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las gracias a Nuria, compañera de fatigas en estos últimos meses. Gracias a vosotros
puedo presumir de estar aprendiendo con los mejores.

Esta aventura ha estado llena de retos y obstáculos, y no tengo ningún reparo en
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Resumen
El reconocimiento de objetos en imágenes ha sido un problema recurrente en la historia de
la visión artificial. Gracias a la inclusión de algoritmos basados en aprendizaje máquina
y, más recientemente, de las técnicas de aprendizaje profundo, se han enfrentado con éxito
problemas como el reconocimiento de señales de tráfico o la videovigilancia. En concreto,
las redes neuronales convolucionales se han convertido en la punta de lanza de este tipo
de algoritmos en los últimos años. Su eficacia en la resolución de problemas como los
anteriormente mencionados resulta indiscutible en muchos casos, lo que poco a poco está
favoreciendo su uso en aplicaciones comerciales. A pesar de ello, siguen siendo acusadas
de actuar como una caja negra o black box, ya que por lo general su aprendizaje es un
proceso opaco y dif́ıcil de interpretar.

Por todo ello, este trabajo de fin grado tiene como metas el estudio detallado de
las redes neuronales convolucionales y su aplicación en el abordaje de un determinado
problema. En este sentido, se desarrollará un clasificador de d́ıgitos manuscritos en tiempo
real. Para entrenar e implementar las redes neuronales convolucionales, se empleará la
plataforma Keras. El proyecto comienza con el análisis de una red neuronal convolucional
de ejemplo proporcionada por dicha plataforma. Posteriormente, se procede al desarrollo
del componente clasificador de d́ıgitos. Este componente adquiere imágenes desde una
fuente de v́ıdeo, las clasifica gracias a una red neuronal de Keras y muestra el resultado en
una interfaz gráfica. Además, se ha conformado un banco de pruebas en el que se incluyen
bases de datos para alimentar las redes neuronales convolucionales y herramientas para
calcular y visualizar parámetros de evaluación. Por último, gracias a las herramientas del
banco de pruebas, se discutirán los efectos que produce el aprendizaje sobre el desempeño
de distintas redes neuronales, y aquella que mejores resultados arroje será integrada en el
componente clasificador de d́ıgitos para lograr una mayor robustez.

Los resultados obtenidos ponen de manifiesto el gran potencial de las redes neuronales
convoluciones y proyectan algo de luz sobre su aprendizaje, dejando abierta la puerta a
su empleo en la resolución de problemas más complejos.
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Summary
Object recognition has been a recurring problem in the history of computer vision. Thanks
to the inclusion of machine learning and, recently, deep learning techniques, issues like
traffic sign recognition and video surveillance have been successfully addressed. In
particular, convolutional neural networks have become the spearhead of this kind of
algorithms in the last few years. In many cases, their effectiveness solving tasks like object
recognition can’t be denied, which has enabled their usage in commercial applications.
Nevertheless, convolutional neural networks keep being accused of acting like black boxes,
because their learning process is usually very opaque and hard to interpret.

For all of these reasons, this final degree project aims to serve as a detailed study of
convolutional neural networks and their implementation for solving a certain problem. In
this sense, a real-time handwritten digits classifier will be developed. These objectives
will be faced employing the Keras platform. The project starts with the analysis of a
convolutional neural network example provided by the aforementioned library. Then, the
digit classifier component is presented. This component acquires images from a video
source, classifies them using a neural network built with Keras and displays the result in
a graphical user interface. Besides that, a test bench has also been developed. It is formed
by datasets that will feed the convolutional neural networks and tools for computing and
visualizing evaluation parameters. Finally, thanks to the tools created for the test bench,
the effects of the learning process in the performance of different neural networks will
be discussed, and the one that achieves better results will be integrated within the digit
classifier component to accomplish a greater robustness.

The results obtained reveal the great potential of the convolutional neural networks
and cast some light on their learning process, opening the door for their usage in more
complex real-world problems.
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Chapter 1

Introduction

1.1 Context and motivation

Since the term Artificial Intelligence (AI) was coined at the Dartmouth Conference in
1956 [1] until nowadays, this field of computer science has developed at a great pace.
During this time, its contributions to robotics and computer vision have brought machines
that can solve certain tasks as well as humans and, in some cases, even surpass human
performance. In order to understand the context in which this project has been developed,
the fields and subfields that have led to the birth of Convolutional Neural Networks
(CNNs) are going to be defined, trying to clarify the differences between them and how
they are related to each other.

Artificial intelligence. “It is the subfield of computer science devoted to developing
programs that enable computers to display behavior that can (broadly) be
characterized as intelligent” [2]. In this definition, intelligent refers to the ability of
perceiving the environment and acting consequently, trying to maximize the chances
of achieving a certain goal [3].

Machine learning. According to a quote attributed to Arthur Samuel, it is the
“field of study that gives computers the ability to learn without being explicitly
programmed” [4]. Given this definition, it can be asserted that Machine Learning
(ML) is a subfield of AI, because computers that have the ability to learn will
exhibit an intelligent behaviour, but displaying an intelligent behaviour doesn’t
necessarily mean to learn. For instance, Deep Blue chess-playing system can be
considered intelligent as it achieves a human comparable performance, but instead
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of actually learning to play, it was hard-coded with a function that evaluated the
board positions [5]. Machine learning algorithms can be divided in two main groups:

• Supervised learning. Given a training set of N example input–output
pairs (x1, y1), (x2, y2), ...(xN , yN), where each yj was generated by an unknown
function y = f(x), supervised learning algorithms try to find a function h that
approximates the true function f [3]. The example inputs and their outputs
are usually called samples and labels, respectively.

• Unsupervised learning. In this case, example inputs xj are provided without
their corresponding outputs yj. The goal of these algorithms is to find a
function that describes some underlying structure in data[6].

The main challenge of ML is generalization, that is, “the ability to perform well
on previously unobserved inputs” [5]. By contrast, if the algorithm learns to
generate correct outputs for already seen inputs, but not for unseen ones, it is
said to overfit. In ML, the example inputs are usually vectors of features extracted
from data. These example inputs, and their corresponding outputs in the case of
supervised learning, are treated as training data. As the training process is iterative,
some examples are usually kept as validation data, which are used to evaluate the
algorithm performance during training. Validation is usually employed to stop
training when a certain criteria is met, avoiding overfitting. When the training
process finishes, test data, formed by unseen samples, are fed to the algorithm to
evaluate its performance.

Artificial neural networks. They are a computational approach that tries to model the
way a biological neural network solves problems[5]. As it can be seen in Figure 1.1,
they’re formed by layers of interconnected neural units.

In Artificial Neural Networks (ANNs), each neural unit sums the weighted input
signals and apply an activation function that can be linear or non-linear (see
Figure 1.2). The result of this operation is transferred to the neurons of the next
layer. During training, weights are updated based on a learning rule that tries
to minimize the difference between the current output and the desired one. As
ANNs are able to learn from experience, they’re classified within the ML field. It is
important to clarify that if an ANN employs only linear activation functions, it will

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Basic architecture of an artificial neural network.

Figure 1.2: A neural unit (source [7]).

only be able to solve linearly separable problems. The usage of non-linear activation
functions allows the settlement of more complex tasks. Examples for both cases are
shown in Figure1.3.

Deep learning. It is a branch of ML which is based on algorithms that share the
following properties [8]:

• Multiple layers of non-linear processing units.

• The supervised or unsupervised hierarchical learning of feature representations
in each layer.

Although the term deep learning is not explicitly linked to ANNs, in practice we
could talk about deep learning as a subset of neural networks algorithms that share

3



Figure 1.3: Example of linearly and non-linearly separable problems.

the properties mentioned above. With deep learning algorithms, it is no longer
necessary to extract a vector of features to represent the input data, as these
algorithms have the ability of learning, not only how to generate a correct output,
but also how to represent data in a hierarchical way.

Convolutional neural networks. They are “neural networks that use convolution in
place of general matrix multiplication in at least one of their layers” [5]. CNNs are
deep learning algorithms which are specifically designed to process data that have a
grid-like topology, like images and audio. In a few years, they have become one of the
most promising subfields of ML, outperforming the results achieved by the previous
algorithms in the most popular benchmarks for tasks like object classification, object
detection and natural language processing. The details about how CNNs work will
be the deeply discussed in the following chapters.

Computer vision. It is a field of computer science which “aims to build autonomous
systems which could perform some of the tasks that the human visual system can
perform” [9]. In order to build autonomous systems, computer vision applications
have to deal with image acquisition, processing and analysis. Computer vision has
always been closely related to AI and ML, and in the last years, the integration of
deep learning algorithms (e.g. CNNs) in computer vision applications has led to
major advances in the field.
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CHAPTER 1. INTRODUCTION

There are multiple motivations behind this project. On the one hand, I am very
passionate about computer vision, because of its great implications in everyday life. For
instance, it is involved in medical imaging, surveillance, augmented reality, automatic
inspection in manufacturing, self-driving cars... and the list goes on and on. On the other
hand, applications that have just been mentioned, have benefited from the inclusion of
deep learning in computer vision. It is really exciting to see how many researchers are
currently working in the field. Of course, this is not a coincidence. The great results
achieved with these new algorithms has boosted the growth of AI in the last years and
has normalized its usage in commercial applications. However, everything has its ups and
downs. There are lots of people worried about the so-called black box problem in deep
learning [10], i.e. how machines are actually learning to do what they do. In this work,
besides developing a real-world application to show how powerful CNNs are, we’re going
to try to cast some light into the aforementioned black box.

1.2 Objectives

The ultimate objective of this project is to fully understand CNNs in order to integrate
them in a computer vision application that must be able to solve a real-world task,
specifically a real-time handwritten digits classifier. This main objective has been divided
into the following sub-objectives:

• Accomplishing a deep understanding of how a basic CNN works, analyzing its main
layers, the learning process and the particularities of building this kind of networks
with Keras, a neural network library for Python.

• Building a component which integrates a CNN to classify images of handwritten
digits in real time.

• Developing a test bench which allows the comparison of the performance achieved
by the CNNs. This test bench must provide the input data and the tools required
to visualize and evaluate the results.

• Studying the effects of the learning process in CNNs performance when they are
trained with different datasets, architectures and regularization methods.

5



Figure 1.4: Gantt chart.

1.3 Methodology

The development of this project has been weekly followed by the tutors. In the weekly
meetings the work done in the previous week was discussed and new milestones were set
for the following one. This methodology has allowed a continuous feedback, which has
led to a better understanding of the topic. Besides that, thanks to the weekly meetings
the workload has been constant during these months.

Additionally, the following tools have been employed to keep track of the project
progress:

• GitHub. All the code written in this project is available in GitHub and has been
frequently updated. In the following link, the main repository can be accessed:
https://github.com/RoboticsURJC-students/2016-tfg-david-pascual

• MediaWiki. It has been used as a logbook of the progress of this project. It can
be accessed in the following link: http://jderobot.org/Dpascual-tfg

In Figure 1.4, a Gantt chart with the number of weeks dedicated to every task in the
project is shown.
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CHAPTER 1. INTRODUCTION

1.4 Project structure

For ease of reading, the structure followed in the writing of this document and how the
chapters are related to each other are explained in this section.

Chapter 1. Introduction. This chapter starts with a brief introduction to the main
fields in which CNNs are based and the motivations behind the project. Then, the
objectives, the methodology followed to meet these objectives and the structure of
the project are presented.

Chapter 2. Framework. The third-party software that has supported the development
of this project is described here. It’s specially significant the section about Keras
library, where its main functionalities and the theory behind its core layers and
learning process are presented.

Chapter 3. Digit classifier. In this chapter, an example of a CNN built with Keras for
handwritten digits classification is analyzed. Then, the internals of the developed
component, in which the CNN is integrated, are explained.

Chapter 4. Test bench. The datasets that will be used for training new models and
the tools that will be employed to evaluate and visualize the results are described
in this chapter.

Chapter 5. Evaluation. Taking as a starting point the CNN that was analyzed in the
Digit classifier chapter, new models will be created. The performance of these new
models will be evaluated with the tools developed in the Test bench chapter.

Chapter 6. Conclusions. Finally, the conclusions reached during the development of
this project will be summarized and future works will be proposed.
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Chapter 2

Infrastructure

This chapter serves as a way to introduce the tools that have been employed during the
development of this project. All of them are open-source. The transparency provided by
the open-source platforms is a major advantage, because the third-party software can be
easily integrated in our specific applications, which are mainly written in Python1. These
applications will reach a high-quality performance faster than if they would have been
written from scratch.

2.1 Keras framework

As stated by Keras documentation [11]: “Keras is a high-level neural network library,
written in Python and capable of running on top of either TensorFlow or Theano”.
TensorFlow and Theano are open-source libraries for numerical computation, optimized
for GPU and CPU. Keras treats them as its backends. The main version used in this
project is Keras 1.2.2, although it has been recently updated to 2.0.4 version because of
its backward compatibility. In this work, Keras has run on top of Theano2, optimized for
CPU and has been employed to train and implement several CNNs.

In the following sections, the main elements that make up a neural network built with
Keras are analyzed, starting with the model object, its core component.

1https://www.python.org/
2http://deeplearning.net/software/theano/index.html
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2.1.1 Models

Every neural network in Keras is defined as a model. For those models which can be
built as a stack of layers (see Section 2.1.2), Keras provides the .Sequential() object. In
the following chapter, an example of a sequential model built with Keras is shown in
Figure 3.2. It is also possible to build more complex models with multiple outputs and
shared layers using the Keras functional API.

Sequential models have several methods, and the following ones are essential for the
learning process:

.compile() It configures the learning process. Its main arguments are:

• loss: name of the cost function that measures the difference between predicted
and real labels. In this project, the categorical cross-entropy, also known as
log loss, has been used. This function returns the cross-entropy between an
approximating distribution q and a true distribution p [12] and it’s defined as:

H(p, q) = −Σxp(x) log(q(x)) (2.1)

Other loss functions, such as mean squared error (MSE) and mean absolute
error, are also provided by Keras.

• optimizer : name of the optimizer that will update the weights values during
training in order to minimize the loss function. The chosen algorithm for this
task is ADADELTA. This optimizer is an extension of the gradient descent
optimization method, and has the particularity of adapting automatically
the learning rate during training [13]. Other optimization methods, such as
Adagrad, Adamax and Adam, are also available.

• metrics: name of the functions that must be computed during training and
testing for performance evaluation. Accuracy is the only function which will
be evaluated with Keras through this project, besides the loss function, which
is automatically computed. It is defined as the proportion of examples for
which the model produces the correct output [5]. Other measurements about
the performance of the model are obtained with the Scikit-learn library (see
Section 2.3).

.fit() It trains the model. The following arguments are required:
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• x, y: training samples and labels. They must be defined as Numpy arrays3.

• batch size: number of samples that are evaluated before updating the weights.
It defaults to 32.

• epochs: number of iterations over the whole dataset that are going to be
executed. It defaults to 10.

• callbacks: list of callbacks (see Section 2.1.3) that are going to be applied
during training. It defaults to None.

• validation split or validation data: in Keras, there are two alternatives
to provide a validation dataset. On the one hand, it is possible to pass the
validation data as a Numpy array to the validation data argument. On the
other hand, a fraction of the training samples can be set as validation data
through the validation split argument. validation data and validation split
arguments are mutually exclusive, so just one of them can be used.

• shuffle: a boolean that determines whether to shuffle training data or not.
If data are not shuffled during training, samples belonging to the same class
can be presented consecutively. In that case, the model will be forced to learn
the features of a certain class. When the model starts to see samples of the
next class, it fits to the new data and forgets the previously learned feature.
If data are sorted by classes, this process goes on and on leading to a worse
performance.

.predict() It takes a sample and returns the label predicted by the model.

.evaluate() It takes a set of samples and labels and evaluates the model performance,
returning a list of the metrics previously defined.

.save() It stores the model into a Hierarchichal Data Format version 5 (HDF5) file (see
Section 2.2), which will contain the weights, architecture and training configuration
of the model.

.load model() It loads a model from a HDF5 file.
3http://www.numpy.org/
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2.1.2 Layers

As it has been said before, the models are usually built as a stack of layers. These layers
are added to the model using the .add() method, inside of which the kind of layer is
declared and its particular parameters are set. Several kinds of layers are available, but
only the ones that have been used in this project are going to be described.

Convolutional layer. This particular layer is the one that turns the neural network
into a CNN. It is formed by a certain amount of filters/kernels with a fixed size.
These filters are convolved with the input volume, generating each one a feature
or activation map which will tell us to what extent the feature learned by that
particular filter is present in that volume [14]. In our case, the input volume will
be a three dimensional matrix defined by its width (number of columns), height
(number of rows) and depth (number of channels). It’s important to note that
the number of channels of the filter will be equal to the number of channels of the
input, which implies that each filter will generate just one activation map, instead
of generating one for each channel.

Keras provides different kinds of convolutional layers depending on the input
dimensions: Conv1D, Conv2D and Conv3D. These are the main arguments required
by Keras to define a convolutional layer:

• filters: number of filters.

• kernel size: width and height of the filters.

• strides: how many pixels the filter must be shifted before applying the next
convolution. It defaults to 1.

• padding: it can be valid or same. If valid mode is set, no padding is applied,
resulting in an output that will be smaller than the input. However, if same
mode is set, the input will be padded with zeros in order to produce an output
that preserves the input size. It defaults to valid.

Figure 2.1 shows a detailed representation of the operation performed by convolu-
tional layers. In Figure 2.1(a), the filter w0 (3x3x3) is convolved with the input
volume (5x5x3). In this example, as padding is set to 1 and stride is equal 2, the
operation will return a 3x3 activation map. The same procedure is followed in Fig-
ure 2.1(b) with the filter w1. It generates another 3x3 activation map, ending up
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with a 3x3x2 output. To clarify this process, let’s see how to obtain the first element
in the second row of the activation map returned by the filter w0, i.e. the element
within the green square in Figure 2.1(a).

1. An element-wise or Hadamard product is performed between the filter w0 and
the corresponding region (receptive field) of the input volume x.

z1 = x[:, :, 0]r.field�w0[:, :, 0] =


0 · 1 1 · 0 1 · 0
0 · 1 1 · 1 2 · −1

0 · −1 2 · −1 0 · −1

 =


0 0 0
0 1 −2
0 −2 0

 (2.2)

z2 = x[:, :, 1]r.field�w0[:, :, 1] =


0 · −1 2 · −1 2 · −1
0 · 0 1 · −1 2 · 0
0 · 1 0 · 1 2 · 0

 =


0 −2 −2
0 −1 0
0 0 0

 (2.3)

z3 = x[:, :, 2]r.field � w0[:, :, 2] =


0 · 0 −1 · 2 1 · 0
0 · 0 −1 · 0 1 · 1
0 · 0 0 · 0 −1 · 0

 =


0 −2 0
0 0 1
0 0 0

 (2.4)

2. Then, all elements of the three resulting matrices are added together.

Σz1 + Σz2 + Σz3 = −3 − 5 − 1 = −9 (2.5)

3. Finally, the bias (b0) is added to the scalar returned by the previous addition.
Bias allows to shift the input of the activation function away from the origin,
like the constant in a linear function. For instance, if the receptive field is filled
with zeros, the bias gives the opportunity of generating a non-zero output.
Activation functions will be discussed later in this section.

o[:, :, 0] = −9 + b0 = −8 (2.6)

4. To compute the value of the next element of the activation map, the same
operation is applied to the next receptive field which, according to the stride
that has been set, must be 2 pixels away from the previous one.

A more intuitive and general representation of how a convolutional layer works is
shown in Figure 2.2.
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(a)

(b)

Figure 2.1: Example of operation of a convolutional layer (source [14]): (a) filter w0; (b)
filter w1.
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Figure 2.2: Intuitive representation of a convolutional layer.

Pooling layer. It shifts a window of a certain size along the input volume applying
an operation (mean or maximum) that will return a downsampled version of it,
reducing the computational cost and avoiding overfitting [15]. Figure 2.3 shows
how the pooling operation is applied.

Depending on the dimensions of the input and the operation applied, Keras
provides several pooling layers: MaxPooling1D, MaxPooling2D, MaxPooling3D,
AveragePooling1D... The main arguments required by Keras to define these layers
are:

• pool size: size of the window that is shifted along the input.

• strides: how many pixels the window must be shifted before applying the
next operation.

Dense layer. Fully-connected layers in Keras are defined as Dense layers. In a fully-
connected layer, every neuron is connected to every activation (i.e. output) of the
previous one [14]. The main argument of this layer is:

• units: number of neurons.
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Figure 2.3: Example of a max. pooling operation.

Figure 2.4: Diagram of a dense or fully-connected layer (source [16]).

Figure 2.4 shows the diagram of a dense layer. The weights of each connection are
represented by the thickness of the lines.

Activation layers. In Keras models, an activation function can be declared as a layer
itself or as an argument within the .add() method of the previous layer. Keras
provides several activation functions, such as sigmoid, linear, ReLU and softmax.
These are the ones that have been used during the development of this project:

• ReLU: this activation function introduces a non-linearity right after each
convolutional layer, allowing the CNN to learn more complex features. It’s
defined as:

g(z) = max(0, z) (2.7)

Figure 2.5 shows ReLU function plotted in the interval [−1, 1].
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Figure 2.5: ReLU activation function.

• Softmax: this activation function is very useful when is placed after the output
layer of classification tasks. It takes a vector of real values z and returns a new
vector of real values in the range [0,1]. The N elements of the output vector
can be considered probabilities because the softmax function ensures that they
sum up to 1. It is defined as follows:

softmax(z)i = exp(zi)
Σjexp(zj)

for j = 1, ..., N (2.8)

These equations and definitions have been extracted from [5].

Flatten layer. It flattens the input. For instance, it converts the activation maps
returned by the convolutional layers into a vector of weights before being connected
to a dense layer. It takes no arguments.

Dropout layer. It’s considered a regularization layer, because its main purpose is to
avoid overfitting. Dropout is a technique that randomly switches-off a fraction
of hidden units during training [17]. It can also be understood as a technique
that “trains an ensemble consisting of all subnetworks that can be structured by
removing non-output units from an underlying base network” [5], as it can be seen
in Figure 2.6.

This layer, as other regularization layers (i.e. GaussianNoise layer), is only active
during training. It’s main argument is:

• rate: fraction of units that must be dropped.
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Figure 2.6: Subnetworks generated when using dropout.

2.1.3 Callbacks

As defined by Keras documentation [11], callbacks are a set of functions applied at given
stages while the model is being trained. They can be used to take a look at the state of
the model during training. The built-in callbacks that have been used for this project are:

• .History(): it is automatically applied to every Keras model and is returned by
the .fit() method. After each epoch, this callback evaluates the declared metrics
with the validation dataset and saves the results.

• .EarlyStopping(): it monitors the value of a given function and forces the model to
stop training when that function has stopped improving. It has a patience argument,
which determines how many epochs in a row without improving must be tolerated
before the model stops training. Setting up an appropriate stopping criteria may
prevent the model from overfitting.

• .ModelCheckpoint(): it saves the model and its weights after each epoch. It can
be configured to overwrite the model only if a certain metric has improved with
respect to the previous best result, saving the best version of it.

Additionally, Keras provides the Callback base class that can be used to build user-
defined callbacks.

2.1.4 Image preprocessing

Image preprocessing is a key factor in every computer vision application. Specifically,
in ML, besides adapting images and emphasizing certain particularities before training
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that can improve the model performance (i.e. edge detection), it can be used to avoid
overfitting through data augmentation. Data augmentation [18] consists in taking the
original images of the dataset and applying transformations to them. This operation
adds more variability to samples, leading to a better generalization.

This functionality is included in Keras thanks to the .ImageDataGenerator() method.
It returns a batch generator which randomly applies the desired transformations to
random samples of the dataset provided by the user. Built-in transformations like
rotation, shifting and zooming, are passed as arguments to the aforementioned method.
Additionally, it’s possible to build a user-defined function and pass it as an argument as
well. The dataset and the batch size are defined through the .flow() method. During
training, the generator will loop until the number of samples per epoch and the number
of epochs set by the user are satisfied.

2.1.5 Utils

Keras includes a module for multiple supplementary tasks called Utils. The most
important functionality for the project provided by this module is the .HDF5Matrix()
method. It reads the HDF5 datasets (see Section 2.2), which are going to be used as
inputs to the neural networks.

2.2 HDF5 file format

During the development of this project, large amounts of data have been processed.
Because of that, an efficient way of reading and saving these data have been an important
point. Keras employs the HDF5 file format to save models and read datasets.

According to HDF5 documentation [19], it is a hierarchical data format designed for
high volumes of data with complex relationships. While relational databases employ
tables to store data (e.g. SQL), HDF5 supports n-dimensional datasets and each element
in the dataset may be as complex as needed.

In order to deal with HDF5 files, the h5py4 library for Python has been employed.

4http://www.h5py.org/
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2.3 Scikit-learn and Octave

Scikit-learn is a ML library that includes a wide variety of algorithms for clustering,
regression and classification [20]. It can be used at every stage of the ML workflow:
preprocessing, training, model selection and evaluation.

Scikit-learn functions have been used to evaluate the neural networks developed with
Keras. Using a tool that is independent from Keras enables the comparison of the results
achieved by different neural network libraries (e.g. Keras and Caffe). These are the
evaluation parameters which have been employed in this project (equations and definitions
obtained from [21]):

• Precision: ability of the classifier not to label as positive a sample that is negative.

precision = truepositives

truepositives + falsepositives

(2.9)

• Recall: ability of the classifier to find all the positive samples.

recall = truepositives

truepositives + falsenegatives

(2.10)

• Confusion matrix: a two dimensional matrix where the element in the position
i, j represents the number of samples that belongs to the group i but have been
classified as belonging to group j. True predictions can be found in the diagonal
of the matrix, where i = j. An example of a confusion matrix computed with
Scikit-learn can be found in Figure 2.7.

Besides the functions that have just been mentioned, accuracy and log loss have also
been used and they’re defined as in Section 2.1.1.

GNU Octave [22] is a scientific programming language compatible with Matlab. It
provides powerful tools for plotting. In this work, it has been used to visualize the
aforementioned parameters collected with Scikit-learn about the performance of the
models.

2.4 JdeRobot framework

JdeRobot is an open source middleware for robotics and computer vision [23]. It has
been designed to simplify the software development within these fields. It is mostly

20



CHAPTER 2. INFRASTRUCTURE

Figure 2.7: Example of a confusion matrix.

21



written in C++ language and is structured like a collection of components (tools and
drivers) that communicate to each other through ICE interfaces5. It is also compatible
with the robotics middleware ROS6, which allows the interoperation of ROS nodes and
JdeRobot components. This flexibility makes it very useful for our application. The
version employed in this work is JdeRobot 5.5. This middleware and, more specifically,
its cameraserver driver, is going to be employed to capture images from different video
sources that will feed the digit classifier component.

cameraserver

According to JdeRobot documentation [23], this driver can serve images both from real
cameras and from video files. It communicates with other components thanks to the ICE
Camera interface.

In order to use cameraserver, its configuration file has to be properly set. These are
the parameters that must be specified:

• The network address where the server is going to be listening.

• Parameters related with the video stream: URI, frame rate, image size and format.

2.5 DroidCam

On the one hand, DroidCam is an application for Android which serves the images
captured with a smartphone camera [24]. On the other hand, it is a client for Linux which
receives the video stream served by Android and makes it accessible for the computer as
a v4l27 device driver. The Linux client can be connected to the phone camera over a USB
cable or a WiFi network and allows the user to control camera flash, auto-focus and zoom.
DroidCam provides the address at which the Linux client must be listening to receive the
images. Besides that, it provides a URL that can be used to access the video stream from
any browser. The DroidCam version used in this work is DroidCam 6.4.8. It will enlarge
the list of possible video sources for the digit classifier component by serving the images
of a smartphone camera.

5https://zeroc.com/products/ice
6http://www.ros.org/
7https://www.linuxtv.org/wiki/index.php/Main_Page
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(a) (b) (c)

Figure 2.8: Droidcam usage: (a) Android server; (b) Linux client; (c) connection
established.

An example of usage can be seen in Figure 2.8. First, the Android app is opened. It
shows the address where the video will be served (see Figure 2.8(a)). Then, the address is
set in the Linux client (see Figure 2.8(b)). Finally, when the Connect button is pressed,
the connection is established (see Figure 2.8(c)).

JdeRobot cameraserver driver cleanly connects to the camera device that the
DroidCam Linux client provides in the host computer when attached to the DroidCam
Android app.
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Chapter 3

Digit classifier

Taking advantage of the CNNs impressive performance in classification tasks, we have
built a real-time digit classifier. Its core elements are:

• A Keras model (see Section 2.1.1), which classifies the images.

• A JdeRobot component, which acquires and processes the images from a video stream
and integrates a Keras model to classify them. The images and the classification
results are displayed within a Graphical User Interface (GUI).

3.1 Understanding the Keras model

Understanding how Keras models work is a key factor in the development of this project.
For this purpose, an adapted version of an example provided by Keras1 will be analyzed
in the following sections. In this example, a CNN is trained and tested with the Modified
National Institute of Standards and Technology (MNIST) database of handwritten digits
(see Section 4.1).

3.1.1 Adapting data

First of all, the input data have to be loaded and adapted. Keras library contains a
module named datasets from which a variety of databases can be imported, including
MNIST. The MNIST database can be loaded calling the mnist.load data() method. It
returns, as Numpy arrays, the images and labels from both training and test datasets, as

1https://git.io/vH0qw
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Figure 3.1: First sample of the MNIST database.

it is shown in the code below, which also displays the first sample of the MNIST training
dataset (see Figure 3.1).

(x_train, y_train), (x_test, y_test) = mnist.load_data()

cv2.imshow(’First sample’,x_train[0])

cv2.waitKey(5000)

cv2.destroyWindow(’First sample’)

print (’Original input images data shape: ’, x_train.shape)

That code also prints the shape of the dataset:

Original input images data shape: (60000, 28, 28)

According to that, the training dataset includes 60000 images, each one contain-
ing 28x28 pixels. In order to feed the Keras model, the number of channels of the samples
have to be explicitly declared, so the dataset must be reshaped. In this case, the samples
are grayscale images, which implies that the number of channels is equal to 1. For in-
stance, if they had been RGB images, the number of channels would have been equal to
3. As data are stored in Numpy arrays, it can be reshaped using the .reshape() method.
The order in which dimensions must be declared depends on the .image dim ordering()
parameter of the Keras backend, as it is shown in the following code.

img_rows, img_cols = 28, 28

...

if backend.image_dim_ordering() == ’th’:

# reshapes 3D data provided (nb_samples, width, height) into 4D
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# (nb_samples, nb_features, width, height)

x_train = x_train.reshape (x_train.shape[0], 1, img_rows, img_cols)

x_test = x_test.reshape (x_test.shape[0], 1, img_rows, img_cols)

input_shape = (1,img_rows,img_cols)

print (’Input images data reshaped: ’, (x_train.shape))

print (’--------------------------------------------------------------’)

else:

# reshapes 3D data provided (nb_samples, width, height) into 4D

# (nb_samples, nb_features, width, height)

x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)

x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

input_shape = (img_rows, img_cols, 1)

print (’Input images data reshaped: ’, (x_train.shape))

print (’--------------------------------------------------------------’)

In this case, the training dataset gets reshaped as follows:

Input images data reshaped: (60000, 28, 28, 1)

The last step to get the input images ready is to convert data type from uint8 to
float32 and normalize pixel values to [0, 1] range:

print(’Input images type: ’,x_train.dtype)

x_train = x_train.astype(’float32’)

x_test = x_test.astype(’float32’)

print(’New input images type: ’,x_train.dtype)

print (’-----------------------------------------------------------------’)

x_train /= 255

x_test /= 255

Regarding the labels, they are originally shaped as an array in which each element is an
integer in the range [0, 9]. In other words, each element contains the digit that corresponds
to a certain sample. In order to feed the Keras model, labels have to be reshaped into
probability distributions, that is, an array in which each element represents the probability
of occurrence of each digit. For example, if the element of the original array is 2, in the
reshaped array it will be [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]. This conversion is achieved using the
Keras built-in method np utils.to categorical():

27



nb_classes = 10

...

print (’First 10 class labels: ’, (y_train[:10]))

print (’Original class label data shape: ’, (y_train.shape))

# converts class vector (integers from 0 to nb_classes) to class matrix

# (nb_samples, nb_classes)

y_train = np_utils.to_categorical(y_train, nb_classes)

y_test = np_utils.to_categorical(y_test, nb_classes)

print (’Class label data reshaped: ’, (y_train.shape))

print (’-----------------------------------------------------------------’)

That code prints:

First 10 class labels: [5 0 4 1 9 2 1 3 1 4]

Original class label data shape: (60000,)

Class label data reshaped: (60000, 10)

3.1.2 Model architecture

Once data are ready, the CNN architecture must be defined. In this example, a sequential
model (see Section 2.1.1) is enough for solving the classification task and it is declared as
follows:

model = Sequential()

The next step is to add the corresponding layers. The core layers of a CNN, as treated
by Keras, have been already defined in Section 2.1.2. The following code performs the
addition of the layers to the model.

nb_filters = 32

kernel_size = (3, 3)

pool_size = (2, 2)

...

# convolutional layer

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],

border_mode=’valid’, input_shape=input_shape,
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activation=’relu’))

# convolutional layer

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],

activation=’relu’))

# pooling layer

model.add(MaxPooling2D(pool_size=pool_size))

# dropout layer

model.add(Dropout(0.25))

# flattening the weights (making them 1D) to enter fully connected layer

model.add(Flatten())

# fully connected layer

model.add(Dense(128, activation=’relu’))

# dropout layer to prevent overfitting

model.add(Dropout(0.5))

# output layer

model.add(Dense(nb_classes, activation=’softmax’))

As defined by the code above, the model is formed by the following layers:

• A 2D convolutional layer with 32 filters of size 3x3x1.

– Since this is the first layer of the model, the input shape argument must be
provided. In this case, the input shape is 28x28x1.

– As valid mode is set, no padding is applied and the output dimension will be
reduced.

– ReLU activation function (see Equation 2.7) introduces non-linearity into the
network. If the activation functions were linear, the whole stack of layers could
be reduced to a single layer, losing much of the ability to learn different levels
of features.

– This layer outputs 32 activation maps with size 26x26.

• Another convolutional layer with the same arguments: 32 filters, no padding and
ReLU as activation function.

– Increasing the number of convolutional layers allows the CNN to learn more
complex features.
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– As the depth of its input is 32 (one channel per activation map), the size of
the filters will be 3x3x32.

– This layer outputs 32 activation maps with size 24x24.

• A 2D MaxPooling layer with a pool size of 2x2.

– This layer outputs the 32 activation maps generated by the previous layer, but
downsampled by a factor of 2, resulting in maps with size 12x12.

• A dropout layer to prevent overfitting.

– The fraction of random units that are going to be swicthed-off is 0.25.

– This layer preserves the size and the shape of its input.

• A flatten layer that turns the matrices of weights that it receives into a vector that
can be fed to the fully-connected layer.

• A fully-connected or dense layer.

– This layer contains 128 neurons that will output an array of 128 values.

– Once more, the ReLU activation function is applied.

• A dropout layer with a 0.5 fraction.

• Finally, the output layer is another dense layer which contains as many neurons as
classes, in this example, 10.

– In order to output a probability distribution of the predicted classes, the
activation function will be softmax (Equation 2.8).

The resulting architecture and data shape after every layer are shown in Figure 3.2.

3.1.3 Compiling the model

After declaring the model and defining its architecture, the learning process must be set
through the .compile() method. The arguments required to set this process are defined
in Section 2.1.1. The code can be seen in the next frame:

model.compile(loss=’categorical_crossentropy’, optimizer=’adadelta’,

metrics=[’accuracy’])
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Figure 3.2: Diagram of a Keras sequential model.
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In this example, the loss function that is computed after every batch is the categorical
cross-entropy (see Equation 2.1) and the optimizer that updates the weights of the CNN
in order to minimize that loss function is ADADELTA. Additionally, the accuracy is also
computed to monitor the CNN performance during training.

3.1.4 Training the model

The CNN is trained thanks to the .fit() method, which has been already described in
Section 2.1.1. The usage of that method can be seen in the code below.

nb_epoch = 12

batch_size = 128

...

model.fit(x_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1, validation_data=(x_test, y_test))

The model will be trained for 12 epochs and the batch size, i.e. the number of samples
that pass through the CNN before updating the weights, is 128. The test dataset is used
here as validation data, for which the log loss and the accuracy will be computed after
every epoch just for monitoring purposes. During training time, Keras prints the results
after every batch and epoch as follows:

Train on 60000 samples, validate on 10000 samples

Epoch 1/12

128/60000 [....................] - ETA: 350s - loss: 2.3223 - acc: 0.1016

256/60000 [....................] - ETA: 312s - loss: 2.3073 - acc: 0.1094

...

59776/60000 [==================>.] - ETA: 1s - loss: 0.0455 - acc: 0.9871

59904/60000 [==================>.] - ETA: 0s - loss: 0.0455 - acc: 0.9871

60000/60000 [====================] - 407s - loss: 0.0455 - acc: 0.9871 -

val_loss: 0.0306 - val_acc: 0.9891

3.1.5 Testing the model

Once the model is trained, its weights, architecture and learning configuration can be
stored in an HDF5 file (see Section 2.2). Besides that, in order to see the performance
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of the CNN, the .evaluate() method takes the test dataset and computes the log loss and
the accuracy, as it is shown in the following code:

model.save(’MNIST_net.h5’)

score = model.evaluate(x_test, y_test, verbose=0)

print(’Test score:’, score[0])

print(’Test accuracy:’, score[1])

These are the results obtained with this example (Test score refers to loss):

Test score: 0.0306129640532

Test accuracy: 0.9891

3.2 JdeRobot component

Once the CNN has been trained and the resultant model is saved, the next milestone
is to integrate it into a JdeRobot component that must be able to acquire images from
a video stream, apply the necessary preprocessing and display the predictions obtained
from them. That component is digitclassifier.py and it is based on Nuria Oyaga’s code2.
Figure 3.3 shows the program running.

3.2.1 Design

Before analyzing in detail the internals of the digit classifier component, its design will
be described. For this purpose, the block diagrams shown in Figure 3.4 have been built.

Figure 3.4(a) shows a high-level diagram of the process followed from the video source
to the predicted digit. First, images captured with the camera are received by the
cameraserver driver. Then, the digit classifier component communicates with this driver
and gets the images. Finally, a prediction is made. Optionally, if images are captured with
a smartphone camera, DroidCam can receive those images and create a camera device
that can communicate with the cameraserver driver.

In Figure 3.4(b), the internals of the digit classifier component are shown. The main
program (digitclassifier.py) starts two threads, ThreadCamera and ThreadGUI. These

2https://github.com/RoboticsURJC-students/2016-tfg-nuria-oyaga
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Figure 3.3: Example of digitclassifier.py execution.

threads update GUI and Camera classes concurrently. Camera class communicates with
cameraserver to get the images, which are then preprocessed. The preprocessed image is
fed to the Keras model and a prediction is made. Original and preprocessed images, as
well as the predicted digits, are passed to the GUI class, which displays all of them in the
screen.

3.2.2 Camera class

Camera class is responsible for getting the images, transforming them into a suitable
input for the Keras model and returning the classification results.

• Acquisition. The images are served by the JdeRobot component cameraserver (see
Section 2.4). Depending on how its configuration file (cameraserver.cfg) has been
set, the images can come from different kinds of video streams. Connection with
webcams and video files is straightforward: the URI property in the configuration
file must be changed to the number of device or the path of the video, as it is shown
in the code below.

#0 corresponds to /dev/video0, 1 to /dev/video1, and so on...

#CameraSrv.Camera.0.Uri=1 # webcam
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(a)

(b)

Figure 3.4: Digit classifier design: (a) high-level; (b) lower-level.
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CameraSrv.Camera.0.Uri=/home/dpascualhe/video.mp4 # video file

In order to establish a connection with smartphone cameras, the DroidCam
application for Android has been used (see Section 2.5). As this application turns
the video stream provided by the smartphone into a v4l23 device driver, the video
stream will be listed as another webcam and the number of device must be set in
the cameraserver configuration file.

Besides that, the address at which the video is being served by the cameraserver
component must be provided to the Camera class through another configuration
file: digitclassifier.cfg.

• Preprocessing. As images can be captured with different devices, the digitclas-
sifier.py component must apply some preprocessing that mitigates the differences
between video streams and that makes the images suitable for the Keras model.
The following transformations are applied before classification:

1. Images are cropped into 80x80 pixels images. The Region of Interest (ROI) from
which cropped images are extracted is draw over the original image, making it
easier to aim at digits with the camera.

2. Color doesn’t provide any useful information about digits and MNIST database
is formed by grayscale images. For this reason, the images captured with the
component are converted into grayscale images as well.

3. A Gaussian filtering is applied in order to reduce image noise. When using
this operator, the kernel size and the standard deviation σ in x and y should be
specified [25]. In this case, the kernel size will be 5x5 and the standard deviation
is automatically calculated depending on that size. The 2D Gaussian filter, as
defined in [26], is given by:

G(x, y) = exp(−x2 + y2

2σ2 ) (3.1)

4. After reducing noise, the image is resized to fit the Keras model input. The
new size is 28x28 pixels, like MNIST samples.

3https://www.linuxtv.org/wiki/index.php/Main_Page
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5. Last step is obtaining the gradient of the images. Working with this kind of
images instead of the original ones allows the application to deal with different
light and color conditions. The chosen algorithm for this task is Sobel filter
(Equation 4.1). This will be deeply discussed in Section 4.1.2.

The following code applies the transformations mentioned above:

def trasformImage(self, im):

’’’ Transforms the image into a 28x28 pixel grayscale image and

applies a sobel filter (both x and y directions).

’’’

im_crop = im [140:340, 220:420]

im_gray = cv2.cvtColor(im_crop, cv2.COLOR_BGR2GRAY)

im_blur = cv2.GaussianBlur(im_gray, (5, 5), 0) # Noise reduction.

im_res = cv2.resize(im_blur, (28, 28))

# Edge extraction.

im_sobel_x = cv2.Sobel(im_res, cv2.CV_32F, 1, 0, ksize=5)

im_sobel_y = cv2.Sobel(im_res, cv2.CV_32F, 0, 1, ksize=5)

im_edges = cv2.add(abs(im_sobel_x), abs(im_sobel_y))

im_edges = cv2.normalize(im_edges, None, 0, 255, cv2.NORM_MINMAX)

im_edges = np.uint8(im_edges)

return im_edges

• Classification. Before entering the CNN, the images are reshaped as mentioned
in Section 3.1.1. Camera class calls Keras .predict() method (see Section 2.1.1) to
get the predicted digit. The prediction is only taken into account if one of the
probabilities is equal to 1, avoiding wrong answers when the prediction is not clear.
The function that performs the classification can be seen in the following frame:

def classification(self, im):

’’’ Adapts image shape depending on Keras backend (TensorFlow

or Theano) and returns a prediction.

’’’
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if backend.image_dim_ordering() == ’th’:

im = im.reshape(1, 1, im.shape[0], im.shape[1])

else:

im = im.reshape(1, im.shape[0], im.shape[1], 1)

dgt = np.where(self.model.predict(im) == 1)

if dgt[1].size == 1:

self.digito = dgt

else:

self.digito = (([0]), (["none"]))

return self.digito[1][0]

3.2.3 GUI class

GUI class displays the original image, the preprocessed image and the result of the
classification, as it is shown in Figure 3.3. It has been built employing the pyQt package45.
It is based in Nuria Oyaga’s code, but it has been updated from Qt4 to Qt5 thanks to
the information provided by PyQT documentation [27].

3.2.4 Threads

In order to capture images and update the GUI concurrently, the threading module [28],
provided by Python, has been employed. From this module, a subclass of the Thread object
is created. In this new subclass, init () and .run() methods are overriden. The .run()
method will be responsible for calling a process that updates the thread. For example, the
.update() method of the Camera class, which reads a new image from the video stream
each time it is invoked, is called within the .run() method of the ThreadCamera class.
Besides that, in the .run() method, the cycle time is adjusted. The next frame shows how
the ThreadCamera class is coded:

import time

import threading

4https://pypi.python.org/pypi/PyQt4
5https://pypi.python.org/pypi/PyQt5
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from datetime import datetime

t_cycle = 150 # ms

class ThreadCamera(threading.Thread):

def __init__(self, cam):

’’’ Threading class for Camera. ’’’

self.cam = cam

threading.Thread.__init__(self)

def run(self):

’’’ Updates the thread. ’’’

while(True):

start_time = datetime.now()

self.cam.update()

end_time = datetime.now()

dt = end_time - start_time

dtms = ((dt.days * 24 * 60 * 60 + dt.seconds) * 1000

+ dt.microseconds / 1000.0)

if(dtms < t_cycle):

time.sleep((t_cycle - dtms) / 1000.0);

3.2.5 Main program

All of these elements are joined together in digitclassifier.py. Camera, GUI and their
threads are initialized and the .start() methods of the Thread objects are invoked, as it
is shown in the code below:

if __name__ == ’__main__’:

cam = Camera()

app = QtWidgets.QApplication(sys.argv)
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window = GUI()

window.setCamera(cam)

window.show()

# Threading camera

t_cam = ThreadCamera(cam)

t_cam.start()

# Threading GUI

t_gui = ThreadGUI(window)

t_gui.start()

sys.exit(app.exec_())

In order to execute the program:

1. cameraserver must be launched with its configuration file as an argument in a
terminal:

dpascualhe@hp-g6:˜$ cameraserver cameraserver.cfg

2. In another terminal, digitclassifier.py must be launched with its configuration file
as well:

dpascualhe@hp-g6:˜$ python digitclassifier.py digitclassifier.cfg

An example of usage of the digit classifier component can be seen in Figure 3.3.
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Chapter 4

Test bench

The model described in Section 3.1 can be improved with different architectures and
regularization methods. Besides that, training the model with new datasets can also lead
to better results. In order to compare the performance of these new models, a test bench
has been developed. In this chapter, the datasets employed to train the models, as well
as the tools created to measure and visualize their performance, will be described.

4.1 Datasets

The digit classifier component is possible thanks to the data provided by the MNIST
database of handwritten digits. In the following sections, the pros and cons of using this
database and some alternatives will be discussed.

4.1.1 Original dataset

MNIST is a database of handwritten digits formed by a training set, which contains 60000 sam-
ples, and a test set, containing 10000 samples [29]. It’s a remixed and reduced version
of the original NIST datasets1. MNIST is a well-known benchmark for all kinds of ML
algorithms.

As may be seen in Figure 4.1, each sample of the MNIST database is a 28x28 pixels
grayscale image that contains a size-normalized and centered digit. While it may be
useful for testing ML algorithms, it is not enough to train a model that aims to solve a
real-world task, because the images are almost noiseless and the digits within them share

1https://www.nist.gov/srd/nist-special-database-19
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Figure 4.1: Samples extracted from the MNIST database.

similar orientation, position and size.

4.1.2 Gradient images

The first issue with MNIST database that must be addressed is that all the digits are
white over a black background. In real world, digits can be found written in several colors
over different backgrounds and datasets must resemble every possible combination. In
order to achieve that generalization, the gradient of the images has been calculated. The
resultant samples are less dependent from the light and color conditions than the original
ones, forcing the neural network to focus in the shape of the digits to classify them.

According to the study carried out by Nuria Oyaga2, the operator that leads to better
results when applied to MNIST database is the Sobel filter. This operator approximates
the gradient of an image function [26], convolving the image with the following kernels to
highlight horizontal and vertical edges, respectively:

hx =


1 2 1
0 0 0

−1 −2 −1

 , hy =


−1 0 1
−2 0 2
−1 0 1

 (4.1)

2http://jderobot.org/Noyaga-tfg#Testing_Neural_Network
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The absolute values of the resultant images, x and y, are then added, obtaining the module
of the gradient image (hereinafter gradient image).

4.1.3 Data augmentation

It has also been noticed that MNIST samples are noiseless and digits are always centered
with a scale and a rotation angle that are almost equal in most cases. However, the digit
classifier has to deal with noisy images that can be randomly scaled, translated and/or
rotated. In order to get a database with images that look like the ones that our application
is going to work with, the MNIST database must be augmented.

Two alternatives have been considered to solve this problem: real-time data augmen-
tation provided by Keras and generating our own database.

Real-time data augmentation with Keras

Thanks to the .ImageDataGenerator() method provided by Keras (see Section 2.1.4), the
MNIST dataset can be augmented in real-time during training. In order to cover most
of the real cases, random rotation, translation and zooming has been applied to generate
new samples. In addition to that, a Sobel filtering was also applied through a user-defined
function. The samples generated by the following code can be seen in Figure 4.2.

datagen = imkeras.ImageDataGenerator(

zoom_range=0.2, rotation_range=20, width_shift_range=0.2,

height_shift_range=0.2, fill_mode=’constant’, cval=0,

preprocessing_function=self.sobelEdges)

...

generator = datagen.flow(x, y, batch\_size=batch\_size)

Besides these transformations, it’s also necessary to simulate the noise that may be
present in real images. Keras generator doesn’t support the addition of noise. For
this purpose, Keras includes noise layers such as the GaussianNoise layer, which adds
Gaussian noise with a standard deviation distribution defined by the user. It’s important
to note that Keras treats noise layers as regularization methods that are only active
during training time to avoid overfitting. In order to add noise to the generated samples,
a GaussianNoise layer was established as the input layer of the model.
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Figure 4.2: Samples generated with Keras from MNIST database.

Handmade augmented datasets

The alternative to real-time data augmentation with Keras is building our own datasets
applying the previously mentioned transformations to the images. My mate Nuria Oyaga
has built 5 new databases with two sets each one: training and validation3. These are the
new databases:

• Sobel: MNIST database after applying the Sobel filter to every image. 48000 sam-
ples for training and 12000 samples for validation.

• 0-1: Same size than Sobel database. One transformed image per every Sobel
database image. Sobel database images are replaced by the transformed ones. 48000 sam-
ples for training and 12000 samples for validation.

• 1-1: Double size than Sobel database. One transformed image per every Sobel
database image. Both Sobel database images and the transformed images are
included in the 1-1 database. 96000 samples for training and 24000 samples for
validation.

• 0-6: Six times the size of Sobel database. Six transformed images per every
3http://jderobot.org/Noyaga-tfg#Comparing_Neural_Network
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Sobel database image. Sobel database images are replaced by the transformed
ones. 288000 samples for training and 72000 samples for validation.

• 1-6: Seven times the size of Sobel database. Six transformed images per every
Sobel database image. Both Sobel database images and the transformed images are
included in the 1-6 database. 336000 samples for training and 84000 samples for
validation.

Besides that, the test dataset of the MNIST database (10000 samples) has been
converted into a 1-6 test dataset (70000 samples).

In Figure 4.3, the first samples of these datasets can be seen.

From LMDB to HDF5

These databases were initially built to feed a Caffe [30] neural network. Because of
that, they were saved as Lightning Memory-Mapped Database (LMDB) files4. In order to
make it easier to feed the Keras model, the LMDB databases have been converted into
HDF5 files (see Section 2.2). For this conversion, the script datasetconversion.py has been
written.

• Reading the LMDB database. On the one hand, the LMDB library for Python5

has been employed to open the database, initialize a cursor and iterate over each
key-value pair in the database. On the other hand, Google’s Protocol Buffers6

have been used to parse the data that were extracted from the database. “With
protocol buffers, you write a .proto description of the data structure you wish to
store. From that, the protocol buffer compiler creates a class that implements
automatic encoding and parsing of the protocol buffer data with an efficient binary
format” [31]. Here it is shown the .proto file, that defines the data structure used
by Caffe to store the MNIST database, as obtained from [32]:

package datum;

message Datum {

optional int32 channels = 1;

optional int32 height = 2;

4http://www.lmdb.tech/doc/
5https://lmdb.readthedocs.io/en/release/#
6https://developers.google.com/protocol-buffers/
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(a) (b)

(c) (d)

(e)

Figure 4.3: First samples of handmade datasets: (a) Sobel; (b) 0-1; (c) 1-1; (d) 0-6 ;
(e) 1-6.
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optional int32 width = 3;

// the actual image data, in bytes

optional bytes data = 4;

optional int32 label = 5;

// Optionally, the datum could also hold float data.

repeated float float_data = 6;

// If true data contains an encoded image that need to be decoded

optional bool encoded = 7 [default = false];

}

Thanks to the .proto file, the compiler generates a Python module that contains
the Datum class. Datum class provides the .ParseFromString() method, which is
employed to parse the image data. Here it is the resulting code:

# We initialize the cursor that we’re going to use to access every

# element in the dataset.

lmdb_env = lmdb.open(sys.argv[1])

lmdb_txn = lmdb_env.begin()

lmdb_cursor = lmdb_txn.cursor()

x = []

y = []

nb_samples = 0

# Datum class deals with Google’s protobuf data.

datum = datum.Datum()

if __name__ == ’__main__’:

# We extract the samples and its class one by one.

for key, value in lmdb_cursor:

datum.ParseFromString(value)

label = np.array(datum.label)

data = np.array(bytearray(datum.data))

im = data.reshape(datum.width, datum.height,

datum.channels).astype("uint8")
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x.append(im)

y.append(label)

nb_samples += 1

print("Extracted samples: " + str(nb_samples) + "\n")

x = np.asarray(x)

y = np.asarray(y)

• Writing the HDF5 files. Thanks to the h5py library7 for Python, the data
extracted from the LMDB database has been stored into a HDF5 file with two
datasets: labels and data. The code can be seen in the following frame:

f = h5py.File("../../Datasets/" + sys.argv[2] + ".h5", "w")

# We store images.

x_dset = f.create_dataset("data", (nb_samples, datum.width,

datum.height, datum.channels), dtype="f")

x_dset[:] = x

# We store labels.

y_dset = f.create_dataset("labels", (nb_samples,), dtype="i")

y_dset[:] = y

f.close()

Conclusions

After coding and testing both implementations for augmenting the database, it has been
decided to use the handmade datasets. While real-time data augmentation is really useful
to avoid storing all the data that are needed for training, it makes harder to take a look
into what is being fed to the network and reproduce results. Also, in this particular case,
we are interested in comparing the performance of neural networks built with different
libraries, so they must be trained with the same datasets.

7http://www.h5py.org/
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4.2 Measuring performance

The performance of the models will be evaluated using the CustomEvaluation class and
the evaluation parameters calculated with this class will be visualized using an Octave
function. In this section, both of them will be described.

4.2.1 CustomEvaluation class

CustomEvaluation class is independent from Keras. It calls functions that measure the
performance of the model during test and/or training time and saves them into a file
which is compatible with Octave.

• Obtaining the measurements. The user provides the real labels and the
probability distribution of the predicted ones. Log loss, accuracy, precision, recall
and a confusion matrix are computed. These functions are defined in Section 2.3
and Section 2.1.1.

• Storing results. CustomEvaluation class stores the results in a Python dictionary.
Additionally, it can store the learning curves if training option is set. In the following
section, the Keras callback employed to build the learning curves will be discussed.

• Python-Octave translation. For this task, the SciPy library8 has been used. It
provides the .savemat() method that saves Python dictionaries into Matlab .mat
files, which are also compatible with Octave (see Section 2.3).

Here it is a usage example:

if training == "n":

measures = CustomEvaluation(y_test, y_proba, training)

else:

train_loss = learning_curves.loss

train_acc = learning_curves.accuracy

val_loss = validation.history["val_loss"]

val_acc = validation.history["val_acc"]

results = CustomEvaluation(y_test, y_proba, training, train_loss,

train_acc, val_loss, val_acc)

8https://docs.scipy.org/doc/scipy-0.18.1/reference/index.html
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results_dict = results.dictionary()

results.log(results_dict)

LearningCurves callback

During training time, Keras automatically saves into a .History() object (see Section 2.1.3)
the validation results obtained after every epoch. It’s interesting to face these validation
results with the ones obtained after every batch during training.

LearningCurves is a custom Keras callback that has been coded to save the accuracy
and loss obtained after each batch into Python lists. The code below shows how it works.

class LearningCurves(keras.callbacks.Callback):

’’’ LearningCurve class is a callback for Keras that saves accuracy

and loss after each batch.

’’’

def on_train_begin(self, logs={}):

self.loss = []

self.accuracy = []

def on_batch_end(self, batch, logs={}):

self.loss.append(float(logs.get(’loss’)))

self.accuracy.append(float(logs.get(’acc’)))

4.2.2 Octave function

Now that all the data have been collected, they have to be properly displayed. The
function visualization.m has been written to address this issue. It takes as its only
argument the path to the .mat file that has been generated with the CustomEvaluation
class and plots the results as shown in Figure 4.4. Additionally, it prints them to the
standard output.
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(a)

(b) (c)

Figure 4.4: Parameters displayed by visualization.m: (a) learning curves; (b) precision
and recall; (c) confusion matrix.
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4.3 Convolutional layers visualization

CNNs are well-known by their ability of learning image features. The weights of a
convolutional layer are arranged like a set of filters, each of which learns to identify a
certain visual feature [14]. As the filter is convolved with the input image, it generates an
activation map that will tell us how that particular filter reacts to that image. In other
words, the activation map will tell us whether a certain feature is present in the image or
not.

In order to understand how the Keras model is learning to classify the digits, the
layer visualization.py script has been written. This script allows the user to display
the filters that are learned in every convolutional layer of the model and their resulting
activation maps.

4.3.1 Filters

Keras provides a list containing every layer object in the model through the attribute
model.layers. Layer objects properties can be accessed thanks to the layer.get config()
method. Since convolutional layers in Keras are named with the prefix conv2d, it
is possible to iterate over the names of the layers looking for that prefix to find the
convolutional ones, as it is shown in the code below.

for i, layer in enumerate(self.model.layers):

if layer.get_config()["name"][:6] == "conv2d":

...

Once the convolutional layers have been found, their filters are accessed through the
layer.get weigths() method. The matrices of weights returned by this method are reshaped
to improve readability. The code that performs these operations can be seen in the
following frame:

shape = layer.get_weights()[0].shape

weights = layer.get_weights()[0].reshape(shape[2], shape[0],

shape[1], shape[3])

Finally, the filters are plotted thanks to the Matplotlib library9 for Python. The shape

9https://matplotlib.org/
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(a)

(b)

Figure 4.5: Truncated versions of the model: (a) one convolutional layer; (b) two
convolutional layers.

and the maximum/minimum values of the weights are printed to the standard output. An
example of how the filters are plotted can be seen in the following chapter in Figure 5.2.

4.3.2 Activation maps

The output of each convolutional layer is formed by as many activation maps as filters
there are in the layer. In order to get the values of these activation maps, truncated
versions of the original model are generated, as it is shown in Figure 4.5. When a
prediction is made with these truncated models, they output the activation maps that
correspond to their last layer. The code which obtains the activation maps can be seen
in the following frame:

truncated = Model(inputs=self.model.inputs,

outputs=layer.output)

activations = truncated.predict(self.im)

The activation maps are plotted using the Matplotlib library as well, and their shape
and maximum/minimum values are also printed to the standard output. An example of
how the activation maps are plotted can be seen in the following chapter in Figure 5.4.
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Chapter 5

Evaluation

The CNN analyzed in Section 3.1 is going to be taken as a starting point to build
new models. These models will be trained with different datasets and regularization
methods and, finally, new architectures will be implemented. In this chapter, the tools
developed in Chapter 4 will be employed to evaluate the results achieved by each of these
CNNs. These tests will serve as a way to study the effects of the learning process in
the performance of these algorithms. Before talking about the performance of the new
models, the visualization of the convolutional layers filters and activation maps is going
to be analyzed.

5.1 Convolutional layers visualization

The filters and activation maps discussed in this section belong to the convolutional layers
of the 0-1; Patience=2 model that can be found in Section 5.3.1. This model has been
trained with the 0-1 dataset (see Section 4.1.3) and an early stopping rule with patience 2.
Its architecture corresponds to the one defined in Section 3.1. In order to generate the
activation maps, the model will be fed with a sample extracted from the 0-1 dataset.
This sample is shown in Figure 5.1.

5.1.1 Filters

When loading the weights of the first convolutional layer, a Numpy array of shape (1, 3, 3, 32)
is obtained. This means that the weights are arranged in 32 filters of size 3x3. In this
case, the input is a grayscale image, so the filters only have one channel (i.e. depth=1).
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Figure 5.1: Sample employed to generate the activation maps.

Besides that, when examining their values, negative and positive coefficients are found.
In Figure 5.2, these filters are plotted. Some of the filters look too noisy to tell which

kind of feature they are looking for. However, a few of them can be interpreted at first
sight as follows:

• Horizontal edge-emphasizing filter: filters 7, 9 and 23.

• Vertical edge-emphasizing filter: filters 8, 15 and 31.

The filters in the second convolutional layer have been displayed as well. The weights
in this layer are stored in a Numpy array of shape (32, 3, 3, 32), which means that there
are 32 filters with size 3x3 as well. However, this time their depth is 32, since there is
one channel per activation map generated by the previous layer. As we get deeper into
the CNN and the dimensionality grows, the filters look noisier and become harder to
interpret, as it is shown in Figure 5.3.

5.1.2 Activation maps

Figure 5.4 shows the activation maps that the first convolutional layer of the model
outputs. There are horizontal and vertical edge images that confirm the interpretation
of the filters given in the previous section. Besides that, some activation maps
(2, 12, 19, 25 and 26) look dead. If we look back into Figure 5.2, these activation maps
correspond to filters with almost flat coefficients. This may be a signal of a high learning
rate [14]. In this case, the learning rate is not explicitly declared, because the ADADELTA
optimizer uses an adaptive one.

The activation maps of the second layer are shown in Figure 5.5. The images obtained
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Figure 5.2: Filters of the first convolutional layer.

Figure 5.3: Filters of the second convolutional layer.
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Figure 5.4: Activation maps of the first convolutional layer.

look more specialized than the ones in the previous layer. It’s easier to tell to what kind
of feature (e.g. edges and corners) each activation map is responding to.

It’s important to note that values of the activation maps are always positive, even
when filters have negative coefficients. This is because the ReLU activation function (see
Equation 2.7) turn all the negative values to zero.

5.2 Augmented datasets

The original model has been trained with each of the handmade datasets described in
Section 4.1. The number of epochs has been set to 12 and the evaluation has been carried
out with the 1-6 test dataset. The results that are shown in Table 5.1 lead to the following
conclusions:

• As it might be expected, results when training with the Sobel dataset are much
worse than the ones obtained with the other datasets, because we’re testing with
noisy images a CNN trained with noiseless samples.

58



CHAPTER 5. EVALUATION

Figure 5.5: Activation maps of the second convolutional layer.

• The 0-6 and 1-6 models are the ones that achieve better results, as they have been
trained with much more samples than 0-1 and 1-1.

• When comparing 0-1 with 1-1, and 0-6 with 1-6, it can be seen that performance
is almost the same. This means that the gradient image without noise and
transformations is not adding much information to the model.

In Figure 5.6, the validation results obtained after every epoch when training the model
with each dataset can be seen.

Taking all this into account, it has been decided to keep working with the 0-1 model,
which achieves a performance that is comparable with the other models with the advantage
of a much lower computational cost.

5.3 Regularization methods

“Regularization is any modification we make to a learning algorithm that is intended to
reduce its generalization error but not it’s training error” [5]. Reducing the generalization
error is important because, even if a model achieves a great accuracy or loss with the
training dataset, if it doesn’t generalize well enough, results during validation and test
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Figure 5.6: Validation results when training the model with different datasets.

Model Loss Accuracy Epochs

Sobel 1.233 0.699 12
0-1 0.201 0.939 12
1-1 0.189 0.943 12
0-6 0.109 0.968 12
1-6 0.111 0.967 12

Table 5.1: Results of training with different datasets.
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Model Loss Accuracy Epochs

0-1 0.201 0.939 12
0-1; Patience=2 0.155 0.954 30

Table 5.2: Results of training with and without early stopping.

time won’t be optimal. This is specially significant in our case, since the predictions of
the digit classifier will be based on images that differ a lot from the training dataset. In
this section, the effects of applying to the 0-1 model two regularization techniques (early
stopping and dropout) are going to be evaluated.

5.3.1 Early stopping

The models in the previous section have been trained for 12 epochs. However, if we look at
the validation results in Figure 5.6, it can be assumed that the models were not overfitting
yet, because results didn’t stop improving. This means that they were not being trained
as much as possible. Setting an early stopping rule (see Section 2.1.3) allows training the
CNN right until it starts to overfit, making the most of it. The criteria that has been
used depends on the loss during validation. The model is trained until the log loss (see
Section 2.1) has not improved after two validations in a row, which means a patience of
2. Besides that, in order to keep the best version of the model, the log loss is checked
after each epoch and, if the value is lower than the previous best log loss achieved, the
weights of the model are saved, overwritting the weights of the previous best version.
The difference between training the model with and without early stopping can be seen
in Table 5.2.

Early stopping means an improvement of 1.6% in accuracy and 4.6% in log-loss. The
model has been trained for 30 epochs and it reached its best version at the 27th epoch.
Setting a longer patience has been considered, but it has been decided to apply it only to
the best model obtained in Section 5.4 to reduce the computational cost.

5.3.2 Dropout

The models that have already been evaluated insert dropout (see Section 2.1.2) before
every dense layer of the CNN (0.25% and 0.5%, respectively). Dropout is usually applied
just to fully-connected or dense layers, because convolutional layers are less likely to overfit
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Model Loss Accuracy Epochs

No dropout 0.189 0.945 9
Dropout 0.155 0.954 30

Table 5.3: Results of training with and without dropout.

Figure 5.7: Validation results with and without dropout.

due to their architecture. In order to determine how dropout affects the performance of
the CNNs, the 0-1; Patience=2 model, defined in the previous section, has been trained
with and without the mentioned dropout. The results can be seen in Table 5.3.

Without dropout, the model has stopped training after 9 epochs. It has learned faster,
but it has started overfitting earlier, resulting in worst results that the ones achieved by
the model trained with dropout. This can be clearly seen in Figure 5.7

Additionally, in Figure 5.8, the learning curves of both models can be seen. It’s worth
looking into these plots to realize that validation results are better than training results
when the model is trained with dropout. This may seem illogical, as the CNN should
always perform better with samples that it has already seen. However, it’s important
to remember that dropout only applies during training and, as it will switch-off a lot of
weights in the CNN, much of its prediction power will be lost. During validation, there are
no switched-off weights, which allows the CNN to make better predictions. Besides that,
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Model Loss Accuracy Epochs

1Conv+MaxPooling 0.191 0.945 47
2Conv+MaxPooling 0.155 0.954 30
3Conv+MaxPooling 0.129 0.945 28
2Conv+MaxPooling+2Conv+MaxPooling 0.092 0.970 27
4Conv+MaxPooling+2Conv+MaxPooling 0.092 0.971 24

Table 5.4: Results of training models with different architectures.

in the figure can be seen that the training results are better when the model is trained
without dropout, while the validation results are better with dropout. This means that
the model with dropout is generalizing better than the one without dropout.

5.4 New architectures

In order to check the influence of different architectures in the performance of the CNN,
new models with a different number of convolutional layers have been trained and tested.
The stopping rule used in these trainings is the one defined in Section 5.3.1 and dropout
is also applied. The decision of adding pooling layers to the models (see Section 2.1.2)
has been taken to reduce computational cost. In the first attempt at training a model
with 6 convolutional layers, the model with 2 convolutional layers and one MaxPooling
layer was triplicated. However, the first MaxPooling layer of the model was removed
because the model ended up working with an empty image: 0x0 size.

As it is shown in Table 5.4, the best results have been obtained with the models that
contain 4 and 6 convolutional layers. Besides that, taking a look into the validation curves
(see Figure 5.9), it can be assumed that when the number of layers is increased, the neural
network tends to lead to better results with less epochs.

The model with 6 layers has a slightly better accuracy, but a slightly worse loss, than
the one with 4 layers. Considering that computational cost is higher when training the
6Conv model, the 4Conv model seems to be the best bet. In order to make the most of it,
it has been trained again but increasing the patience of the early stopping rule from 2 to 5.
The results obtained with this new stopping rule can be seen in Table 5.5. These results
imply that being more patient during training can lead to a better performance, although
in this case the improvement is not very significant.
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(a)

(b)

Figure 5.8: Learning curves: (a) without dropout; (b) with dropout.

Model Loss Accuracy Epochs

4Conv; Patience=2 0.092 0.970 27
4Conv; Patience=5 0.082 0.973 37

Table 5.5: 4Conv model trained with different stopping rules.
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Figure 5.9: Validation results with different architectures.

A visualization of the performance achieved by the best model built in this project
(i.e. 4Conv; Patience=5 model) is shown in Figure 5.10. The Octave function discussed
in Section 4.2.2 has been employed to generate the plots displayed in this figure.

65



(a)

(b) (c)

Figure 5.10: Performance of 4Conv; Patience=5 model: (a) learning curves; (b) precision
and recall; (c) confusion matrix.
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Chapter 6

Conclusions

In this chapter, we are going to recall the main conclusions reached during the development
of this project. These conclusions will be divided following the sub-objectives defined in
Section 1.2. After summarizing the conclusions, suggestions for future works will be
proposed.

6.1 Conclusions

Deep understanding of CNNs built with Keras

• The input data in Keras models are usually provided as HDF5 files, which can be
imported as Numpy arrays that can be easily accessed and reshaped. HDF5 is also
employed by Keras to save the models.

• CNNs are built in Keras as a stack of fully configurable modules (convolutional
layers, regularization layers, activation functions...) which can be easily modified
when needed, allowing fast experimentation.

• The core elements of a CNN are convolutional and pooling layers combined with
non-linear activation functions (e.g. ReLU), which altogether allow the learning of
complex image features in a hierarchical way with a reasonable computational cost.

• In classification tasks, the output layer of the model must be, at least, one fully-
connected layer with as many neural units as classes the problem has. The activation
function employed in this layer (e.g. Softmax) transforms the outputs into a
probability distribution.
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• The cost function and optimizer of the learning process can be easily configured.
Moreover, Keras allows the addition of callbacks which can monitor the state and
the performance of the CNN at given stages of the training process.

• Keras provides tools for image preprocessing that can be used to generate new data
in real-time. This is useful for augmenting the database without storing the new
samples.

Test bench tools

• The creation of a test bench for comparing results has improved the speed of the
experimentation and the interpretability of the obtained results.

• Employing handmade augmented datasets instead of real-time data augmentation
has allowed an easier control of what we have fed to the CNNs.

• Scikit-learn library provides a wide variety of functions for evaluating CNNs. Besides
that, it is independent from Keras, which allows the comparison of the results
obtained with models built with different platforms like Caffe.

• Building a bridge from Python to Octave with the SciPy library has opened the
doors to the powerful visualization tools provided by Octave.

• The modular logic employed by Keras allows to easily look into the inner parts of
the models, which has been very useful for visualizing the activation maps and filters
of the convolutional layers.

Effects of the learning process in CNNs performance

• While training the CNN with the original MNIST database leads to impressive
accuracy in test time, the model generated doesn’t generalize well enough when it
is evaluated with real-world images.

• Training with gradient images instead of the original ones makes the CNN more
robust with respect to the light and color conditions.

• The datasets augmented with random transformations enable a better generaliza-
tion, which means a significant improvement with real-world images.
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• The models trained with dropout learn slower and have worse results during training
that the ones trained without dropout, but perform much better in validation and
test time. This means that the CNNs trained with dropout generalize better.

• Setting a good early stopping rule is critical to make the most of the training process.

• The analysis of the activation maps has proved that the CNN is learning mostly
features about the edges of the samples. It’s easier to see this trend in the activation
maps of the last convolutional layer.

• Some activation maps look dead, which could mean that the learning rate is too
high according to some researchers [14].

• The filters in the first layer can be related with their activation maps. However,
when we go deeper into the network, the dimensionality grows too much to easily
interpret the filters and they look noisier.

JdeRobot component for digit classification

• The image acquisition from different video streams has been easily solved using the
cameraserver driver provided by JdeRobot framework.

• On one hand, capturing images from smartphone cameras instead of webcams has
made the application much more flexible than before. On the other hand, the frame
rate is significantly higher with webcams.

• The use of threads for the different tasks of the component is essential for enabling
real-time execution.

• The performance of the component has been highly improved after replacing the
CNN of the Keras example analyzed in Section 3.1 with the 4Conv; Patience=5
model evaluated in Section 5.4.

6.2 Future works

The understanding of the CNNs acquired in this project opens the door to the application
of new algorithms in more complex real-world problems. For instance, they can be used
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Figure 6.1: Vehicle detection with YOLO applied to Udacity’s self-driving car dataset
(source [33]).

not only for object classification, but also for object detection. Algorithms based in CNNs
have shown a great performance in classical benchmarks like Pascal VOC1 and COCO2.
Deep learning libraries like Keras and Caffe provide pre-trained weights for popular neural
networks trained with these databases, allowing the user to fine-tune the models with
new samples. The main difficulty that has to be faced in object detection is the high
computational cost, but some algorithms are achieving real-time or almost real-time
predictions (e.g. YOLO3 and SSD4). Possible applications of these kind of algorithms are
autonomous driving, video surveillance and face recognition. In particular, in autonomous
driving we can find them coping with problems like steering angle prediction and vehicle
detection (see Figure 6.1).

Another interesting field of study is to estimate the pose of the human body from
video images. In that sense, convolutional pose machines are achieving very promising
results [34]. These algorithms can be used to better understand body language.

Besides the possible applications in computer vision, CNNs can also be employed to
solve tasks like speech recognition [35] and natural language processing [36].

1http://host.robots.ox.ac.uk/pascal/VOC/databases.html
2http://mscoco.org/
3https://pjreddie.com/darknet/yolo/
4https://github.com/weiliu89/caffe/tree/ssd
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