, estos se definen en un archivo YAML en el que
se define el escenario, la tarea, el controlador del vehículo... A partir de esta información,
los experimentos se ejecutan y se generan métricas cuantitativas que son guardadas en
ficheros para su posterior análisis. Además, se proporcionan análisis preliminares como
mapas del recorrido de los vehículos, colisiones... para que el usuario pueda comprender
el rendimiento de la solución de forma sencilla. En cuanto a los escenarios, se soportan
aquellos proporcionados por el simulador y se permite incluir nuevos de forma sencilla.
En este caso el simulador principal es CARLA, así que se incluye soporte para todos
sus mapas, vehículos... En cuanto a las tareas, se soporta el seguimiento del carril, la
conducción con tráfico y la navegación entre puntos. Cada una de estas tareas tiene sus
propias métricas de evaluación especializadas (porcentaje de recorrido realizado, error es-
pacial respecto a la trayectoria ideal, distancia con otros vehículos...), además de algunas
comunes como la distancia recorrida o el número de colisiones.

En cuanto al controlador de los vehículos, se trata de la pieza principal que se en-
carga de manejar y controlar el comportamiento del vehículo en todo momento. Se basa

146

CHAPTER 10. RESUMEN EN CASTELLANO

en las entradas sensoriales que el vehículo recibe, las procesa y a partir de ese proce-
samiento genera las decisiones de control finales que se traducen en comandos de acel-
eración o giro. Como entradas sensoriales, se pueden definir aquellos sensores que monta
el vehículo en la configuración del experimento y se soportan todos los que el simulador
proporciona, además de otros personalizados como la vista de pájaro. Estos sensores,
como el resto del sistema, son fácilmente adaptables o extensibles, dada la naturaleza de
código abierto del proyecto. El núcleo del controlador del vehículo puede ser un modelo
de aprendizaje profundo, una política generada por aprendizaje por refuerzo o incluso un
piloto programado de forma explícita.

En el modo de evaluación con interfaz gráfica, se genera una interfaz a partir de un
archivo de configuración con la que el usuario interactúa para controlar el experimento y
visualizar el estado de los sensores. Además, puede seguir con la vista de la simulación
el desarrollo del experimento en tiempo real. Por otro lado, en el modo desatendido, toda
la configuración del experimento se describe en un fichero de configuración, pudiendo
evaluar una gran variedad de controladores en diferentes entornos de forma desatendida.
La aplicación generará datos de evaluación tanto para cada uno de ellos como de forma
agregada, brindando al investigador una visión integral del comportamiento de sus solu-
ciones.

Esta herramienta ya ha sido utilizada para la realización de contribuciones en con-
ducción autónoma, mostrando experimentalmente su utilidad y validez, como se desar-
rolla en la Subsección 10.4.4, Subsección 10.4.5 (artículo publicado en una revista cientí-
fica [244]) y Subsección 10.4.6. Además de eso, se ha utilizado para la evaluación objetiva
de soluciones en un proyecto de código abierto dentro de la iniciativa de Google Summer
of Code [245] sobre navegación entre puntos. Para conocer todos los detalles sobre esta
contribución, se puede revisar el Capítulo 5.

10.4.4. Mejora del control de extremo a extremo en conducción autónoma mediante
entrada cinemática y arquitecturas basadas en memoria

En esta subsección se explica una de las contribuciones de la tesis [246], que está bajo
revisión por pares en el momento de escribir este documento [247]. La base de esta
contribución es la generación de varias aproximaciones que mejoran las capacidades de
un sistema de conducción autónoma de extremo a extremo basado en aprendizaje por im-
itación, añadiendo memoria visual y entrada de datos cinemática (velocidad del vehículo).
La comparación entre ellas y la aproximación base se basa en métricas fundamentales de
error (MSE, MAE) y varias métricas de grano fino externas, complementarias, basadas
en el comportamiento del vehículo controlado en varios escenarios de tests dentro del
simulador CARLA e integradas en Behavior Metrics.

Esta investigación se centra en la aplicación de seguimiento de carril utilizando difer-
entes diseños urbanos y también se basa en el uso de la vista de pájaro como datos de
entrada para el modelo que controla el vehículo. Las adiciones de memoria cubren tanto

147

CHAPTER 10. RESUMEN EN CASTELLANO

modificaciones arquitectónicas como diferentes tipos de entrada sensorial compuesta.
Dentro de la parte experimental, se muestra y valida la idea de que incorporar capaci-
dades de memoria visual y entrada de datos cinemática hace que el sistema sea más
robusto. Esto le permite hacer frente a una mayor variedad de situaciones desafiantes,
teniendo en cuenta la reducción de colisiones experimentada y la autorregulación de la
velocidad que lleva el vehículo. Como en las subsecciones anteriores, todo el trabajo pre-
sentado es código abierto, incluyendo la arquitectura de los modelos, los pesos generados
a partir del entrenamiento de los modelos, la herramienta de comparación y el dataset.

El estudio que se presenta en esta contribución se basa en las implicaciones en el
comportamiento final del comportamiento robótico de la adición de memoria visual y
entrada de datos cinemáticos al modelo. La entrada de datos de vista de pájaro consiste
en una imagen segmentada que elimina parte de la complejidad que el sistema debería
procesar, como podrían ser las texturas, para que se enfoque en las partes relevantes para
este estudio. Se presentan y prueban 4 modelos y una variante de cada uno de ellos, con
la entrada de vista de pájaro ya mencionada y con una salida de comandos de control del
vehículo que incluye la aceleración, giro del volante y el freno.

En concreto, se utiliza una arquitectura sin memoria que está basada en la arquitectura
PilotNet [159], llamada PilotNet*, cambiando la salida a la que se acaba de mencionar
con tres valores en lugar de la arquitectura base que cuenta con solo una salida. Por otro
lado, se utilizan tres arquitecturas con memoria visual en su arquitectura, con la misma
salida anterior. En primer lugar, DeepestLSTMTinyPilotNet*, que se basa en DeepestL-
STMTinyPilotNet [213] que cuenta con capas ConvLSTM para procesar los datos y man-
tener una memoria de lo ya visto. En segundo lugar, PilotNet*x3(Conv3D), que es una
variante de PilotNet, con módulos Conv3D que sustituyen a las capas Conv2D y que
recibe tres imágenes de entrada temporalmente sucesivas, en lugar de una. En tercer lugar,
el modelo PilotNet*x3(TimeDistributed) también recibe tres imágenes simultáneamente.
Este modelo fusiona la información procesada de estas imágenes con las características
extraídas, y luego utiliza módulos LSTMs para procesar la información temporal.

Además de estas cuatro arquitecturas, se presenta una variante de cada una de ellas
incluye la entrada cinemática de la velocidad instantánea que lleva el vehículo en el mo-
mento dado. Esta entrada cinemática se incluye como un nuevo canal en las imágenes de
entrada, siendo todos sus valores la velocidad normalizada. Para entrenar estos modelos,
se utiliza un dataset sintético extraído a partir del comportamiento de un piloto experto
en unos circuitos de entrenamiento del simulador CARLA. Este piloto experto conduce
por los diferentes circuitos de entrenamiento mientras se graban sus acciones y el estado
de los sensores. La validación experimental se realiza en otros circuitos que consider-
amos de test y que no han sido nunca vistos por los agentes. Durante el entrenamiento,
se incluyen técnicas que buscan mejorarlo, como aumentado de datos (en donde se vio
que el aumentado Affine es de gran importancia para la mejora de los resultados) y la
sobrerrepresantación de los datos de mayor relevancia (datos de curvas, por ejemplo).

148

CHAPTER 10. RESUMEN EN CASTELLANO

En cuando a la validación experimental realizada, para esta contribución se presentan
seis experimentos diferentes, donde el primero se hace fuera de línea y el resto de ellos en
línea, utilizando Behavior Metrics con el simulador de conducción autónoma CARLA.
El primero de ellos compara los modelos utilizando las métricas típicas en aprendizaje
automático, como MAE o MSE, donde se ve que los modelos con entrada cinemática
tienen una reducción del 86% en MAE y 53% en MSE con respecto a la base. El segundo
experimento busca hacer validación en un escenario de test, haciendo que los contro-
ladores de los vehículos no superen una velocidad máxima de 30km/h. Este límite se
introduce porque es la velocidad máxima seleccionada para el piloto experto que se uti-
liza para extraer los conjuntos de datos. Las diferencias en este punto son pequeñas para
la variedad de modelos, pudiendo completar todos ellos los experimentos a una velocidad
media parecida al resto y sin colisiones. En el tercer experimento, esta limitación de la
velocidad máxima se elimina, para probar si los modelos son capaces de regular la ve-
locidad del vehículo de forma autónoma. Aquí se observa que solamente los modelos que
reciben la entrada cinemática (velocidad a la que se desplaza el vehículo) son capaces de
completar los experimentos de forma exitosa. En el cuarto experimento se evalúa el com-
portamiento del sistema al tomar el control de una situación de velocidad alta. Esto quiere
decir que el vehículo se está conduciendo a 50km/h o 70km/h y se activa en ese momento
el autopiloto con los diferentes modelos entrenados. De este modo se comprueba si los
modelos son capaces de retomar el control satisfactoriamente en situaciones nunca vistas
en entrenamiento. En este caso solo probamos los modelos que reciben la entrada cin-
emática, ya que son los que han generado buenos resultados en el experimento anterior.
Teniendo en cuenta eso, los modelos que son capaces de retomar el control a 50km/h son
aquellos que también cuentan con memoria visual, dejando fuera a PilotNet* con entrada
cinemática, que ya no es capaz de tomar el control. Si se sube la velocidad a 70km/h sola-
mente es capaz de completar los experimentos con éxito el modelo PilotNetx3*(Conv3D)
con entrada cinemática, dejando constancia ya en este momento de que en determinados
casos contar con la entrada cinemática y un modelo con memoria visual aporta ventajas
en el control.

En el quinto experimento, se comprueba la robustez de los modelos a la manipulación
sensorial, en este caso añadiendo ruido Gaussiano a las imágenes de entrada en un 50%
o 90% de los píxeles De nuevo se extrae de este experimento que a la hora de aumentar
mucho la manipulación sensorial, los únicos modelos que aún muestran resultados satis-
factorios son aquellos que cuentan con entrada cinemática y memoria visual. En el caso
de este experimento, el único modelo que es capaz de completar los experimentos satis-
factoriamente con el 90% es PilotNetx3*(TimeDistributed). En el último experimento se
estudia la densidad y la longitud de la memoria visual en cuanto al número de imágenes
que recibe y la longitud temporal entre cada una de ellas. Con este experimento se busca
estudiar cómo afecta la densidad de la cantidad de datos recibida y el espacio temporal
entre cada uno de esos datos. La mejor combinación de número de imágenes son tres y la
distancia de pasos de tiempo en la que marca el límite para que funcione el sistema es (t,
t − 5, and t − 10).

149

CHAPTER 10. RESUMEN EN CASTELLANO

En esta contribución se han presentado una serie de experimentos que han validado
la hipótesis inicial de que añadir memoria visual y entrada cinemática mejora la calidad
final del control del vehículo autónomo. Para conocer todos los detalles sobre esta con-
tribución, se puede revisar el Capítulo 6.

10.4.5. Optimización del control extremo a extremo en conducción autónoma

Esta subsección muestra otra de las contribuciones de esta tesis doctoral, donde se ex-
ploran y comparan una variedad de alternativas para la optimización de modelos que re-
solvem la aplicación de seguir el carril de forma visual en escenarios urbanos con una
aproximación de aprendizaje por imitación. Esta contribución es una publicación en
una revista científica y en una conferencia [244] y su material, incluyendo arquitecturas,
pesos de los modelos, conjunto de datos y herramienta de comparación, es de código
abierto [249]. Las técnicas de optimización incluyen la cuantización, recorte, ajuste fino
(reentrenamiento) y agrupación, cubriendo todas las opciones disponibles en los entornos
más comunes de aprendizaje profundo. También se exploran optimizaciones dadas por
TensorRT, que son específicas al hardware específico de Nvidia utilizado. De nuevo se
utiliza Behavior Metrics para los experimentos en línea con el simulador CARLA.

En la conducción autónoma, las soluciones basadas en visión suelen ser generadas uti-
lizando modelos de aprendizaje profundo, las cuales son soluciones computacionalmente
muy exigentes. Un componente muy importante dentro de estos sistemas es el hardware
disponible, ya que de él depende el rendimiento de la aplicación robótica. Además de
la calidad que puedan tener sus decisiones de control, el sistema debe tener una alta fre-
cuencia de respuesta para ser utilizable. Algunos vehículos autónomos cuentan con este
hardware de altas prestaciones, pero no siempre es así y actualizarlo no es siempre una
opción. Por eso, se puede optar por investigar las técnicas de optimización de los modelos
propios de aprendizaje profundo utilizados para incorporarlas dentro del sistema final.

En esta contribución exploramos las diferentes técnicas de optimización disponibles
en los entornos de aprendizaje profundo (TensorFlow y PyTorch)y en TensorRT y com-
paramos su rendimiento en un sistema extremo a extremo de control para un vehículo
autónomo entrenado por aprendizaje por imitación.

Para la base de exploración, se toma el modelo neuronal de PilotNet*, ya introducido
en la Subsección 10.4.4, que tiene una entrada visual de vista de pájaro y genera co-
mandos de control que son la aceleración, el giro y el freno del vehículo. Este modelo
se entrena con el dataset previamente presentado siguiendo el mismo modo de trabajo.
Las optimizaciones que se aplican son aquellas disponibles en los diferentes entornos de
trabajo y son en concreto: cuantización (aproximación de los valores internos de la red
neuronal a ancho de bit más bajo), recorte (eliminar partes y conexiones innecesarias de
la red), ajuste fino (algunas técnicas incluyen reentrenamiento para generar el modelo
optimizado) y agrupamiento (agrupar zonas de la red con pesos similares que puedan
combinarse). Además de estas optimizaciones, se aplican también las variantes y com-

150

CHAPTER 10. RESUMEN EN CASTELLANO

binaciones de todas ellas. Esto da lugar a 10 modelos optimizados diferentes utilizando
TensorFlow, seis utilizando PyTorch y seis utilizando TensorRT.

En la parte experimental se generan 3 experimentos. En el primero se hace una evalu-
ación fuera de línea de cada una de las técnicas disponibles, variaciones y combinaciones,
evaluando el tamaño de los modelos, su MSE en un conjunto de evaluación de los datos y
su frecuencia de inferencia utilizando una GPU. Lo que se extrae de este experimento es
que las optimizaciones generan modelos más eficientes y que la mejor forma de sacarle
partido a estas ideas es con la combinación de las diferentes técnicas en un mismo mod-
elo. Esa combinación genera los mejores resultados en cuanto a tamaño del modelo, MSE
y frecuencia de inferencia en GPU. Estos resultados son similares para TensorFlow y Py-
Torch y también para TensorRT, aunque los mejores resultados se observan en esta última
aproximación. La explicación para este hecho se puede achacar al hecho de que las op-
timizaciones proporcionadas por TensorRT son específicas para el hardware utilizado de
Nvidia en comparación con las optimizaciones proporcionadas por los frameworks que
son más genéricas independientemente del lugar de despliegue del modelo.

En el siguiente experimento, se prueban en línea los modelos, en un circuito de test de
CARLA y obteniendo las métricas con Behavior Metrics. Lo que se observa, de nuevo,
es que aquellos modelos que combinan las diferentes optimizaciones generan los mejores
modelos. Se observa una ganancia de 47 veces en cuanto a la frecuencia de inferencia y
de 5 veces en la frecuencia de control en comparación con la base sin optimizar.

Para el último experimento, se espera que un vehículo siga el carril a partir de los
datos de entrada visuales y se realiza un análisis de su comportamiento en cuanto a fre-
cuencia de inferencia y de decisiones de control. En este experimento se observa que
para que el vehículo conduzca de forma satisfactoria, su controlador tiene que generar al
menos 10 decisiones por segundo (10Hz), generando un límite inferior. Subiendo este
número de inferencias, el control se mantiene igual en cuanto a calidad de las decisiones.
A la hora de utilizar un modelo optimizado, es mucho más sencillo superar ese número
de 10Hz e incluso se observa que el modelo que mejor se comporta entre los desarollados
previamente genera 1014Hz. Esto quiere decir que incluso con un hardware mucho más
limitado, en el que no se alcanzasen esos 1014Hz, este modelo aún podría generar resul-
tados satisfactorios, mientras que otros lo tendrían más complicado o sería imposible para
ellos.

Con esta validación experimental, hemos probado la importancia de incluir técnicas
de optimización en el desarrollo de sistemas de conducción autónoma y hemos hecho un
estudio de qué técnicas concretas generan los mejores resultados. Para conocer todos los
detalles sobre esta contribución, se puede revisar el Capítulo 7.

151

CHAPTER 10. RESUMEN EN CASTELLANO

10.4.6. Conducción autónoma extremo a extremo en tráfico

Esta subsección presenta otra contribución de esta tesis doctoral, que está bajo revisión
por pares en una revista científica en el momento de escribir este documento [251]. En esta
contribución se busca generar un modelo de seguimiento del carril que sea más o menos
sencillo, que siga el carril de forma exitosa y que mantenga una distancia segura respecto
a otros vehículos que se pueda encontrar a lo largo del experimento. En esta aproximación
se vuelve a utilizar una aproximación de aprendizaje por imitación, creando una serie de
conjuntos de datos a partir del comportamiento de un agente experto conduciendo por el
escenario. En este caso se demuestra que los modelos, pese a su simplicidad e incluir solo
unos pocos cambios en su arquitectura, pueden ampliar su área de aplicación en un margen
amplico con respecto al punto de partida para que el que fueron creados. En este caso se
utiliza de nuevo una variante de PilotNet, en cuya forma base solamente controlaba en giro
del volante y en esta contribución, incluyendo unos pocos cambios, es capaz de controlar
la aceleración, giro y freno, además de mantener una distancia de seguridad con respecto
al vehículo delantero que cumple con los límites de seguridad. Además de mantener esta
distancia de seguridad, es capaz de detenerse si el vehículo delantero lo hace y reanudar la
marcha una vez el vehículo delantero vuelve a moverse. Para la evaluación experimental,
se utilizan de nuevo el simulador de conducción autónoma CARLA y el software de
evaluación objetiva y masiva Behavior Metrics, esta vez con otra nueva métrica específica
que se incluye en la herramienta para medir la distancia con otros vehículos.

Para el desarrollo de esta contribución, se generan tres versiones del dataset super-
visado que son complementarios que se obtienen grabando los datos sensoriales y las
salidad de control generadas por el piloto experto mientras conduce por un entorno de
entrenamiento. En el primero, no se incluyen otros vehículos. En el segundo, se com-
plementa con grabaciones del piloto experto conduciendo con un único tipo de vehículo
delantero como tráfico. En la tercera versión, se complementa lo anterior con una mayor
variedad de vehículos delanteros, en este caso seis, diferentes entre sí. En este caso, se
utiliza una cámara puesta en la parte frontal del vehículo como entrada de datos.

En cuanto a los modelos utilizados, se prueban dos variantes del modelo PilotNet
(PilotNet* y PilotNet**). En la primera de ellas (PilotNet*) se le añade una nueva salida
que genera tanto la aceleración como el freno, ya que son complementarias, y se incluyen
capas de dropout. En la segunda variante (PilotNet**), además de lo anterior, se incluye la
entrada cinemática del modelo como un nuevo canal, siendo todos sus valores la velocidad
normalizada del modelo. Para el entrenamiento de los modelos, de nuevo se utilizan
técnicas de aumentado de datos y sobrerrepresentación de los datos que tienen pocas
apariciones.

Para la validación experimental, se utilizan tres experimentos. En el primero se realiza
un experimento de una ejecución típica sin tráfico para las dos arquitecturas presentadas.
En este experimento se utilizan los diferentes modelos entrenados con las variantes 2
y 3 del dataset. Aquí se observa que los diferentes modelos son capaces de completar

152

CHAPTER 10. RESUMEN EN CASTELLANO

los experimentos de forma satisfactoria. El que mejor resultados arroja es la variante
PilotNet** con el dataset que incluye varios vehículos, la versión más avanzada. En
concreto, se observa una mejora una mejora en la desviación con respecto al centro del
carril a la hora de conducir y en el número de invasiones de carril.

En el segundo experimento se prueba el rendimiento de los modelos en situaciones
con tráfico. En este experimento, se ve que el modelo PilotNet** entrenado con el con-
junto de datos con varios vehículos genera de nuevo los mejores resultados en un esce-
nario experimental, manteniendo una distancia de seguridad adecuada con otros vehícu-
los. Concretamente, genera un 81% de éxito en los experimentos en el circuito de prueba
en comparación con el 16% del segundo modelo mejor. Además supera sustancialmente
en las métricas de desviación con respecto a la posición ideal en el centro del carril y en
el número de invasiones de carril. Además el modelo PilotNet** más avanzado es capaz
de mantener una distancia de seguridad adecuada con respecto al resto de vehículos en un
86% de las ocasiones.

Para el último experimento, se realiza la prueba con diferentes tipos de vehículos
delanteros, para comprobar las capacidades de generalización del modelo. En este caso,
de nuevo se ve que el modelo PilotNet** con el dataset con varios vehículos es capaz
de generalizar a muchos más vehículos, incluso a algunos que nunca ha visto. En los
resultados se observa una subida en cuanto al éxito en los experimentos hasta en el 100%
de ocasiones en las que se encuentra con la mayoría de vehículos evaluados, incluso con
vehículos que morfológicamente distan mucho de los utilizados para entrenar.

En conclusión, se presenta una propuesta para la conducción autónoma segura en es-
cenarios con tráfico a partir de una aproximación entrenada por aprendizaje por imitación
de extremo a extremo. Se prueba que con modelos que en principio podríamos considerar
no muy profundos, aplicando pequeños cambios, el rango a aplicación de los mismos es
mucho mayor, sin necesidad de tener que utilizar modelos mucho más complejos. Este
modelo solamente utiliza una cámara como entrada sensorial y con un modelo aparente-
mente simple es capaz de regularse en situaciones de tráfico. Para conocer todos los
detalles sobre esta contribución, se puede revisar el Capítulo 8.

10.5. Conclusiones

En esta tesis doctoral se han propuesto una serie de objetivos de investigación en el campo
de la conducción autónoma y la monitorización del tráfico rodado. Se han abordado y en
consecuencia se han generado una serie de contribuciones. Se ha comenzado con una
revisión integral de la literatura en los campos que se ven involucrados en cuanto a la
conducción autónoma y la monitorización del tráfico (visión por computador, robótica
e inteligencia artificial). En particular, se ha revisado la detección de objetos basada en
aprendizaje profundo. Después se ha revisado el campo de la conducción autónoma y en
especial las soluciones extremo a extremo. Esto ha incluido una revisión de la posibilidad

153

CHAPTER 10. RESUMEN EN CASTELLANO

de añadir memoria a los sistemas de conducción u otros tipos de entrada sensorial. Tam-
bién se ha revisado el aprendizaje por imitación, la evaluación de soluciones de conduc-
ción autónoma, los simuladores y las técnicas de optimización en aprendizaje profundo
para modelos de conducción autónoma.

Después de esta revisión, se ha presentado la primera contribución, TrafficSensor. Este
sistema es una solución para monitorización del tráfico rodado utilizando aprendizaje
profundo. Con los conocimientos extraídos de esta contribución, se ha visto la robustez
que las soluciones basadas en aprendizaje profundo aportan a la percepción de los sis-
temas, tanto en monitorización del tráfico como en conducción autónoma. Además, se
ha comprendido la importancia de la generación de evaluaciones eficientes para comparar
soluciones.

Abordando estas cuestiones, se ha desarrollado Detection Metrics, una contribución
original de la tesis. Este software multiplataforma de código abierto está orientado ha-
cia la evaluación automática, cuantitativa y masiva de modelos de detección de objetos
visual. Esta contribución se ha utilizado para la primera, TrafficSensor, en su parte exper-
imental, probando su validez. Además se ha validado con otro experimento.

Siguiendo con las contribuciones y gracias al aprendizaje de las previas, se ha presen-
tado Behavior Metrics, una herramienta software de código abierto para la evaluación
en línea de sistemas de conducción autónoma. De nuevo se ha tomado como punto de
partida la importancia de la generación de métricas cuantitativas y cualitativas relevantes
para los investigadores para poder avanzar en su investigación. Esta herramienta soporta
diferentes tareas de conducción como el seguimiento de carril, la conducción en tráfico
y la navegación entre puntos, aportando métricas específicas para cada una de ellas que
complementan a las dadas por los simuladores. Esta herramienta se ha utilizado en el
resto de contribuciones, probando su validez de forma experimental.

Se ha continuado la exploración en el campo de la conducción autónoma a partir de
esto con un nuevo estudio que es otra de las contribuciones. Más allá de conseguir el mod-
elo básico visual que es capaz de seguir el carril de forma satisfactoria con aprendizaje
por imitación, este estudio ha explorado las implicaciones de añadir memoria visual y
entrada de datos cinemática a unas arquitecturas de aprendizaje profundo aparentemente
sencillas y se ha explorado cómo estos cambios afectan al comportamiento del robot. Se
a demostrado que añadir ambos cambios hace que el comportamiento mejore en determi-
nadas situaciones.

Continuando con la investigación en los modelos de conducción autónoma de ex-
tremo a extremo, se ha presentado un estudio de las posibilidades que la optimización
de las redes neuronales añade al rendimiento de estos modelos y cómo afecta esto en el
comportamiento final del mismo. Estos modelos han demostrado experimentalmente que
añadir optimizaciones mejora el sistema final gracias a hacer el controlador más rápido
y pequeño sin perder calidad en la decisión de control. Dentro de este estudio, se han
explorado tanto optimizaciones en los diversos frameworks de desarollo de modelos de

154

CHAPTER 10. RESUMEN EN CASTELLANO

aprendizaje profundo y optimizaciones a nivel de hardware con TensoRT.

Como última contribución, se ha presentado una propuesta para conducción segura
en tráfico siguiendo una aproximación de extremo a extremo basada en aprendizaje por
imitación y aprendizaje profundo. El modelo generado, a pesar de su aparente simpli-
cidad y modificaciones de poco calado respecto al modelo base del que surge, consigue
ajustar su velocidad con respecto a otros vehículos, parando cuando los otros lo hacen y
continuando su marcha en el momento adecuado. Además de esto, este modelo es capaz
de generalizar a una gran variedad de diferentes tipos de vehículos delante del propio.

10.5.1. Contribuciones de investigación

Algunos de los resultados presentados en esta tesis han sido publicados y compartidos
con la comunidad científica a través de artículos colaborativos con otros investigadores:

Artículos en revistas y conferencias:

• S. Paniego, R. Calvo-Palomino, and J. Cañas, "Behavior Metrics: An Open-Source
Assessment Tool for Autonomous Driving Tasks," Software X, vol. 26, pp. 101702,
2024 doi: 10.1016/j.softx.2024.101702. [Online].
Disponible: https://doi.org/10.1016/j.softx.2024.101702 [239]

• S. Paniego, N. Paliwal, and J. Cañas, “Model optimization in deep learning based
robot control for autonomous driving,” IEEE Robotics and Automation Letters and
IEEE International Conference on Robotics and Automation (ICRA), vol. 9, no.
1, pp. 715–722, 2024. doi: 10.1109/LRA.2023.3336244. [Online]. Disponible:
https://doi.org/10.1109/LRA.2023.3336244 [244]

• S. Paniego, V. Sharma, and J. M. Cañas, “Open source assessment of deep learning
visual object detection,” Sensors, vol. 22, no. 12, 2022. doi: 10.3390/s22124575.
[Online]. Available: https://www.mdpi.com/1424-8220/22/12/4575 [234]

• J. Fernández, J. M. Cañas, V. Fernández, and S. Paniego, “Robust real-time traf-
fic surveillance with deep learning,” Computational Intelligence and Neuroscience,
vol. 2021, p. 4 632 353, Dec. 2021. doi: 10.1155/2021/4632353. [Online].
Disponible: https://doi.org/10.1155/2021/4632353 [224]

Manuscritos bajo revisión por pares (revisado en marzo de 2024)

• Enhancing End-to-End Control in Autonomous Driving through Kinematic-Infused
and Visual Memory Imitation Learning. Sergio Paniego, Roberto Calvo-Palomino,
and José María Cañas

• Autonomous Driving in Traffic with End-to-End Vision-based Deep Learning.
Sergio Paniego, Enrique Sinohara, and José María Cañas

155

https://doi.org/10.1016/j.softx.2024.101702
https://doi.org/10.1016/j.softx.2024.101702
https://doi.org/10.1109/LRA.2023.3336244
https://doi.org/10.1109/LRA.2023.3336244
https://www.mdpi.com/1424-8220/22/12/4575
https://www.mdpi.com/1424-8220/22/12/4575
https://doi.org/10.1155/2021/4632353
https://doi.org/10.1155/2021/4632353

CHAPTER 10. RESUMEN EN CASTELLANO

Preprints:

• S. P. Blanco, S. Mahna, U. A. Mishra, and J. Canas, Memory based neural networks
for end-to-end autonomous driving, 2022. arXiv: 2205.12124 [cs.RO]. [256]

También he formado parte de otros proyectos de investigación durante el desarrollo
de esta tesis doctoral, aunque no contribuyen a esta:

Artículos en workshops

• P. F. de Cabo, R. Lucas, I. Arranz, S. Paniego, and J. M. Cañas, “RL-studio:
A tool for reinforcement learning methods in robotics,” in ROBOT2022: Fifth
Iberian Robotics Conference, Springer International Publishing, Nov. 2022, pp.
502–513.doi: 10.1007/978-3-031-21062-4_41. [Online]. Available: https://
doi.org/10.1007%2F978-3-031-21062-4_41. [257]

10.5.2. Trabajo futuro

Las contribuciones presentadas en esta tesis doctoral abren nuevos caminos de explo-
ración basados en la misma. En concreto, algunos de los que abre y en los que trabajamos
de cara al futuro son:

• Navegación extremo a extremo entre puntos en escenarios utilizando comandos
de entrada: nos gustaría ampliar las capacidades del sistema mientras se mantiene
su simplicidad. En este caso, se busca que el sistema comprenda comandos de
entrada que le indiquen cómo se debe comportar [172]. Esta idea ya se ha explorado
como un proyecto de Google Summer of Code [245] y se sigue con su desarrollo.

• Transfiriendo las soluciones actuales de extremo a extremo a un vehículo real:
estamos actualmente trabajando con el laboratorio de la Universidad Carlos III
de Madrid, Autonomous Mobility and Perception Lab (AMPL) en la transferen-
cia de los modelos de extremo a extremo presentados en esta tesis a un vehículo
real [258] [259].

• Conducción extremo a extremo de un vehículo autónomo modulada con in-
strucciones basadas en texto: dado el gran avance de los modelos grandes del
lenguaje en los últimos años (BERT [261], GPT-3 [262], Llama 2 [263] o Mistral
7B [264]), en este trabajo futuro buscaríamos introducir instrucciones al vehículo
autónomo que estén basadas en lenguaje natural [265] [266] [267] [268]. Para ello,
se espera abordar como un proyecto de Google Summer of Code 2024 17.

17https://jderobot.github.io/activities/gsoc/2024

156

https://doi.org/10.1007%2F978-3-031-21062-4_41
https://doi.org/10.1007%2F978-3-031-21062-4_41
https://doi.org/10.1007%2F978-3-031-21062-4_41
https://jderobot.github.io/activities/gsoc/2024

CHAPTER 10. RESUMEN EN CASTELLANO

• Exploración de la conducción autónoma en vehículos aéreos: las soluciones ac-
tualmente presentadas están enfocadas en vehículos terrestres. Otra posible línea de
investigación futura es trasladar este conocimiento a vehículos aéreos como podrían
ser los drones [269] [270]. Se está explorando esta idea actualmente como parte de
un trabajo fin de grado 18.

• Exploración de la conducción autónoma en entornos no estructurados: los ter-
renos no estructurados presentan unas particularidades en la percepción y la nave-
gación de los vehículos que son bastante desafiantes. En esta línea futura, explo-
raremos esta línea. Existen conjuntos de datos enfocados en este tipo de problemas
de percepción, como GOOSE [271] o Rellis 3D [272]. Actualmente, se está tra-
bajando en ella con un proyecto de la Agencia Estatal de Investigación de España
((GAIA) Gestión integral para la prevención, extinción y reforestación debido a in-
cendios forestales, Proyectos de I+D en líneas estratégicas en colaboración entre
organismos de investigación y difusión de conocimientos TRANSMISIONES 2023.
Ref PLEC2023-010303 (2024-2026)).

• Exploración del aprendizaje por refuerzo basado en aproximaciones de con-
ducción autónoma extremo a extremo: como última línea futura, exploraremos
las aproximaciones de aprendizaje por refuerzo y su combinación con el aprendizaje
profundo para generar sistemas de conducción autónoma [179] [273]. Esto lo abor-
daremos sobre la base de lo que ya hemos explorado previamente en aprendizaje
por refuerzo [257].

18https://www.youtube.com/watch?v=jJ4Xdin1gg4&ab_channel=JdeRobot

157

https://www.youtube.com/watch?v=jJ4Xdin1gg4&ab_channel=JdeRobot

APPENDIX A. REPLICABILITY AND SOFTWARE, DATA, AND MODELS
AVAILABILITY

Appendix A

Replicability and software, data, and
models availability

This appendix is intended to ensure the accessibility and reproducibility of the research
presented in this PhD thesis. All the software, deep learning models’ weights, and data
that we have presented in this document are open source, ensuring their replicability and
extensibility for future research. We also keep a website for summarizing the content
and providing access to the information. The PhD material website is hosted in https:
//sergiopaniego.github.io/phd_thesis/.

A.1. Software availability

Detection Metrics, Behavior Metrics, and TrafficSensor are open source, along with all
the data, models’ weights, and training code used during this research. They are hosted
on GitHub in the links provided below:

• TrafficSensor: https://github.com/JdeRobot/smart-traffic-sensor

• Detection Metrics:https://github.com/JdeRobot/DetectionMetrics

• Behavior Metrics:https://github.com/JdeRobot/BehaviorMetrics

A.2. Training code availability

The code for training the visual end-to-end deep learning imitation learning for driving
autonomously models presented along the thesis and to modify them is also open source:

• DeepLearningStudio:
https://github.com/JdeRobot/DeepLearningStudio

158

https://sergiopaniego.github.io/phd_thesis/
https://sergiopaniego.github.io/phd_thesis/
https://github.com/JdeRobot/smart-traffic-sensor
https://github.com/JdeRobot/DetectionMetrics
https://github.com/JdeRobot/BehaviorMetrics
https://github.com/JdeRobot/DeepLearningStudio

APPENDIX A. REPLICABILITY AND SOFTWARE, DATA, AND MODELS
AVAILABILITY

A.3. Models’ wights availability

The models’ weights used during the thesis are open source to increase the reproducibility
of the presented work. They are hosted in HuggihgFace to facilite the access. In the first
link, we include the models’ weights for the contribution presented in Chapter 6. The
second one hosts the models’ weights for the optimized deep learning models presented
in Chapter 7. In the third link, the models used in Chapter 8 are presented:

• MemoryPilotNet (Chapter 6):
https://huggingface.co/sergiopaniego/MemoryPilotNet

• OptimizedPilotNet (Chapter 7):
https://huggingface.co/sergiopaniego/OptimizedPilotNet

• subjective_vision_pilotnet (Chapter 8):
https://huggingface.co/YujiroS/subjective_vision_pilotnet

A.4. Datasets availability

The datasets used for training the models are also open source to enhance research progress
and reproducibility. In the first link, the dataset used during Chapter 6 and Chapter 7 is
hosted. The other link hosts the datasets used for Chapter 8:

• CarlaFollowLanePreviousV (Chapter 6 and Chapter 7):
https://huggingface.co/datasets/sergiopaniego/CarlaFollowLanePreviousV

• traffic-6 (Chapter 8):
https://huggingface.co/datasets/YujiroS/traffic-6

159

https://huggingface.co/sergiopaniego/MemoryPilotNet
https://huggingface.co/sergiopaniego/OptimizedPilotNet
 https://huggingface.co/YujiroS/subjective_vision_pilotnet
https://huggingface.co/datasets/sergiopaniego/CarlaFollowLanePreviousV
https://huggingface.co/datasets/YujiroS/traffic-6

BIBLIOGRAPHY

Bibliography

[1] T. Litman, “Autonomous Vehicle Implementation Predictions Implications for
Transport Planning,” Victoria Transport Policy Institute, 2022.

[2] N. H. T. S. Administration, “Critical Reasons for Crashes Investigated in the Na-
tional Motor Vehicle Crash Causation Survey,” U.S. Department of Transporta-
tion, 2015.

[3] W. H. Organization, “Global status report on road safety 2018,” World Health
Organization, Jun. 2018.

[4] L. D. Lillo, T. Gode, X. Zhou, M. Atzei, R. Chen, and T. Victor, Comparative
Safety Performance of Autonomous- and Human Drivers
: A Real-World Case Study of the Waymo One Service, 2023. arXiv: 2309.01206
[cs.RO].

[5] L. Zhang, “Human Ridehail Crash Rate Benchmark,” Cruise, 2023, https://
www.getcruise.com/news/blog/2023/human-ridehail-crash-rate-

benchmark/ [Online; accessed 31-Mar-2024].

[6] J. Vargas, S. Alsweiss, O. Toker, R. Razdan, and J. Santos, “An Overview of
Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions,”
Sensors, vol. 21, no. 16, 2021. doi: 10.3390/s21165397. [Online]. Available:
https://www.mdpi.com/1424-8220/21/16/5397.

[7] SAE International, Taxonomy and Definitions for Terms Related to Driving Au-
tomation Systems for On-Road Motor Vehicles, https : / / www . sae . org /
standards/content/j3016, [Online; accessed 31-Mar-2024], 2023.

[8] J. Fingas, “Waymo trials fully driverless rides in San Francisco,” Engadget, 2022,
https://www.engadget.com/waymo-fully-driverless-rides-san-

francisco-183703989.html [Online; accessed 31-Mar-2024].

[9] Xiaomi, “Xiaomi Unveils Five Core Automotive Technologies and Debuts Xi-
aomi SU7, Completing the Human x Car x Home Smart Ecosystem,” Xiaomi,
2024, https://www.mi.com/global/discover/article?id=3095 [Online;
accessed 31-Mar-2024].

[10] Tesla, “Autopilot and Full Self-Driving Capability,” Tesla, 2023, https://www.
tesla.com/support/autopilot [Online; accessed 31-Mar-2024].

160

https://arxiv.org/abs/2309.01206
https://arxiv.org/abs/2309.01206
https://www.getcruise.com/news/blog/2023/human-ridehail-crash-rate-benchmark/
https://www.getcruise.com/news/blog/2023/human-ridehail-crash-rate-benchmark/
https://www.getcruise.com/news/blog/2023/human-ridehail-crash-rate-benchmark/
https://doi.org/10.3390/s21165397
https://www.mdpi.com/1424-8220/21/16/5397
https://www.sae.org/standards/content/j3016
https://www.sae.org/standards/content/j3016
https://www.engadget.com/waymo-fully-driverless-rides-san-francisco-183703989.html
https://www.engadget.com/waymo-fully-driverless-rides-san-francisco-183703989.html
https://www.mi.com/global/discover/article?id=3095
https://www.tesla.com/support/autopilot
https://www.tesla.com/support/autopilot

BIBLIOGRAPHY

[11] openpilot contributors, Openpilot, https://github.com/commaai/openpilot,
[Online; accessed 31-Mar-2024], 2024.

[12] R. Akhtar, “Tesla FSD on its way to Europe as Test Operators hiring spree begins,”
The Driven, 2023, https://thedriven.io/2023/06/07/tesla-fsd-on-
its- way- to- europe- as- test- operators- hiring- spree- begins/

[Online; accessed 31-Mar-2024].

[13] D. A. Pomerleau, “ALVINN: An Autonomous Land Vehicle in a Neural Net-
work,” in Advances in Neural Information Processing Systems, D. Touretzky, Ed.,
vol. 1, Morgan-Kaufmann, 1988.

[14] DARPA, “The Grand Challenge,” DARPA, 2004, https://www.darpa.mil/
about- us/timeline/- grand- challenge- for- autonomous- vehicles

[Online; accessed 31-Mar-2024].

[15] S. Racing, “Stanley website,” Stanford Racing, 2006, https://cs.stanford.
edu/group/roadrunner//old/index.html [Online; accessed 31-Mar-2024].

[16] R. K. Nagpal and E. Cohen, “Automotive electronics revolution requires faster,
smarter interfaces,” Embedded, 2022, https://www.embedded.com/automotive-
electronics - revolution - requires - faster - smarter - interfaces/

[Online; accessed 31-Mar-2024].

[17] Waabi, “Introducing the Waabi Driver,” Waabi, 2023, https://waabi.ai/
introducing-the-waabi-driver/ [Online; accessed 31-Mar-2024].

[18] S. Macenski, F. Martín, R. White, and J. Ginés Clavero, “The Marathon 2: A
Navigation System,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020. [Online]. Available: https://github.com/
ros-planning/navigation2.

[19] L. Paull et al., “Duckietown: An open, inexpensive and flexible platform for
autonomy education and research,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1497–1504. doi: 10.1109/ICRA.
2017.7989179.

[20] B. Balaji et al., “DeepRacer: Educational Autonomous Racing Platform for Ex-
perimentation with Sim2Real Reinforcement Learning,” arXiv preprint
arXiv:1911.01562, 2019. arXiv: 1911.01562 [cs.RO].

[21] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1TENTH: An Open-
source Evaluation Environment for Continuous Control and Reinforcement Learn-
ing,” in Post Proceedings of the NeurIPS 2019 Demonstration and Competition
Track, H. J. Escalante and R. Hadsell, Eds., ser. Proceedings of Machine Learning
Research, PMLR, 2020.

161

https://github.com/commaai/openpilot
https://thedriven.io/2023/06/07/tesla-fsd-on-its-way-to-europe-as-test-operators-hiring-spree-begins/
https://thedriven.io/2023/06/07/tesla-fsd-on-its-way-to-europe-as-test-operators-hiring-spree-begins/
https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
https://cs.stanford.edu/group/roadrunner//old/index.html
https://cs.stanford.edu/group/roadrunner//old/index.html
https://www.embedded.com/automotive-electronics-revolution-requires-faster-smarter-interfaces/
https://www.embedded.com/automotive-electronics-revolution-requires-faster-smarter-interfaces/
https://waabi.ai/introducing-the-waabi-driver/
https://waabi.ai/introducing-the-waabi-driver/
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/navigation2
https://doi.org/10.1109/ICRA.2017.7989179
https://doi.org/10.1109/ICRA.2017.7989179
https://arxiv.org/abs/1911.01562

BIBLIOGRAPHY

[22] T. Thadani, “Cruise recalls all its driverless cars after pedestrian hit and dragged,”
The Washington Post, 2023, https://www.washingtonpost.com/technology/
2023/11/08/cruise-crash-driverless-recall/ [Online; accessed 31-
Mar-2024].

[23] A. Greenberg, “Hackers Remotely Kill a Jeep on the Highway—With Me in It,”
Wired, 2023, https://www.wired.com/2015/07/hackers- remotely-
kill-jeep-highway/ [Online; accessed 31-Mar-2024].

[24] C. M. Tripp Mickle and Y. Lu, “G.M.’s Cruise Moved Fast in the Driverless Race.
It Got Ugly.,” The New York Times, 2023, https://www.nytimes.com/2023/
11/03/technology/cruise-general-motors-self-driving-cars.html

[Online; accessed 31-Mar-2024].

[25] C. Gómez-Huélamo et al., “How to build and validate a safe and reliable Au-
tonomous Driving stack? A ROS based software modular architecture baseline,”
in 2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 1282–1289. doi:
10.1109/IV51971.2022.9827271.

[26] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, “End-to-end Au-
tonomous Driving: Challenges and Frontiers,” arXiv preprint arXiv:2306.16927,
2023. arXiv: 2306.16927 [cs.RO].

[27] Jin-Cyuan Lai and Shih-Shinh Huang and Chien-Cheng Tseng, “Image-Based
Vehicle Tracking and Classification on the Highway,” Green Circuits and Systems
(ICGCS), 2010 International Conference on, pp. 666–670, Jun. 2010.

[28] J.M Blosseville, C. Krafft, F. Lenior, V. Motyka, S. Beucher, “New Traffic Mea-
surement By Image Processing,” IFAC Control, Computers, Communications in
Transportation, pp. 35–42, Jan. 1989.

[29] Tomás Rodríguez, Narciso García, “An adaptive, real-time, traffic monitoring sys-
tem,” Machine Vision and Applications, pp. 555–567, Jan. 2009.

[30] Li-Chih Chen a, Jun-Wei Hsieh b,n, Yilin Yan b, Duan-Yu Chen, “Vehicle make
and model recognition using sparse representation and symmetrical SURFs,” El-
sevier, Jan. 2015.

[31] C. Chen, B. Liu, S. Wan, P. Qiao, and Q. Pei, “An Edge Traffic Flow Detection
Scheme Based on Deep Learning in an Intelligent Transportation System,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1840–1852,
2021. doi: 10.1109/TITS.2020.3025687.

[32] Michael Hodlmoser, Branislav Micusik, Ming-Yu Liu, Marc Pollefeys, Martin
Kampel, “Classification and Pose Estimation of Vehicles in Videos by 3D Model-
ing within Discrete-Continuous Optimization,” 3D Imaging, Modeling, Process-
ing, Visualization and Transmission (3DIMPVT), 2012 Second International Con-
ference, pp. 198–205, Oct. 2012.

162

https://www.washingtonpost.com/technology/2023/11/08/cruise-crash-driverless-recall/
https://www.washingtonpost.com/technology/2023/11/08/cruise-crash-driverless-recall/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.nytimes.com/2023/11/03/technology/cruise-general-motors-self-driving-cars.html
https://www.nytimes.com/2023/11/03/technology/cruise-general-motors-self-driving-cars.html
https://doi.org/10.1109/IV51971.2022.9827271
https://arxiv.org/abs/2306.16927
https://doi.org/10.1109/TITS.2020.3025687

BIBLIOGRAPHY

[33] Niluthpol Chowdhury Mithun, Nafi Ur Rashid, and S. M. Mahbubur Rahman,
“Detection and Classification of Vehicles From Video Using Multiple
Time-Spatial Images,” IEEE Transactions on intelligent transportation systems,
vol. 13, 3 Sep. 2012.

[34] Ninad S. Thakoor, Member, IEEE, and Bir Bhanu, “Structural Signatures for Pas-
senger Vehicle Classification in Video,” IEEE Transactions on intelligent trans-
portation systems, vol. 14, 4 Dec. 2013.

[35] C. N. T. Tao Wang Zhigang Zhu, “A multimodal temporal panorama approach
for moving vehicle detection, reconstruction and classification,” vol. Computer
Vision and Image Understanding, pp. 1724–1735, 117 Dec. 2013.

[36] J. G. a. Q. Wei Wang Yulong Shang, “Real-time Vehicle Classification Based on
Eigenface,” vol. Consumer Electronics, Communications and Networks (CEC-
Net), pp. 4292–4295, Apr. 2011.

[37] Y. Yang, Y. Ming, Y. Gang, and Z. Yandong, “Length-Based Vehicle Classifica-
tion in Multi-lane Traffic Flow,” vol. Transactions of Tianjin University, Vol 17,
pp. 362–368, 5 Oct. 2011.

[38] N. Buch, S.A. Velastin and J. Orwell, “A Review of Computer Vision Techniques
for the Analysis of Urban Traffic,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 12, pp. 920–239, 3 Mar. 2011.

[39] Neeraj K. Kanhere; Stanley T. Birchfield, “A Taxonomy and Analysis of Camera
Calibration Methods for Traffic Monitoring Applications,” Intelligent Transporta-
tion Systems, IEEE Transactions, vol. 11, pp. 441–452, 2 Jun. 2010.

[40] Y.-S. C. Shih-Hao Yu Jun-Wei Hsieh and W.-F. Hu, “An Automatic Traffic Surveil-
lance System for Vehicle Tracking and Classification,” vol. Lecture Notes in Com-
puter Science Volume 2749, pp. 379–386, Jun. 2003.

[41] C. Pang, W. Lam, and N. Yung, “A novel method for resolving vehicle occlusion
in a monocular traffic-image sequence,” Intelligent Transportation Systems, vol. 5,
pp. 129–141, 3 Sep. 2004.

[42] C. Pang, W. Lam, and N. Yung, “A Method for Vehicle Count in the Presence of
Multiple-Vehicle Occlusions in Traffic Images,” Intelligent Transportation Sys-
tems, vol. 8, pp. 441–459, 3 Sep. 2007.

[43] Koller, D., Weber, J., Malik, J., “Robust multiple car tracking with occlusion rea-
soning,” European Conference on Computer Vision, vol. 1, pp. 189–196, May
1994.

[44] A. J. Kanwal Yousaf Arta Iftikhar, “Comparative Analysis of Automatic Vehicle
Classification Techniques: A Survey,” International Journal of Image, Graphics
and Signal Processing, vol. 4, no. 9, pp. 52–59, Sep. 2007.

163

BIBLIOGRAPHY

[45] Y. W. Yang Lv Benjamin Yao and S.-C. Zhu, “Reconfigurable Templates for Ro-
bust Vehicle Detection and Classification,” vol. Applications of Computer Vision
(WACV), pp. 321–328, Jan. 2012.

[46] Zezhi Chen, Tim Ellis, Sergio A Velastin, “Vehicle Type Categorization: A com-
parison of classification schemes,” 2011 14th International IEEE Conference on
Intelligent Transportation Systems, pp. 74–79, Oct. 2011.

[47] haoxiang Zhang, Tieniu Tan, Kaiqi Huang, and Yunhong Wan, “Three-Dimensional
Deformable-Model-Based Localization and Recognition of Road Vehicles,” IEEE
TRANSACTIONS ON IMAGE PROCESSING, vol. 21, pp. 1–13, 1 Jan. 2012.

[48] Zezhi Chen, Tim Ellis, “Multi-shape Descriptor Vehicle Classification for Urban
Traffic,” International Conference on Digital Image Computing: Techniques and
Applications, pp. 465–461, Dec. 2011.

[49] Andrea Vedaldi, Varun Gulshan, Manik Varma and Andrew Zisserman, “Multiple
Kernels for Object Detection,” IEEE 12th International Conference on Computer
Vision (ICCV), 2009.

[50] B. Scholkopf and A. Smola, “Learning with Kernels,” MIT Press, 2002.

[51] K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis, “Background modeling
and subtraction by codebook construction,” Proc. ICIP, vol. 5, pp. 3061–3064,
Oct. 2004.

[52] K. Kim, T. H. Chalidabhongse, D. Harwood, L. Davis, “Real-time
foreground–background segmentation using codebook model,” Elseiver, Real time
imaging, pp. 172–185, Mar. 2005.

[53] Luis Unzueta– Marcos Nieto– Andoni Cortés– Javier Barandiaran– Oihana Otaegui–
and Pedro Sánchez, “Adaptive Multicue Background Subtraction for Robust Ve-
hicle Counting and Classification,” vol. 13, pp. 527–540, 2 Jun. 2012.

[54] T. Chalidabhongse, K. Kim, D. Harwood, and L. Davis, “A perturbation method
for evaluating background subtraction algorithms,” In Proc. IEEE Joint Int. Work-
shop VS-PETS, pp. 1–7, Jan. 2003.

[55] Z. Zivkovic and F. van der Heijden, “Efficient Adaptive Density Estimation per
Image Pixel for the Task of Background Subtraction,” Pattern Recognition Letters,
vol. 27, pp. 773–780, 7 2006.

[56] Lili Huang, Student Member, IEEE, “Real-Time Multi-Vehicle Detection and
Sub-Feature Based Tracking for Traffic Surveillance Systems,” 2010 2nd Inter-
national Asia Conference on Informatics in Control, Automation and Robotics.,
2010.

[57] K. Robert, “Night-Time Traffic Surveillance: A Robust Framework for Multi-
Vehicle Detection, Classification and Tracking,” vol. Advanced Video and Signal
Based Surveillance, pp. 1–6, Sep. 2009.

164

BIBLIOGRAPHY

[58] Zoran Zivkovic, “Improved Adaptive Gaussian Mixture Model for Background
Subtraction,” Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th In-
ternational Conference on, vol. 2, pp. 28–31, Aug. 2004.

[59] Pulli Harsha Samhitha, Allu Naga Jyothi, Ramana Vesapogu, Manasa Mannem
and S.Sri Harsha, “Vehicle Detection, Tracking and Speed Measurement for Traf-
fic Regulation,” IRJET., vol. 04, 04 Apr. 2017.

[60] Kenan Mu, Fei Hui, and Xiangmo Zhao, “Multiple Vehicle Detection and Track-
ing in Highway Traffic Surveillance Video Based on SIFT Feature Matching,”
Journal of Information Processing Systems., 2016.

[61] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J.
Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[62] Marcos Nieto, Luis Unzueta, Javier Barandiaran, Andoni Cortés, Oihana Otaegui
and Pedro Sánchez, “Vehicle tracking and classification in challenging scenarios
via slice sampling,” EURASIP Journal on Advances in Signal Processing, Oct.
2011.

[63] Michael Hodlmoser, Branislav Micusik, Marc Pollefeys, Ming-Yu Liu, Martin
Kampel, “Model-Based Vehicle Pose Estimation and Tracking in Videos Using
Random Forests,” International Conference on 3D Vision, pp. 430–437, Jul. 2013.

[64] Zezhi Chen, Tim Ellis, Sergio A Velastin, “Vehicle Detection, Tracking and Clas-
sification in Urban Traffic,” 15th International IEEE Conference on Intelligent
Transportation Systems, Sep. 2012.

[65] Zhou Zhu and Xiaobo Lu, “An Accurate Shadow Removal Method For Vehicle
Tracking,” Artificial Intelligence and Computational Intelligence (AICI), 2010 In-
ternational Conference on, vol. 2, pp. 59–62, Oct. 2010.

[66] Liang Wang, Fangliang Chen, Huiming Yin, “Detecting and tracking vehicles in
traffic by unmanned aerial vehicles,” Department of Civil Engineering and Engi-
neering Mechanics, Columbia University., 2016.

[67] M. Lili Huang Barth, “Real-time multi-vehicle tracking based on feature detection
and color probability model,” Intelligent Vehicles Symposium (IV), pp. 981–986,
Jun. 2010.

[68] Bjorn Johansson, Johan Wiklund, Per-Erik Forssén, Gösta Granlund, “Combin-
ing shadow detection and simulation for estimation of vehicle size and position,”
Pattern Recognition Letters, Jan. 2009.

[69] Matthew J. Leotta and Joseph L. Mundy, “Vehicle Surveillance with a Generic,
Adaptive, 3D Vehicle Model,” IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, vol. 33, pp. 1457–1469, 7 Jul. 2011.

[70] Baker, K.D Sullivan, G.D., “Performance Assessment of Model-based nacking,”
Applications of Computer Vision, Proceedings, 1992., IEEE Workshop on, pp. 28–
35, Dec. 1992.

165

BIBLIOGRAPHY

[71] Guerrero-Gomez-Olmedo, R. and Lopez-Sastre, R. J. and Maldonado-Bascon, S.
and Fernandez-Caballero, A., “Vehicle Tracking by Simultaneous Detection and
Viewpoint Estimation,” IWINAC 2013, Part II, LNCS 7931, pp. 306–316, Jan.
2013.

[72] G.Welch and G.Bishop, “An introduction to the kalman filter,” Technical Report
TR 95-041. University of North Carolina at Chapel Hill, 2006.

[73] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alterna-
tive to SIFT or SURF,” in 2011 International Conference on Computer Vision,
2011, pp. 2564–2571. doi: 10.1109/ICCV.2011.6126544.

[74] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,”
in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417.

[75] C. Papageorgiou and T. Poggio, “A Trainable System for Object Detection,” Int.
J. Comput. Vision, vol. 38, no. 1, pp. 15–33, Jun. 2000.

[76] C. P. Papageorgiou, M. Oren, and T. Poggio, “A General Framework for Object
Detection,” in Proceedings of the Sixth International Conference on Computer
Vision, ser. ICCV ’98, Jan. 1998, pp. 555–.

[77] C.Migel Bautista, C.Austin Dy, M.Iñigo Mañalac, R.Angelo Orbe and M.Cordel,
“Convolutional neural network for vehicle detection in low resolution traffic videos,”
Center for Automation Research College of Computer Studies, De La Salle Uni-
versity, 2016.

[78] Jason Kurniawan, Sensa G.S. Syahra , Chandra K. Dewa and Afiahayati, “Traffic
Congestion Detection: Learning from CCTV Monitoring Images using Convo-
lutional Neural Network,” INNS Conference on Big Data and Deep Learning,
pp. 291–297, 2018.

[79] Wankou Yang, Ziyu Li , Chao Wang and Jun Li, “A multi-task Faster R-CNN
method for 3D vehicle detection based on a single image,” Applied Soft Comput-
ing Journal, 2020.

[80] Ji-qing Luo, Hu-sheng Fang, Fa-ming Shao, Yue Zhong and Xia Hua, “Multi-
scale traffic vehicle detection based on faster ReCNN with NAS optimization and
feature enrichment,” Defence Technology, 2020.

[81] Jean-Francois Rajotte , Martin Sotir, Cedric Noiseux , Louis-Philippe Noel and
Thomas Bertiere, “Object Counting on Low Quality Images: A Case Study of
Near Real-Time Traffic Monitorin,” 2018 17th IEEE International Conference on
Machine Learning and Applications, 2018.

[82] Chiman Kwan, David Gribben, Bryan Chou, Bence Budavari, Jude Larkin,Akshay
Rangamani, Trac Tran, Jack Zhang and Ralph Etienne-Cummings, “Real-Time
and Deep Learning Based Vehicle Detection and Classification Using Pixel-Wise
Code Exposure Measurements,” Electronics, 2020.

166

https://doi.org/10.1109/ICCV.2011.6126544

BIBLIOGRAPHY

[83] Pooja Mahto, Priyamm Garg, Pranav Seth and J Panda, “Refining YOLOV4 for
Vehicle Detection,” International Journal of Advanced Research in Engineering
and Technology (IJARET), vol. 11, 2020.

[84] Luyang Zhang, HaitaoWang, XinyaoWang, Shuai Chen, Huaibin Wang and Kai
Zheng, “Vehicle Object Detection Based on Improved RetinaNet,” Journal of
Physics: Conference Series, 2021.

[85] Christian Szegedy, Alexander Toshev and Dumitru Erhan, “Deep Neural Net-
works for Object Detection,” NIPS’13: Proceedings of the 26th International
Conference on Neural Information Processing Systems, vol. 2, pp. 2553–2561,
2013.

[86] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, “Imagenet classification with
deep convolutional neural networks,” In Advances in Neural Information Process-
ing Systems 25, 2012.

[87] L. Liu et al., “Deep learning for generic object detection: A survey,” arXiv preprint
arXiv:1809.02165, 2018. arXiv: 1809.02165 [cs.RO].

[88] S. Agarwal, J. O. du Terrail, and F. Jurie, “Recent Advances in Object Detection
in the Age of Deep Convolutional Neural Networks,” arXiv preprint
arXiv:1809.03193, vol. abs/1809.03193, 2018. arXiv: 1809 . 03193 [cs.RO].
[Online]. Available: http://arxiv.org/abs/1809.03193.

[89] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learn-
ing: A review,” arXiv preprint arXiv:1807.05511, 2018. arXiv: 1807 . 05511
[cs.RO].

[90] L. Jiao et al., “A Survey of Deep Learning-Based Object Detection,” IEEE Access,
vol. 7, pp. 128 837–128 868, 2019. doi: 10.1109/ACCESS.2019.2939201.

[91] Zhengxia Zou and Z. Shi and Yuhong Guo and Jieping Ye, “Object detection
in 20 years: A survey,” arXiv preprint arXiv:1905.05055, vol. abs/1905.05055,
2019. arXiv: 1905.05055 [cs.RO].

[92] X. Wu, D. Sahoo, and S. C. H. Hoi, “Recent Advances in Deep Learning for
Object Detection,” arXiv preprint arXiv:1908.03673, vol. abs/1908.03673, 2019.
arXiv: 1908.03673 [cs.RO]. [Online]. Available: http://arxiv.org/abs/
1908.03673.

[93] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, A
Survey of Modern Deep Learning based Object Detection Models, 2021. doi: 10.
48550/ARXIV.2104.11892. arXiv: 2104.11892 [cs.RO]. [Online]. Available:
https://arxiv.org/abs/2104.11892.

[94] R. Kaur and S. Singh, “A comprehensive review of object detection with deep
learning,” Digital Signal Processing, vol. 132, p. 103 812, 2023. doi: https :
//doi.org/10.1016/j.dsp.2022.103812. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1051200422004298.

167

https://arxiv.org/abs/1809.02165
https://arxiv.org/abs/1809.03193
http://arxiv.org/abs/1809.03193
https://arxiv.org/abs/1807.05511
https://arxiv.org/abs/1807.05511
https://doi.org/10.1109/ACCESS.2019.2939201
https://arxiv.org/abs/1905.05055
https://arxiv.org/abs/1908.03673
http://arxiv.org/abs/1908.03673
http://arxiv.org/abs/1908.03673
https://doi.org/10.48550/ARXIV.2104.11892
https://doi.org/10.48550/ARXIV.2104.11892
https://arxiv.org/abs/2104.11892
https://arxiv.org/abs/2104.11892
https://doi.org/https://doi.org/10.1016/j.dsp.2022.103812
https://doi.org/https://doi.org/10.1016/j.dsp.2022.103812
https://www.sciencedirect.com/science/article/pii/S1051200422004298
https://www.sciencedirect.com/science/article/pii/S1051200422004298

BIBLIOGRAPHY

[95] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning Affordance
for Direct Perception in Autonomous Driving,” Dec. 2015, pp. 2722–2730. doi:
10.1109/ICCV.2015.312.

[96] Z. Yang and R. Nevatia, “A multi-scale cascade fully convolutional network face
detector,” Dec. 2016, pp. 633–638. doi: 10.1109/ICPR.2016.7899705.

[97] Y. Cai, L. Wen, L. Zhang, D. Du, and W. Wang, Rethinking Object Detection in
Retail Stores, 2020. doi: 10.48550/ARXIV.2003.08230. arXiv: 2003.08230
[cs.RO]. [Online]. Available: https://arxiv.org/abs/2003.08230.

[98] R. Kachach and J. M. Cañas, “Hybrid three-dimensional and support vector ma-
chine approach for automatic vehicle tracking and classification using a single
camera,” Journal of Electronic Imaging, vol. 25, no. 3, p. 033 021, 2016.

[99] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in European con-
ference on computer vision, Springer, 2014, pp. 740–755.

[100] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015. doi: 10.1007/s11263-015-0816-y.

[101] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal Visual Object Classes Challenge: A Retrospective,”
International Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, Jan. 2015.

[102] S. Song and J. Xiao, “Tracking Revisited Using RGBD Camera: Unified Bench-
mark and Baselines,” in 2013 IEEE International Conference on Computer Vision,
2013, pp. 233–240.

[103] L. Spinello and K. O. Arras, “People detection in RGB-D data,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sep. 2011, pp. 3838–
3843. doi: 10.1109/IROS.2011.6095074.

[104] T. D. B. Alexe et al., The Open Images Dataset V4, 2020. [Online]. Available:
https://link.springer.com/article/10.1007/s11263-020-01316-z.

[105] K. Tong, Y. Wu, and F. Zhou, “Recent advances in small object detection based
on deep learning: A review,” Image and Vision Computing, vol. 97, p. 103 910,
2020. doi: https://doi.org/10.1016/j.imavis.2020.103910. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0262885620300421.

[106] C. Chen, M.-Y. Liu, O. Tuzel, and J. Xiao, “R-CNN for Small Object Detection,”
in Computer Vision – ACCV 2016, S.-H. Lai, V. Lepetit, K. Nishino, and Y. Sato,
Eds., Cham: Springer International Publishing, 2017, pp. 214–230.

[107] S. Shao et al., “CrowdHuman: A Benchmark for Detecting Human in a Crowd,”
arXiv preprint arXiv:1805.00123, 2018. arXiv: 1805.00123 [cs.RO].

168

https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICPR.2016.7899705
https://doi.org/10.48550/ARXIV.2003.08230
https://arxiv.org/abs/2003.08230
https://arxiv.org/abs/2003.08230
https://arxiv.org/abs/2003.08230
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/IROS.2011.6095074
https://link.springer.com/article/10.1007/s11263-020-01316-z
https://doi.org/https://doi.org/10.1016/j.imavis.2020.103910
http://www.sciencedirect.com/science/article/pii/S0262885620300421
http://www.sciencedirect.com/science/article/pii/S0262885620300421
https://arxiv.org/abs/1805.00123

BIBLIOGRAPHY

[108] Á. Arcos-García, J. A. Álvarez-García, and L. M. Soria-Morillo, “Evaluation of
deep neural networks for traffic sign detection systems,” Neurocomputing, vol. 316,
pp. 332–344, 2018. doi: https://doi.org/10.1016/j.neucom.2018.
08.009. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S092523121830924X.

[109] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-Sign Detection
and Classification in the Wild,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[110] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “LabelMe: a database
and web-based tool for image annotation,” International journal of computer vi-
sion, vol. 77, no. 1-3, pp. 157–173, 2008.

[111] B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell, Few-shot Object Detec-
tion via Feature Reweighting, 2018. doi: 10.48550/ARXIV.1812.01866. arXiv:
1812.01866 [cs.RO]. [Online]. Available: https://arxiv.org/abs/1812.
01866.

[112] P. L. Jeune and A. Mokraoui, A Unified Framework for Attention-Based Few-Shot
Object Detection, 2022. doi: 10.48550/ARXIV.2201.02052. arXiv: 2201.
02052 [cs.RO]. [Online]. Available: https://arxiv.org/abs/2201.02052.

[113] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of Image Classi-
fication Algorithms Based on Convolutional Neural Networks,” Remote Sensing,
vol. 13, no. 22, 2021. doi: 10.3390/rs13224712. [Online]. Available: https:
//www.mdpi.com/2072-4292/13/22/4712.

[114] Z. Liu et al., Swin Transformer V2: Scaling Up Capacity and Resolution, 2022.
arXiv: 2111.09883 [cs.CV].

[115] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos,
Image Segmentation Using Deep Learning: A Survey, 2020. doi: 10 . 48550 /
ARXIV.2001.05566. arXiv: 2001.05566 [cs.RO]. [Online]. Available: https:
//arxiv.org/abs/2001.05566.

[116] G. Weng, B. Dong, and Y. Lei, “A level set method based on additive bias correc-
tion for image segmentation,” Expert Systems with Applications, vol. 185, p. 115 633,
2021. doi: https://doi.org/10.1016/j.eswa.2021.115633. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0957417421010277.

[117] P. Ge, Y. Chen, G. Wang, and G. Weng, “A hybrid active contour model based
on pre-fitting energy and adaptive functions for fast image segmentation,” Pat-
tern Recognition Letters, vol. 158, pp. 71–79, 2022. doi: https://doi.org/
10.1016/j.patrec.2022.04.025. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167865522001234.

[118] A. Kirillov et al., Segment Anything, 2023. arXiv: 2304.02643 [cs.CV].

169

https://doi.org/https://doi.org/10.1016/j.neucom.2018.08.009
https://doi.org/https://doi.org/10.1016/j.neucom.2018.08.009
http://www.sciencedirect.com/science/article/pii/S092523121830924X
http://www.sciencedirect.com/science/article/pii/S092523121830924X
https://doi.org/10.48550/ARXIV.1812.01866
https://arxiv.org/abs/1812.01866
https://arxiv.org/abs/1812.01866
https://arxiv.org/abs/1812.01866
https://doi.org/10.48550/ARXIV.2201.02052
https://arxiv.org/abs/2201.02052
https://arxiv.org/abs/2201.02052
https://arxiv.org/abs/2201.02052
https://doi.org/10.3390/rs13224712
https://www.mdpi.com/2072-4292/13/22/4712
https://www.mdpi.com/2072-4292/13/22/4712
https://arxiv.org/abs/2111.09883
https://doi.org/10.48550/ARXIV.2001.05566
https://doi.org/10.48550/ARXIV.2001.05566
https://arxiv.org/abs/2001.05566
https://arxiv.org/abs/2001.05566
https://arxiv.org/abs/2001.05566
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115633
https://www.sciencedirect.com/science/article/pii/S0957417421010277
https://www.sciencedirect.com/science/article/pii/S0957417421010277
https://doi.org/https://doi.org/10.1016/j.patrec.2022.04.025
https://doi.org/https://doi.org/10.1016/j.patrec.2022.04.025
https://www.sciencedirect.com/science/article/pii/S0167865522001234
https://www.sciencedirect.com/science/article/pii/S0167865522001234
https://arxiv.org/abs/2304.02643

BIBLIOGRAPHY

[119] A. Shatnawi, G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub, “A comparative
study of open source deep learning frameworks,” in Information and Communica-
tion Systems (ICICS), 2018 9th International Conference on, IEEE, 2018, pp. 72–
77.

[120] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning,” in
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’16, Savannah, GA, USA: USENIX Association, 2016,
pp. 265–283.

[121] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference on Multimedia, ACM,
2014, pp. 675–678.

[122] J. Redmon, Darknet: Open Source Neural Networks in C, https://pjreddie.
com/darknet/, Accessed: 2022-04-27, 2013–2016.

[123] F. Chollet et al., Keras, https://keras.io, 2015.

[124] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library,” in Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc.,
2019.

[125] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks,” arXiv preprint arXiv:1506.01497,
Jun. 2015. arXiv: 1506.01497 [cs.RO].

[126] W. Liu et al., “SSD: Single Shot MultiBox Detector,” CoRR, vol. abs/1512.02325,
2015. arXiv: 1512.02325.

[127] SSD Mobilenet V2 COCO Config, https : / / github . com / tensorflow /
models/blob/master/research/object_detection/samples/configs/

ssd_mobilenet_v2_coco.config, Accessed: 2022-04-27.

[128] SSD: Single-Shot Multibox Detector Keras implementation, https://github.
com/pierluigiferrari/ssd_keras, Accessed: 2022-04-27.

[129] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

[130] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” arXiv preprint
arXiv:1612.08242, 2017. arXiv: 1612.08242 [cs.RO].

[131] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv preprint
arXiv:1804.02767, vol. abs/1804.02767, 2018. arXiv: 1804.02767 [cs.RO].

[132] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, YOLOv4: Optimal Speed and
Accuracy of Object Detection, 2020. arXiv: 1804.02767 [cs.RO].

170

https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://keras.io
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1512.02325
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v2_coco.config
https://github.com/pierluigiferrari/ssd_keras
https://github.com/pierluigiferrari/ssd_keras
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767

BIBLIOGRAPHY

[133] G. Jocher et al., ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and
OpenVINO Export and Inference, version v6.1, Feb. 2022. doi: 10.5281/zenodo.
6222936. [Online]. Available: https://doi.org/10.5281/zenodo.6222936.

[134] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, YOLOv9: Learning What You Want
to Learn Using Programmable Gradient Information, 2024. arXiv: 2402.13616
[cs.CV].

[135] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
End-to-End Object Detection with Transformers, 2020. doi: 10.48550/ARXIV.
2005.12872. arXiv: 2005.12872 [cs.RO]. [Online]. Available: https://
arxiv.org/abs/2005.12872.

[136] Z. Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted
Windows, 2021. doi: 10 . 48550 / ARXIV . 2103 . 14030. arXiv: 2103 . 14030
[cs.RO]. [Online]. Available: https://arxiv.org/abs/2103.14030.

[137] H. Zhang et al., DINO: DETR with Improved DeNoising Anchor Boxes for End-
to-End Object Detection, 2022. doi: 10.48550/ARXIV.2203.03605. arXiv:
2203.03605 [cs.RO]. [Online]. Available: https://arxiv.org/abs/2203.
03605.

[138] Z. Zong, G. Song, and Y. Liu, DETRs with Collaborative Hybrid Assignments
Training, 2022. arXiv: 2211.12860 [cs.CV].

[139] L. Liu et al., “Computing Systems for Autonomous Driving: State-of-the-Art
and Challenges,” arXiv preprint arXiv:2009.14349, 2020. arXiv: 2009.14349
[cs.RO].

[140] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-less obstacle
avoidance,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 2759–2764. doi: 10.1109/IROS.2016.7759428.

[141] E. Shinohara, “ Autonomous driving in traffic using end-to-end deep learning,”
M.S. thesis, Universidad Rey Juan Carlos, 2023.

[142] C. Urmson et al., “Autonomous Driving in Urban Environments: Boss and the
Urban Challenge,” in The DARPA Urban Challenge: Autonomous Vehicles in City
Traffic, M. Buehler, K. Iagnemma, and S. Singh, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 1–59. doi: 10.1007/978-3-642-03991-1_1.
[Online]. Available: https://doi.org/10.1007/978-3-642-03991-1_1.

[143] J. Levinson et al., “Towards fully autonomous driving: Systems and algorithms,”
in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp. 163–168. doi: 10.
1109/IVS.2011.5940562.

[144] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of Autonomous
Driving: Common Practices and Emerging Technologies,” arXiv preprint
arXiv:1906.05113, 2019. arXiv: 1906.05113 [cs.RO].

171

https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936
https://arxiv.org/abs/2402.13616
https://arxiv.org/abs/2402.13616
https://doi.org/10.48550/ARXIV.2005.12872
https://doi.org/10.48550/ARXIV.2005.12872
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://doi.org/10.48550/ARXIV.2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://doi.org/10.48550/ARXIV.2203.03605
https://arxiv.org/abs/2203.03605
https://arxiv.org/abs/2203.03605
https://arxiv.org/abs/2203.03605
https://arxiv.org/abs/2211.12860
https://arxiv.org/abs/2009.14349
https://arxiv.org/abs/2009.14349
https://doi.org/10.1109/IROS.2016.7759428
https://doi.org/10.1007/978-3-642-03991-1_1
https://doi.org/10.1007/978-3-642-03991-1_1
https://doi.org/10.1109/IVS.2011.5940562
https://doi.org/10.1109/IVS.2011.5940562
https://arxiv.org/abs/1906.05113

BIBLIOGRAPHY

[145] Autoware contributors, Autoware, https://github.com/autowarefoundation/
autoware, [Online; accessed 31-Mar-2024], 2022.

[146] P. Wu, Y. Cao, Y. He, and D. Li, “Vision-Based Robot Path Planning with Deep
Learning,” in Computer Vision Systems, M. Liu, H. Chen, and M. Vincze, Eds.,
Cham: Springer International Publishing, 2017, pp. 101–111.

[147] M. Bojarski et al., “Explaining How a Deep Neural Network Trained with End-
to-End Learning Steers a Car,” arXiv preprint arXiv:1704.07911, 2017. arXiv:
1704.07911 [cs.RO].

[148] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-to-End Model-Free Reinforce-
ment Learning for Urban Driving Using Implicit Affordances,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2020.

[149] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi, “End-to-
End Race Driving with Deep Reinforcement Learning,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Brisbane, Australia: IEEE
Press, 2018, pp. 2070–2075. doi: 10.1109/ICRA.2018.8460934. [Online].
Available: https://doi.org/10.1109/ICRA.2018.8460934.

[150] W. Zeng, S. Wang, R. Liao, Y. Chen, B. Yang, and R. Urtasun, “DSDNet: Deep
Structured Self-driving Network,” in Computer Vision – ECCV 2020, A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, Eds., Cham: Springer International Pub-
lishing, 2020, pp. 156–172. doi: 10.1007/978-3-030-58589-1_10.

[151] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “DiffStack: A Differentiable
and Modular Control Stack for Autonomous Vehicles,” in 6th Annual Conference
on Robot Learning, 2022. [Online]. Available: https://openreview.net/
forum?id=teEnA3L4aRe.

[152] Y. Hu et al., “Planning-oriented Autonomous Driving,” arXiv preprint
arXiv:2212.10156, 2023. arXiv: 2212.10156 [cs.RO].

[153] S. Casas, A. Sadat, and R. Urtasun, “MP3: A Unified Model to Map, Perceive,
Predict and Plan,” in 2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021, pp. 14 398–14 407. doi: 10.1109/CVPR46437.
2021.01417.

[154] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the Limitations
of Behavior Cloning for Autonomous Driving,” arXiv preprint arXiv:1904.08980,
2019. arXiv: 1904.08980 [cs.RO].

[155] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end Learning of Driving Models
from Large-scale Video Datasets,” arXiv preprint arXiv:1612.01079, 2016. arXiv:
1612.01079 [cs.RO].

172

https://github.com/autowarefoundation/autoware
https://github.com/autowarefoundation/autoware
https://arxiv.org/abs/1704.07911
https://doi.org/10.1109/ICRA.2018.8460934
https://doi.org/10.1109/ICRA.2018.8460934
https://doi.org/10.1007/978-3-030-58589-1_10
https://openreview.net/forum?id=teEnA3L4aRe
https://openreview.net/forum?id=teEnA3L4aRe
https://arxiv.org/abs/2212.10156
https://doi.org/10.1109/CVPR46437.2021.01417
https://doi.org/10.1109/CVPR46437.2021.01417
https://arxiv.org/abs/1904.08980
https://arxiv.org/abs/1612.01079

BIBLIOGRAPHY

[156] J. Kocić, N. Jovičić, and V. Drndarević, “An End-to-End Deep Neural Network for
Autonomous Driving Designed for Embedded Automotive Platforms,” Sensors,
vol. 19, no. 9, 2019. doi: 10.3390/s19092064.

[157] A. Riboni, N. Ghioldi, A. Candelieri, and M. Borrotti, “Bayesian Optimization
and Deep Learning forsteering wheel angle prediction,” arXiv preprint
arXiv:2110.13629, 2021. arXiv: 2110.13629 [cs.RO].

[158] E. Santana and G. Hotz, “Learning a Driving Simulator,” arXiv preprint
arXiv:1608.01230, 2016. arXiv: 1608.01230 [cs.RO].

[159] M. Bojarski et al., “End to End Learning for Self-Driving Cars,” arXiv preprint
arXiv:1604.07316, 2016. arXiv: 1604.07316 [cs.RO].

[160] Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recogni-
tion,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989. doi: 10.1162/
neco.1989.1.4.541.

[161] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K. Hedrick,
“Learning a deep neural net policy for end-to-end control of autonomous vehi-
cles,” in 2017 American Control Conference (ACC), 2017, pp. 4914–4919. doi:
10.23919/ACC.2017.7963716.

[162] S. Yang, W. Wang, C. Liu, W. Deng, and J. K. Hedrick, “Feature analysis and se-
lection for training an end-to-end autonomous vehicle controller using deep learn-
ing approach,” in 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2017,
pp. 1033–1038.

[163] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided Control
Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline,”
arXiv preprint arXiv:2206.08129, 2022. doi: 10.48550/ARXIV.2206.08129.
arXiv: 2206.08129 [cs.CV].

[164] H. Shao, L. Wang, R. Chen, S. L. Waslander, H. Li, and Y. Liu, “ReasonNet:
End-to-End Driving With Temporal and Global Reasoning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2023, pp. 13 723–13 733.

[165] K. Chitta, A. Prakash, and A. Geiger, NEAT: Neural Attention Fields for End-to-
End Autonomous Driving, 2021. arXiv: 2109.04456 [cs.CV].

[166] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, “TransFuser: Im-
itation With Transformer-Based Sensor Fusion for Autonomous Driving,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 11,
12878–12 895, 2023. doi: 10.1109/TPAMI.2022.3200245.

[167] D. Chen and P. Krähenbühl, Learning from All Vehicles, 2022. arXiv: 2203 .
11934 [cs.RO].

173

https://doi.org/10.3390/s19092064
https://arxiv.org/abs/2110.13629
https://arxiv.org/abs/1608.01230
https://arxiv.org/abs/1604.07316
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.23919/ACC.2017.7963716
https://doi.org/10.48550/ARXIV.2206.08129
https://arxiv.org/abs/2206.08129
https://arxiv.org/abs/2109.04456
https://doi.org/10.1109/TPAMI.2022.3200245
https://arxiv.org/abs/2203.11934
https://arxiv.org/abs/2203.11934

BIBLIOGRAPHY

[168] A. O. Ly and M. Akhloufi, “Learning to Drive by Imitation: An Overview of Deep
Behavior Cloning Methods,” IEEE Transactions on Intelligent Vehicles, vol. 6,
no. 2, pp. 195–209, 2021. doi: 10.1109/TIV.2020.3002505.

[169] S. Schaal, “Learning from demonstration,” in Proceedings of the 9th International
Conference on Neural Information Processing Systems, ser. NIPS’96, Denver,
Colorado: MIT Press, 1996, pp. 1040–1046.

[170] F. Torabi, G. Warnell, and P. Stone, “Behavioral Cloning from Observation,” in
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence
Organization, Jul. 2018, pp. 4950–4957. doi: 10.24963/ijcai.2018/687.
[Online]. Available: https://doi.org/10.24963/ijcai.2018/687.

[171] C. Diehl, J. Adamek, M. Krüger, F. Hoffmann, and T. Bertram, “Differentiable
Constrained Imitation Learning for Robot Motion Planning and Control,” arXiv
preprint arXiv:2210.11796, 2023. arXiv: 2210.11796 [cs.RO].

[172] F. Codevilla, M. Müller, A. Dosovitskiy, A. M. López, and V. Koltun, “End-to-
End Driving Via Conditional Imitation Learning,” 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1–9, 2018.

[173] T. Pearce and J. Zhu, “Counter-Strike Deathmatch with Large-Scale Behavioural
Cloning,” in 2022 IEEE Conference on Games (CoG), IEEE, 2022, pp. 104–111.

[174] S. Ross, G. J. Gordon, and J. A. Bagnell, “A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning,” arXiv preprint
arXiv:1011.0686, 2011. arXiv: 1011.0686 [cs.RO].

[175] M. Bansal, A. Krizhevsky, and A. Ogale, “ChauffeurNet: Learning to Drive by
Imitating the Best and Synthesizing the Worst,” arXiv preprint arXiv:1812.03079,
2018. arXiv: 1812.03079 [cs.RO].

[176] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A.
Kalinin, “Albumentations: Fast and flexible image augmentations,” Information,
vol. 11, no. 2, p. 125, Feb. 2020. doi: 10.3390/info11020125. [Online]. Avail-
able: https://doi.org/10.3390%2Finfo11020125.

[177] J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” Advances in
neural information processing systems, vol. 29, 2016.

[178] D. Garg, S. Chakraborty, C. Cundy, J. Song, and S. Ermon, “IQ-Learn: Inverse
soft-Q Learning for Imitation,” Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 4028–4039, 2021.

[179] A. Amini et al., “Learning Robust Control Policies for End-to-End Autonomous
Driving From Data-Driven Simulation,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 1143–1150, 2020. doi: 10.1109/LRA.2020.2966414.

174

https://doi.org/10.1109/TIV.2020.3002505
https://doi.org/10.24963/ijcai.2018/687
https://doi.org/10.24963/ijcai.2018/687
https://arxiv.org/abs/2210.11796
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1812.03079
https://doi.org/10.3390/info11020125
https://doi.org/10.3390%2Finfo11020125
https://doi.org/10.1109/LRA.2020.2966414

BIBLIOGRAPHY

[180] R. Gutiérrez-Moreno, R. Barea, E. López-Guillén, J. Araluce, and L. M. Bergasa,
“Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA
Simulator,” Sensors, vol. 22, no. 21, p. 8373, 2022.

[181] Y. Lu et al., Imitation Is Not Enough: Robustifying Imitation with Reinforce-
ment Learning for Challenging Driving Scenarios, 2023. arXiv: 2212.11419
[cs.AI].

[182] P. A. Lopez et al., “Microscopic Traffic Simulation using SUMO,” in The 21st
IEEE International Conference on Intelligent Transportation Systems, IEEE, 2018.
[Online]. Available: https://elib.dlr.de/124092/.

[183] E. Espié, C. Guionneau, B. Wymann, C. Dimitrakakis, R. Coulom, and A. Sum-
ner, “TORCS, The Open Racing Car Simulator,” 2005.

[184] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, 2004,
2149–2154 vol.3. doi: 10.1109/IROS.2004.1389727.

[185] V. Costa, R. J. Rossetti, and A. Sousa, “Autonomous driving simulator for edu-
cational purposes,” in 2016 11th Iberian Conference on Information Systems and
Technologies (CISTI), 2016, pp. 1–5. doi: 10.1109/CISTI.2016.7521461.

[186] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
Open Urban Driving Simulator,” in Proceedings of the 1st Annual Conference on
Robot Learning, 2017, pp. 1–16.

[187] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. V. Gool, End-to-End Urban Driving by
Imitating a Reinforcement Learning Coach, 2021. arXiv: 2108.08265 [cs.CV].

[188] DeepDrive contributors, Deepdrive, https://github.com/deepdrive/deepdrive-
sim, [Online; accessed 31-Mar-2024], 2022.

[189] H. Fan et al., “Baidu apollo em motion planner,” arXiv preprint arXiv:1807.08048,
2018. doi: 10.48550/ARXIV.1807.08048.

[190] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles,” arXiv preprint arXiv:1705.05065,
2017. doi: 10.48550/ARXIV.1705.05065. arXiv: 1705.05065 [cs.RO].

[191] Udacity’s Self-Driving Car Simulator contributors, Udacity’s self-driving car sim-
ulator, https://github.com/udacity/self-driving-car-sim, [Online;
accessed 31-Mar-2024], 2022.

[192] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for Data: Ground Truth
from Computer Games,” arXiv preprint arXiv:1608.02192, 2016. doi: 10.48550/
ARXIV.1608.02192. arXiv: 1608.02192 [cs.RO].

[193] S. R. Richter, Z. Hayder, and V. Koltun, “Playing for Benchmarks,” arXiv preprint
arXiv:1604.07316, 2017. doi: 10.48550/ARXIV.1709.07322. arXiv: 1709.
07322 [cs.RO].

175

https://arxiv.org/abs/2212.11419
https://arxiv.org/abs/2212.11419
https://elib.dlr.de/124092/
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/CISTI.2016.7521461
https://arxiv.org/abs/2108.08265
https://github.com/deepdrive/deepdrive-sim
https://github.com/deepdrive/deepdrive-sim
https://doi.org/10.48550/ARXIV.1807.08048
https://doi.org/10.48550/ARXIV.1705.05065
https://arxiv.org/abs/1705.05065
https://github.com/udacity/self-driving-car-sim
https://doi.org/10.48550/ARXIV.1608.02192
https://doi.org/10.48550/ARXIV.1608.02192
https://arxiv.org/abs/1608.02192
https://doi.org/10.48550/ARXIV.1709.07322
https://arxiv.org/abs/1709.07322
https://arxiv.org/abs/1709.07322

BIBLIOGRAPHY

[194] M. Quigley et al., “ROS: an open-source Robot Operating System,” vol. 3, Jan.
2009.

[195] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operat-
ing system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7,
no. 66, eabm6074, 2022.

[196] H. Caesar et al., “nuScenes: A multimodal dataset for autonomous driving,” in
CVPR, 2020.

[197] F. Yu et al., “BDD100K: A Diverse Driving Dataset for Heterogeneous Mul-
titask Learning,” arXiv preprint arXiv:1805.04687, 2018. arXiv: 1805.04687
[cs.RO].

[198] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics: The KITTI
Dataset,” International Journal of Robotics Research (IJRR), 2013.

[199] Y. Cabon, N. Murray, and M. Humenberger, “Virtual KITTI 2,” arXiv preprint
arXiv:2001.10773, 2020. arXiv: 2001.10773 [cs.RO].

[200] M. Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene Understand-
ing,” arXiv preprint arXiv:1604.01685, 2016. doi: 10.48550/ARXIV.1604.
01685. arXiv: 1604.01685 [cs.CV].

[201] H. Caesar et al., “NuPlan: A closed-loop ML-based planning benchmark for au-
tonomous vehicles,” arXiv preprint arXiv:2106.11810, 2022. arXiv: 2106.11810
[cs.RO].

[202] Udacity’s Self-Driving Dataset contributors, Udacity’s Self-Driving Dataset, https:
//github.com/udacity/self- driving- car, [Online; accessed 31-Mar-
2024], 2023.

[203] S. Ettinger et al., “Large Scale Interactive Motion Forecasting for Autonomous
Driving : The Waymo Open Motion Dataset,” in 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 9690–9699. doi: 10.1109/
ICCV48922.2021.00957.

[204] M.-F. Chang et al., “Argoverse: 3D Tracking and Forecasting With Rich Maps,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 8740–8749. doi: 10.1109/CVPR.2019.00895.

[205] W. G. Najm, J. D. Smith, and M. Yanagisawa, “Pre-crash scenario typology for
crash avoidance research,” John A. Volpe National Transportation Systems Center
(U.S.), Tech. Rep. DOT-VNTSC-NHTSA-06-02; DOT HS 810 767, Apr. 2007.
[Online]. Available: https://rosap.ntl.bts.gov/view/dot/6281.

[206] M. N. Sharath and B. Mehran, “A Literature Review of Performance Metrics of
Automated Driving Systems for On-Road Vehicles,” Frontiers in Future Trans-
portation, vol. 2, 2021. doi: 10.3389/ffutr.2021.759125. [Online]. Avail-
able: https://www.frontiersin.org/articles/10.3389/ffutr.2021.
759125.

176

https://arxiv.org/abs/1805.04687
https://arxiv.org/abs/1805.04687
https://arxiv.org/abs/2001.10773
https://doi.org/10.48550/ARXIV.1604.01685
https://doi.org/10.48550/ARXIV.1604.01685
https://arxiv.org/abs/1604.01685
https://arxiv.org/abs/2106.11810
https://arxiv.org/abs/2106.11810
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://doi.org/10.1109/ICCV48922.2021.00957
https://doi.org/10.1109/ICCV48922.2021.00957
https://doi.org/10.1109/CVPR.2019.00895
https://rosap.ntl.bts.gov/view/dot/6281
https://doi.org/10.3389/ffutr.2021.759125
https://www.frontiersin.org/articles/10.3389/ffutr.2021.759125
https://www.frontiersin.org/articles/10.3389/ffutr.2021.759125

BIBLIOGRAPHY

[207] L. Westhofen et al., “Criticality Metrics for Automated Driving: A Review and
Suitability Analysis of the State of the Art,” Archives of Computational Methods
in Engineering, vol. 30, no. 1, pp. 1–35, Jan. 2023. doi: 10.1007/s11831-022-
09788-7. [Online]. Available: https://doi.org/10.1007/s11831-022-
09788-7.

[208] D. Paz, P.-j. Lai, N. Chan, Y. Jiang, and H. I. Christensen, Autonomous Vehicle
Benchmarking using Unbiased Metrics, 2020. arXiv: 2006.02518 [cs.RO].

[209] P. S. Chib and P. Singh, Recent Advancements in End-to-End Autonomous Driving
using Deep Learning: A Survey, 2023. arXiv: 2307.04370 [cs.RO].

[210] J. de la Peña, L. M. Bergasa, M. Antunes, F. Arango, C. Gómez-Huélamo, and
E. López-Guillén, “AD PerDevKit: An Autonomous Driving Perception Devel-
opment Kit using CARLA simulator and ROS,” in 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), 2022, pp. 4095–4100.
doi: 10.1109/ITSC55140.2022.9922369.

[211] L. Chi and Y. Mu, “Deep Steering: Learning End-to-End Driving Model from
Spatial and Temporal Visual Cues,” arXiv preprint arXiv:1708.03798, 2017. arXiv:
1708.03798 [cs.RO].

[212] R. Zhao, Y. Zhang, Z. Huang, and C. Yin, “End-to-end Spatiotemporal Attention
Model for Autonomous Driving,” in 2020 IEEE 4th Information Technology, Net-
working, Electronic and Automation Control Conference (ITNEC), vol. 1, 2020,
pp. 2649–2653. doi: 10.1109/ITNEC48623.2020.9085185.

[213] J. del Egio, L. M. Bergasa, E. Romera, C. Gómez Huélamo, J. Araluce, and R.
Barea, “Self-driving a Car in Simulation Through a CNN,” in Advances in Phys-
ical Agents, R. Fuentetaja Pizán, Á. García Olaya, M. P. Sesmero Lorente, J. A.
Iglesias Martínez, and A. Ledezma Espino, Eds., Cham: Springer International
Publishing, 2019, pp. 31–43.

[214] H. M. Eraqi, M. N. Moustafa, and J. Honer, “End-to-End Deep Learning for Steer-
ing Autonomous Vehicles Considering Temporal Dependencies,” arXiv preprint
arXiv:1710.03804, 2017. arXiv: 1710.03804 [cs.RO].

[215] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural computa-
tion, vol. 9, pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735.

[216] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo, “Convo-
lutional LSTM Network: A Machine Learning Approach for Precipitation Now-
casting,” in Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems - Volume 1, ser. NIPS’15, Montreal, Canada: MIT Press,
2015, pp. 802–810.

[217] G. Menghani, “Efficient Deep Learning: A Survey on Making Deep Learning
Models Smaller, Faster, and Better,” ACM Comput. Surv., vol. 55, no. 12, Mar.
2023. doi: 10.1145/3578938. [Online]. Available: https://doi.org/10.
1145/3578938.

177

https://doi.org/10.1007/s11831-022-09788-7
https://doi.org/10.1007/s11831-022-09788-7
https://doi.org/10.1007/s11831-022-09788-7
https://doi.org/10.1007/s11831-022-09788-7
https://arxiv.org/abs/2006.02518
https://arxiv.org/abs/2307.04370
https://doi.org/10.1109/ITSC55140.2022.9922369
https://arxiv.org/abs/1708.03798
https://doi.org/10.1109/ITNEC48623.2020.9085185
https://arxiv.org/abs/1710.03804
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3578938
https://doi.org/10.1145/3578938
https://doi.org/10.1145/3578938

BIBLIOGRAPHY

[218] R. Gray and D. Neuhoff, “Quantization,” IEEE Transactions on Information The-
ory, vol. 44, no. 6, pp. 2325–2383, 1998. doi: 10.1109/18.720541.

[219] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen, and T.
Blankevoort, “A White Paper on Neural Network Quantization,” arXiv preprint
arXiv:2106.08295, 2021. arXiv: 2106.08295 [cs.RO].

[220] S. Vadera and S. Ameen, “Methods for Pruning Deep Neural Networks,” arXiv
preprint arXiv:2011.00241, 2020. arXiv: 2011.00241 [cs.RO].

[221] Tensorflow Authors, TensorFlow Model Optimization, https://www.tensorflow.
org/model_optimization, [Online; accessed 31-Mar-2024], 2023.

[222] NVIDIA, TensorRT NVIDIA, https://developer.nvidia.com/tensorrt,
[Online; accessed 31-Mar-2024], 2023.

[223] Y. Bai, L. Li, Z. Wang, X. Wang, and J. Wang, “Performance Optimization of Au-
tonomous Driving Control under End-to-End Deadlines,” Real-Time Syst., vol. 58,
no. 4, pp. 509–547, Dec. 2022. doi: 10.1007/s11241-022-09379-6. [Online].
Available: https://doi.org/10.1007/s11241-022-09379-6.

[224] J. Fernández, J. M. Cañas, V. Fernández, and S. Paniego, “Robust Real-Time
Traffic Surveillance with Deep Learning,” Computational Intelligence and Neu-
roscience, vol. 2021, p. 4 632 353, Dec. 2021. doi: 10.1155/2021/4632353.
[Online]. Available: https://doi.org/10.1155/2021/4632353.

[225] Smart Traffic Sensor contributors, Smart Traffic Sensor, https://github.com/
JdeRobot/smart-traffic-sensor, [Online; accessed 31-Mar-2024], 2022.

[226] TrafficMonitor contributors, TrafficMonitor, https://github.com/JdeRobot/
traffic-monitor, [Online; accessed 31-Mar-2024], 2019.

[227] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-W. Hsieh,
CSPNet: A New Backbone that can Enhance Learning Capability of CNN, 2019.
arXiv: 1911.11929 [cs.CV].

[228] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolu-
tional Networks for Visual Recognition,” in Lecture Notes in Computer Science.
Springer International Publishing, 2014, pp. 346–361. doi: 10.1007/978-3-
319-10578-9_23. [Online]. Available: http://dx.doi.org/10.1007/978-
3-319-10578-9_23.

[229] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, Path Aggregation Network ffor Instance
Segmentation, 2018. arXiv: 1803.01534 [cs.CV].

[230] J.-y. Bouguet, “Pyramidal implementation of the Lucas Kanade feature tracker,”
Intel Corporation, Microprocessor Research Labs, pp. 2480–2487, Jan. 2000.

[231] R. Kachach, “Monitorización visual automática de tráfico rodado,” Ph.D. disser-
tation, Universidad de Alicante, 2016.

178

https://doi.org/10.1109/18.720541
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2011.00241
https://www.tensorflow.org/model_optimization
https://www.tensorflow.org/model_optimization
https://developer.nvidia.com/tensorrt
https://doi.org/10.1007/s11241-022-09379-6
https://doi.org/10.1007/s11241-022-09379-6
https://doi.org/10.1155/2021/4632353
https://doi.org/10.1155/2021/4632353
https://github.com/JdeRobot/smart-traffic-sensor
https://github.com/JdeRobot/smart-traffic-sensor
https://github.com/JdeRobot/traffic-monitor
https://github.com/JdeRobot/traffic-monitor
https://arxiv.org/abs/1911.11929
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
https://arxiv.org/abs/1803.01534

BIBLIOGRAPHY

[232] N. Wojke, A. Bewley, and D. Paulus, Simple Online and Realtime Tracking with
a Deep Association Metric, 2017. arXiv: 1703.07402 [cs.CV].

[233] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime
tracking,” in 2016 IEEE International Conference on Image Processing (ICIP),
IEEE, Sep. 2016. doi: 10.1109/icip.2016.7533003. [Online]. Available:
http://dx.doi.org/10.1109/ICIP.2016.7533003.

[234] S. Paniego, V. Sharma, and J. M. Cañas, “Open Source Assessment of Deep
Learning Visual Object Detection,” Sensors, vol. 22, no. 12, 2022. doi: 10.3390/
s22124575. [Online]. Available: https://www.mdpi.com/1424-8220/22/
12/4575.

[235] DetectionMetrics contributors, DetectionMetrics, https://github.com/JdeRobot/
DetectionMetrics, [Online; accessed 31-Mar-2024], 2023.

[236] Tensorflow detection model zoo, https://github.com/tensorflow/models/
blob/master/research/object_detection/g3doc/tf2_detection_

zoo.md, Accessed: 2022-04-27.

[237] Pytorch torchvision models, https://pytorch.org/vision/stable/models.
html, Accessed: 2022-04-27.

[238] Behavior Metrics contributors, Behavior Metrics, https://github.com/JdeRobot/
BehaviorMetrics, [Online; accessed 31-Mar-2024], 2022.

[239] S. Paniego, R. Calvo-Palomino, and J. Cañas, “Behavior Metrics: An Open-source
Assessment Tool for Autonomous Driving Tasks,” SoftwareX, vol. 26, p. 101 702,
2024. doi: https://doi.org/10.1016/j.softx.2024.101702. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S2352711024000736.

[240] Open-source paper resources contributors, Open-source paper resources, https:
//roboticslaburjc.github.io/publications/2024/behavior_metrics_

an_open_source_assessment_tool_for_autonomous_driving_tasks,
[Online; accessed 31-Mar-2024], 2024.

[241] D. Merkel, “Docker: Lightweight Linux Containers for Consistent Development
and Deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[242] Behavior Metrics contributors, Behavior Metrics GUI mode video example, https:
//www.youtube.com/watch?v=ze_LDkmCymk, [Online; accessed 31-Mar-
2024], 2024.

[243] Behavior Metrics contributors, Behavior Metrics headless mode video example,
https://www.youtube.com/watch?v=rcrOF5t3MC4, [Online; accessed
31-Mar-2024], 2024.

[244] S. Paniego, N. Paliwal, and J. Cañas, “Model Optimization in Deep Learning
Based Robot Control for Autonomous Driving,” IEEE Robotics and Automation
Letters, vol. 9, no. 1, pp. 715–722, 2024. doi: 10.1109/LRA.2023.3336244.

179

https://arxiv.org/abs/1703.07402
https://doi.org/10.1109/icip.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.3390/s22124575
https://doi.org/10.3390/s22124575
https://www.mdpi.com/1424-8220/22/12/4575
https://www.mdpi.com/1424-8220/22/12/4575
https://github.com/JdeRobot/DetectionMetrics
https://github.com/JdeRobot/DetectionMetrics
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://github.com/JdeRobot/BehaviorMetrics
https://github.com/JdeRobot/BehaviorMetrics
https://doi.org/https://doi.org/10.1016/j.softx.2024.101702
https://www.sciencedirect.com/science/article/pii/S2352711024000736
https://www.sciencedirect.com/science/article/pii/S2352711024000736
https://roboticslaburjc.github.io/publications/2024/behavior_metrics_an_open_source_assessment_tool_for_autonomous_driving_tasks
https://roboticslaburjc.github.io/publications/2024/behavior_metrics_an_open_source_assessment_tool_for_autonomous_driving_tasks
https://roboticslaburjc.github.io/publications/2024/behavior_metrics_an_open_source_assessment_tool_for_autonomous_driving_tasks
https://www.youtube.com/watch?v=ze_LDkmCymk
https://www.youtube.com/watch?v=ze_LDkmCymk
https://www.youtube.com/watch?v=rcrOF5t3MC4
https://doi.org/10.1109/LRA.2023.3336244

BIBLIOGRAPHY

[245] M. Zhao. “Obstacle Avoidance for Autonomous Driving in CARLA Using Seg-
mentation Deep Learning Models.” (2023), [Online]. Available: https://theroboticsclub.
github.io/gsoc2023-Meiqi_Zhao/blog/.

[246] Open-source paper resources contributors, Open-source paper resources, https:
//roboticslaburjc.github.io/publications/2023/enhancing_end_

to_end_control_in_autonomous_driving_through_kinematic_infused_

and_visual_memory_imitation_learning, [Online; accessed 31-Mar-2024],
2023.

[247] S. Paniego, R. Calvo-Palomino, and J. M. Cañas, “Enhancing End-to-End Control
in Autonomous Driving through Kinematic-Infused and Visual Memory Imitation
Learning,” Manuscript submitted for publication, 2024.

[248] DeepLearningStudio contributors, Deeplearningstudio, https://www.github.
com/JdeRobot/DeepLearningStudio, [Online; accessed 31-Mar-2024], 2022.

[249] Open-source paper resources contributors, Open-source paper resources, https:
//roboticslaburjc.github.io/publications/2023/model_optimization_

in_deep_learning_based_robot_control_for_autonomous_driving,
[Online; accessed 31-Mar-2024], 2023.

[250] Open-source paper resources contributors, Improved Imitation learning with Bird-
eye view for follow-lane autonomous driving in CARLA simulator, https://
www.youtube.com/watch?v=3KflagFjR8Q, [Online; accessed 31-Mar-2024],
2023.

[251] S. Paniego, E. Sinohara, and J. M. Cañas, “Autonomous Driving in Traffic with
End-to-End Vision-based Deep Learning,” Manuscript submitted for publication,
2024.

[252] Open-source paper resources contributors, Open-source paper resources, https:
/ / roboticslaburjc . github . io / publications / 2023 / autonomous _

driving_in_traffic_with_end_to_end_vision_based_deep_learning,
[Online; accessed 31-Mar-2024], 2022.

[253] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach.
Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014.

[254] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Lo-
calization,” in Proceedings of the IEEE international conference on computer vi-
sion, 2017, pp. 618–626.

[255] JdeRobot. “Showcasing the social driving capacity with different front vehicles.”
[Online; accessed 31-Mar-2024], Youtube. (2023), [Online]. Available: https:
//www.youtube.com/watch?v=mVSfxQeWwrQ.

180

https://theroboticsclub.github.io/gsoc2023-Meiqi_Zhao/blog/
https://theroboticsclub.github.io/gsoc2023-Meiqi_Zhao/blog/
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning
https://roboticslaburjc.github.io/publications/2023/enhancing_end_to_end_control_in_autonomous_driving_through_kinematic_infused_and_visual_memory_imitation_learning
https://www.github.com/JdeRobot/DeepLearningStudio
https://www.github.com/JdeRobot/DeepLearningStudio
https://roboticslaburjc.github.io/publications/2023/model_optimization_in_deep_learning_based_robot_control_for_autonomous_driving
https://roboticslaburjc.github.io/publications/2023/model_optimization_in_deep_learning_based_robot_control_for_autonomous_driving
https://roboticslaburjc.github.io/publications/2023/model_optimization_in_deep_learning_based_robot_control_for_autonomous_driving
https://www.youtube.com/watch?v=3KflagFjR8Q
https://www.youtube.com/watch?v=3KflagFjR8Q
https://roboticslaburjc.github.io/publications/2023/autonomous_driving_in_traffic_with_end_to_end_vision_based_deep_learning
https://roboticslaburjc.github.io/publications/2023/autonomous_driving_in_traffic_with_end_to_end_vision_based_deep_learning
https://roboticslaburjc.github.io/publications/2023/autonomous_driving_in_traffic_with_end_to_end_vision_based_deep_learning
https://www.youtube.com/watch?v=mVSfxQeWwrQ
https://www.youtube.com/watch?v=mVSfxQeWwrQ

BIBLIOGRAPHY

[256] S. P. Blanco, S. Mahna, U. A. Mishra, and J. Canas, Memory based neural net-
works for end-to-end autonomous driving, 2022. arXiv: 2205.12124 [cs.RO].

[257] P. F. de Cabo, R. Lucas, I. Arranz, S. Paniego, and J. M. Cañas, “RL-Studio: A
Tool for Reinforcement Learning Methods in Robotics,” in ROBOT2022: Fifth
Iberian Robotics Conference, Springer International Publishing, Nov. 2022,
502–513. doi: 10.1007/978-3-031-21062-4_41. [Online]. Available: https:
//doi.org/10.1007%2F978-3-031-21062-4_41.

[258] M. Á. de Miguel et al., “A Research Platform for Autonomous Vehicles Technolo-
gies Research in the Insurance Sector,” Applied Sciences, vol. 10, no. 16, 2020.
doi: 10.3390/app10165655. [Online]. Available: https://www.mdpi.com/
2076-3417/10/16/5655.

[259] Á. Madridano, A. Al-Kaff, D. Martín, and A. de la Escalera, “Trajectory planning
for multi-robot systems: Methods and applications,” Expert Systems with Appli-
cations, vol. 173, p. 114 660, 2021. doi: https://doi.org/10.1016/j.
eswa.2021.114660. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0957417421001019.

[260] A. Vaswani et al., Attention Is All You Need, 2023. arXiv: 1706.03762 [cs.CL].

[261] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, 2019. arXiv: 1810 .
04805 [cs.CL].

[262] T. B. Brown et al., Language Models are Few-Shot Learners, 2020. arXiv: 2005.
14165 [cs.CL].

[263] H. Touvron et al., Llama 2: Open Foundation and Fine-Tuned Chat Models, 2023.
arXiv: 2307.09288 [cs.CL].

[264] A. Q. Jiang et al., Mistral 7B, 2023. arXiv: 2310.06825 [cs.CL].

[265] H. Shao, Y. Hu, L. Wang, S. L. Waslander, Y. Liu, and H. Li, LMDrive: Closed-
Loop End-to-End Driving with Large Language Models, 2023. arXiv: 2312 .
07488 [cs.CV].

[266] J. Huang, P. Jiang, A. Gautam, and S. Saripalli, GPT-4V Takes the Wheel: Promises
and Challenges for Pedestrian Behavior Prediction, 2024. arXiv: 2311.14786
[cs.CV].

[267] L. Chen et al., “Driving with LLMs: Fusing Object-Level Vector Modality for Ex-
plainable Autonomous Driving,” arXiv preprint arXiv:2310.01957, 2023. arXiv:
2310.01957 [cs.RO].

[268] A.-M. Marcu et al., “LingoQA: Video Question Answering for Autonomous Driv-
ing,” arXiv preprint arXiv:2312.14115, 2023. arXiv: 2312.14115 [cs.RO].

[269] R. Polvara et al., “Toward end-to-end control for uav autonomous landing via deep
reinforcement learning,” in 2018 International Conference on Unmanned Aircraft
Systems (ICUAS), 2018, pp. 115–123. doi: 10.1109/ICUAS.2018.8453449.

181

https://arxiv.org/abs/2205.12124
https://doi.org/10.1007/978-3-031-21062-4_41
https://doi.org/10.1007%2F978-3-031-21062-4_41
https://doi.org/10.1007%2F978-3-031-21062-4_41
https://doi.org/10.3390/app10165655
https://www.mdpi.com/2076-3417/10/16/5655
https://www.mdpi.com/2076-3417/10/16/5655
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114660
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114660
https://www.sciencedirect.com/science/article/pii/S0957417421001019
https://www.sciencedirect.com/science/article/pii/S0957417421001019
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2312.07488
https://arxiv.org/abs/2312.07488
https://arxiv.org/abs/2311.14786
https://arxiv.org/abs/2311.14786
https://arxiv.org/abs/2310.01957
https://arxiv.org/abs/2312.14115
https://doi.org/10.1109/ICUAS.2018.8453449

BIBLIOGRAPHY

[270] L. O. Rojas-Perez and J. Martinez-Carranza, “DeepPilot: A CNN for Autonomous
Drone Racing,” Sensors, vol. 20, no. 16, p. 4524, 2020.

[271] P. Mortimer, R. Hagmanns, M. Granero, T. Luettel, J. Petereit, and H.-J. Wuen-
sche, “The GOOSE Dataset for Perception in Unstructured Environments,” arXiv
preprint arXiv:2310.16788, 2023. arXiv: 2310.16788 [cs.RO]. [Online]. Avail-
able: https://arxiv.org/abs/2310.16788.

[272] P. Jiang, P. Osteen, M. Wigness, and S. Saripalli, RELLIS-3D Dataset: Data,
Benchmarks and Analysis, 2020. arXiv: 2011.12954 [cs.CV].

[273] R. Trauth, M. Kaufeld, M. Geisslinger, and J. Betz, “Learning and Adapting
Behavior of Autonomous Vehicles through Inverse Reinforcement Learning,” in
2023 IEEE Intelligent Vehicles Symposium (IV), 2023, pp. 1–8. doi: 10.1109/
IV55152.2023.10186668.

182

https://arxiv.org/abs/2310.16788
https://arxiv.org/abs/2310.16788
https://arxiv.org/abs/2011.12954
https://doi.org/10.1109/IV55152.2023.10186668
https://doi.org/10.1109/IV55152.2023.10186668

	Introduction
	Autonomous driving
	Introduction to autonomous driving
	Assessment and metrics
	End-to-end and modular approaches
	Tasks in an autonomous driving system
	Optimization in autonomous driving solutions

	Traffic monitoring using computer vision
	Research Goals
	Contributions
	Structure of the document

	State of the art
	Traffic monitoring
	Deep learning object detection, datasets and assessment
	Autonomous driving and imitation learning
	Imitation learning and reinforcement learning for driving autonomously

	Simulation in autonomous driving and assessment. Datasets
	Datasets
	Assessment

	Memory-based approaches in end-to-end visual autonomous driving
	Optimization of deep learning models for autonomous driving

	Monitoring and assessing traffic with deep learning
	Introduction
	TrafficSensor: a deep learning-based traffic monitoring tool
	Deep learning-based detection and classification
	Vehicle tracking

	Experimental validation
	Dataset
	Comparison of deep learning models
	Experimental validation in good lightning conditions
	Experimental validation in poor conditions
	Processing times

	Conclusion
	State-of-the-art enhancements

	Assessing object detection deep learning architectures with quantitative metrics
	Introduction
	Detection Metrics tool kit
	Global architecture and workflows
	Headless evaluation
	Detection generation
	Evaluation of detections with objective metrics
	Live detection visualization
	Dataset converter

	Experimental results and discussion
	Comparison of state-of-the-art detection networks

	Conclusion
	State-of-the-art enhancements

	Assessing autonomous driving behaviors fine-grained metrics
	Introduction
	Software description
	Supported driving tasks
	GUI and headless evaluation modes
	Autonomous driving evaluation metrics

	Illustrative examples
	GUI application example
	Headless application example

	Impact
	Conclusions

	Enhancing end-to-end autonomous driving control though kinematic input and memory-based architectures
	Introduction
	Kinematic-infused and visual memory end-to-end control based on imitation learning
	Memory-less deep learning architecture
	Deep learning architectures with visual memory
	Deep learning architectures with kinematic data as input
	Training

	Measuring end-to-end imitation learning for robot control
	Experimental validation
	Comparison of models using common ML metrics
	Behavior in test scenario with top speed regulation
	Studying the model without top speed limitation
	Taking the control of a fast-moving car
	Robustness to sensory manipulation
	Visual memory length and density comparison

	Conclusions

	Optimization of end-to-end autonomous driving control
	Introduction
	Optimizing end-to-end imitation learning models for lane-follow robot control
	Baseline architecture
	Dataset and training

	Experiments
	Model performance offline evaluation table
	Robot control online evaluation table
	Inference frequency and quality of decisions in robot control performance

	Conclusions

	End-to-end vision-based autonomous driving in traffic
	Introduction
	Imitation learning for driving in traffic
	Dataset and versions
	Baseline model and its modifications
	Training procedure

	Experiments
	Typical execution without traffic
	Typical execution with traffic
	Generalization for different front vehicles

	Conclusions

	Conclusions and future research
	Conclusions
	Results summary
	Research contributions
	Future work
	Point-to-point end-to-end navigation using input commands
	Transferring current end-to-end solutions to a real-world vehicle
	End-to-end autonomous vehicle driving modulated with text-based instructions
	Exploration of end-to-end autonomous driving in aerial vehicles
	Exploration of end-to-end autonomous driving in unstructured environments
	Exploration of reinforcement learning approaches for end-to-end autonomous driving

	Resumen en castellano
	Introducción
	Objetivos
	Antecedentes
	Monitorización del tráfico rodado
	Detección de objetos con aprendizaje profundo, conjuntos de datos y evaluación
	Conducción autónoma y aprendizaje por imitación
	Simulación en conducción autónoma, conjuntos de datos y evaluación
	Aproximaciones de conducción autónoma extremo a extremo basadas en memoria
	Optimización de los modelos de aprendizaje profundo para conducción autónoma

	Metodología y resultados
	Monitorización del tráfico rodado con aprendizaje profundo
	Evaluando arquitecturas de aprendizaje profundo para detección de objetos con métrics cuantitativas
	Evaluación de comportamientos de conducción autónoma con métricas de grano fino
	Mejora del control de extremo a extremo en conducción autónoma mediante entrada cinemática y arquitecturas basadas en memoria
	Optimización del control extremo a extremo en conducción autónoma
	Conducción autónoma extremo a extremo en tráfico

	Conclusiones
	Contribuciones de investigación
	Trabajo futuro

	Replicability and software, data, and models availability
	Software availability
	Training code availability
	Models' wights availability
	Datasets availability

	Bibliography

