
ESCUELA TÉCNICA SUPERIOR DE INGENIEŔIA DE
TELECOMUNICACIÓN

GRADO EN INGENIEŔIA EN SISTEMAS
DE TELECOMUNICACIONES

TRABAJO FIN DE GRADO

Deep Learning Applications
for Robotics using TensorFlow

and JdeRobot

Autor: Ignacio Condés Menchén
Tutor: Dr. José Maŕıa Cañas Plaza

Curso académico 2017/2018

c©2018 Ignacio Condés Menchén

Esta obra está distribuida bajo la licencia de “Reconocimiento-CompartirIgual 4.0
Internacional (CC-BY-SA 4.0)” de Creative Commons.

Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-sa/4.0/ o
env́ıe una carta a Creative Commons, 171 Second Street, Suite 300, San Francisco,

California 94105, USA.

Agradecimientos

Hace ya unas semanas, e incluso meses, que pensaba en el momento que justo ahora estoy
viviendo, sentado frente a las teclas, con más café que sangre en las venas, y con un duelo
interno al saber que no puedo extenderme en demaśıa en este caṕıtulo.

Los últimos tiempos en mi vida han significado una etapa de cambio, de algunas decep-
ciones pero, por fortuna, muchas más alegŕıas. Es incréıble comprobar cómo ciertos factores
consiguen moverte a luchar contra viento y marea con lo que sea, incluso ponerte a buscar, a
las 4 de la mañana, la ĺınea 524 del instanciador de TensorFlow, a ver por qué vuelve a saltarte
aquella excepción de la que pensabas haberte librado hace dos semanas, cuando desapareció
en condiciones tan turbias como cuando vino. Ha sido un trabajo arduo y sufrido, pero a la vez
muy gratificante. Y esto se lo debo a mucha gente. Ojalá tuviera folios, memoria y capacidad
para mentaros a todos, pero por desgracia no va a ser aśı, por lo que todos podéis y debéis
sentiros incluidos en ese grupo de gente.

Para empezar, nada de esta investigación habŕıa sido posible sin mi tutor, José Maŕıa, al
que le debo agradecer la fuente infinita de paciencia y comprensión que ha sido cuando las
circunstancias aśı lo han requerido. De manera inherente a su condición de profesor, le debo
una parte importante del conocimiento que he adquirido durante el transcurso de este año.
No obstante, el conocimiento se puede obtener en libros, papers, art́ıculos... Lo que ningún
recurso puede aportar es el impulso motivacional que me ha sabido inculcar. Muchas veces, he
de admitir que he entrado a su despacho para reunirnos, con la mera intención de avanzar y
quitarme una carga de encima entregando el trabajo acordado. No obstante, la gran mayoŕıa
de ellas he salido por la misma puerta minutos después con el brillo en los ojos de quien tiene
toda la ilusión para seguir adelante, al haber visto conducidos todos mis esfuerzos hacia el
máximo gradiente (valga la expresión), en el cual darlo todo.

Pero no todo es trabajar sin descanso, ya que también he de agradecer a la gente que
ha sabido despejar pájaros en mi cabeza de toda ı́ndole, ayudándome a respirar cuando real-
mente lo necesitaba para seguir adelante. Pablete, Jose, David, Javi, mi familia, y todo el
mundo que ha conseguido sacarme una sonrisa, por muy breve que fuera. Quiero hacer una
mención especial para mis compañeros de banda, con los cuales pasear por los compases ha
sido siempre una diversión infinita, que ojalá nunca acabe. Sebas, Chema, Urbano, también
va por vosotros, sois los mejores.

En último lugar, quiero mandar mi más sincero agradecimiento a todas las personas que
hacen sentir a su pareja como me hace sentir a ḿı la ḿıa. Ojalá seáis mucha gente aśı, por
fortuna, la única que conozco me la he quedado yo. Me deshago en admiración y agradec-
imientos para ti, Almudena. Gracias por haber compartido alegŕıas a mi lado, y haber sufrido
mis penas más cerca todav́ıa. Ojalá pudiera cuantificar la enorme parte de este trabajo que
te pertenece, el gran mérito que tienes por haberme empujado hacia delante contra viento y
marea. Por supuesto también, mil gracias a tu familia, mi segunda familia, que siempre me
ha insuflado fuerzas y ánimos cuando más lo necesitaba. Ojalá todos los retos de mi vida se
presenten en estas condiciones, para poder abordarlos con esta fuerza y apoyo incondicionales.

Un millón de gracias a todos, sent́ıos parte de lo orgulloso que
puedo estar de este trabajo, ya que os pertenece también. GRACIAS.

3

Summary

Nowadays, continuous improvements on Computer Science allow to address more complex
tasks than traditional ones. So, machines can begin to artificially handle more human tasks,
which are performed on a more efficient way when the processing structure is modeled emu-
lating human brain. This field of study is covered by deep learning, which particularly in the
Computer Vision field makes the difference between a exhausting analysis of designed features
(which can be susceptible to environmental transformations or distortions), and automatically
extracted abstract features, allowing a robust operation, which can be executed on real time.

On the other hand robotics is gradually more present in daily life, more accessible, compat-
ible and interoperable. This leads into a faster deployment of robots: not so long ago we only
had huge, complex robots on production lines. Now we have autonomous vacuum cleaners
perfectly able to clean our house and go back to its dock station, at perfectly affordable prices
for the vast majority of people.

There is a really interesting synergy between these two fields, which allow to combine the
perception skills that a deep learning system can achieve, with the wide variety of physical
responses that a robot can perform.

This work is focused on introducing new deep learning Computer Vision applications in
the academics and research framework JdeRobot. Three real-time components have been
developed, making use of neural networks: a digit classifier, a generic visual object detector,
and a person following component, which also incorporates a reactive control to follow a
specific person. This is achieved combining an RGBD sensor, people detection and face
analysis performed with neural networks, and a robot equipped with wheels.

4

Contents

1 Introduction 10
1.1 Robots . 10

1.2 Deep Learning . 11

1.2.1 Machine Learning on Computer Vision 11

1.2.2 Neural Networks . 12

1.2.3 Processing unit: the perceptron (neuron) 13

1.2.4 Deep Neural Networks . 15

1.2.5 Convolutional Neural Networks (CNNs) 15

1.3 Deep Learning on JdeRobot . 16

2 Objectives 19
2.1 Milestones to achieve . 19

2.2 Methodology . 20

2.3 Requirements . 21

3 Infrastructure 24
3.1 Hardware . 24

3.1.1 Sony EVI D100P camera . 24

3.1.2 Asus Xtion Pro Live . 25

3.1.3 Turtlebot 2 robot . 26

3.2 Python . 27

3.3 ROS robotics framework . 27

3.3.1 usb cam driver . 28

3.3.2 openni2 launch driver . 29

3.3.3 kobuki node package . 30

3.4 JdeRobot robotics framework . 30

3.4.1 Digit Classifier node . 32

3.4.2 evicam driver driver . 33

3.4.3 comm library . 33

3.5 OpenCV library . 34

3.6 NumPy library . 34

3.7 TensorFlow framework . 35

3.8 Keras framework . 36

3.9 PyQt framework . 37

3.10 threading library . 37

5

6 CONTENTS

4 DigitClassifier tool 39
4.1 Tool architecture . 40
4.2 Image processing . 42
4.3 Digit classification CNN . 43

4.3.1 Training the network . 47
4.3.2 MNIST dataset . 49
4.3.3 Dataset augmentation . 49

5 ObjectDetector tool 51
5.1 Tool architecture . 53
5.2 Detection CNN: SSD . 54

5.2.1 Architecture . 54
5.2.2 Importing a pretrained model . 57
5.2.3 Network output . 58

5.3 Experiment: testing different architectures 59

6 FollowPerson application 61
6.1 Application architecture . 61
6.2 SSD CNN Modifications . 62
6.3 Face detection and identification . 64

6.3.1 Detection: Haar Cascade Classifier 64
6.3.2 Face Validation: FaceNet . 66

6.4 Face and Person Trackers . 69
6.5 Physical response . 72

6.5.1 Follow algorithm . 72
6.5.2 Position calculation . 72
6.5.3 PID controller . 73

6.6 Experiment: PTZ Camera . 77

7 Conclusions 81
7.1 Conclusions . 81
7.2 Future lines . 83

List of Figures

1.1 Robots of each described kind. 11
1.2 Functional difference between classification and detection. 12
1.3 Structure of a Neural Network . 13
1.4 Diagram of a perceptron/neuron . 13
1.5 Evolution to a deep neural network. 15
1.6 Convolution operation applied on an image (image from [1]). 16
1.7 Activation maps of a detection CNN searching for dogs on different images [2]. 17
1.8 Schematic of a CNN. 17
1.9 DetectionSuite on action. 18
1.10 Some JdeRobot student projects on action. 18

2.1 Spiral Development Model. 20
2.2 Hard situations for facial detection, due to light. 22

3.1 Sony EVI D100P. 24
3.2 Analogue-digital video converter (Pinnacle Dazzle). 25
3.3 Asus Xtion Pro Live. IR emitter (left), and RGB and IR lenses (right). 25
3.4 Turtlebot development kit. 26
3.5 Simple stablishment of a listener node through rospy (code from [3]). 28
3.6 Example of usb cam-test.launch configuration file for a ROS node. 29
3.7 Both raw (before registration) images sensed by the Xtion cameras. 29
3.8 Comparison between the disparities, before and after the registration process. . 30
3.9 JdeRobot abstraction layer, and a possible use distributed, multi-middleware

scenario. 31
3.10 DigitClassifier on action. 32
3.11 YML format required by comm. 34
3.12 Basic graph on TensorFlow (2 convolutional layers fed to a cost function). . . 36
3.13 Example of a Hello World window with PyQt5 bindings. 37

4.1 DigitClassifier on action. 39
4.2 Infrastructure of the component (3 threads). 40
4.3 Schematic code to instantiate the components of the node. 42
4.4 Result of the preprocessing (identical for both images). 43
4.5 Model of the implemented CNN for our system. 44
4.6 Heatmap for the learned weigths for each pixel and labeled digit. 45
4.7 Max-pooling operation on a matrix. 45
4.8 Set of 9 random images extracted from the datasets. 50

7

8 LIST OF FIGURES

5.1 ObjectDetector working. 51
5.2 DigitClassifier: a digit was always returned (or a subtle way of a computer

to call you waste of space). 52
5.3 Some available models (July 2018) with their respective performance indicators. 52
5.4 Generic model loading process. 53
5.5 Infrastructure of the component (3 threads). 54
5.6 SSD architecture on our model. 55
5.7 MobileNet pipeline. 56
5.8 A set of boxes are generated centered on each point of every feature map [4]. . 56
5.9 Jaccard similarity coefficient on a detection (performance indicator used for

training a detector). 57
5.10 Information flow through the whole pipeline. 58
5.11 Screenshot taken from the video used on the benchmark. 59

6.1 FollowPerson working (following mom). 62
6.2 Architecture of the FollowPerson node. 63
6.3 Who should we follow? Probably none of them. 64
6.4 Haar features. 65
6.5 Haar-like feature Cascade Classifier. 66
6.6 Triplet loss training. It minimizes the distance between an anchor (current

example) and a positive, both of which have the same identity, and maximizes
the distance between the anchor and a negative of a different identity (from
[5]). 67

6.7 FaceNet architecture. 68
6.8 Preprocessing result on several conditions (the different colors in the output

images are due to the color mapping performed by the plotting backend), and
L2 distances computed between the faces. 69

6.9 Schema followed by the trackers. 71
6.10 Following behavioral (flow chart). 72
6.11 Computations of both errors. 73
6.12 Safe zones. The robot will consider mom as correctly followed inside them (on

a separate way for each dimension). 74
6.13 Different controllers response along time. 75
6.14 Functional diagram of the FollowPerson node. 77
6.15 Comparison between possible approaches for Pan/Tilt angle updates. 78
6.16 Error computation parameters on the PTZ case. 79
6.17 Total schema followed in the PTZ case. 80

List of Tables

5.1 Description of the 6 extracted feature maps sets on our implementation. . . . 55
5.2 Timing performance tests for several modes. The selected implementation

appears in boldface. 60

6.1 Optimal found values for the parameters in each PID controller. 75

9

Chapter 1

Introduction

This introductory chapter aims to present the general context which wraps this project, going
in some depth inside deep learning and robotics. We will also amble along some of the latest
advances and most useful current applications of the junction between these two fields. Lastly,
we will situate this project on the previously described context. After this chapter, each key
aspect of the work flow will be further explained.

1.1 Robots

Robotics applications can be really useful at daily tasks. These tasks are of greater interest
when the behavioral of a robot tends to emulate the human one1, with the advantage of no
human people exposed to a significant risk, or, in a less gloomy scenario, without human
body physical limitations. This requires a polished (and somehow complex) behavioral, which
is triggered by a certain input. At this point, we can find two main branches into robots,
depending on the input source:

• Teleoperated robots: this kind of robots are capable of perform certain actions, which
are remotely controlled by a human operator. This application is the one with most
weight on the hazardousness (Figure 1.1a) [6] or precision [7] factor. Thus, some ad-
vances are made nowadays improving the teleoperation function, implementing feedbacks
from the robot, such as haptic feedback [8], or VR (Virtual Reality) sensation, to allow
that person to sense the environment as if it was in front of it.

• Autonomous robots: these robots are much more complex machines, as they are
distinguished for implementing a response by itself, independently of any kind of remote
operator. This is seeked on certain scenarios, where there are some factors (as the
time elapsed performing an action, or the cost of a control link with the robot) with a
considerable weight in the design [9]. This is the kind of robots that concern us on this
work: the state-of-the-art techniques try to emulate human behavioral(Figure 1.1b), so
some actions can begin to be performed with a certain intelligence, as we will describe
below.

1Some efforts are taken even into adopting the performance of human’s best friend

10

https://www.engadget.com/2018/01/08/new-sony-aibo-first-impressions/

1.2. DEEP LEARNING 11

(a) Pioneer robot, designed to perform
hazardous teleoperated explorations in a
deadly radioactive environment.

(b) Pepper, an autonomous humanoid
capable of performing on board process-
ing and reaction to external stimuli on a
human way.

Figure 1.1: Robots of each described kind.

The important advances on the last decades on the image processing and audio recognition
fields have impulsed the development of assistance systems, apart from critical machines as
the previously described examples.

This way, several applications have arisen on people recognition and conversational behav-
iors, and it has been spread to everyday purposes, from personal assistants2, to autonomous
driving3.

1.2 Deep Learning

1.2.1 Machine Learning on Computer Vision

Almost every time, the desired behavioral is one or more deliberated or reactive responses4,
triggered by a certain input (typically perceived by on-board sensors, among others). This raw
data, which is typically retrieved on a simple way (images, audio), is processed and mapped
into a concrete response. At this point, we can bring up the key question: how do we process
the raw input to obtain a suitable action for the current requirements, or needings? The answer

2Google Smart Home
3Tesla Autopilot
4A deliberated response implies a certain level of extra intelligence. It figures out which could be the best

action to perform, considering present, past and probably future information to make the decision.
On the other hand, a reactive response makes an immediate decision, depending just on what has been just
perceived.

https://www.standard.co.uk/tech/google-smart-home-future-stay-a3868591.html
https://electrek.co/2018/06/18/what-tesla-autopilot-see-understand/

12 CHAPTER 1. INTRODUCTION

for that question is machine learning : the computer science field that pursues the capacity of
machines to learn the suitable response to a previously unknown input. This is achieved by
performing a training with a dataset of examples, which need to be properly formatted: the
system has to previously know what to look for and evaluate, what is typically called features,
and learn the proper parameters for an optimum output.

Generally, machine learning applications on image processing can be split into two types
of response (Figure 1.2):

• Classification: given a set of possible classes {c1, c2, ..., cn} to which an image xi can
belong, we select the class ci where xi fits the best, given a set of features extracted
from it.

• Detection: given an image xi, we decide if we can find or not an object/region inside
of it which fits into the searched type. In the affirmative case, we locate it (using a
region or a bounding box).

(a) Classification

(b) Detection

Figure 1.2: Functional difference between classification and detection.

1.2.2 Neural Networks

This has turned deep learning into the cornerstone of current AI applications, which don’t
need complex dataset with a lot of preprocessing (that require important human effort) any-
more. That simplicity is achieved through the use of Neural Networks. A Neural Network
is the representation of an algebraic algorithm which implements non-linear calculus models
[10]. It is composed by several processing layers, which are made up of perceptrons, that are

1.2. DEEP LEARNING 13

generally called neurons. This is because these neural structures emulate the human brain,
formed by a huge set of interconnected neurons, which are disposed on the already mentioned
layers (Figure 1.3).

Figure 1.3: Structure of a Neural Network

First approaches to neural networks, according to [11] were developed on the 50s-60s
decades. This was when the computational potential allowed to develop on a real machine
the first modeling of the way it was believed that a brain neuron works, which was inspired
by electrical circuits. These experiments [12] were performed by the neurophysiologist W.
McCulloch and the mathematician W. Pitts. Later, in 1949, Donald Hebb [13] observed that
the synaptic path between two neurons is reinforced (its efficiency rises up) every time it is
used. This introduced the concept of training on a neural network.

1.2.3 Processing unit: the perceptron (neuron)

Activation
function

∑
w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 1.4: Diagram of a perceptron/neuron

14 CHAPTER 1. INTRODUCTION

Every neuron is composed by an structured schema:

1. Inputs: the data which come into the neuron. It might come from the main stimuli,
or from another neuron (as the output of the previous layer). The input for a specific
neuron is called its receptive field (which region of the total input that stimulates that
particular neuron, where it looks for features).

2. Weights: the tuned parameters of the network. They represent the importance given to
each feature on that singular neural unit. The weight wn multiplied xn times results on
the contribution of the feature n in the current neuron.

3. Sum: the product of all the inputs with their suitable weight come into a sum operation5,
to build a total linear response: z =

∑n
i=0 xi · wi

6.

4. Activation function: this is an crucial part of a neural network. Until now, all the numer-
ical computations we have performed were just linear operations. If we keep the output
of the neuron being a linear function of the input, we will lose the effect of having more
than 1 layer, as really the total result of all the network is a linear function of the first
input, so we could simplify all the network down to one single neuron.

For this reason, we use a non-linear activation function, which breaks the linearity on
the pipeline to provide the absolute non-linearity followed by the human brain. A typical
function is the one called ReLU (REctified Linear Unit) [14], which follows the formula:

g(z) = max(0, z) (1.1)

5. Output: when the activation function has been computed, it is forward-propagated to
the output, or to the neurons belonging to the next layer. It can be seen as the impor-
tance that particular feature will have on the next neuron: if it takes nearly zero values,
the next neuron will be poorly stimulated. There lies the meaning of the name of the
previous component: activation function.

As a conclusion, we can find that the general output of a neuron a(z) as:

a(z) = g(
n∑

i=0

xi · wi) (1.2)

This will be the new data (receptive field) that will be introduced on a neuron or set of
them from the next layer.

5We consider w0 as the product to the constant input 1, as the intercept term (a constant always present
independently of the current input).

6There is also a summation bias term on each neuron, bi, but it is ignored here for the sake of simplicity,
as the weights are more representative with respect to the input.

1.2. DEEP LEARNING 15

1.2.4 Deep Neural Networks

Deep learning is the piece of machine learning that is capable to automatically learn the fea-
tures that the system could use from primary data (pixels on images, samples on audio, words
in text processing, etc.).

The fact of having more than one layer gives to the network the concept of depth. This
opens the door to a vast set of possibilities, as it allows us to perform deep learning with
neural networks: Deep Neural Networks. This can be achieved, as we can see on Figure 1.5,
by introducing a new kind of layer, where all the new neurons are connected to every single
neuron of the previous one.
This is typically called a fully connected layer, and the fact of relating every single activation
from the previous layer with a set of tunable weights on each neuron allows to rapidly find
common patterns followed by features seen on one of the analyzed scenarios (e.g. syntactical
relationships between several kinds of words in language processing, or finding edges or shapes
on image detection/classification).

Figure 1.5: Evolution to a deep neural network.

1.2.5 Convolutional Neural Networks (CNNs)

Finally, this leads us to the last concept we will study on this dissertation. As we have said
before, we can connect a big set of neurons between themselves to extract more abstract and
complex features, of increasing interest with the number of neurons and layers.

If we aim to apply this processing to images (Computer Vision), we have to take into
account that, if we want to input an image into a neural network, each pixel has to be taken
as an input, and also the fact that an RGB image is composed of 3 channels (1 channel per
color), so, for an image with a dimensions of m pixels wide and n pixels high, we will need
m · n · 3 input neurons. Besides this considerable number, we will have to take into account
the neurons resulting on the additional deeper layers that we will add to have an high enough
abstraction level for our application. This drives to absurd numbers of simultaneous neurons
working, that are difficultly handable during a feed-forward execution, but absolutely unfeasible
on a training process. An additional problem can be a moving object/region on the image:

16 CHAPTER 1. INTRODUCTION

we must be capable to detect the shape of a car on the right side of the image, or in the left one.

We can solve both problems simultaneously with an easy procedure: we will not process the
entire image at one time. Instead of that we will perform a convolution operation (Figure 1.6)
between the inputs of our network, and different regions of the image, sliding and multiplying
a parameterized mask along the whole image. This operation is performed with the objective
of the product returning a high value on the interesting regions of the image. This will output
activation maps, which symbolize the response of that portion of the image to the weight
mask. This can be performed, as we have said before, a few times with different masks to
obtain features with a higher degree of abstraction. As we want to keep the computational
complexity low, we can alternate these layers with pooling layers, which subsample the result-
ing maps, to keep it simple (if we keep only 1 of each 3 pixels of an activation map, selecting it
carefully to retain the maximum information, we can reduce the number of necessary neurons
on the next layer on a factor of 1

3
· 1
3
= 1

9
). This is reflected on Figure 1.8, where the process

of convolution-pooling can be repeated a few times, and then the result (which should not
have considerably big dimensions) are inputted into a fully connected layers, to extract and
handle the relations between the features and the possible classes (on a classification scenario).

Figure 1.6: Convolution operation applied on an image (image from [1]).

But, how do we find the best value for each weight, and for each layer? That’s the process
we call training a network. Using a technique called back propagation, we can compute the
most suitable values for every neuron in the network.

1.3 Deep Learning on JdeRobot

So, as we have been describing, Deep Learning can be of a great interest on the image pro-
cessing field, as it allows to implement an easy and really robust AI algorithm.

JdeRobot7 is an open-source software development suite, built from this University, and

7https://jderobot.org

https://jderobot.org

1.3. DEEP LEARNING ON JDEROBOT 17

Figure 1.7: Activation maps of a detection CNN searching for dogs on different images [2].

Figure 1.8: Schematic of a CNN.

among all the developed software/investigation inside it, we can find some interesting pro-
grams/projects for our purposes:

• Detection Suite8: it is a C++ application, suitable to load/benchmark detection
Darknet/YOLO9 models, against different databases. It is also capable, through a
Python→C++ interface, to load TensorFlow/Keras models as well.

• Final project of David Pascual [15] and Nuria Oyaga [16]: a further study of Deep Learn-
ing, applied on Python (Keras and Caffe frameworks, respectively) to digit classification
(Figure 1.10a) implementing a CNN as it has been seen.

• MsC project of Marcos Pieras [17]: On this master thesis, an application implementing
two neural networks (as we will do) has been developed. One of them allows us to
detect people on an image, and the other one (a siamese network, as we will describe
later) can track features of each person, to keep every detected individual identified
on a surveillance image system (and possibly trace the route followed by each person)
(Figure 1.10b).

8https://github.com/JdeRobot/dl-DetectionSuite
9https://pjreddie.com/darknet/

https://github.com/JdeRobot/dl-DetectionSuite
https://pjreddie.com/darknet/

18 CHAPTER 1. INTRODUCTION

Figure 1.9: DetectionSuite on action.

(a) DigitClassifier working. (b) PeopleTracker working.

Figure 1.10: Some JdeRobot student projects on action.

In conclusion, as we have been mentioning and been taking a glance on the possible appli-
cations, Deep Learning can make such a brilliant tandem along with a reactive behavioral. We
have taken a glance on a few possible applications, and the following dissertation will struggle
to demonstrate it.

Robotics + deep learning rock!

Chapter 2

Objectives

Once we have presented the introductory context of this project, we will describe its objectives,
along to the followed methodology to achieve all of them.

The final objective is to enrich the JdeRobot platform on its Computer Vision aspect,
upgrading an existing tool and creating two consecutive new ones. All of them will be focused
on applying deep learning on a real time operation. Keeping this in mind, we will be able
to generate a behavioral focused, as a final application, on tracking and actively following a
person, making use of a robot. This internal process of transformation of a stimulus into a
reactive movement will be accomplished using Convolutional Neural Networks.

2.1 Milestones to achieve

1. Classification tool, for processing live images. Our first objective (and the first task to
tackle) will be to upgrade the support of the digit classification tool already existent
in JdeRobot, DigitClassifier (subsection 3.4.1). This will allow us to augment the
scope of this component, due to the support for the new framework, TensorFlow (sec-
tion 3.7). This is a good starting point to achieve some initial skills building and training
Convolutional Neural Networks on TensorFlow (it will be the main framework used all
along the project).

2. Detection tool, for processing live images. As it will be described on the suitable chapter,
we will build a new tool (ObjectDetector) which deploys a generic object detection
algorithm on an incoming video stream. This component will be ready to work in real
time. It will also be compatible with new network models (e.g. a chosen one suitable
for the purpose), which will be loaded transparently at runtime.

As it can be inferred, the tool will not provide a response per se. Its visible output
will be to draw bounding boxes surrounding each detected object, indicating as well the
class where that particular object belongs (person, airplane, dog, etc.), and its score
(confidence in %).

19

20 CHAPTER 2. OBJECTIVES

3. Application of neural detection inside a robotic behavioral

As an example of the plethora of possible applications of the previous described ob-
jective/milestone (object detection on an image), we want to implement a “person
following” behavioral. Our main objective here is to identify and track the person to
follow, which will semantically be called mom. This component, FollowPerson, will
rely for this on the previous tool, ObjectDetector. The great advantage here is the
strength a CNN can achieve under variable light conditions. That makes this technique
perfectly suitable to command physical actuators on a robot.

We will make use of the detected people (with the technique followed on the previously
described node and constraining the result to only retain people detection), and look
for the face of each one of them, in order to distinguish which one is mom, in case it
is being seen by the camera, and command a proper response to the robot with the
objective of following mom.

As we have said before, these two last milestones are successive. Thus, they will share an
important part of the global objectives.

2.2 Methodology

The development of this project, as it has been described, has been subdivided into smaller
tasks, or prototypes, which could be addressed as individual tasks to achieve. The way to
tackle them has been a spiral methodology [18].

Figure 2.1: Spiral Development Model.

This consists on a software development work procedure that, on a general outline, is very
similar to a conch. It describes a 4 phases methodology [19], explained right below:

1. Planning: establishing the objectives to tackle on the incoming work iteration.

2.3. REQUIREMENTS 21

2. Risk Analysis: Later, we evaluate the possible risks and dangers we can find developing
the specific program(s). For each found risk, we will try to find a solution to solve or,
at least, mitigate it beforehand.

3. Development & testing1: This phase is purely focused on writing the planned piece of
software, following the guidelines obtained on the previous steps. In addition, corre-
sponding tests should be performed to check that the work will accomplish the asked
functionality.

4. Evaluation: Lastly, when the development phase has been finished, an evaluation has
to be performed on the results. This will be the key to know if it is compliant with the
initial requirements and if, hence, its development has been successful.

As this was the general procedure followed for each iteration of the developed software,
the completion of the evaluation phase immediately led to another planning phase, already
belonging to the next iteration. As this is a cyclic process, we can perform as many iterations
as desired, slightly increasing the scope of the project on each new one.

The workflow present on this project has been supported by weekly meetings, scheduled
in order to get up-to-date with the last established objectives and tasks, and set up the work
until the next one. This has allowed to keep a constant feedback with the tutor and hold the
followed path onto the desired direction.

Additionally, a MediaWiki page2 has been mantained on the JdeRobot website, reflecting
every effort and achievement in order to have a good temporal reference of the work done,
and a timeline of accomplishments, and including demonstration videos for each successful
iteration result.

The code for all the project has been handled on a GitHub repository3 created for this
purpose. However, as the resulting nodes were officially incorporated to the JdeRobot envi-
ronment, they were migrated to their own repositories. This will be further described on the
section dedicated to each component/iteration.

2.3 Requirements

For every covered topic, the developed solution must be compliant with the requirements
formulated below:

• As each tool/application will need to perform simultaneous tasks (which, in addition,
require a very unbalanced computation load), it will be implemented with several asyn-
chronous threads, with different tunable update periods. The asynchronism will prohibite
blocking calls between them, as that would stop independent threads (e.g. it’s senseless
that the GUI had to wait the CNN to finish before updating the window). So, this will

1”In theory, theory and practice are the same. In practice, they are not.”, Y. Berra
2https://jderobot.org/Naxvm-tfg
3https://github.com/RoboticsURJC-Students/2017-tfg-nacho_condes

https://jderobot.org/Naxvm-tfg
https://github.com/RoboticsURJC-Students/2017-tfg-nacho_condes

22 CHAPTER 2. OBJECTIVES

be kept in mind for data exchange as well.

In particular, the thread controlling the neural networks will have the capability to be
stopped and resumed on demand, having the user several buttons for this (stop/con-
tinue, or perform a single inference on the current image).

• The implemented solutions will be easy to execute for other purposes. This leads to
pursue the easiest installation and configuration methods possible.

The installation of the required framework can be performed automatically executing
the pip Python package manager. The project repository includes a file to install all
the dependencies automatically with pip install -r requirements.txt.

With respect to the configuration, it has been implemented on a YML format (which
will be explained later), allowing a configuration on a human-readable format.

• The camera implemented in the robot will be on a low height, looking slightly upwards
in order to detect faces correctly. So, sometimes it will be such a harsh situation for
the detection systems due to lighting issues, encountering situations as tough as on
Figure 2.2.

Figure 2.2: Hard situations for facial detection, due to light.

The implemented solutions will have to be able to struggle with these situations, which
can be feasible due to the position issue, offering a robust response even when there is
a strong source of light burning the image.

2.3. REQUIREMENTS 23

• Created neural networks will have to be generic (capable of loading a previously saved
or imported model), and persistent, which means, able to process more than a single
frame (unlike many detection solutions findable through a simple Google search).

• All the proposed solutions, and its subsystems must be capable of running on the avail-
able processing hardware on real-time:

– CPU: Intel i5 4210-U

– RAM: 8 GB DDR3L

– GPU: discrete Nvidia 940M (CUDA capabilities: 5.0)

• Every implemented system must maintain a simultaneous compatibility with Keras frame-
work: another generic and transparent loader must be written. This selection (Tensor-
Flow/Keras) will be chosen inside the previously mentioned YML configuration file.

Chapter 3

Infrastructure

This chapter is destined to a brief description of all the available hardware/software resources
on which we will rely along the project.

3.1 Hardware

3.1.1 Sony EVI D100P camera

(a) Front side. (b) Back side.

Figure 3.1: Sony EVI D100P.

The first used hardware element is the Sony EVI D100P1. It is a PTZ cam (which stands
for Pan Tilt Zoom) which, originally thought and designed for videoconferences, is equipped
with a bunch of precision servo motors. This allows it to be teleoperated, performing a soft
and steady two-dimensional movement on demand:

• Pan: horizontal movement. It can take values from −100 to 100 degrees from the
centered position. This movement can be performed at a certain speed, which can be
set between 1 and 24.

• Tilt: vertical movement. Its range goes from −30 to 30 degrees, and the movement
speed can be also varied between 1 and 20.

1https://pro.sony/en_IN/products/ptz-network-cameras/evi-d100-d100p-pal-

24

https://pro.sony/en_IN/products/ptz-network-cameras/evi-d100-d100p-pal-

3.1. HARDWARE 25

Something remarkable about this device is that it is bidirectional: we receive images from
its camera, and, at the same time, we send it commands to move the motors.

Motors The low-level implementation of the movement commands is the VISCA protocol, a
proprietary solution from the manufacturer (Sony). It is received by the cam through a
RS-232C (the traditional low-rate serial interface before USB spread), so we can connect
it to a modern computer with a RS232-USB interface.

However, the driver that controls this camera (subsection 3.4.2) does not offer support
for a zoom movement, but it is not very relevant for this application.

Video As the video sensor is an analogue device, we need to convert its information to a
digital format. We achieve this with a video capture device (Figure 3.2), which outputs
digital video. This image flow is processed by a ROS driver (subsection 3.3.1), that will
be later explained.

Figure 3.2: Analogue-digital video converter (Pinnacle Dazzle).

This is the device we use on our experimental approach to the detection + robotic behav-
ioral node (section 6.6), where the only response is moving the camera.

3.1.2 Asus Xtion Pro Live

It is a RGBD (RGB + Depth) sensor, designed by Asus for interactive PC applications devel-
opment purposes.

Figure 3.3: Asus Xtion Pro Live. IR emitter (left), and RGB and IR lenses (right).

26 CHAPTER 3. INFRASTRUCTURE

It counts on its left side with an IR (infrared) light emitter, which radiates beams like a
conventional light bulb (that’s its function). On the right side, we can find two sensors:

• RGB sensor: a regular digital camera, with a resolution up to 1280x1024 px.

• Depth sensor: measures distance to objects by receiving the reflections of the IR beams
that we have mentioned above. It maps, for each pixel, the distance to that reflection
(in mm), stored as a 16-bit long value. Thus, we can obtain a depth image, with a
resolution of 640x480 px (@ 30 fps).

We have used it as the visual source in the developed detection + robotic behavioral node
(chapter 6).

3.1.3 Turtlebot 2 robot

(a) Frontal view. (b) Side view.

Figure 3.4: Turtlebot development kit.

It is a research robot, composed by a structure jointed to a Kobuki robot (mobile base)2.
According to its technical specifications3, it can reach speeds of 700 mm/s (on straight line),
and 180 deg/s (turning). Into the attached structure, we can find mounted an Asus Xtion
sensor.

The user has the capability of connecting each of these devices via USB to the laptop, and
place it at the top platform of the robot. From there, the computer can run the algorithm and
command the movements. Every component can be handled with the respective ROS driver
(which will be described later).

The Turtlebot platform has been our main actuation platform for the developed detection
+ robotic behavioral application (chapter 6).

2http://kobuki.yujinrobot.com/about2/
3https://www.robotnik.es/web/wp-content/uploads/2014/04/TB_robot.pdf

http://kobuki.yujinrobot.com/about2/
https://www.robotnik.es/web/wp-content/uploads/2014/04/TB_robot.pdf

3.2. PYTHON 27

3.2 Python

According to the official definition from [21], Python is an interpreted, object-oriented, high-
level programming language with dynamic semantics. It was created in 1991 by Guido van
Rossum. However, due to the increasing growth of Machine Learning that happened the
last two decades, it has become the most popular language for this purpose. As it focus on
easiness, its duck typing4 and its strong Object Orientation (everything can be treated as an
object on this language) are a big ace up the sleeve in comparison to other languages and
alternatives. In the programming point of view, it is a very interesting feature, as it facilitates
features as sharing memory, abstract processes, and much more.

And it is Open Source, so it is always under community improvements, and there are a
vast number of useful third party libraries, which often are pretty easily deployable onto your
code.

All these points make this language a really potential candidate for the applications to
develop (and that’s precisely the reason that explains its growth on the software market).

Python is an interpreted language, which means that its sentences are projected on another
program (the CPython interpreter, which executes them), and not directly by the processing
hardware (CPU/GPU). This can be a handicap, as it makes the code execution much slower,
in comparison with standard compiled languages, which are run directly as processes, and
grabbed by the computer hardware for its execution (as C, C++, Picky, etc.).

For our target, we have used Python on its version 2.7. Although it is a relatively old
version of the language, it is necessary to mantain the compatibility with ROS Kinetic distri-
bution (section 3.3) bindings, which have not still taken the leap to the newest major version
(3.x) on Python.

3.3 ROS robotics framework

ROS (Robot Operating System) is an open-source, meta-operating system for your robot,
maintained by the OSRF (Open Source Robotics Foundation) [22]. It is a framework that
provides a distributed, easily-scalable environment of nodes. These nodes are programs which
are independently on the computer (or distributed over a network), so they can perform in-
dividual tasks. However, they can communicate between themselves on a synchronous way
(over services, implementing a client-server role system between nodes), or on an asynchronous
way, via topics. These topics, which rely on a standard TCP/UDP communication between
sockets via the loopback interface, are intended for an unidirectional, streaming commu-
nication, where a node can take roles: publisher (if it is writing data inside the topic), or
subscriber (if it is reading the data that publishers are broadcasting into the topic). The data
stream through the topic is not unrestricted. It must follow a ROS specific syntax, the Mes-
sage type, which is strictly defined for the communication purpose (geometry, sensoring, etc.).

4This refers to Python guessing about your code, coming from the phrase ”if it looks like a duck and
sounds like a duck, chances are it’s a duck.”

28 CHAPTER 3. INFRASTRUCTURE

For our project we have used the 2016 LTS (Long Term Support) version, called Kinetic
Kame5. This is the version bundled on the installation of JdeRobot6, which offers a full com-
patibility with it.

...

import rospy

from std_msgs.msg import String

...

rospy.init_node(’listener’) # Starting the node entity.

rospy.Subscriber(’chatter’, String) # Instantiation of the topic subscriber.

rospy.spin() # ’Infinite loop’ listening to the topic.

...

Figure 3.5: Simple stablishment of a listener node through rospy (code from [3]).

ROS provides libraries and bindings for C++, Lisp, and Python (rospy). They allow to
really easily set up a topic between two or more programs, which will be seen as ROS nodes.
However, this topic communication will be abstracted on our project by the comm library, as it
will be seen on subsection 3.4.3.

ROS also provides a Debian package, called rosbash, which allows to, in a very handy
way, manage nodes and packages from a standard bash shell. The most remarkable feature
for us is the command roslaunch, that launches a ROS node with a certain specific settings,
configurable via a .launch file (which follows a XML formatting). An example for the file
structure can be found on Figure 3.6.

3.3.1 usb cam driver

It is a ROS driver that creates a topic and publishes into it the digital video data incoming
from a USB camera, into the topic /usb cam/image raw.

This driver has been used on some experiments about the detection + robotic behavioral
application (section 6.6), with the purpose of retrieving images from the Sony EVI D100P
camera (Figure 3.1). A custom configuration file7 is required. We can have a glance on that
configuration file on Figure 3.6.

Usage: roslaunch usb cam-test.launch

5http://wiki.ros.org/kinetic
6https://jderobot.org/Installation
7https://github.com/RoboticsURJC-students/2017-tfg-nacho_condes/blob/master/

resources/usb_cam-test.launch

http://wiki.ros.org/kinetic
https://jderobot.org/Installation
https://github.com/RoboticsURJC-students/2017-tfg-nacho_condes/blob/master/resources/usb_cam-test.launch
https://github.com/RoboticsURJC-students/2017-tfg-nacho_condes/blob/master/resources/usb_cam-test.launch

3.3. ROS ROBOTICS FRAMEWORK 29

Figure 3.6: Example of usb cam-test.launch configuration file for a ROS node.

3.3.2 openni2 launch driver

The ROS binding at [23] provides the launch files for the rgbd launch node. This node
publishes on several topics the RGB+D images provided by the Asus Xtion (Figure 3.3).

As it can be seen on Figure 3.3, both sensors (RGB and infrared) can’t physically be in
the same place, so there is a little discrepancy between both computed image:

(a) RGB image. (b) Depth image.

Figure 3.7: Both raw (before registration) images sensed by the Xtion cameras.

With the goal of palliating this disparity, a process called registration is executed for every
new incoming depth image. It consists of a projection of the depth pixels into the RGB image,
trying to align on an optimum way each depth pixel with its counterpart on the RGB image.
We can observe that this can cancel to a certain point the difference between both images
(Figure 3.8).

If we compare the new disparity (Figure 3.8b) with the previous one (Figure 3.8a), we can
realize that now the RGB and Depth images are aligned on an improved way, as if both sensors
were on the same place, or much closer at least. So, from now on, we will call depth im-
age to the registered version of the depth map, as the unregistered image is not useful anymore.

The open source driver working behind this binding is called OpenNI8 (Open Natural In-
teraction). It was originally written by the Kinect developer company PrimeSense (which

8https://structure.io/openni

https://structure.io/openni

30 CHAPTER 3. INFRASTRUCTURE

(a) Before registration. (b) After registration.

Figure 3.8: Comparison between the disparities, before and after the registration process.

designed the Xtion device beside Asus).

In summary, this interface allows to perform both processes involved into handling this
device (image grabbing and depth registration). It has been used on the detection + robotic
behavioral application (chapter 6). It will connect the Xtion sensor to it, providing the real
time imaging through the corresponding topic.

Usage: roslaunch openni2 launch openni2.launch

3.3.3 kobuki node package

This ROS package contains a bunch of launch files. Among them there is the one we have
used: minimal.launch, which starts the nodelet9 that gives us the total control of the Turtle-
bot2 robot connected to the computer.

This node will be used on the second iteration of the detection + robotic behavioral
application (chapter 6). It will connect the Turtlebot motors to the component, providing the
topic to command movements to them.

Usage: roslaunch kobuki node minimal.launch

3.4 JdeRobot robotics framework

As described in section 1.3, JdeRobot10 is a distributed development middleware, born in [24].
It stands out mainly for two key aspects:

• Hardware abstraction: it behaves as an intermediate layer between control software
(written by the programmer) and hardware, which can be a real device (a robot, drone,
camera, laser scanner, etc.), or a simulated device (on the open source world simulator

9A ROS nodelet performs multiple simultaneous processes, and consequently opens several topics.
10https://jderobot.org

https://jderobot.org

3.4. JDEROBOT ROBOTICS FRAMEWORK 31

Gazebo11). The bidirectional flow (information from sensors, and commands from the
computer) is sent the same way, no matter the kind of the underlying robotic device.

As well, this abstraction layer allows various computers to interact simultaneously with
the hardware, as the communications are also abstracted to ROS topics or ICE end-
points (it will be properly explained at subsection 3.4.3), where a program has to just
listen/talk. This provides software and hardware scalability to the platform, and to the
developed programs.

Let’s have a look on a possible example on the Figure 3.9. This could represent an
scenario where somebody wants to virtually test a navigation algorithm. Thus, in the
Computer 1, a reactive controller is running, sensing the environment through a real
laser scanner and a RGB camera (as in the work developed at [20]). This controller
receives data from the sensors, computes a proper navigation response, and sends it to
a virtual robot, simulated on Gazebo.

Additionally, another machine (Computer 2) is running a viewer, which allows it to
draw the images seen by the camera, and the laser readings from the scanner. So, this
component only receives the data from the sensors, and does not send any kind of data
to the devices.

We can see that both components can perfectly run together and on different machines,
even when they are written over completely different languages (Python and C++, re-
spectively). In addition, we can perfectly handle virtual and real devices simultaneously,
even if they talk through different interfaces (ROS or ICE), due to the perfect support
to both by the comm library (subsection 3.4.3). In this easiness and flexibility resides the
main advantage of using JdeRobot.

Figure 3.9: JdeRobot abstraction layer, and a possible use distributed, multi-middleware sce-
nario.

11http://gazebosim.org/

http://gazebosim.org/

32 CHAPTER 3. INFRASTRUCTURE

.

• Wide device support: JdeRobot provides full compatibility with ROS Kinetic Kame, so
it can perfectly integrate ROS Nodes (in our concern, we can communicate with the
Turtlebot and the Xtion devices via several topics that the ROS intermediate nodes
open).

• Threaded software architecture for robotics applications: as it is introduced at [24],
inside a component, we will find one or more threads. These threads run concurrently
with an specific timing (so it does not overload the CPU in vain if a few iterations per
second are enough for a vivacious and correct response).

These schemes perform different tasks each, on a non-blocking way, and share memory.
This has been followed on a comfortable way on our implementation: the threads are
independent, but the tasks they control are performed by Python objects, which are
interconnected between them:

Now, in the next subsections, we will examine which of the available JdeRobot components,
apart of the infrastructure, have been of greatest interest for us.

3.4.1 Digit Classifier node

This JdeRobot component was originally designed by David Pascual [15] and Nuria Oyaga
[16], and it was used on this project to land on the field of neural networks.

Figure 3.10: DigitClassifier on action.

In rough outline, its function is to classify on-demand or in real-time the incoming images
from a video source, mapping them into digits from 0 to 9. There are two identical version,
differentiated on the underlying framework (Keras or Caffe). On Figure 3.10 we can see its
operation: it processes an image extracting the shown digit and showing the class that the
network has assigned to it.

3.4. JDEROBOT ROBOTICS FRAMEWORK 33

3.4.2 evicam driver driver

This driver, bundled into JdeRobot12, allows the user to send movements commands to a Sony
EVI D100P camera Figure 3.1) and to retrieve information from it, creating an ICE endpoint
that is ready to interact with the camera PT (Pan, Tilt) motors.

As this is a low-level driver, written in C++, it requires to be used on a specific way, which
has been documented13 to be easily applied in the future. This driver defines an interaction
API with the camera, which allows us to get the values from the encoders:

import config

import comm

...

cfg = config.load(’yml_configuration_file’)

jdrc = comm.init(cfg, ’NodeName’)

Instantiation for the motors:

PTMotors = jdrc.getPTMotorsClient(’NodeName.PTMotorsEndpoint’)

print(PTMotors.getLimits()) # Shows the max/min values for pan, tilt

and each speed.

print(PTMotors.motors.data) # Shows the current values for pan, tilt

and each speed.

Let’s move the camera! As easy as:

PTMotors.setPTMotorsData(new_pan, new_tilt, max_pan_speed, max_tilt_speed)

3.4.3 comm library

comm is the basic library included on JdeRobot to perform communications between different
components. It supports all the data flows in a typical scenario (Figure 3.9).

comm consists on a collection of bindings to easily create a link between two components,
or between a device and a component. On the lowest level, we can use it relying on ROS
(through topics as it was explained before on section 3.3), or through an ICE proxy. ICE14 is an
object-oriented middleware that, in our purpose, allows to abstract a data flow to a TCP/IP
endpoint (an address/hostname, and a port), which can even support a communication be-
tween two or more programs inside the same machine.

To create a communicator with comm, it needs the specification for that link (underlying

12https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/evicam_driver
13https://jderobot.org/Handbook#PanTilt_Teleop
14https://zeroc.com/products/ice

https://github.com/JdeRobot/JdeRobot/tree/master/src/drivers/evicam_driver
https://jderobot.org/Handbook#PanTilt_Teleop
https://zeroc.com/products/ice

34 CHAPTER 3. INFRASTRUCTURE

middleware, topic/endpoint, etc.), so it uses the JdeRobot standard: YML15 configuration
files, which must follow a similar format to Figure 3.11.

Figure 3.11: YML format required by comm.

In the previous example (3.4.2) we can see an example of an instantiation of a global
communicator through comm (which then provides the clients to interact with the device).

3.5 OpenCV library

OpenCV (Open Source Computer Vision) is a C++/Python/Java open-source library16 (na-
tively written in C++) for Computer Vision purposes. Among the classic/state-of-the-art
methods it bundles, we can find functions suitable for face recognition, image stitching, eye
movements following, establishing markers for augmented reality, etc.

Its general focus is efficiency and real-time functionality, thank to low-level optimizations
on the system hardware (i.e. integration with Nvidia CUDA and OpenCL GPU processing
libraries). Thus, the excellent performance achieved by this open source library has turned it
into the de facto standard between every kind of users (from researchers to big companies or
even governmental bodies, as their website stands).

The main benefit we have grabbed from this library (on its version 3.3.1) has been mainly
for image analysis (such as Haar Cascade classifiers, or edge detectors) or transformations
(color conversions, gaussian blurrings, etc.).

3.6 NumPy library

NumPy17 (Numeric Python) is a library for Python (written in C++), born to extend the
numerical abilities of this language. It provides a powerful array class, which allows to keep a
N-dimensional collection of values/objects in a really handy way (in comparison with Python’s

15Legible data serialization format.
16https://opencv.org/
17http://www.numpy.org/

https://opencv.org/
http://www.numpy.org/

3.7. TENSORFLOW FRAMEWORK 35

standard lists). It also provides a rich interface to describe the arrays (such as advanced
indexing, shaping, data formatting, etc.).
It has been an useful resource on this work, for 3 main reasons:

• Matrix representation of images: processed images are handled as matrices or bigger
order tensors (the concept of matrix generalized for any number of dimensions), so
visualizing/slicing them becomes a trivial task.

• Abstract structure to keep objects: it allows to store different objects in a np.array

object, providing an advanced API for indexing, and conditional checks to instantly
retrieve the elements fulfilling a specific condition.

• Saving variables into disk: this is an useful feature for debugging purposes. np.save()

allows to save any variable (even non-NumPy ones, like dictionaries), finding it on a
.npy file, ready to be traced and debugged.

In the same way than OpenCV, this is a numerical library widely adopted among Python
users. This is due to the easiness of handling of its types and structures, that provide an
immediate data exchange format with third party software. It has made of it our main numerical
engine on the developed purposes, having used it on its version 1.14.5.

3.7 TensorFlow framework

TensorFlow18 is an open-source software framework for high performance numerical computa-
tion. It was originally created by the Google Brain team, and it offers an excellent background
for machine learning tasks.

Its internal functionality is based on graphs, composed by nodes which operate and ex-
change data values establishing a flow of tensors. These tensors are handled in the backend
of TensorFlow, so performing operations with tensors is really fast, in comparison with other
high-level mathematical libraries (NumPy). A tensor can be formed of different data types
(images, words, poses, numbers, etc.), which is the key of the versatility it offers for a large
variety of projects19.

All these possibilities make TensorFlow a very optimized ecosystem to implement deep
learning models (Deep Neural Networks). In addition, it is optimized for parallel GPU hard-
ware. This gives a network the opportunity to experiment a performance boost, since it can
reduce significantly the time it takes to make an inference (and even work on a system with a
cluster of GPUs, although this is focused to more exigent systems than the one we create on
this work).

Since it was launched (November 2015), it has been adopted by many big companies which
use TensorFlow as the base for their Artificial Intelligence applications, such as Twitter, Intel,
Google, eBay, Xiaomi, Nvidia, etc.

18https://www.tensorflow.org/
19https://github.com/jtoy/awesome-tensorflow

https://www.tensorflow.org/
https://github.com/jtoy/awesome-tensorflow

36 CHAPTER 3. INFRASTRUCTURE

Figure 3.12: Basic graph on TensorFlow (2 convolutional layers fed to a cost function).

It allows to train a neural network or even load a specific model (kept on a Google Proto-
buf20 .pb file). This is a really interesting feature, given that we are able to retrieve a bunch
of pretrained models and embed them into a generic neural network.

The version we have been using along the project is the last available one nowadays (1.9.0),
compiled from sources on a Nvidia GPU (through CUDA on its 9.2.88 version), in order to
squeeze the maximum inference speed possible.

We have also taken advantage of the TensorBoard tool, which allows to visualize interesting
contents about a neural network, from a log trace of its execution. It is possible to visualize
the graph (including nodes, tensor shapes, operations, etc.). Also, it provides a functionality
to analyze the obtained weights for each layer, on advanced analysis techniques, as PCA
(Principal Component Analysis). We have used it to visualize all the networks we design or
import.

3.8 Keras framework

As it is stated in [15], Keras is a high-level neural network framework, written in Python and
capable of running on top of either TensorFlow or Theano (another deep learning library).
Hence, it is an abstraction with the goal of programming and handling a neural network on
an simpler way, relying on a powerful library (treated as backend) as TensorFlow to perform
all the numeric operations. As well as TensorFlow, it is capable of loading previously compiled
and saved models, on the serialization standard HDF521 (.h5 files).

In our project, support has been provided to use this framework (selecting it on the YML
configuration file) on its version 2.2.0, although our main interest has been TensorFlow due to
the significative difference of processing speed between both frameworks (being TensorFlow
twice as fast as Keras).

20Google’s open source mechanism to serialize structured data.
21Hierarchical Data Format (v.5): general purpose format to store and manage data.

3.9. PYQT FRAMEWORK 37

3.9 PyQt framework

Qt22 is an cross-platform object-oriented framework for building GUIs (Graphical User In-
terfaces), originally developed by a Nokia department. It is distributed under a commercial
license, although it has a standard GPL license for open-source projects. A third party company
(RiverBank Computing) developed PyQt, a set of Python bindings to interact with Qt (orig-
inally written in C++). It is structured in units called Widgets, which contain blocks (Labels).

All this allows to easily deploy a GUI-based(Graphic User Interface) program, as in Fig-
ure 3.13.

import sys

from PyQt5 import QtGui, QtWidgets

def window():

app = QtWidgets.QApplication(sys.argv)

w = QtWidgets.QWidget()

b = QtWidgets.QLabel(w)

b.setText("Hello World!")

w.setGeometry(100,100,200,50)

b.move(50,20)

w.setWindowTitle("PyQt")

w.show()

sys.exit(app.exec_())

if __name__ == ’__main__’:

window()

(a) Hello world example code. (b) Resulting window.

Figure 3.13: Example of a Hello World window with PyQt5 bindings.

We have used the version 5 of Qt. Hence, our GUI library is PyQt5, which has been used
to build a live-capable GUI on an intuitive way, in all the developed tools.

3.10 threading library

Threading23 is a Python standard library which offers a high-level API for threading processes.
This is very convenient for our purpose, as we want to stick to a multiprocessing paradigm.
This way we can have dedicated threads to grab the new camera images, update the GUI, and
make the Neural Network to load new inferences on the last image detected.

22https://www.qt.io/
23https://docs.python.org/2/library/threading.html

https://www.qt.io/
https://docs.python.org/2/library/threading.html

38 CHAPTER 3. INFRASTRUCTURE

The threading provides a generic class for a thread. Our only task is to create a custom
class which inherits it, customizing the init and run() methods our own way.

The version we have used is the standard one included with the Python installation.

Chapter 4

DigitClassifier tool

This JdeRobot component (subsection 3.4.1) was used on this project to land on the concept
of neural networks.

Its design aims to classify handwritten numbers with the use of a Convolutional Neural
Network (subsection 1.2.5), which classifies the incoming images from a video source.

Figure 4.1: DigitClassifier on action.

This kind of application (handwritten digits classification) is the typical first milestone to
achieve in the domain of deep learning concepts and neural networks architectures, so lots
of documentation are available online (a basic domain of the framework can be successfully
achieved on the official TensorFlow tutorials1 which, as said, teach how to deploy a handwrit-
ten digit classification system).

As we mentioned, previous existing implementations were written in Keras [15] and Caffe
[16] (Python libraries to implement Deep Learning algorithms), so we made the same on Ten-
sorFlow (section 3.7), to accomplish an initial domain of this Machine Learning framework2.

After this, Keras and TensorFlow versions were merged on a single JdeRobot component:

1https://www.tensorflow.org/tutorials/layers
2Demonstration videos available on the MediaWiki page (https://jderobot.org/Naxvm-tfg).

39

https://www.tensorflow.org/tutorials/layers
https://jderobot.org/Naxvm-tfg

40 CHAPTER 4. DIGITCLASSIFIER TOOL

dl-digitclassifier3, which has the scope to be functional on both libraries and, in ad-
dition, supports image streams from ICE endpoints or ROS topics (thanks to the comm library).

As it can be seen it the README file4 in the repository, configuring the component is
made pretty simple thanks to the YML file, so the reader is asked to feel encouraged to give
it a try.

4.1 Tool architecture

As specified in the requirements (section 2.3), we divide the entire node functionality into
individual tasks. These tasks have been implemented invoking a dedicated thread (using the
threading library) for each one.

Figure 4.2: Infrastructure of the component (3 threads).

This establishes the first functional difference with the previous version, which was powered
by only 2 threads (for the camera and the GUI), performing on-demand (blocking) inferences
on the neural network. Implementing a new thread dedicated to the neural network allows
to have an instantaneous output digit from the network, ready to be easily grabbed. Nev-
ertheless, care has to be put on respecting parallelism between threads. This infrastructure
is optimum for asynchronism, which means that one component does not depend on any
others (e.g. the GUI component does not need the network to finish the next inference and

3https://github.com/JdeRobot/dl-digitclassifier
4https://github.com/JdeRobot/dl-digitclassifier/blob/master/README.md

https://github.com/JdeRobot/dl-digitclassifier
https://github.com/JdeRobot/dl-digitclassifier/blob/master/README.md

4.1. TOOL ARCHITECTURE 41

return the classified digit in order to refresh the interface: it grabs the last inference made by
the network from the own network, which will be automatically updated when a newer one
is available). This implies a respect to the independence between threads. It is the key for
an asynchronous behavioral, as we want the component to yield the best possible performance.

Using the specified threading library, this deployment is as easy as making a custom
definition of the init () and run() methods:

...

import threading

from datetime import datetime

...

class MyThread(threading.Thread):

def __init__(self, foo, bar):

’’’

This is the method which will be called at the creation of the thread.

’’’

self.my_foo = foo

self.my_bar = bar

self.time_cycle = 100 # ms

threading.Thread.__init__(self) # Rest of the initialization.

def run(self):

’’’

This is the task the thread will perform once.

If we put an infinite loop inside, we have a periodic thread.

’’’

while True:

start_time = datetime.now()

Grab an image, or run an inference on the neural network...

self.my_foo.doMyStuff(self.my_bar)

end_time = datetime.now()

dt = end_time - start_time

If it did not take the refresh time, it sleeps until it arrives.

if dt < self.t_cycle:

sleep(self.t_cycle - dt)

So, we can create versions of this generic class, and then instantiate them, as performed
on Figure 4.3. This way, we have already created and started the parallel threads performing
their own tasks on an asynchronous way. In addition, it is possible to control the update period
of the thread, so we can decide how much time it will be elapsed between two consecutive
executions of the task (and of course this is a tunable parameter).

42 CHAPTER 4. DIGITCLASSIFIER TOOL

import Camera, ThreadCamera

import GUI, ThreadGUI

import Network, ThreadNetwork

...

We instantiate each object with its pertinent thread...

cam = Camera(cam_parameters)

t_cam = ThreadCamera(cam)

gui = GUI(gui_parameters)

t_gui = ThreadGUI(gui)

net = Network(net_parameters)

t_net = ThreadNetwork(net)

Communicate them (according to the scheme)...

net.setCamera(cam)

gui.setCamera(cam)

gui.setNetwork(network)

And start the application!

t_cam.start()

t_gui.start()

t_net.start()

gui.show()

Figure 4.3: Schematic code to instantiate the components of the node.

4.2 Image processing

For every digit recognition system using a CNN, the approach is the same: processing a 28×28
px image5 containing a binary image of the digit itself. In addition to this, our system aims to
a robust and correct classification at every feasible situation. Handwritten digits can often be
found in visually harsh environments (poor quality sensor or lighting, trace indistinguishable
of the background, etc.). Given this, before inserting an image on the network, we have to
subject it to a preprocessing pipeline:

1. Grab the central region of the incoming image from the camera (blue square on Fig-
ure 4.1).

2. Convert the image to grayscale, as the color information is not relevant (hence, the
network does not deal with RGB images, but just a grayscale 28×28 matrix).

3. Soften the image with a gaussian blur, in order to reduce the possible noise on the
image. We convolve the image with a square kernel of size 5 px.

5This particular shape is due to the used dataset, as it will be seen later.

4.3. DIGIT CLASSIFICATION CNN 43

4. Resize the image to the necessary shape of 28×28 pixels.

5. Lastly, we extract the edges of the image. This is not trivial, as the information we
want to observe for the digits are the edges. Otherwise, images on different contrast
conditions would not be supported, as that would imply very different weights on the
network for each situation. For this edge extraction, we apply a Sobel operator (which
can be seen like computing the directional gradient/derivative in the image, as stated in
[25]) on each direction (vertical/horizontal), in order to detect the existing edges, and
add them together in a single edge image, which is the final output of the pipeline.

As a result, we obtain a softened shape map (even from different images, as seen on
Figure 4.4), which is a good start for the neural network to infer. This image is shown in the
GUI. This pipeline will be applied to every image (in the training process and while performing
a new inference).

Figure 4.4: Result of the preprocessing (identical for both images).

4.3 Digit classification CNN

The implementation of this convolutional neural network consists of a concatenation of layers,
following the schema shown on Figure 4.5. These layers are disposed in a serial structure, so
the output of one layer (a vector containing what each neural activation function yields) acts
as the input for the next one.

For this reason, we need a first input layer, where all the pixels of the input image are
mapped to a input neuron, on a bijective way.

44 CHAPTER 4. DIGITCLASSIFIER TOOL

As stated before, the input shape for the images is 28×28 px (a total of 282 = 784 px),
so we firstly perform a reshape operation, which arranges the pixels on a 1-dimensional array
of pixels. That will be the input for the network.

(a) High level layers visualization.

(b) Low level layers visualiza-
tion.

Figure 4.5: Model of the implemented CNN for our system.

1. conv1: first convolutional layer. As described in subsection 1.2.5, it performs a 2D
convolution between a 5px× 5px square mask/kernel (W conv1), and the image (which
is seen again as a 28 × 28 matrix to perform the convolution). Later, the layer adds
a bias/intercept term (b conv1). Thus, we obtain the activation for each neuron (the
ReLU operator applied to the local convolution in the environment of that particular
pixel), h conv1.

Illustrative purposes.

Some additional parameters (padding, stride) ignored.

h_conv1 = tf.nn.relu(tf.nn.conv2d(x, w_conv1) + b_conv1)

To get a better understanding of what is happening here, we can have a glance of the
weights learned on each neuron, for each digit (as we will study further below), on the
Figure 4.6.

This can begin to illustrate what is happening here: each neuron has a set of 10 tunable
kernels, which depend on the value of what it has seen during the training process on its

4.3. DIGIT CLASSIFICATION CNN 45

Figure 4.6: Heatmap for the learned weigths for each pixel and labeled digit.

corresponding pixel and its environment. This illustration belongs to a simplified version
of the network, where a convolution is not performed, but a simple matrix multiplication
(which can be seen as a convolution of kernel size equal to 1). So, we can see that the
network is just learning where typically enabled pixels are situated on the input for each
possible label (0− 9).

2. conv2: second convolutional layer. It performs the same operation taking the output
from the previous layer as an input, using a different weights mask and bias terms.

h_conv2 = tf.nn.relu(tf.nn.conv2d(h_conv1, w_conv2) + b_conv2)

As we stated before, the tensor which will be convolved with the weights of this layer
(w conv2) is now the output of the previous layer (h conv1).

So far, what we have done is extracting patterns on each digit type (e.g. discovering
typical circles on 0 and 8, which are always present on the same zone of the image).

3. pooling: as the activation maps can be growing in size as we perform feed forward
propagation, a pooling operation is performed. It consists of spatially downsampling its
input (the previous layer activation map). Concretely, we retain the maximum value for
each 2 pixels, which is known as 2x2 max pooling (Figure 4.7).

Figure 4.7: Max-pooling operation on a matrix.

46 CHAPTER 4. DIGITCLASSIFIER TOOL

Some additional parameters ignored here

(kernel size, strides, padding).

h_pool = tf.nn.max_pool(h_conv2)

4. dropout: this layer does not strictly perform any mathematical operations. It lets pass
the tensors through it, but randomly switching off some neurons. This is parameterized
by a user input, using a variable called keep prob (which stands for the probability of
a neuron staying switched on). In our case, we set it to 0.5 (50%) during the training
process, to avoid overfitting by forcing the network to modify the neural paths randomly,
as not every neuron is available on every moment. This is kind of similar to augmenting
the dataset during the training process. The rest of the time (when the network is used
to make inferences), this parameter is set to 1.0 (100%), which means that no neurons
are switched off at all.

The value for keep_prob is parameterized.

h_drop1 = tf.nn.dropout(h_pool, keep_prob)

5. fc1: first fully connected layer. So far, we have seen the pipeline as operable matrices.
From now on, we go back to the single-dimension activation map (array of outputs)
model.

These layers, also known as dense layers, are distinguised because every neuron is con-
nected to every activation from the previous layer. So, this kind of layers are used for
pattern association with labels, due to the relationship they can infer between every input.

A thumb rule on this kind of layers is the more neurons included, the better general-
ization (the more correlation patterns we can detect between the activated zones on
the incoming activation map). So, our implementation establishes a first dense layer of
14 · 14 · 32 = 6272 neurons.

Firstly, the last activation map is flattened into a 1 dimension array.

h_pool_flat = tf.reshape(h_drop1, [-1, 14*14*32])

We model the full connection as a matricial multiplication

(with a weight size of 14*14*32)

h_fc1 = tf.nn.relu(tf.matmul(h_pool_flat, w_fc1) + b_fc1)

6. dropout: to gain in strength, we deploy another dropout layer (which switches off ran-
dom neurons with the same probability than the first dropout layer). This is remarkable,
as we had performed a dropout process on the feature retrieval phase (first layers), but
not on the pattern searching phase (dense layers).

h_drop2 = tf.nn.dropout(h_fc1, keep_prob)

4.3. DIGIT CLASSIFICATION CNN 47

7. fc2: the output layer. It connects all the outputs of the previous dense layer and
groups the output in a 10-dimensional vector, which contains the obtained logits, a
representative number for that class on the given image, which can be interpreted as a
linear reward/tendence [26] to belong to that class.

As the last step, it applies a softmax (σ) function to the output:

σ(z)j =
ezj∑K

k=1 e
zk

(4.1)

This function normalizes the output, mapping it between 0 and 1. This converts the
mentioned raw numerical output into a probability of being the given class (where the
sum of the probability of all possible classes converges to 1).

class_tendences = tf.nn.relu(tf.matmul(h_drop2, w_fc2) + b_fc2)

Output (this is the called node to get the total inference output):

y = tf.nn.softmax(class_tendences)

This way, the total output of the CNN is a vector containing the probability of the image
belonging to each class. If we keep the argument(s) of the maxima (argmax), we can find the
most suitable class for that image.

At this point, we can remember that the images entering into the network have been
preprocessing, looking for the edges, so the learning process and the weights used through
all the recently described pipeline can be generalized to all kind of images (as we will pass it
previously through the Sobel edge detection filter).

4.3.1 Training the network

The reviewed pipeline is performed on an image, since it enters on the neural network until it
goes out, passing through all the defined layers performing what is called feed-forward prop-
agation. However, the values of the activation maps and, hence, of the dense layer outputs
(which determine the resulting class) depend on a relatively huge number of neurons, each
one with its own weights and biases (for each class). As we can see, that is a ridiculous
number of parameters to tune manually, hence we tune it automatically performing what is
called backpropagation.

This backpropagation algorithm [27] performs a standard feedforward propagation (as de-
scribed before) on what we call training set (labeled images that will be used exclusively for
this purpose), which the system takes as examples which to learn of. Then, it compares the
obtained output class (argmax(softmax())) for each input, and adjusts all the weights of the
network, seeking to ensure that the difference between the desired output (the ground truth
labels) and the obtained result is minimum. This difference is computed and represented by a
value which we call loss/cost (the higher its value is, the worse, as there is a bigger difference
between the correct and the obtained output).

48 CHAPTER 4. DIGITCLASSIFIER TOOL

This tuning process is performed using what is called an optimizer, which is an algorithm
to search the optimum direction and magnitude update for every weight present on the net-
work, depending on the obtained differences. As this can be such a complex process, it is
performed on an iterative way: evaluate a batch6 of training images, obtain the value for its
loss, compute the suitable update values, and perform the weights update (scaled by what is
called learning rate, which determines the magnitude of the leap for each update). This way,
after a number of iterations7, the model should converge to a global minimum for the loss
function, which hopefully means that a suitable value for each weight has been found. This
is the mechanism responsible of fitting the weights, so thank to it, we obtained, among many
others, a reasonable values for the input layer on this network (Figure 4.6).

On our application, the chosen function to compute the lost value is the softmax cross-
entropy (as the name indicates, it is based on the softmax version of the output, which means
that it works with probabilities). It stands for the difference between the correct probability
for a particular class (remember that each class is represented by a neural unit on the output
layer: 1 if it’s the suitable class, 0 otherwise), and the obtained output probability [28].

This value is obtained on this way, being y the binary correct output, and p the computed
softmaxed probability:

−(y · log(p)) + (1− y) · log(1− p) (4.2)

With respect to the optimization algorithm, the most intuitive option is the gradient de-
scent algorithm (that, in fact, is perfectly implementable on this system). Instead, we use
the Adam algorithm, which is an extension of the gradient descent approach. Its advantage
is that it automatically adapts the learning rate of the parameters adjustment, by computing
its moving averages and variances (momentums) [29]. This is some more computationally
expensive, but it is affordable. In exchange, we obtain an automatic training hyperparameters
tuning, which is reflected in a faster and finer convergence to a correct value. It takes as input
the cost function, and struggles to iteratively minimize it.

Putting all this together, we can build these nodes on TensorFlow on an easy way, gearing
the output (y) to the new optimization blocks:

Cost function:

cross_entropy = tf.reduce_mean(

tf.nn.softmax_cross_entropy_with_logits_v2(labels=self.y_,

logits=self.y))

Optimizer (this is the called node during the training process):

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

6A batch is a set of examples, which are introduced to the network on a stacked way.
7This necessary number can not be determined, as it depends hugely on the dataset, purpose, network

structure, learning parameters, etc. The best option is to monitor the loss/accuracy values during the training
process, and stop it when these values converge (otherwise it could result in overfitting, that is not convenient
as it will only work fine on already seen examples).

4.3. DIGIT CLASSIFICATION CNN 49

4.3.2 MNIST dataset

MNIST (Modified National Institute of Standards and Technology database)8 is a public
database, which contains labeled binary images of handwritten digits. It is the result of
jointing and shuffling9 two previous NIST’s special databases (SD-1, containing digits written
by Census Bureau employees, and SD-3, containing digits written by students), which were
originally designed as training and test sets, respectively.

All the included images respect the same format, with two key aspects:

• The images are square 28 × 28 pixels matrices, containing the whole number (and
anything else).

• The pixels represent binary values. This means that a pixel can only take values as digit
or as background.

Given this, there are two image sets at our disposal: 60, 000 images for training, and 10, 000
images for testing10. Among all of them, we can obtain random examples (Figure 4.8a).

This is the image source we use to train our component, remembering that every image is
preprocessed (Figure 4.4) before going into the network.

4.3.3 Dataset augmentation

David Pascual [15] and Nuria Oyaga [16] performed what is called a data augmentation over
the MNIST dataset, with the objective of pretend to have a bigger number of samples to train.

It consists of taking the existing images (on the standard MNIST dataset) and apply to it
random (although controlled) transformations: each image suffers translations, rotations and
zooms, in addition to gaussian noise. This has a double purpose: to get a bigger number of
samples (which is always a good thing), and to make a better model to process real world
images. As this network will classify real incoming digits from a camera, these digits will have
most probably suffered noise (because of the camera and light conditions) and various geo-
metrical transformations (as it can be shown to the camera with a slight tilt, or on a different
background, etc.). Thus, we need to create a neural network which is ready to deal these harsh
conditions. That is the main reason to augment the dataset performing these transformations.

Taking all this on account, we have at our disposal the datasets they created11. As we can
see on Figure 4.8b, this set of images is much harsher than the standard one (Figure 4.8a).

8http://yann.lecun.com/exdb/mnist/
9This is an important step to perform on databases, because we have to be sure of a correct generalization:

the data used for training must be of the same kind than for testing, to obtain fair results independently of
the chosen dataset on each step.

10The test set must not be used on the training process under any circumstance, to avoid unfair results, as
this would be the equivalent to know an exam questions before taking it.

11A link to download them for future usages is available on the README file of the repository:
https://github.com/JdeRobot/dl-digitclassifier.

http://yann.lecun.com/exdb/mnist/
https://github.com/JdeRobot/dl-digitclassifier

50 CHAPTER 4. DIGITCLASSIFIER TOOL

This will allow to create a much more robust model to classify real world digit images.

(a) Standard MNIST dataset. (b) Augmented MNIST dataset.

Figure 4.8: Set of 9 random images extracted from the datasets.

These augmented datasets can be combined in different proportions (how many modified
images are created for each standard image), which is typically indicated at its name: training
set x-y means that there are y modified images for each x original one. To train the definitive
model implemented on the classifier, we use the 1-6 model, which means that there are 6
modified versions of an image vs. 1 copy of the original one.

Chapter 5

ObjectDetector tool

Once we have some initial knowledge on CNNs applied to image processing, thank to the
DigitClassifier component, we develop a new deep learning component, ObjectDetector1,
which is capable of detect objects in a real-time image stream2.

This component has a generic functionality, as the real-time processing capability is only
used to display on the image where the objects are, wrapping them on what is called bounding
boxes. These boxes are the rectangles inside of which, theoretically the detected object is
contained, and are delivered along the detection score, and the corresponding class detected.
We will go further on this later.

Figure 5.1: ObjectDetector working.

We can notice that the type of problem that we are trying to solve now is different. Until
now, we were trying to classify images, based on a certain features that the network extracted
by itself (the response always a classification, inferring an output even when no digit was shown
to the camera, like shown on Figure 5.2). Now, we are focused on detecting objects inside an
image. In other words, we want to distinguish whether an object (of a specific class or type)
is present or not in the image that is being currently seen.

It should be mentioned that this purpose requires a much more complex CNN, which leads
to a significantly heavier computational load on the machine (and, as a consequence, an im-

1Demonstration videos available on the MediaWiki page (https://jderobot.org/Naxvm-tfg).
2For a better compatibility with future usages for this component, it is able to process images from a local

video/webcam directly using OpenCV (so comm is not required for the execution), specifying this in the YML
configuration file.

51

https://jderobot.org/Naxvm-tfg

52 CHAPTER 5. OBJECTDETECTOR TOOL

Figure 5.2: DigitClassifier: a digit was always returned (or a subtle way of a computer
to call you waste of space).

portantly bigger inference time). Hence, a GPU-version of TensorFlow is highly recommended,
as the CPU-version would take way too long for a real-time operation system.

Due to this mentioned complexity, training a detection CNN is out of the scope of this
project (even so, with the proper resources, we could do it with some open-access labeled
image datasets). Instead of this, we will pick some public models that the TensorFlow team
has made available on the Detection Model Zoo3 (Figure 5.3). On a parallel way, we have
created a public mirror repository4 inside JdeRobot containing some useful found models (for
TensorFlow and Keras respectively).

Figure 5.3: Some available models (July 2018) with their respective performance indicators.

3https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/

detection_model_zoo.md
4http://jderobot.org/store/deeplearning-networks/

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
http://jderobot.org/store/deeplearning-networks/

5.1. TOOL ARCHITECTURE 53

These models have been trained on first-tier hardware, and are materialized in serialized
files containing the graph structure and the corresponding weights for each neuron, on a
ProtoBuf format (as we stated on section 3.7). These model files are loadable at runtime on
a TensorFlow graph instance, so invoking one of these imported graphs is an easy task:

detection_graph = tf.Graph() # New graph instance.

We use a context generator to set this graph as the default one

on the TF backend:

with detection_graph.as_default():

graph_def = tf.GraphDef()

graph_def.ParseFromString(model_file)

We load this definition into the backend

(which contains the Graph instance).

tf.import_graph_def(graph_def)

Figure 5.4: Generic model loading process.

This way, we have successfully loaded the graph with its weights on the TensorFlow back-
end. The Python class (DetectionNetwork) we have defined allows to do this, choosing the
desired model and dataset5 (we don’t want the network to label a person as a dog) through
the global YML configuration file.

Another thing to mention is the fact that, defining a Writer on the load process, we can
inspect the graph structure on TensorBoard, as we will do later.

5.1 Tool architecture

This node inherits the architecture developed for the classification node, consisting on 3 parallel
threads. These threads drive the behavioral of separated objects, committed to perform
independent tasks:

• Camera: grabs the current image delivered by the communication framework (comm or
OpenCV).

• GUI : launches and updates the interface, with the fresh image from the camera. That
image is drawn twice, as one of the representation (left) corresponds to the raw image
from the camera, and the other one (right) is modified, including the bounding boxes,
class and score for each detected object. This mentioned information is taken from the
neural network. Hence, this component is connected respectively to the image source
and the neural network.

• Network : infers continuously the detected objects from the last received image, on an
asynchronous way. When an inference is completed, the result (a set for each detec-
tion of bounding box, class and score for each single detection) is stored inside the

5Compatible with COCO, Kitti, OID and Pascal VOC datasets.

54 CHAPTER 5. OBJECTDETECTOR TOOL

Figure 5.5: Infrastructure of the component (3 threads).

network element. When the GUI needs the latest inference data, it just takes that data
without any blocking call nor interrupting any process. This complies with the stated
asynchronism requirement.

Given this pretty identical structure to the DigitClassifier node, the schematic code
to instantiate the program is the same than DigitClassifier’s (Figure 4.3).

5.2 Detection CNN: SSD

As we have just mentioned, our application uses a SSD (Single Shot Multibox Detector) CNN
to perform the detection task. This choice has fundamentally taken based on the real-time
performance expected from the component. We want it to make inferences as fast as possible
(with a reasonable precision), so we chose this kind of architecture (it’s more, it yields as good
results as its slower counterparts).

The high speed of inference of this kind of detectors is explained with the fact that it
performs a single feed-forward pass of the image through the network (on a single shot, as it
name states). According to its official release [4], the rest of state-of-the-art detection CNN
technologies approach performing feature scaling and bounding box proposals. These tech-
niques require more than one pass of the image or, at least, more than one single architecture,
which rises the inference time.

5.2.1 Architecture

As we can observe in Figure 5.6, a SSD detector has a defined network architecture, with
some key aspects to keep its performance vs. inference time on the highest possible value. An

5.2. DETECTION CNN: SSD 55

inspection of the architecture using TensorBoard (Figure 5.6) reveals the pipeline structure,
which is described below.

Figure 5.6: SSD architecture on our model.

1. Preprocessing : a first reshaping stage is necessary due to the SSD operation. We can
mention that this reshape is performed inside the neural network, working directly with
tensors on the GPU, which is probably faster than if we performed it with higher-level
operations. This block reshapes the image to a 300×300 size, which is the most typical
image size on an SSD detector.

2. Feature Extractor : the architecture on a SSD CNN is based on a first group of layers
(typically called the base network), which deals with the feature extraction part (as on the
first stage of the classification network we designed on section 4.3). This particular model
has a MobileNet based feature extraction network6. As it is formed by a concatenation
of convolutional layers (Figure 5.7), the resulting feature maps will be gradually smaller
and deeper while we go forward. These maps sets will be convolved with the original
image, so the smaller the activation map is, the bigger its receptive field will be (hence, it
will useful to detect bigger objects). Given this, we are capable of extract 6 intermediate
sets (described on Table 5.1), with the objective of detect objects of different sizes.

Set Shape Depth
1 1×1 128
2 2×2 256
3 3×3 256
4 5×5 512
5 10×10 1280
6 19×19 576

Table 5.1: Description of the 6 extracted feature maps sets on our implementation.

6MobileNets are originally designed to embed small, low latency deep learning systems on low-spec devices
[30], squeezing the trade-off between performance and inference time. So, we can reuse that part of its
architecture for our proposal.

56 CHAPTER 5. OBJECTDETECTOR TOOL

Figure 5.7: MobileNet pipeline.

3. Box Predictors: later, for each extracted set, a dedicated operation is performed (that’s
the reason why we have 6 identical boxes on the TensorBoard analysis (Figure 5.6).
They will perform the same operation but in patches of different sizes/depths, to detect
objects on different scales). Into this component, for each layer of the extracted feature
set, a small set (3-4 typically) of bounding boxes (called priors) with different aspect
ratios are generated (Figure 5.8).

Figure 5.8: A set of boxes are generated centered on each point of every feature map [4].

After this, these priors are convolved with small filters (one per depth channel), which
outputs softmaxed confidence values for each known class, and offsets/adjustments for
the generated bounding box. So, for each detected object (on that scale), we know the
score for each class and its estimated position inside the feature map.

4. Postprocessor : this element does not appear in Figure 5.6, it had to be cropped on the

5.2. DETECTION CNN: SSD 57

image for geometrical reasons, but it is present on the network structure. It combines
the output of all the 6 Box Predictors (which contain detections for each feature map
set), and applies a Non-Maximum Suppresor, which only retains the most confident
detections, and scales its position to the original image size.

This way, we have a system that, for each introduced image, returns a collection of:

• Classes: the detected class (person, cell phone, airplane, dog...) inferred.

• Scores: the confidence ∈ [0, 1] the network has on each object belonging to the decided
class (which was the most probable one while the detection was performed).

• Boxes: the coordinates of the bounding box which wraps the detected object, typically
expressed as the coordinates of its top-left and bottom-right corners.

As this is suitable for real-time performance, we are now capable, on a standard computer
hardware, to feed it with a video streaming (a file, or live camera images).

5.2.2 Importing a pretrained model

We have mentioned the training process of this kind of CNNs. It is not complicated from the
point of view of the entire system (black box), it only needs a dataset containing images with
classes and ground truth boxes7 (Microsoft’s COCO, Pascal VOC, etc.). With these images,
the SSD architecture learns to perform a better regression, to achieve a better fitting of the
boxes with respect to the original ones, evaluating it using the Jaccard similarity coefficient,
or IoU (Intersection over Union). This measure evaluates how good the overlap between true
and estimated boxes is (Figure 5.9). Additionally, it performs a standard back-propagation
process similar to the one we executed on the previous component (subsection 4.3.1).

Figure 5.9: Jaccard similarity coefficient on a detection (performance indicator used for training
a detector).

The much heavier complexity of this task is not our point where to focus, so we will em-
bed pretrained models, available thank to the TensorFlow team on the previously mentioned
Detection Model Zoo8.

7Ground truth: what the network knows to trust, what is told it to be the true position of the object to
detect.

8https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/

detection_model_zoo.md

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

58 CHAPTER 5. OBJECTDETECTOR TOOL

In our case, we have selected a SSD detector, with a MobileNet v2 feature extraction base
network, trained on the COCO dataset 9. As this dataset support 90 object types (person,
dog, airplane, toothbrush, apple, cellphone, etc., those are the classes we are able to detect.
It provides a lightweight structure which performs inferences at a frame rate of approximately
14 fps (on the currently available hardware).

We load this network architecture and weights on the mentioned manner (Figure 5.4).

5.2.3 Network output

As we have specified, the detection network yields detected classes, scores and bounding boxes.
Respecting the required asynchronous behavioral, this data is deposited on an accessible zone
for the GUI, allowing to begin another iteration when requested.

Therefore, as described at section 5.1 the GUI instance grabs the last detection data the
network left on the shared placeholder, and draws it on the visible user interface (Figure 5.10).

Figure 5.10: Information flow through the whole pipeline.

9http://cocodataset.org

http://cocodataset.org

5.3. EXPERIMENT: TESTING DIFFERENT ARCHITECTURES 59

5.3 Experiment: testing different architectures

The implemented generic class (DetectionNetwork) allows to load on runtime a pretrained
TensorFlow model of neural network. We can take advantage of this to perform a quantita-
tive timing benchmark of different architectures and/or datasets, among the available models
on the TensorFlow Detection Zoo10. As this node is a implementation on a real time video
streaming, measures can’t be taken on precision terms. However, a deeper analysis of that
kind can be performed with the JdeRobot tool DetectionSuite (described on section 1.3),
which allows to measure performance in terms of advanced markers, as Jaccard Index, preci-
sion and recall.

The timing tests (Table 5.2) have been performed under the described available hardware
(section 2.3), computing the mean inference time over 200 frames on a people walking video
(Figure 5.11). Notice that the frame rate and/or resolution are not relevant, as the frames
are processed one at a time, and experiment a reshaping before being feed-forwarded through
the network.

Figure 5.11: Screenshot taken from the video used on the benchmark.

As it can be seen, the vast majority of other implementations (different network architec-
tures) are significantly bigger, which would make impossible to accomplish real-time operation.

10https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/

detection_model_zoo.md

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

60 CHAPTER 5. OBJECTDETECTOR TOOL

Architecture Base network Dataset Mean inference time (ms)
ResNet Inception COCO 820.71

SSD MobileNet COCO 107.43
ResNet 101 COCO 786.49
ResNet 50 COCO 515.28

Inception * COCO 349.13
ResNet 101 COCO 63.97

Faster-RCNN ImageNet ILSVRC2014 703.99
Faster-RCNN Inception COCO 352.20

ResNet 50 COCO 793.87
* MobileNet COCO 106.93

SSD MobileNet COCO 102.85
ResNet 101 COCO 898.59

Inception ResNet OID 792.42
SSD Lite MobileNet COCO 68.13

ResNet 101 Kitti 111.29
Inception ResNet OID 667.76

Table 5.2: Timing performance tests for several modes. The selected implementation appears
in boldface.

(*): Not specified.

Chapter 6

FollowPerson application

The previous node, ObjectDetector, shows such a fine real-time detection system, for several
classes of objects (up to 90 in the COCO dataset case). It conforms an inert node, but that
can act as a starting point for a ton of interesting applications to come up with.

In our project, we take one of these new derived applications, FollowPerson (Figure 6.1),
and in the next pages we will study its insights. Our approach is a reactive1 behavioral on a
robot, which commands a Turtlebot robot to follow a target person (which we will call mom)
using a RGBD2 sensor. This person can be easily specified, providing the node an image of it,
in the YML configuration file. The node will search and analyze its faces, and store it as the
face to follow. It comprises, as we will see, some new systems as a modular extension of the
pure detection component.

6.1 Application architecture

On the previous components, we had to support similar tasks, as the only radical change was
the inner structure of the neural network. However, on this new component, we have to add
a new element to the previous schema, as we have a new task: command movements to
the wheels of the robot. This has to be on an independent fashion, according to our design
requirements (we can not implement blocking calls, so we need an asynchronous operation).
So, the solution to make this possible is simply to implement another thread, which will be
responsible of controlling the motors, based on the last network output. This way, we will
have a schema similar to the one on Figure 6.2.

So, as a result, we can count up to 5 different threads:

• Camera: as we mentioned, we need the images from a RGBD sensor, which will be
provided via ROS (OpenNI2), from the Asus Xtion sensor. These images will be delivered
transparently through a ROS topic by the driver, and the Camera object will distribute
them to the rest of threads.

• Depth: we obtain a depth map from the sensor, which is also delivered by the OpenNI2

driver. One thing to mention here is that, originally, each pixel has a size of 16 bits,

1A reactive action has an immediate effect when the stimulus is perceived.
2RGBD stands for RGB + Depth. It provides, in addition to the standard RGB image, a depth map, as

described at 3.1.2

61

62 CHAPTER 6. FOLLOWPERSON APPLICATION

Figure 6.1: FollowPerson working (following mom).

standing for the depth in millimeters detected on that particular direction. Unfortunately,
through the transport process, it is converted to a 8 bits value, so we lose the real
reference of the distance measure. To alleviate this, we will work with relative distances,
comparing them with the range [0, 255] they can take. This is 28 times less accurate,
but it is fine given the application and the distance the sensor is capable to reach.

• GUI : this thread is, as before, destined to refresh the visible window, showing the in-
coming images (RGB image as in ObjectDetector, and depth image, tinted with an
artificial colormap representing relative distances).

• Network : it behaves the exact same way than the ObjectDetector’s one, implement-
ing a SSD CNN on a MobileNet base network, trained on COCO dataset. The tiny
adaptations to this applications will be seen below.

• Motors: this is the new element. It is an asynchronous thread which analyzes the output
of the network and, depending on the result of contrasting this information with both
received images (RGB and Depth), sends a reactive command to the robot’s motors.
Even so, it keeps an intermediate tracker to soften the physical response, as it will be
explained later.

6.2 SSD CNN Modifications

As said, the underlying CNN bundled on this component is the same SSD detector that
ObjectDetector uses. However, a subtle modification of its output is performed before mak-
ing it available to the GUI.

6.2. SSD CNN MODIFICATIONS 63

Figure 6.2: Architecture of the FollowPerson node.

As our main objective in this node is to follow a person, we are not very interested in
detecting other kind of objects in the image. In consequence, we perform a small filtering of
the tensors returned by the output layer (boxes, scores, predictions):

...

(boxes, scores, detections, _) = self.sess.run([........])

Now the last layer output is contained in those numpy tensors,

We will work with the detection indices

(they are identically sorted in the tensors).

Firstly, we get the mask corresponding to the most confident

predictions (to avoid false positives):

mask1 = scores > 0.5

Then, we get the human detection indices:

mask2 = np.where(detections == ’person’)

Now we combine both masks:

mask = np.logical_and(mask1, mask2)

And retrieve the most confident human detections,

(their location and score).

correct_boxes = boxes[mask]

correct_scores = scores[mask]

...

64 CHAPTER 6. FOLLOWPERSON APPLICATION

Later, as it was done in the detection node, these filtered values are deposited in the
accessible placeholder for GUI and Motors components.

6.3 Face detection and identification

The person following task can be already addressed, but our main interest is to be capable of
tracking and following a single person.

Figure 6.3: Who should we follow? Probably none of them.

We discern which one is the target person (mom), validating its face. To do this, we have
to firstly detect faces on the image, and then perform a comparative of each found face with
mom’s, to contrast wether that person is or not mom. Now, we will describe the pipeline
followed to perform these actions.

6.3.1 Detection: Haar Cascade Classifier

The face detection task has to be performed on the first place, and the chosen approach for
this is the one described in [31]. This face detection algorithm, which is one of the most
popular face detection Machine Learning techniques, comprises Haar features. The reason for
this choice is the lower computational load3 it supposes compared to other techniques, as it
works with grayscale images (simpler than RGB ones), and the specification we have chosen is
a simple algebraic computation with the pixel values, which result on a low-complexity system.

Haar features are binary masks (Figure 6.4a) that are slided through the grayscaled image.
On each stride of a particular kernel/mask, the pixels contained on the black zone of the kernel
are subtracted from those contained in the white zone (Figure 6.4b). The total result of these
convolutions lets us know a promising zone to contain a face, or a clearly negative zone to
discard. This takes benefit from the fact that practically on every situation, some determined
regions of a human face are darker than others. Hence, certain kernel dispositions will work
much better on a determined zone of the face (Figure 6.4b).

3We must remember that this will be running simultaneously with the SSD detector.

6.3. FACE DETECTION AND IDENTIFICATION 65

As it can be figured, these Haar features are not trivial, they are obtained in a training, as
a result of a ton of positive (and negative) examples analysis.

(a) Haar features.
(b) Application of a Haar feature on a
face image.

Figure 6.4: Haar features.

Once we know what a Haar feature is, we can describe the selected algorithm to perform
the face detection: a Haar-like feature Cascade Classifier. This method, proposed on [32]
by Viola and Jones, describes a pipeline to process an image, which consists on a serie of
Haar-based checks.

The first stages check different areas of the image, using very simple Haar features, with
the objective to discard regions (sub-windows) where certainly there is not a face. Those
regions which pass the pixel subtraction test go forward to the next stage, where the process
is repeated with a slightly more complex kernel (Figure 6.5a). On the final stages, where only
a small region of the image could have passed all the previous Haar features, the most complex
kernels (Figure 6.5b) are applied, discarding the possible false positives, and obtaining, finally,
the regions where the system is sure of having detected a face.

Additionally, we can parameterize this detection process by the desired range of sizes to
consider on a face, and the minimum number of neighbor features passed to consider a region
as a candidate. We validated this system with good results in comparison to other classifiers
(as LBP (Local Binary Patters) based), but this is the one which yields the best trade-off
between satisfactory detections and a low computational load. This last factor is alleviated in
some way, because we don’t perform the face detection process on all the images, but only
in the currently detected persons, hence it turns on a much lighter and efficient task that our
real-time system can afford. Also, this allows us to keep a limp detection thresholds: if we
obtain more than one face in a particular person, we will keep the highest one (as the face
detection is constrained inside the person image). The handicap of this kind of classifiers is
the difficulty to detect faces on a profile pose, as these features only apply to frontal face faces.

The way to implement this system has been a OpenCV class, cv2.CascadeClassifier,

66 CHAPTER 6. FOLLOWPERSON APPLICATION

(a) Logical pipeline
(b) Increasing complexity of successive
Haar features.

Figure 6.5: Haar-like feature Cascade Classifier.

fed with an XML containing the description of the stages (obtained on a training process and
publicly available on OpenCV’s official GitHub repository4).

6.3.2 Face Validation: FaceNet

If we have achieved to locate a person’s face (it is not always possible since ambient conditions
can be harsh sometimes), we can reidentify it. We will not deploy a identity storage system,
or similar, as it is out of the scope of this node. Instead, we will use a validation system to
check whether that particular person corresponds to the target to be followed.

We have implemented a solution based in [5], which develops a system called FaceNet. Its
main functionality is to map face images to a 128-dimensional Euclidean space, where faces
are represented by what is called embeddings (feature vectors on this specific space), and the
distance between these embeddings directly represents similarity between the faces. This way,
actions like face recognition, verification and clustering can become immediate, as they can
be performed just over the obtained embeddings of each face. The mathematical definition of
distance is the Euclidean generic one:

d(~f1, ~f2) =

√√√√128∑
i=1

(f1i − f2i)2 (6.1)

The advantage of this system in comparison with other approaches relies on the fact that
it offers strength, as it runs a deep neural network underneath: the embeddings are optimized
through a standard training process (using Stochastic Gradient Descent, with batches of tenths
to hundreds of examples5), based on a particular cost function, called triplet loss (Figure 6.6).
What is achieved is a minimum distance between the computed embeddings for images of the
same face, and a maximum distance between faces of different individuals. This makes of it

4https://github.com/opencv/opencv/tree/master/data/haarcascades
5Again, we can notice that it is a simple process in comparison with non-deep-learning techniques, since

we only need images of the faces labeled with their identity.

https://github.com/opencv/opencv/tree/master/data/haarcascades

6.3. FACE DETECTION AND IDENTIFICATION 67

a really robust system, since these kind of networks, trained with images on different lighting
and pose conditions, offer an excellent performance on real environments. In addition, it is a
simple system, as the resultant embeddings are just 128-bytes values (easier to handle than
other state-of-the-art system which implement PCA analysis, SVM classifications, etc.). Some
other approaches, as siamese networks, consist on a real-time comparison between two faces.
This would make less sense in this scenario, as we will compare the current face with a static
one, so it would be a waste of efficiency to compute the same values all the time for the
reference face (mom’s).

Figure 6.6: Triplet loss training. It minimizes the distance between an anchor (current exam-
ple) and a positive, both of which have the same identity, and maximizes the distance between
the anchor and a negative of a different identity (from [5]).

To sum up, we can appreciate that this is another perfectly suitable scenario for deep-
learning, where it can perform much better in efficiency and simplicity6 than other approaches.

The objective implementation7 on this node is achieved, as with previous detection net-
works, with the generic TensorFlow model loading. We recover the graph and weights stored
in the .pb model pretrained on the source repository (on the footer of this page), represented
on Figure 6.7. As it can be seen, its structure is such a simple one.

Additionally, to ensure a robust response under different environment conditions, we include
a preprocessing phase for every image entering to the network:

1. Reshape: the imported network works with 160×160 face images, so we have to resize
the face to that particular shape.

2. Blur (with a small kernel): this is applied due to the probable low resolution and high
noise that the analyzed face can suffer. It has to be kept in mind that the camera will be
situated near the floor, looking upwards. This will cause the face to have a far position
with respect to the sensor.

3. Prewhiten: with the objective of being insensible to light conditions of the image, we
perform a normalization process of the face, eliminating the light information. This is
achieved with a standard normalization operation on each color channel, being x the
matrix of that channel of the image, µ its mean and σ its standard deviation:

x′ =
x− µ
σ

(6.2)

So, we obtain a normalized image, which is centered on 0 and scaled on a same way (by
its standard deviation). We achieve much more comparable images with this method.

6Perfectly compliant with KISS principle: https://en.wikipedia.org/wiki/KISS_principle
7Inspired on: https://github.com/davidsandberg/facenet

https://en.wikipedia.org/wiki/KISS_principle
https://github.com/davidsandberg/facenet

68 CHAPTER 6. FOLLOWPERSON APPLICATION

Figure 6.7: FaceNet architecture.

The final result of this preprocessing pipeline can be observed at Figure 6.8, where we
obtain the normalized faces, ready to be processed by the FaceNet, which will compute the
embeddings. We can compute the resulting L2 Euclidean distance (Equation 6.1), through
the methods we have implemented on the FaceNet class:

...

img1 = imread(’img1.jpg’)

img2 = imread(’img2.jpg’)

We discard the second output (it contains the face bounding box).

face1, _ = facenet.getFace(img1)

face2, _ = facenet.getFace(img2)

The next method performs the face preprocessing, feed-forward pass of

both faces, and compute the distance.

distance = facenet.compareFaces(face1, face2)

...

The last thing to do is establish a threshold distance, to decide whether the two compared
faces are the same or not. The experimental tests drove us to the same values that the pa-
per [5] specifies: a distance threshold of 1.1 (notice that at Figure 6.8) the three faces have
a respective distance between them below that threshold, because they belong to the same
person, even at different lighting conditions as it can be appreciated.

As we mentioned before, we will use this small deep neural network to compare all found
faces with mom’s (which will be a constant, as it comes from the reference image provided

6.4. FACE AND PERSON TRACKERS 69

Figure 6.8: Preprocessing result on several conditions (the different colors in the output images
are due to the color mapping performed by the plotting backend), and L2 distances computed
between the faces.

to the node). So, first of all, we compute once mom’s embeddings, and compare the live
obtained embeddings from new found faces with mom’s, just computing the distance between
them. As this is a methodical task, it has been included as another method inside the class:
compareWithMom(face).

6.4 Face and Person Trackers

So far, we are able to detect the seen persons in the image, and the faces inside these per-
sons. After completing these two process successfully, we are ready to compare a certain face
with mom’s. However, although the person detection CNN is extremely robust (which is its
main advantage), it can miss a detection sometimes, because of the lighting or confusing
environment around the person. On the other hand, the face detection algorithm (Haar-like
feature Cascade Classifier) is more susceptible to failure, as it is a simple (although efficient)
method, which is not designed for difficult situations. This is as alleviated as possible inside
the detection pipeline8, but false positives are feasible even so.

For this reason, we have inserted an intermediate block between the detection algorithms
(person, face), and the face validation: the trackers. These trackers are a security measure to
avoid false positives and false negatives. As its operation is the same in both cases (persons
and faces), we will describe it on the generic case, working with instances, and concretely with

8As we mentioned before, we have implemented a very limp detection conditions, filtering the detected
faces and keeping the highest one.

70 CHAPTER 6. FOLLOWPERSON APPLICATION

its bounding boxes (which determine its position).

The tracker divides the instances into three sets:

• Detected instances: the fresh instances which have just been detected in the image
(DetectionNetwork or CascadeClassifier).

• Candidate instances: the detected instances which are during the process of being a
tracked one.

• Tracked instances: the candidate instances which have passed a period of patience, and
are currently being tracked. These are those we will consider to look for mom and/or
compute a physical response. If we lose these instances we will keep thinking for a
marginal lapse of time that it is still there.

This way, we are not trusting directly the raw output from the detectors, but trusting
instead the combination of that output with the past detections. We will avoid false positives,
as detections will have to be for a while on the candidate set, and we will also false negatives,
as tracked instances will stay for a while in that set even if they are not detected, before being
untracked. So, our movements will be dictated by the tracked stimuli, not by the detected
ones. This will eliminate noisy responses and get a much softer behavioral than trusting
directly the imperfect output from a classifier.

Its operation and exchanges between sets is the same in both cases (person and face),
using a counter (owned by each instance) that is varies between 0 and the patience value (we
have set 5 as a prudent number):

1. When a new instance is detected, its position goes into the detected set.

2. Its position is compared9 with each tracked instances. If it is suspiciously near of a
tracked instance, it is taken as the new detection for that instance. So, the tracked
instance position is updated (taking the new value), and its counter is incremented in 2
units. The detected instance is removed of the detected set.

3. If it does not belong to any tracked instance, we try the same for the candidate instances.
If we are successful with one of them, this detected instance is taken as the new position
for that candidate one, so its position is updated and its counter is incremented in 2
units. The detected instance is removed of the detected set.

4. If we were not successful in any of the previous cases, this instance is a completely new
detection, so it is appended to the candidate set (with a counter value of 1), where it
will stay for a while if it keeps being detected.

This described procedure is repeated with every new detection. When it has finished,
before ending the iteration, a general update is performed over all the candidate and tracked
instances:

9All the distance comparations between instances are made computing the module of the distance vector
(in px) between their centers.

6.4. FACE AND PERSON TRACKERS 71

1. The counter of all the candidate instances is checked. If it has reached the patience
value, it is considered that it has been seen for too much time for being a false positive,
so it goes into the tracked instances (with a counter equal to the patience + 1).

2. If any of the candidate instances has reached 0 on its counter, that means that it has
not been detected anymore, so it was a false positive (it was not detected long enough
to move to the tracked set). It is removed from the candidate set.

3. The same step for the tracked instances: if any of them has reached 0 on its counter, it
is removed (it was a tracked instance which has been lost for enough time for not being
considered a false negative).

4. The counter for all the tracked and candidate instances is decremented in 1.

When a strong detection is constantly appearing, it is stored in the tracked set, and its counter
is always saturated to the maximum value, so it is safe for being demoted for a while if it stops
being detected for a few frames. This can be applied to person detections (avoiding undesired
detections) and to face detections (this cancels the effect of the limp face detection, where
only the highest one will be kept and, in addition, it will have to be detected for a few frames
to be considered).

This role promotion and demotion system is successfully implemented with custom types
in Python, where we have a general PersonTracker, which keeps the coherence between the
sets for all the image, and a FaceTracker inside each person (to have three of the explained
sets being executed for each detected person) yielding excellent results to keep steady detec-
tions. This allows to handle faces only inside detected persons (which also eliminates false
positive face detections outside a person, which is never convenient).

The general effect of the inertia provided to the confident detections allows to have a
much softer response in case of fleeting false positives/negatives. We can have a glance on
this behavioral on Figure 6.9.

(a) Tracking process for a person. (b) Tracking process for a face.

Figure 6.9: Schema followed by the trackers.

72 CHAPTER 6. FOLLOWPERSON APPLICATION

6.5 Physical response

The main objective of this node is to command movements to the Turtlebot motors. We need
to know how to behave, and which will be the good movements to command to arrive to
mom’s position.

6.5.1 Follow algorithm

Figure 6.10: Following behavioral (flow chart).

Once we have detected, tracked and iden-
tified mom, we have to keep a cer-
tain intelligence, or behavioral schema, to
know what to do on each possible sce-
nario. The flow chart of the imple-
mented behavioral is represented on Fig-
ure 6.10, where we can see that it is
enough for us to identify mom once. Given
that it will be tracked, we can auto-
matically update its position, without the
need to see its face again to confirm that
it is mom indeed. If we are following
mom without seeing its face, and we find
its face on another detected person, the
role of mom will swap to this new per-
son, who will be followed from that mo-
ment.

In last place, if we don’t see mom our robot stays in its place, slowly turning towards last
mom tracked position, in order to find it again.

6.5.2 Position calculation

The fact of knowing, thank to all the previous blocks, where mom is inside the image lets
us know where (relatively to the robot) it is, given that the RGBD sensor is aligned with the
Turtlebot frontal face. This means that, what is seen along the center of the image will be
just in front of the robot, on a straight line. Thus, we will be able to act in consequence on
both of the motors interfaces that the Turtlebot offers:

• Angular : the first thing we have to figure out is if the robot has to rotate towards mom.
This can be computed with the bare mom’s bounding box. If we compute its center,
we can know the horizontal distance from it to the entire image center. This will give
us the horizontal error (measured in pixels, as it is a relative amount) (Figure 6.11a).

• Distance: the other error to compute is the distance one. This one is figured out on a
slightly different way. As explained at subsection 3.1.2, a registration process carried out
by the driver maps the depth pixels into the RGB ones. So, if we know mom’s position
in the RGB image (its bounding box), its depth measures will be right inside the same
box in the depth image. That is the source of the measure. The implemented approach

6.5. PHYSICAL RESPONSE 73

to obtain a single value (as we need it to send the proper command to the motors) is
to perform a spatial depth sampling inside the depth slice, cropped with the bounding
box. To be cautious, we keep the depth image inside a safety margin of 10% of the
image (to be sure we sample inside the person). Then, we create a 10×10 grid inside
this new crop, and retrieve the depth values measured on those points (a total of 100
measures). The total estimated distance will be the median10 of that set of measures
(Figure 6.11b).

(a) Horizontal error estimation. (b) Computation of the median distance to mom.

Figure 6.11: Computations of both errors.

6.5.3 PID controller

Once we know the relative mom’s relative position from the robot, we have to send the proper
commands to the robot, to make it follow mom. On the first place, we have to know when
to act and when to stop the motors. As we don’t want the robot to go to the exact place
where mom is, we have to establish a safe/dead zones, where we the robot won’t move further
towards mom. These zones are represented in Figure 6.12.

As our desirable relative position is to be aligned (the center of the bounding box in the
center of the image) and at a safe distance (at ± 10 px from the reference distance), we
will rotate and/or move in a straight line in consequence, trying to carry mom inside the safe
zones. Hence, we have to compute a proper response to move the robot towards the correct
direction (independent responses on the angular and linear dimensions). Instead of computing
just a response on a proportional way to the current error, we can implement a closed loop
feedback system, which keeps in mind the previous readings and responses computed, to get

10We choose the median for being generally more robust than the mean, as it is not affected by the value of
outlier measures (an accidental sample on a background surface would alter the mean on a significant way).

74 CHAPTER 6. FOLLOWPERSON APPLICATION

Figure 6.12: Safe zones. The robot will consider mom as correctly followed inside them (on a
separate way for each dimension).

a better fitting to the ideal response in that moment11. Concretely, we will implement a PID
controller [33], which is the most common form of feedback at industrial applications (more
than 95% of the control loops are of this kind). PID stands for Proportional, Integral and
Derivative control, and computes a total response (u(t)) following the next formula (modified
for discrete time, as we are on a digital system):

u[n] = kpe[n] + ki
n∑

i=0

e[i] + kd(e[n]− e[n− 1]) (6.3)

For those who did not stop reading, we will analyze this formula, which combines three
sub-responses:

• Proportional : kpe[n]. This is the basic component, that computes a response directly
proportional to the measured error.

• Integral : ki
∑n

i=0 e[i]. Here we compute an additional response, equivalent to the sum-
mation of the total error until now. This way, although a proportional response is not
enough and the error gets stabilized in a non-zero value, the system will accumulate that
error, getting annoyed with the time. So, we will get a bigger response the bigger the
total error is12.

• Derivative: kd(e[n] − e[n − 1]). This part stands for the difference between the last
measured error and the current one, and it quantifies how is the system responding13.

11Otherwise, we can suffer oscillations and peaks on the response, as this application is a system affected
by noise and possible errors in the measure. That is the reason why we implemented all the past softening
blocks.

12When the monitored variable goes into the tolerated zone again, the total error has to be reseted, as it
won’t be necessary for now.

13On systems without inertia, this contribution is generally ignored, having a simple PI control loop instead.

6.5. PHYSICAL RESPONSE 75

If the difference has a high value, that means that the system is on a far state/position
with respect to the last iteration. So, in order to eliminate the inertia the system could
have acquired (which might bring oscillations and overshooting), the derivative part
acts, braking or accelerating the command depending on the observed response to the
previous one.

As we can see, the combination of the three responses can achieve a much faster and
steadier response (Figure 6.13), bringing back the system under control on a fast and efficient
way. Each contribution is parameterized by its corresponding constant (kc, ki, kd), so a critical
task is to find the optimum value for each one of them.

For our implementation, as we have implemented two independent PID controllers (for
linear and angular speeds, respectively), we have experimentally looked for the most suitable
values for each one of the parameters, obtaining the combination on Table 6.1. It is important
to mention that these are not the final values that regulate the movement (as the angular and
linear errors move in different scales, a difference of 1 pixel in the angular error means almost
nothing, but much more in the linear one). For this reason, and to keep reasonable values,
they are scaled by internal constants inside of each PID controller.

Linear Angular
kp 2 7
kd 0.1 0.5
ki 3 10

Table 6.1: Optimal found values for the parameters in each PID controller.

As the rule that governs the controller is the same (Equation 6.3), we have created a
generic class (PIDDriver), which controls a motor with a PID closed loop, adding extra func-
tionalities as soft reactive responses (to avoid abrupt movements), and limiters in the response,
to mantain control over the robot.

(a) Proportional. (b) PI. (c) Full PID.

Figure 6.13: Different controllers response along time.

This way, we compute a suitable response with a PID controller for each dimension, and
the mentioned class sends it directly to the motors (thank to the possibility of passing the

76 CHAPTER 6. FOLLOWPERSON APPLICATION

move function as an argument to the generic controller).

So finally, we have the final code schema of the functionality added in top of ObjectDe-
tector :

...

jdrc is the comm communicator.

We create the client to move the robot:

motors_publisher = jdrc.getMotorsClient(’FollowPerson.Motors’)

w_function = motors_publisher.motors.sendW

v_function = motors_publisher.motors.sendVX

Controllers creation:

w_PID = PIDController(w_function,

Kp=_,

Ki=_,

Kd=_,

scaling_factor=_,

limiter=_)

w_PID = PIDController(w_function,

Kp=_,

Ki=_,

Kd=_,

scaling_factor=_,

limiter=_)

...

Measure of the errors:

angular_error = [subtract centers]

linear_error = [sample depth of person]

Computation of the response (PID controllers):

w = w_PID.computeResponse(angular_error)

v = v_PID.computeResponse(linear_error)

The controllers automatically send the response on a

reactive but soft way.

At the end of the each iteration, we get the robot moved towards mom (the target person
to follow), making use of all the previously defined blocks (Figure 6.14), as it can be seen on
the final result, posted on the project Wiki14.

14http://jderobot.org/Naxvm-tfg

http://jderobot.org/Naxvm-tfg

6.6. EXPERIMENT: PTZ CAMERA 77

s

d

NETWORKCAMERA

MOTORS

TRACKERS

MOM

PID

Linear speed response

Angular speed response

Figure 6.14: Functional diagram of the FollowPerson node.

6.6 Experiment: PTZ Camera

As an alternative experiment or approach, we can implement this tracking and following sys-
tem on a PTZ camera. As explained in subsection 3.1.1, these cameras are supported by servo
motors on vertical and horizontal axis, that allow the camera to move as a mechanical neck15.

We can consider an alternative system, which implements the previous pipeline (with slight
modifications), using this camera (Sony EVI D100P, on Figure 3.1) as the actuator device.
Thank to the Python distribution easiness using packages, this case can be implemented as
an additional package, being able to modify as less as possible. So, FollowPerson commutes
pertinent functions between the Turtlebot and the PTZ packages in runtime, just selecting
the used device in the YML file.

The movement commands are now destinated to pure rotations of the neck, so the move-
ment update on each axis (vertical/horizontal) has to be computed on a similar way than the
horizontal case on the Turtlebot (Figure 6.11a). So, our approach in this case follows the
computation on Figure 6.16a

This is due to the short period of position update: even if we command the motion ac-
tion at the maximum available speed, the movement won’t complete before the next update
is commanded. In addition, the camera maintains a buffer of the pending commands to be
updated. Hence, sending absolute movement commands (Figure 6.15a) will result in a chaotic
behavior of the camera.

15Demonstration videos available on the MediaWiki page (https://jderobot.org/Naxvm-tfg).

https://jderobot.org/Naxvm-tfg

78 CHAPTER 6. FOLLOWPERSON APPLICATION

So, we need an alternative approach, consisting of incremental movements (Figure 6.15b).
This has the objective of ensuring its completion before the next iteration comes in, so the
camera performs them at the maximum available speed.

(a) Wrong motion update (too long
movements).

(b) Correct motion update (short differ-
ential movements).

Figure 6.15: Comparison between possible approaches for Pan/Tilt angle updates.

However, as the movement commands are stored in a queue buffer, we are limited to
perform incremental pose updates (e.g. move 1 or 2 degrees on each axis towards the objective
per iteration), as described in Figure 6.15. Hence, a PID controller does not make sense here,
as the set of feasible outputs is discrete and non adjustable:

• 0 if the error stays inside the dead zone (Figure 6.16b).

• ±1 if the system lost mom (in order to slowly move looking for it).

• ±2 if mom is being tracked. The camera performs an increment of that magnitude
towards mom in each axis.

Finally, we can take advantage of the most of the standard FollowPerson total algorithm,
obtaining the schematic algorithm on Figure 6.17.

6.6. EXPERIMENT: PTZ CAMERA 79

(a) Error computation on each axis.

(b) Dead zone of actuation (radius of 60 px).

Figure 6.16: Error computation parameters on the PTZ case.

80 CHAPTER 6. FOLLOWPERSON APPLICATION

CAMERA

MOTORS

NETWORK

s

d

MOTORS

TRACKERS

MOM

RESPONSE
COMPUTATION

Horizontal response

Vertical response

Figure 6.17: Total schema followed in the PTZ case.

Chapter 7

Conclusions

7.1 Conclusions

This final chapter will be devoted to revisit the proposed objectives. They could be summa-
rized in a central purpose: enriching the JdeRobot framework with new tools and applications
focused on deep learning. With a complete coverage of the performed tasks, as it has been
described on the previous pages, we can contrast what has been achieved on each milestone
which was established along the way, in order to accomplish incremental achievements.

Classification tool for processing live images.

The first objective was to upgrade the scope for an existing JdeRobot tool, DigitClassifier,
which was designed to perform classification tasks using deep learning techniques.

Its functionality was extended to support the deep learning framework TensorFlow, imple-
menting and training networks on our own. This has allowed to achieve initial knowledge
about the framework, and enough skills to move towards more complex tasks.

In light of the excellent achieved performance, the brand new TensorFlow implementation
and the previous one (made with the Keras framework) were merged into an official
JdeRobot component1, capable of commuting between both frameworks.

Neural detection tool for live images.

After having accomplished a basic domain on deep learning with classification tasks, we
tackled a more ambitious milestone: detecting objects on a real-time operation. There
was no previous reference in the JdeRobot framework.

The process of training a detection network was ruled out of the scope of this project,
so we addressed the detection task using publicly available pretrained networks. So, we
developed a wrapping of TensorFlow environment to abstract the model (architecture,

1https://github.com/JdeRobot/dl-digitclassifier

81

https://github.com/JdeRobot/dl-digitclassifier

82 CHAPTER 7. CONCLUSIONS

dataset on which it was trained, output format, etc.), and moved the neural network
processing to a GPU environment (to achieve the optimum predicting rate for a real-
time operation). This remarkably efficient detection framework was demonstrated to be
capable of real-time processing, so we have developed an entire node, ObjectDetector,
to visually perform this task on an incoming image stream (abstracting the source).

Hence, the final result has been a node displaying the raw current image, and aside the
same one with the detected objects overlaid, indicating their location making use of
bounding boxes, in addition to the estimated class for the object, and the score (stand-
ing for the reliability level that estimation has).

Once more, the excellent performance on real-time (using detectors with a SSD archi-
tecture for instance) has driven us to integrate this node2 in the JdeRobot framework
as well, developing another module to do the same for Keras network models. This has
enabled us again to be able to abstract the frameworks, and toggle one of them through
the YML file. In addition, this has given us the capability of benchmarking new models,
as they can be transparently loaded into the created environment, and begin making
inferences on real time.

Tracking and following robot behavior using deep learning detection

The two previous milestones allowed us to accomplish state-of-the-art purposes in the
Computer Vision field. As the final research objective, we have considered an actuation
system which uses a powerful neural network to accomplish an robust visual perception.
In order to overlap our research with the prosperous field of robotics, we have developed
a component capable of following a specific person (mom). This has been achieved
using concepts like a PID controller feedback control, and case-based control.

All these achievements have contributed the JdeRobot framework with an upgraded tool
(DigitClassifier, which now offers support for both Keras and TensorFlow), a brand new tool
(ObjectDetector), and a new robotics application (FollowPerson, capable of chasing a person
with excellent results). These new resources are focused on providing real time operation.
In addition, all the underlying software created (the TensorFlow and Keras generic network
loaders) can be of great help for future applications.

Beyond the technical contents, this project has allowed an interested person in deep learn-
ing to learn about a cornucopia of concepts and experience. A while ago, when it was decided
to evolve towards creating a reactive behavioral, it was motivating to make the most of a
possible synergy between two different fields of knowledge, as deep learning and robotics are.

In the professional point of view, it has been essential to acquire further skills about version
control systems, as Git. This can be an important benefit, as every development project in a
corporate environment makes use of this kind of controls.

2https://github.com/JdeRobot/dl-objectdetector

https://github.com/JdeRobot/dl-objectdetector

7.2. FUTURE LINES 83

7.2 Future lines

The proposed milestones on this project have been successfully achieved using a useful and
innovative tool as deep learning. Furthermore, it opens some interesting doors to future
research or improvements:

• Upgrade DigitClassifier: for now, this component looks for the digit in a fixed window
inside the input image (the central square). Another module could be implemented to
perform a character detection in the whole image, maybe an OCR number detector.

• Translate the Python nodes to a compiled and fast language: one of the main handicaps
of Python is the fact that it is an interpreted language (much slower than a compiled
one). So, a translation to a lower level language as C++ would be very interesting, as
it is a widely supported language in this framework, and there are already very efficient
deep learning implementations on it (as Darknet/YOLO).

• Use a deep learning face detector in FollowPerson: the main advantage of the deep
learning systems is the robustness on their operation, so a facial detection system im-
plemented with this technology could be a powerful resource to perform a facial detec-
tion/validation in harshly lightened environments.

• Multimodal person detection/tracking: some extra functionality could be squeezed from
a RGBD sensor, like tracking a person in complete darkness. As deep learning systems
offer good results distinguishing a person silhouette, we could perform people detection
on a depth image.

• Add a navigation algorithm to FollowPerson: the movement commands sent to the
Turtlebot are now decided taking into account only the relative position of the person
from the robot. However, as the robot incorporates a laser sensor, we can add an obstacle
avoidance system, in order to perform a non-blind navigation towards the person.

Bibliography

[1] machinelearningguru.org. Image Filtering - Machine Learning Guru. http:

//machinelearninguru.com/computer_vision/basics/convolution/image_

convolution_1.html. 7, 16

[2] Alexis Cook. Global average pooling layers for ob-
ject localization. https://alexisbcook.github.io/2017/

global-average-pooling-layers-for-object-localization/. 7, 17

[3] ros.org. Writing a Simple Publisher and Subscriber (Python). http://wiki.ros.org/

ROS/Tutorials/WritingPublisherSubscriber%28python%29. 7, 28

[4] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-
Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR,
abs/1512.02325, 2015. 8, 54, 56

[5] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. CoRR, abs/1503.03832, 2015. 8, 66, 67, 68

[6] J. Potel. Trial by fire: Teleoperated robot targets chernobyl. IEEE Computer Graphics
and Applications, 1998. 10

[7] P. Berkelman and Ji Ma. The university of hawaii teleoperated robotic surgery system.
In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2565–2566, Oct 2007. 10

[8] A. M. Okamura. Methods for haptic feedback in teleoperated robot-assisted surgery. Ind
Rob, 31(6):499–508, Dec 2004. 16429611[pmid]. 10

[9] Daniela Girimonte and Dario Izzo. Artificial Intelligence for Space Applications, pages
235–253. Springer London, London, 2007. 10

[10] Bengio Y. LeCun Y. and Hinton G. Deep learning. Nature, (521):436–442, 2015. 12

[11] Eric Roberts. Neural networks - history. https://cs.stanford.edu/people/

eroberts/courses/soco/projects/neural-networks/History/history1.html.
13

[12] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115–133, 1943. 13

84

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html

BIBLIOGRAPHY 85

[13] Donald O. Hebb. The organization of behavior: A neuropsychological theory. Wiley,
1949. 13

[14] Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J. Douglas,
and H. Sebastian Seung. Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature, 405:947 EP –, Jun 2000. 14

[15] D. Pascual. Study of convolutional neural networks using Keras framework. 17, 32, 36,
39, 49

[16] N. Oyaga. Análisis de aprendizaje profundo con la plataforma caffe. 17, 32, 39, 49

[17] M. Pieras. Visual people tracking with deep learning detection and feature tracking. 17

[18] B Boehm. A spiral model of software development and enhancement. SIGSOFT Softw.
Eng. Notes, 11(4):14–24, August 1986. 20

[19] ProfessionalQA.com. What is Spiral Model in Software Development Life Cycle? http:

//www.professionalqa.com/spiral-model. 20

[20] R. Calvo. Comportamiento sigue persona con visión direccional. 31

[21] python.org. What is Python? executive summary. https://www.python.org/doc/

essays/blurb/. 27

[22] ros.org. What is ROS? wiki.ros.org/ROS/Introduction. 27

[23] ros.org. openni2 launch (official ROS package page). http://wiki.ros.org/openni2_
launch. 29

[24] José M. Cañas. Jerarqúıa dinámica de esquemas para la generación de comportamiento
autónomo. 30, 32

[25] Irwin Sobel. An isotropic 3x3 image gradient operator. 02 2014. 43

[26] S Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, 2015. 47

[27] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323:533 EP –, Oct 1986. 47

[28] readthedocs.io. Loss Functions: Cross Entropy. https://ml-cheatsheet.

readthedocs.io/en/latest/loss_functions.html#cross-entropy. 48

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. 48

[30] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017. 55

[31] C. Awadallah. Nuevas prácticas docentes de robótica en el entorno jderobot-academy.
64

http://www.professionalqa.com/spiral-model
http://www.professionalqa.com/spiral-model
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
wiki.ros.org/ROS/Introduction
http://wiki.ros.org/openni2_launch
http://wiki.ros.org/openni2_launch
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html#cross-entropy
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html#cross-entropy

86 BIBLIOGRAPHY

[32] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, volume 1, pages I–511–I–518 vol.1, 2001. 65

[33] Karl Johan Åström and Richard M. Murray. Feedback systems: An introduction for
scientists and engineers. Technical report, 2004. 74

	Introduction
	Robots
	Deep Learning
	Machine Learning on Computer Vision
	Neural Networks
	Processing unit: the perceptron (neuron)
	Deep Neural Networks
	Convolutional Neural Networks (CNNs)

	Deep Learning on JdeRobot

	Objectives
	Milestones to achieve
	Methodology
	Requirements

	Infrastructure
	Hardware
	Sony EVI D100P camera
	Asus Xtion Pro Live
	Turtlebot 2 robot

	Python
	ROS robotics framework
	usb_cam driver
	openni2_launch driver
	kobuki_node package

	JdeRobot robotics framework
	Digit Classifier node
	evicam_driver driver
	comm library

	OpenCV library
	NumPy library
	TensorFlow framework
	Keras framework
	PyQt framework
	threading library

	DigitClassifier tool
	Tool architecture
	Image processing
	Digit classification CNN
	Training the network
	MNIST dataset
	Dataset augmentation

	ObjectDetector tool
	Tool architecture
	Detection CNN: SSD
	Architecture
	Importing a pretrained model
	Network output

	Experiment: testing different architectures

	FollowPerson application
	Application architecture
	SSD CNN Modifications
	Face detection and identification
	Detection: Haar Cascade Classifier
	Face Validation: FaceNet

	Face and Person Trackers
	Physical response
	Follow algorithm
	Position calculation
	PID controller

	Experiment: PTZ Camera

	Conclusions
	Conclusions
	Future lines

