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Abstract

The first “autonomous” aerial vehicles born on the middle 40’s, where the Nazis de-

veloped the first ballistic missile capable to reach its objective correcting its trajectory

using its own sensors. The role of this type of technology on the military world has been

crucial since that moment, and countries have spent tons of resources on the develop-

ment of UAV’s (Unmanned aerial vehicle). Although the industry of UAV’s appeared

many years ago, it has been getting popularity between the general public as “Drones”.

This project intents to be part on that concept, it aims to reach a fully autonomous

behavior of a UAS (Unmanned Aerial System) in order to fulfill a certain mission robustly

and efficiently. The design, construction and programming of an UAV from scrach is the

main objective, undertanding these vehicles indeed from the conception to the validation.

The solution proposed in this project aims to provide a reliable platform and sofware

support for all MAVLink protocol based UAV’s, very popular nowadays mainly in re-

search projects.

The chapters 1, 2 and 3 of this document are focused on the stablishment of the envi-

roment of the project, compound of an introduction, the working methodology followed

and the infrastructure used. The chapters 4,5 and 6 are the description of the different

achieved tasks: design and construction of a hardware platform, the implementation of a

sofware driver to communicate with the vehicle and the programming of an application

for the fulfilment of the mission. Finally, chapter 7 collects the achievements reached on

the development of the project and the future steps recommended that would use this

project as a benchmark.

There is a long way to go with the Drones, and lot of aspects to develop, but they will

become extremely important to our lives, more than we today imagine.
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Chapter 1

Introduction

This chapter outlines the robotics concept and a brief history, from its beginnings until

nowadays. Finally, the development of the aerial robots and the research, commercial

and defence use of this type of technology are explained.

1.1 Robotics

Robotics is a branch of engineering that involves the conception, design, manufacture,

and operation of robots, as well as the different systems for their control and informa-

tion processing. This field overlaps with mechanical engineering, electronics, computer

science, artificial intelligence, nanotechnology and lately bioengineering.

A robot is an artificial, mechanical or virtual, entity able to complete an activity au-

tonomously, established beforehand, that substitutes humans in dangerous, difficult or

special tasks. The word “robot” derives from the Czech world “robota” that means

forced labour and it was firstly used in the Karel Capek novel named Rossum’s Univer-

sal Robots in 1923.

Since 2000 until today, robotics has starred huge breakthroughs compared to the ad-

vantages achieved in the 20th century, mainly because of the advancement of technology

and the reduction of it cost. Robotics has been able to conquer land, sea, and air in our

planet and in other ones. The figure 1.1 shows some examples of last technology robots,

as autonomous cars, highly sophisticated humanoids, space rovers, underwater robots,

etc...

1
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(a) T8 hexapod (b) Asimo

(c) Curiosity (d) Robo-Mermaid

Figure 1.1: Mobile Robots

One of the greatest impacts of robotics on everyday life is the Roomba vacuum cleaner

robot of the iRobot company, which can be seen in the figure 1.2. It was first launched

to market in 2002 and now has a family of robots capable of mopping the floor, cleaning

pools, polishing floors or cleaning gutters. Its last version is probably one of the most

sophisticated robots affordable by general population.

Figure 1.2: Roomba Robot

Camera sensor has adquired a great impact due mainly to its low cost (compared to other

sensors) and the large amount of information that can be extracted from it. In the figure

1.3 Nao robots playing a football game can be seen. They use SLAM (Simultaneous
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Location and Mapping) technique of artificial vision to locate themselves on the field,

their teammates, their opponents, the ball, field boundaries and the opposing goal.

Figure 1.3: Nao robots autopositioning based on vision

Also robotic cars make use of artificial vision algorithm to navigate throught the traffic,

these robots are able to detect the lines of the road, and identify other cars arround them.

In the figute 1.4 the Tesla Model 3 is shown; it is the last advance of a long research

line. Google, other serious pioneer of autonomous driving, has based its research on very

complex laser-based radar calle “lidar”. Tesla competes with a different approach, it has

instead opted for cheap hardware sensors: cameras, ultrasound and advanced software.

(a) Tesla Model 3 (b) Road lines recognition

Figure 1.4: Artificial vision in autonomous cars

In the industrial environment robotics has reached a level of efficiency and precision

never before known in the world. From automated assembly lines with robotic arms for

automobile assembly, robots for packaging tasks, classifier robots and many others, make

up a growing robotic industrial sector. From the first automatons to the last robots sent

to Mars, robotics has helped man to extend and enhance human qualities. The human
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being has delegated robots performing the most dangerous tasks, most repetitive ones

or those that require a high level of accuracy to improve our current way-of-living.

1.1.1 Robot Hardware

From an engineering point of view, a robot is a complex system equipped with sen-

sors, actuators and processors; combined, give basic skills such as perception, action,

processing and memory to interact with the environment. In a simpler way, a robot

is a computer with external peripherals that allow it to obtain information about the

environment and to interact with it.

• The sensors allow the robot to get information from the environment or from

itself. This capability permits a robot to work on dynamic scenarios by changing

its behaviour depending on the environment conditions. There are a variety of

sensors, from the most basic ones as light sensors, temperature or proximity; to

the most complex and rich as cameras, depth sensors, lasers, GPS locators, etc.

• Actuators are devices that allow the robot to interact with the environment and/or

to perform movements. They allow the robot to perform its tasks in a real environ-

ments, such as navigation avoiding obstacles or assembling parts in an assembly

line. The actuators can be of various types such as motors used for moving the

wheels of the robot, the motors of articulations or engines spinning propellers to

provide lift.

Computers are responsible for processing the data collected by the sensors and material-

ising the results of the decision algorithms in actions carried out by actuators. Processors

give the robot reasoning ability that allows the treatment of large amount of data from

the sensors and the ability to execute complex algorithms in a short period of time.

1.1.2 Robot Software

Software is organised information in the form of operating systems, utilities, programs,

and applications that enable computers to work. The software is a very important ele-

ment because without it, a robot would be a machine incapable of generating intelligent

behaviour. Like any other software, software for robots must meet certain requirements:
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• Adaptability: a robot is situated in a dynamic and unpredictable scenario and in

constant interaction with the environment. Because of this feature the software

must be flexible to provide reliable answers fast and continuously.

• Multitasking: the nature of the software for robots must be multitasking, having

the ability to collect sensor data, to process them, to decide and to take action

simultaneously.

• Distributed: sensors with increasingly more complex data and larger computa-

tional load is difficult to be handled by a single component, that is why distributed

computing has almost become a standard in the development of robotic applica-

tions. In addition, coordinating multiple robots or use of other data sources exter-

nal to the robot itself, such as systems cameras to detect 3D robot in a controlled

environment, often is necessary.

• Dealing with heterogeneous hardware: often same type of sensor or actuator device

would require special software characteristics depending on its manufacturer. So

it is necessary the existence of an homogeneous software interface to unify access

to sensors and actuators regardless of manufacturer or model of the device. This

allows development of algorithms for a given robot, that can be exported to a

different one, enabling code reuse.

To help the developer responsible for making applications for robots, there are several

software platforms available (open or closed source code). These platforms typically

are installed on an operating system. They are the bridge between the robot and the

developer, and takes advantage of the characteristics of modern operating systems such

as hardware abstraction, multitasking capabilities and ease to create distributed appli-

cations with external libraries. Usually, if the robot model is widespread, the developer

would also have simulators available where code could be tested in a controlled environ-

ment.

1.2 Aerial Robotics - Unmanned Aerial Vehicles

Aerial Robotics is the branch of robotics that deals with the study of the behaviour

of autonomous unmanned aerial vehicles (UAV’s). An UAV is a powered aerial vehicle
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that does not carry any human operator, uses aerodynamic forces to provide lift, can fly

autonomously or be piloted remotely, can be expendable or recoverable, and can carry

a lethal or nonlethal payload. Therefore, missiles are not considered UAVs because the

vehicle itself is a weapon that is not reused, though it is also unmanned and in some cases

remotely guided. The flight of UAV’s may operate with various degrees of autonomy:

either under remote control by a human operator, or fully or intermittently autonomous,

by on-board computers.

The term “drone”, more widely used by the public, has encountered strong opposi-

tion from aviation professionals and government regulators, which make use of other

terms:unmanned aircraft system (UAS), unmanned-aircraft vehicle system (UAVS) re-

motely piloted aerial vehicle (RPAV) and remotely piloted aircraft system (RPAS).

In recent years, a new scientific and technological challenge in this area has been to

get these vehicles completely autonomous, that is, they can fly without driving, neither

supervision of a person.

UAV’s typically fall into one of six functional categories. However, there are differnt clas-

sifications regarding other aspects, although multi-role airframe platforms are becoming

more prevalent:

• Target and decoy: providing ground and aerial gunnery a target, that simulates

an enemy aircraft or missile.

• Reconnaissance: providing battlefield intelligence.

• Combat: providing attack capability for high-risk missions.

• Logistics: cargo delivering.

• Research and development: improve UAV technologies.

• Civil and commercial UAVs: agriculture, aerial photography, data collection.

As technology advances and costs are lowered, new sensors have been integrated into

these vehicles such as information adquisition (cameras, lasers...), batteries with greater

autonomy, most powerful computing systems, etc.. The cheapening of UAVs technology

has produced an increasing use of it in research centers throughout the world to have



7

these vehicles and getting achievements that were unthinkable a few years ago. This

fact is increasing the scope of use of UAV’s. They are used not only in military environ-

ments, but for forest services, agriculture, environment, hydrology, cartography, natural

disasters or geology.

1.2.1 Applications

UAV’s have been traditionally used for military purposes, it is the field where they are

more extended. Among other governments and organisations, in Spain we have INTA

(Instituto Nacional de Técnica Aeroespacial) [1]. For years INTA has been working in

a research program to develop the necessary technologies to design and build a range

of unmanned aircrafts. As a result of these activities, the institute has developed the

following products:

• SIVA: A sophisticated unmanned aerial surveillance multiple applications vehi-

cle for the civil and military field, which can be used as a vehicle for real-time

observation.

• ALO: A low cost observation and high reliability system suitable for the acquisition

of aerial images in civilian and military short range missions.

• ALBA: A complete system of aerial guided target suitable for improving the op-

eration of anti-aircraft artillery units through its training under real fire.

• MILANO [2]: An strategic system for monitoring and observing composed of

UAV’s linked via satellite with a ground control station. The station plans moni-

tors and controls both the aircraft and the shipped payloads. The aircraft has an

endurance of more than 20 hours and can operate at altitudes up to 26,000 feet.

• DIANA [3]: A system of high-performance aerial target developed to simulate real

threats, It can reach 200m/s and has a flight mode call ”wave-skim” that allows

the vehicle to fly under 15m height in the sea. Because of its versatility, the system

can be used as air training system for large numbers of current and future weapons.

The INTA DIANA 1A design is represented in the figure 1.5
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Figure 1.5: Diana UAV 1A

A commercial and popular prototype is Google’s Project Wing, the code name for the

company’s delivery service drone. It hopes to be launched in 2017. The company first

announced Project Wing in a YouTube video back in 2014, but since then, Google has

been keept in secret how this service will work. Now a new patent filing from the

company reveals how part of Project Wing deliveries packages. Delivery phase of the

wing is shown in the image 1.6.

Figure 1.6: Googlewing Wing

A wide extended use of UAV’s is the precision agriculture, which consists on the adqui-

sition of information of the terrain for the optimizing the resources expent on the labor

(figure 1.7 a). There are a wide variety of information sources useful for this sector, as

water resources, vegetation analysis, 3D mapping or desease detection. This advance on

agriculture would saves a great amount of resources and would help also to the sustain-

ability of the agriculture; optimizing the use of pesticides and water. There exist a wide

variety of enterprises and projects dedicated to precision agriculure. One great example

of it is PrecisionHawk shown in the figure 1.7 b.
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(a) Terrain analysis performed by UAV’s (b) precisionhawk

Figure 1.7: Precision agriculture

However, and despite the great progress made in recent years, there are still major ob-

stacles to overcome. Not only technological, but ethical and regulatory developments for

security reasons. One of the most promissing areas for UAV testing and development

are the competitions for UAV’s, that have been growing worldwide. These competi-

tions, where teams have to compete in creating an application to overcome a particular

challenge, are thought to encourage research into these technology.

The UAV Outback Challenge [4] is an annual competition for the development of un-

manned aerial vehicles. The competition was first held in 2007 and features an open

challenge for adults, and a high-school challenge. The event is aimed at promoting the

civilian use of unmanned aerial vehicles and the development of low-cost systems that

could be used for search and rescue missions. The event is one of the largest robotics and

UAV challenges in the world, with $50,000 on offer to the winner of the Open segment

of the Challenge. The events involve a thorough scoring system with an emphasis on

safety, capability and technical excellence. In particular there is a strong trend towards

autonomous flight. Notably, teams share technical details of their entries, allowing suc-

cessful innovations to proliferate and increasing the speed of technological development.

The format of the Challenge changes as technological improvements make the tasks more

achievable. In 2011 it changed to a search and rescue challenge. No teams successfully

completed the challenge until 2014, when several teams were successful. In 2016 the

open challenge will change to an automated medical retrieval task.

IARC (International Aerial Robotic Competition) [5] is an aerial robotics university

competition, founded in 1991 at the Georgia Institute of Technolog. The main purpose

of the competition is to advance in aerial robotics behavior. From 1991 through 2013
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they have proposed a total of 7 missions. Each of them is to develop a fully autonomous

behaviours that is able to pass the test. New missions are created every time that the

previous is overcome, so, a mission may be years unaddressed until one team achieves

the goal.

1.2.2 Research

ETH Zürich University, the Institute for Dynamic Systems and Control, is possibly the

most important research centre in quadcopters. Its facilities include the Flying Machine

Arena (FMA) [6] where a group of researchers conducted their experiments on the control

of UAV’s. This laboratory has a high precision motion capture system, a wireless network

and software developed by themselves that, using very sophisticated algorithms, allows

estimation and control of UAV’s. The motion capture system is able to locate multiple

objects at a rate that exceeds 200 frame per second. UAVs in space system can move

at a speed of 10 m/s, which is about 5 centimetres between two successive catches. The

information in this system intersects with other data and dynamic system models to

predict the state of an object in the future. The system uses this data to determine the

following command, which must be executed in the vehicle for a certain movement; and

then, the wireless network transmits it to the vehicle performing the action.

FMA group carries on several research projects, such as:

• “Quadcopter Pole Acrobatics” [7] system that allows quadcopters to balance an

inverted pendulum, to throw it into the air, and catch and balance it again on a

second vehicle. Based on models, a launch condition for the pole is derived and

used to design an optimal trajectory to throw the pole towards a second quad-

copter. An optimal catching instant is stimated and the corresponding position is

predicted using the current position and velocity. An algorithm generates a tra-

jectory for moving the catching vehicle to the predicted catching point in real time

(instant shown of the figure 1.8). By evaluating the pole state after the impact,

an adaptation strategy adapts the catch maneuver such that the pole rotates into

the upright equilibrium by itself.
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Figure 1.8: Poleacro quadcopter

• “Omni-Directional Aerial Vehicle” [8] design and control of a novel six degrees-

of-freedom aerial vehicle. Based on a static force and torque analysis for generic

actuator configurations, it derives an eight-rotor configuration that maximises the

vehicle’s agility in any direction. The proposed vehicle design possesses full force

and torque authority in all three dimensions. A control strategy that allows for

exploiting the vehicle’s decoupled translational and rotational dynamics is intro-

duced. A prototype of the proposed vehicle design is built using reversible motor-

propeller actuators, making it capable of flying at any orientation (figure 1.9).

Figure 1.9: Omni-Directional Aerial Vehicle

• “Tailsitter” an hybrid vehicle that takes off vertically like a multirotor but is also

able to fly horizontally like a fixed-wing airplane. A new algorithm for robustly

controlling a tailsitter flying machine in hover position has been developed. Using

the algorithm, the tailsitter is able to recover from any orientation, including upside

down.
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• “Distributed Flight Array” is a flying platform consisting of multiple autonomous

single propeller vehicles that are able to drive, dock with their peers, and fly in

a coordinated mode. Once in flight the array hovers for a few minutes, then falls

back to the ground, only to repeat the cycle again.

The SHERPA project [9], found by European Union, aims to develop a mixed ground

and aerial robotic platform to support search and rescue activities in a real-world hostile

environment like the alpine scenario. The prototype design can be seen in the figure

1.10.

Figure 1.10: Sherpa Box

The technological platform and the alpine rescuing mission are the scenario to address

a number of research topics about cognition and control pertinent to the call. What

makes the project potentially very rich from a scientific viewpoint is the heterogeneity

and the capabilities to be owned by the different actors of the SHERPA system. They

all interact and collaborate with each other, with their own features and capabilities,

toward the achievement of a common goal.

The ARCAS (Aerial Robotics Cooperative Assembly System) [10] project proposes the

development and experimental validation of the first cooperative free-flying robot system

for assembly and structure construction. The project will pave the way for a large

number of applications, including the building of platforms for evacuation of people or

landing aircraft, the inspection and maintenance of facilities and the construction of

structures in inaccessible sites and in the space.

ARCAS is funded by the European Union and involves two Spanish universities, ”Uni-

versidad de Sevilla” and the ”Universidad Politécnica de Cataluña”.
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1.3 Multi-Rotor Aircraft

The UAVs type of VTOL (Vertical Take-Off and Landing) are vehicles with the ability

to hover, vertical take-off and landing. These vehicles are able to maintain the hover

height and direction, thus remain static at a point at a certain height. A clear example of

VTOL vehicle type are helicopters, although there are aircrafts with VTOL capabilities

as the Harrier or the Boeing V-22 Osprey, shown in the figure 1.11.

Figure 1.11: Boeing V-22 Osprey

A multirotor or multicopter is a VTOL rotorcraft with more than two rotors. An

advantage of multirotor aircraft is the simpler rotor mechanics required for flight control.

Unlike single-rotor and double-rotor helicopters, which use complex variable pitch rotors,

whose pitch vary as the blade rotates for flight stability and control, multirotors often

use fixed-pitch blades. Control of vehicle motion is achieved by varying the relative

speed of each rotor to change the thrust and torque produced by each.

Due to their ease of both construction and control, multirotor aircrafts are frequently

used in radio controlled aircrafts and UAV projects in which the names tricopter, quad-

copter, hexacopter and octocopter are frequently used to refer to 3, 4, 6 and 8 rotor

vehicle, respectively.

In order to allow more power, more stability and reduced weight coaxial rotors can be

employed, in which each arm has two motors, running in opposite directions (one facing

up and one facing down).
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1.3.1 Flight Principles

As airplanes or helicopters, multirotors can fly due to movement of a wing (rotor blades)

through the air. In this case the blades describe a circular movement unlike planes that

need horizontal movement of the vehicle to generate lift. Because the air passes through

a wing, a pressure differential is produced. The pressure in the upper surface (extrados)

is less than the pressure at the bottom surface (intrados). This pressure difference results

in the lift force.

When in an aircraft the lift is greater than the weight, it begins to fly. However, the

ability to generate lift is not the only problem facing the VTOL vehicles. If we have

a helicopter with a single motor, with the ability to generate sufficient lift to raise the

vehicle off the ground, the vehicle would turn around the motor shaft axis in the opposite

direction to the blades rotation. This is because the aerodynamic force resultant of the

propeller has a horizontal component opposite the sense of rotation of the blades. This

phenomenon induces a momentum parallel to propeller rotor axis. For maintaining a

stable flight, this momentum has to be compensated; in a conventional helicopter, this is

done by adding a tail rotor, that spinning perpendicular to the main one, compensating

that momentum. The figure 1.12 shows the forces and momentums involved.

Figure 1.12: Torque compensation

Multirotors take advantage of these momentum generated by its rotor to stabilise itself

and manoeuver. These vehicles typically use pairs of rotor propellers to compensate each

other momentum and varies their spinning velocity to achieve and control the desired

momentum. The simplest way to explain this effect is with a quadcopter (4 rotors

vehicle).
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With this configuration, based on the typical aeronautic body reference frame (x-front,

y-right, z-down), if the rotors rotating in the counter-clockwise are fed with more power,

the vehicle would turn to the right. This shift in the horizontal plane, which makes the

vehicle turning on itself, is called yaw.

In the case of extend the power to the rotors in one end, for example the rear, the

quadcopter would shift causing the vehicle turn head towards the floor because the raise

of lift vector in that pair of rotors. Notice that the momentum in each rotor is also

increased, but as they do it the same amount and have opposite directions, the rise

in yaw momentum is compensated. This movement is known as pitch, and produces

the horizontal linear movement of the aircraft due to the inclination of the lift vector.

The same effect is applied in different pairs of rotors to produce the lateral inclination

movement, or roll, and its corresponding lateral movement. The figure 1.13 represents

examples of different states of the rotors to generate desire movements.

(a) Yaw (b) Pitch

(c) Roll (d) Throttle

Figure 1.13: Rotors configurations

With this setup, the vehicle reaches the 6 DOF [11](figure 1.14) for a complete control

of the flight: linear velocities (x,y,z) and angular velocities (pitch, roll and yaw).
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Figure 1.14: Roll, Pitch and Yaw

1.4 UAV Background at the URJC Robotis Laboratory

In 2013, within the robotics laboratory at the Rey Juan Carlos University. a new line of

research on UAV‘s was launched, which aims to develop new applications in this sector

implementing computer vision techniques to control vehicles and perform autonomous

complex missions. The goal is that applications developed in these projects are easily

exported to other vehicles. Thus, if a member of the group is developing a navigation

algorithm for a certain vehicle, the same algorithm can be used for other similar ones.

Currently several projects have been developed in the URJC robotics laboratory, such as

vision, self-localization and navigation, which are the direct antecedents of this project.

Numerous robotic components have been designed as drivers, algorithm applications

and support for behavioral simulations for robots as NAO, ArDrone, FX-61 Phantom,

Pioneer and Kobuki, among others. The work of Alberto Martin Florido and Daniel

Yagüe are highlighted

The project of Alberto Martin Florido involves the creation of ardrons server com-

ponent, which gave JdeRobot support for Parrot ArDrone version 1.0 , allowing access

to its sensors and actuators. This work also includes a tool for remotely controlling

the vehicle and reading information from its sensors through a graphic interface, the

uav viewer component. In addition, an algorithm for vision and autonomous naviga-

tion has been developed within the component. This algorithm allows the quadcopter

to track objects in three dimensions using as source of information from the front and

ventral cameras.
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Figure 1.15: uav viewer component intercace

Daniel Yagüe’s project aim is to provide support for aerial robots in the JdeRobot envi-

ronment within the Gazebo simulator, so that there is a realistic response of the vehicle

in order for future people to program autonomous behaviour for any application. Along

with this support, various navigation applications were designed and validated experi-

mentally; for example, beacon tracking applications using the position information, road

tracking and following through the ventral camera, locating objects in a determined area

and tracking of other aerial vehicle.

Figure 1.16: Road tracking Daniel Yagüe´s project



Chapter 2

Objectives

In this chapter the purpose, goals and requirements of this project described, as well as

the methodology and work plan to achieve them successfully.

2.1 Project Objective

The general aim of the project is to design and build an UAV vehicle, provide it with

autonomous intelligence and make it capable to fulfil an outdoor mission, in the most

robust and efficient possible way. For meeting the objective, the problem has been

divided into three simpler subgoals:

• Design and construction of an open-source aerial hardware platform able to offer

to this project and future ones a reliable and effective vehicle for a long research.

• Program the software driver to provide the vehicle connection with JdeRobot [12]

infrastructure and supply all the communication channels and information offered

by the vehicle sensors and motors.

• Plan and execute an example autonomous mission, amenable to be used in real

problems.

18
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2.2 Requirements

The requirements of the project have to be defined in order to ensure its consistency, its

correct development and to avoid losing focus in any step of the project.

• The developed infrastructure should be integrated in JdeRobot platform.

• The infrastructure would perform its mission having concern of its level of abstrac-

tion, interfering as less as possible with higher or lower levels of abstraction, as

the vehicle stabilisation process for example.

• The interfaces between components would make use, as much as possible, of the

existing ones; defined in JdeRobot and Autopilot source code.

• All the supplied and resulting code should be open-source, for future projects to

take advantages from it.

• The communication channels should stream with low latency and be reliable.

• The infrastructure should make an efficient use of the computational resources.

2.3 Working Methodology

Given the nature of the project, and like any other engineering project, using a model

that defines the life cycle of the application is necessary. For the development of this

project we have decided to adopt the spiral development model. This model was defined

by Barry Boehm in 1986 and it is based on a spiral in which each iteration represents a

set of activities. Eeach iteration is divided into the following activities:

• Determine targets: this activity is performed in order to define the current itera-

tion. Following this model the final goal of the project is divided into sub-goals,

which are stablished in section 2.1.

• Risk Analysis: This activity is carried out by several studies in order to meet

potential threats or unwanted events that may occur in the current target.

• Development and test: at this point verify the correct operation performed in

iteration to correct the errors and that they do not reach in the following iterations.
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• Planning: In this activity the previous phases will be reviewed to determine

whether they should continue with future activities.

Figure 2.1: Spiral development model

To perform these activities and iterations we held weekly meetings throughout the de-

velopment work. Thus, every week a new subgoal was established. If the previous had

been completed, we then planned the next. If they had not been completed, made the

current target deeper to correct errors or re-plan it. During the course of the project

a web logbook [13] was fed and the different goals of the project where published. In

addition, all the source code generated is kept in a repository with version control sys-

tem (GitHub [14]) accessible from the Internet. Thus the tutor and any other interested

person has access at any time to the code.

2.4 Work Plan

The execution phase of the project has followed this plan:

1. Design and construction of the vehicle platform

a) Conception: goals evaluation, design requirements establishment for the correct

fulfilment of the achievements and platform type choice between all the available

ones (fix wing, helicopter, multirotor, etc...).
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b) Design: market study, preliminary design and final components choice regarding

established requirements, resulting on a theoretical platform design with estimated

specifications

c) Integration: construction of the platform itself and connection of all the compo-

nent for making them work properly. Also integrating the components in an space

efficient way.

d) Initial configuration: auto pilot initialisation and configuration for our platform

in concrete.

e) Flight test: verification of the correct performance of the platform as a system.

2. Development of the Driver software

a) Learn software background: JdeRobot infrastructure, robotics, computer vision

and communication protocol; theory necessary for the correct development of the

driver.

b) Develop the driver software: programing of the server that supply to the infras-

tructure all the necessary communication channels, provide information captured

by sensors and send commands to the vehicle

c) Test driver software: verify the correct performance of the driver.

3. Client software and Autonomous mission

a) Client software development: software that interprets the data acquired and en-

ables decision making.

b) Mission concept: mission plan, risk analysis and validation

c) Client-mission integration: Program the mission, carry out the decision making

and send actuation commands.

d) Final Flight test: verify the correct performance of the whole project.
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Infrastructure

This chapter describes the infrastructure that this project is based on; mainly software

which the project uses as starting point. The code developed in this project trusts on

the performance of the software following described.

3.1 Ardupilot

ArduPilot [15] (also ArduPilotMega - APM) is an open source UAV’s platform, able to

control autonomous multicopters, fixed-wing aircraft, traditional helicopters and ground

rovers. It was created in 2007 by the DIY Drones community. It is based on the Ar-

duino open-source electronics prototyping platform. The first Ardupilot version was

based on a thermopile, which relies on determining the location of the horizon rel-

ative to the aircraft by measuring the difference in temperature between the sky and

the ground. Later, the system was improved to replace thermopile with an Inertial

Measurement Unit (IMU) using a combination of accelerometers, gyroscopes and mag-

netometers. Ardupilot is an award winning platform that won the 2012 and 2014 UAV

Outback Challenge competitions.

ArduPilot contains a control system on board making use of sensors, it is capable of

automatic manoeuvres such as take-off, stabilisation, landing and the possibility to hover

at a point at a certain height. This system allows configuration of certain parameters

and reception values for the movement of the drone and allows to plug a great variety

of sensors to configure the vehicle for the desired purpose.
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Today, the ArduPilot project has evolved to a range of hardware and software products,

including the APM and Pixhawk/PX4 [16] line of autopilots, and the ArduCopter,

ArduPlane and ArduRover software projects.

The free software approach from Ardupilot is similar to that of the PX4/Pixhawk and

Paparazzi Project [17], in all of them low cost and their availability enable its use in

small remotely piloted aircrafts, such as micro air vehicles and miniature UAV’s.

ArduPilot is the flight controller sofware operating in PixHawk board and this project

makes use of its main functions to low level control, stabilising the vehicle and performing

high level point to point navigation. It also helps the project with sensor drivers and

data fusion. The version used is the ArduCopter 3.3.2

Features:

• C++ open source based code.

• High quality auto-level and auto-altitude control.

• Offers both enhanced remote control flight (via a number of intelligent flight

modes) and execution of autonomous missions.

• Worldwide spread and tested code with a large community support.

• Multiple sensor options.

• Allows different communication channels (MAVLink protocol).

• Endless options for customisation and expanded mission capabilities.

3.2 APM Mission Planner

Mission Planner version 2.0 [18] is a full-featured ground station application for the

ArduPilot open source autopilot project. Developed by Michael Oborne, it is part of

the ArduPilot project. It can be used as a configuration utility or as a dynamic control

supplement for autonomous vehicles. The mission interface of APM is shown in the

figure 3.1.
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Figure 3.1: Mission Planner

The main uses to which APM mission planner is used are:

• Load the firmware (the software) into the autopilot (APM, PX4...) that controls

te vehicle.

• Setup, configure, and tune the vehicle for optimum performance.

• Plan, save and load autonomous missions into the autopilot with simple point-

and-click way-point entry on Google maps or other.

• Download and analyse mission logs created by the autopilot.

• Interface with a PC flight simulator to create a full hardware-in-the-loop UAV

simulator.

• With appropriate telemetry hardware, monitor the vehicle’s status while in oper-

ation.

It is the platform through which the code and initial configuration of the vehicle are

uploaded to the PixHawk.

3.3 MAVLink Protocol

MAVLink (Micro Air Vehicle Communication Protocol) version 1.0 [19] is a very lightweight,

header-only message marshalling library for micro air vehicles.



25

It can pack C-structs over serial channels with high efficiency and send these packets to

the ground control station. It has been extensively tested on the PX4, Pixhawk, APM

and Parrot AR.Drone platforms and serves the project as a communication backbone

for the MCU/IMU communication as well as for Linux interprocess and ground link

communication.

MAVLink was redeveloped by Lorenz Meier [20]. MAVLink messages are defined in

XML and then converted to C/C++, C# or Python code, every message is identifiable

by the ID field on the packet, and the payload contains the data from the message. The

general message structure is divided in 8 fields:

• Start-of-frame: Denotes the start of frame transmission

• Pay-load-length: length of payload (n)

• Packet sequence: Each component counts up its sending sequence. Allows to detect

packet loss.

• System ID: Identification of the sending system. Allows to differentiate several

systems on the same network.

• Component ID: Identification of the sending component. Allows to differentiate

several components of the same system

• Message ID: Identification of the message defines what the payload “means” and

how it should be correctly decoded.

• Payload: The data into the message, depends on the message id.

• Cyclic redundancy check: Check-sum of the entire packet, excluding the packet

start sign (LSB to MSB)

The message detailed fields could be found here [21].

However, this protocol does not limit to a message marshalling library, MAVLink ecosys-

tem encompasses a great variety of programs and applications for the use of this protocol.

This is one of the reasons why it has become the most popular protocol between MAV

(micro aerial vehicle) developers, many projects are based on this protocol, such as

ArduPilot, ETH Flying Machine Arena or Sky-Drones [22] among others.
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3.4 MAVProxy

MAVProxy is a fully-functioning GCS (group communication system) for UAV’s, version

1.4.38 is the one used in this project. It is a minimalist, portable and extendable GCS for

any UAV supporting the MAVLink protocol. It has a number of key features, including

the ability to forward messages from UAV’s over the network via UDP (User Datagram

Protocol) to multiple other ground station software on other devices.

• It is a command-line, console based app. There are plugins included in MAVProxy

to provide a basic GUI.

• It is written in Python.

• It is open source.

• It is portable; it should run on any POSIX OS with python, pyserial, and function

calls, which means Linux, OS X, Windows, and others.

• It supports loadable modules, and has modules to support console/s, moving maps,

joysticks, antenna trackers, etc...

3.5 JdeRobot

JdeRobot [12] is a software development suite for robotics and computer vision applica-

tions. These domains include sensors (for instance, cameras), actuators, and intelligent

software in between. It acts as robotic sofware enviroment for the development of the

components of this project, making use of its interfaces, driver and tools of the version

5.3.2

It has been designed to help in programming such intelligent software. It is mostly

written in C++ language and provides a distributed component-based programming

environment where the application program is made up of a collection of several concur-

rent asynchronous components. Components may run in different computers and they

are connected using ICE communication middleware. Components may be written in

C++, Python, Java... and all of them interoperate through explicit ICE interfaces.
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JdeRobot simplifies the access to hardware devices from the control program. Getting

sensor measurements is as simple as calling a local function, and ordering motor com-

mands as easy as calling another local function. The platform attaches those calls to

remote invocations on the components connected to the sensor or the actuator devices.

They can be connected to real sensors and actuators or simulated ones, both locally

or remotely using the network. Those functions build the API for the Hardware Ab-

straction Layer. The robotic application get the sensor readings and order the actuator

commands using that API to unfold its behaviour.

Several driver components have been developed to support different physical sensors,

actuators and simulators. Currently supported robots and devices:

• RGBD sensors: Kinect and Kinect2 from Microsoft, Asus Xtion.

• Wheeled robots: Kobuki (TurtleBot) from Yujin Robot and Pioneer from Mo-

bileRobotics Inc.

• ArDrone quadrotor from Parrot.

• Gazebo simulator.

• Firewire cameras, USB cameras, video files (mpeg, avi...), IP cameras (like Axis).

• Pantilt unit PTU-D46 from Directed Perception Inc.

• Laser Scanners: LMS from SICK and URG from Hokuyo.

• Nao humanoid from Aldebaran.

• EVI PTZ camera from Sony.

• Wiimote.

• X10 home automation devices.

JdeRobot includes several robot programming tools and libraries. First, viewers and

teleoperators for several robots, its sensors and motors. Second, a camera calibration

component and a tuning tool for colour filters. Third, VisualHFSM tool for programming

robot behaviour using hierarchical Finite State Machines. And several more. In addition,
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it also provides a library to develop fuzzy controllers, a library for projective geometry

and computer vision processing.

Each component may have its own independent Graphical User Interface or none at all.

Currently, GTK and Qt libraries are supported, and several examples of OpenGL for

3D graphics with both libraries are included.

JdeRobot is open-source software, licensed as GPL and LGPL. It also uses third-party

software like Gazebo simulator, ROS, OpenGL, GTK, Qt, Player, Stage, GSL, OpenCV,

PCL, Eigen, Ogre

3.6 ICE

ICE (Internet Communications Engine) [23] is an object-oriented middleware that pro-

vides remote procedure calls, grid computing and client / server functionality developed

by ZeroC under a dual GNU GPL and a proprietary license. It is available for C ++,

Java, .Net languages, Objective-C, Python, PHP and Ruby, in most operating systems.

There is also a version for mobile phones called Ice-e. ICE allows to develop distributed

applications with minimal effort, abstracting the programmer to interact with low net-

work interfaces. The process of application development should focus only on the logic

and not in the peculiarities of the network. It is a multilanguage middleware platform

and thus, we can implement clients and servers in different programming languages and

on different platforms. ICE works with distributed objects, so that two objects in our

application need not be running on the same machine. Objects can be on different

machines and communicate across network through the sending of messages between

them.

JdeRobot uses ICE for communication between its nodes, therefore, the task of reading

values from a sensor or command orders to a robot is as simple as running a method

of an object in the application. A significant advantage is the possibility to develop

applications independent from context. A programmer may develop a driver in C ++ for

a particular robot that is embedded in the robot, on the other hand, another developer

can develop an application for image processing in Python that runs on a PC. Through

ICE we can use these two applications, which originally were independent, as a single
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application without having to worry about low-level communications. With this we can

develop modular applications of great complexity without additional effort.

3.7 OpenCV

OpenCV (Open Source Computer Vision Library) [24] is a library of artificial vision

developed by Intel. It is under a BSD license, which allows free use for commercial

purposes. This means that is commonly used for all kinds of projects, from surveillance

systems, motion detection and image processing, as in the case of this project.

It is written in C ++, multiplatform and contains interfaces for C, C++, Java, Python

and MATLAB. Having been developed by Intel it provides system integrated perfor-

mance primitives, which are a set of routines under specific level for Intel (IPP) proces-

sors.



Chapter 4

Hardware Platform

In this chapter the systems and subsystems that compose the vehicle platform are going

to be described. First, the conception phase, design and integration process. Second, the

description and technical specifications of the components and of the complete vehicle.

4.1 Design

Based on the established objectives, the aerial vehicle type selection is the first thing to

be done. A quadcopter configuration is the most effective configuration for our purposes,

due to its manoeuvrability, ability to hover, simplicity compared with other multirotors

or helicopters and availability of pieces offered in the market.

The vehicle we would like to design and build from scratch should try to comply as much

as possible with the following features:

• Medium size, between 2-5kg weight and less than 1.5m size

• Open source software

• Reliable

• Several communication channels

• Usable at outdoor scenarios

• Modular design

30
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• Function extendable

• Cost efficient

In the design of a quadcopter, or any multirotor vehicle, the correct choices in propeller

design (size and pitch), electric motor (size and power) and power source characteristics

(based mainly on the vehicle weight and desired vehicle response) are crucial. These

parameters define the effectiveness and efficiency of the vehicle that are directly reflected

on manoeuvrability and endurance of the vehicle.

Many facts take part in the vehicle design and there is not an unique way to achieve

certain vehicle characteristics. Only trial-failure method, combined with the experience,

produces successful results. In engineering, and more in this aspect, theory and reality

are parallel lines, not convergent ones. Table 4.1 shows the variables of the configuration

to be decided and their estimated effects:

Efficiency /

Flight time

Manoeuvrability

/ Response

Maximum

thrust

Weight Cost

Propeller size ^^ __ ^^^ ∼ ∼

Propeller pitch __ ^ ^^ ∼ ∼

Motor power _ ^^ ∼ ^ ^^

Motor revolutions __ ^^^ ^^ ∼ ∼

Battery size ^^^ _ ∼ ^^^ ^^^

Battery voltage __ ^^ ^^ ^^^ ^^^

Table 4.1: Effects of the configuration variables to be considered

After several sketches, the final vehicle design makes use of the components shown in

the figure 4.1:
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Figure 4.1: Pieces and componets of the vehicle

Integration process is the task of placing, connecting and securing the different com-

ponents, making a smart use of the available space, not forgetting the weight balance.

Although it seems an easy task, in reality integration is a complex and long process

in which it is necessary to deal with electronics, electromagnetics, chemistry, materials

theory and soldering.

As a result, the final vehicle set up is reached and now the components work together

as an unique and complex system: the UAV was named as ”HoverWasp” (figure 4.2).

Figure 4.2: HoverWasp vehicle
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Vehicle specifications:

� Rotor axis distance: 650mm diagonal

� Vehicle span: 950mm diagonal

� TOW: 2000g

� MTOW: 3000g

� Flight time: 25min

� Range: undefined

� Maximum combined thrust: 6000g

� Maximum combined power: 1760W

The vehicle could be divided into different subsystems connected together into the same

frame (Figure 4.3), each one designed and built for the fullfilment of the tasks required.

They are described in detail in the following sections of this chapter.

Figure 4.3: Hardware design
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4.2 Frame subsystem

The skeleton is basically the frame in wich all the components are installed. The Tarot

Iron Man 650 is built by Toray 3K carbon fiber woven board, with 3K hollow twill pure

carbon fiber tube and a full CNC machining plate designed with higher standards. All

the carbon and CNC of the full frame weighs only 476 grams. The arms folding design

makes it highly portable and is highly adjustable to meet the needs of most utilitarian

applications.

Features:

� Fold-ability for transportation and storage

� Toray 3K carbon fibre

� Lightweight

� Folding landing gear

� Motor-to-motor size: 650mm

� Weight: 476g

� Height from ground to lower rods: 180mm

� Height from ground to top: 220mm

4.3 Energy subsystem

The energy subsystem is responsible for providing the different componets sufficient

power for their correct performance. The power source of the vehicle is an unique DC

source. It is a LiPo (Lithium Polimer) battery, a class of batteries that make use of a

solid polymer electrolyte (SPE) such as polyethylene oxide (PEO) and characterized for

their high performance and their good power-to-weight ratio.

In HoverWasp vehicle a four cells battery is used, that delivers a mean of 14.5 V. However,

not all the componets work with that amount of voltage. This is why the vehicle makes

use of a PDB (Power Distribution Board) and a voltage step-down, that supply different

voltages to feed different components.
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4.4 Propulsion subsystem

The propulsion subsystem is responsible for the generation of the forces and momentums

for making the vehicle fly. It is composed for four electric motors, propellers and ESC’s

(Electric Speed Controller).

The ESC’s are conected to the PDB for energy feeding and to the Pixhawk board for the

input PWM signal, and are in charge of transforming the DC current from the energy

subsystem into AC to control the brushless motors. Their correct performance is crucial

for the manoeuvrability and stability of the vehicle.

The motors and propellers transmit the electric force into movement and into aerody-

namic forces and momentums.

4.4.1 T-motor MT2814 710KV 440W antigravity series

T-motor is a worldwide leading supplier of components and systems for the aerial pho-

tography, industry uses and commercial applications in the precision drive technology

sector.

Specifications of the T-motor MT2814:

� KV: 710

� Max Continuous Power: 440W

� Max Continuous current: 27A

� Max efficiency current(6-18A): more than 83

� Internal resistance: 125mW

� Configuration: 12N14P

� Stator Diameter: 28mm

� Stator Length: 14mm

� Shaft Diameter: 4mm

� Motor Dimensions: 35mm x 36mm
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� Weight: 120g

� ldle current (10v): 0.4A

� N°of Cells (Lipo): 3S - 4S

Figure 4.4 stores the data of the motor testing performed by the manufacturer.

Figure 4.4: Characteristic and efficiency table of the T-motor MT2814 710kV 440W



37

4.5 Sensor subsystem

This subsystem is responsible of obtaining the enviroment data and measurements about

vehicle state (attitude, position...). It is composed by different components spread over

the vehicle:

� GPS: Ublox LEA-6H.

� Gyros: ST Micro L3GD20 3-axis 16-bit and MPU 6000 3-axis both installed inside

Pixhawk.

� Accelerometers: ST Micro LSM303D 3-axis 14-bit and MPU 6000 3-axis both

installed inside Pixhawk.

� Compass: HMC5883L digital compass.

� Barometer: MEAS MS5611 precission barometer.

� Camera: ELP 1080 OV2710 sensor.

Summing up, they offer information about vehicle position and attitude and images

of the surrounding and gives the information to the Pixhawk board and the on-board

computer.

4.6 Communication subsystem

There are several communication channels in the vehicle, each one designed for a different

purpose:

� Radio control (2.4GHz): for manual RC control and recovery, it is stablished

between FrSky X8R module and Taranis transmitter controller.

� Wifi: installed inside the on-board computer, it provides communication chan-

nel, via ssh synchronization, for running software components inside the on-board

computer.

� Bluethooth: installed also inside the on-board compute, it is not used in this

project
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� Telemetry (433MHz): MAVLink Protocol based channel for monitoring vehicle

state.

4.7 Computing subsystem

The computational resources of the vehicle are distributed in two boards, each of them

in charge of a different level of control of the vehicle:

� Pixhawk: responsible for the low level of control, it acts as intermediary between

the high level of control, and the sensors and actuators. It stabilises the vehicle

with the attitude information, compute point-to-point navigation and includes an

autopilot.

� Intel Compute Stick (ICS): it is the on-board computer in charged of high level con-

trol, ICS processes the images, obtains information given by Pixhawk and makes

decisions which are delivered to the low level in order to be executed.

4.7.1 Pixhawk board from 3Drobotics

Pixhawk is an advanced autopilot system designed by the PX4 open-hardware project

and manufactured by 3D Robotics. It features advanced processor and sensor technology

from ST Microelectronics® and a NuttX real-time operating system, delivering incred-

ible performance, flexibility and reliability for controlling many autonomous vehicles.

The benefits of the Pixhawk system include integrated multithreading, a Unix/Linux-

like programming environment, completely new autopilot functions such as sophisticated

scripting of missions and flight behaviour, and a custom PX4 driver layer ensuring

tight timing across all processes. Pixhawk allows existing APM and PX4 operators to

seamlessly transition to this system and lowers the barriers to entry for new users to

participate in the world of autonomous aerial vehicles.

Features:

� Advanced 32 bit ARM Cortex® M4 Processor running NuttX RTOS
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� 14 PWM/servo outputs (8 with failsafe and manual override, 6 auxiliary, high-

power compatible)

� Abundant connectivity options for additional peripherals (UART, I2C, CAN)

� Integrated backup system for in-flight recovery and manual override with dedicated

processor and stand-alone power supply

� Backup system integrates mixing, providing consistent autopilot and manual over-

ride mixing modes

� Redundant power supply inputs and automatic failover

� External safety button for easy motor activation

� Multicolor LED indicator High-power, multi-tone piezo audio indicator

� MicroSD card for long-time high-rate logging

Specifications:

� Microprocessor:

– 32-bit STM32F427 Cortex M4 core with FPU

– 168 MHz/256 KB RAM/2 MB Flash

– 32 bit STM32F103 failsafe co-processor

� Sensors:

– ST Micro L3GD20 3-axis 16-bit gyroscope

– ST Micro LSM303D 3-axis 14-bit accelerometer / magnetometer

– Invensense MPU 6000 3-axis accelerometer/gyroscope

– MEAS MS5611 barometer

� Interfaces:

– 5x UART (serial ports), one high-power capable, 2x with HW flow control

– 2x CAN

– Spektrum DSM / DSM2 / DSM-X® Satellite compatible input up to DX8

(DX9 and above not supported)
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– Futaba S.BUS® compatible input and output

– PPM sum signal

– RSSI (PWM or voltage) input

– I2C®

– SPI

– 3.3 and 6.6V ADC inputs

– External micro USB port

� Power System:

– Ideal diode controller with automatic failover

– Servo rail high-power (7 V) and high-current ready

– All peripheral outputs over-current protected, all inputs ESD protected

� Weight and Dimensions:

– Weight: 38g

– Width: 50mm

– Thickness: 15.5mm

– Length: 81.5mm

4.7.2 Intel Compute Stick STCK1 A8 LFC

Intel Compute Stick (ICS) is a cost-efficient computer for portable uses. It is a Mini PC

with full-size performance, reliability, and ease of use. Intel Compute Stick has all the

performance needed for running thin client, embedded or cloud applications.

ICS computer makes use of Linux Ubuntu 14.04 as operating system and the high level

software components used in the project are intalled in it, as JdeRobot. This computer

performs the computational effort required by the driver and the applications described

on the chapters 5 and 6.

� Processor: IntelrAtom Processor Z3735F

� Graphics: IntelrHD graphics via HDMI
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� Audio: IntelrHD audio via HDMI

� System memory: 1GB soldered, single channel, DDR3L memory

� Storage: 8GB eMMC

� Connectivity: Integrated 802.11 bgn wireless, Bluetooth

� 4.0, USB2.2, microSD slot

� Power requirements: 5V 2A DC

� Size: 103mm x 37mm x 12mm

4.8 Configuration and testing

To configure the Pixhawk firmware and update it, APM mission planner software has

been used. This program offers a lot of tools that help the user to access to the soft-

ware without fighting with the code lines. With this program some configurations were

performed: update of firmware, calibration of some sensors (compass, gyros and ac-

celerometers), calibration of the transmitter and setting of the different flight modes on

the transmitter.

Prior to the vehicle first flight, it is necessary to make some tests on the ground, verifying

the correct operation of the motors and the radiolink for safety reasons. Then, the flight

test were performed:

� Fully manual: the main objective was to verify that all the components were

connected and working correctly, almost without software intervention.

� Autonomous stabilisation and landing: in this case, we verified the correct working

of the positioning sensors (gyros, accelerometers, compass, barometer and GPS)

and tested the low level software performance.

� Simple waypoint mission: verification of the correct use of the point to point

navigation that is previously configured and validation of the GPS and IMU data

fusion inside the Pixhawk.
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Figure 4.5: HoverWasp flight test

The different flight tests have been crucial for the development of the vehicle and its

correct validation. Even with a complete success in the attemps, some changes were

done in the vehicle in order to improve its performance, given as a result the vehicle

described in this chapter:

� Change the power source from 3S to 4S, rising the velocity of the propeller and

motor and improving substantially the response and the behaviour with harder

weather conditions.

� Change the propeller from 14 inches to 12 inches of size, to maintain general

amount of thrust with the power source change, reducing also the motor amperage

drainage.

� Elimination of analogic video communication channel.

� Change of the RC channel to improve robustness against electromagnetic noise.

Once the flight tests of the vehicle platform were performed, the quadcopter is ready to

start the software development. The next objective for the system was to be connected

with JdeRobot, it is described in the chapter 5.



Chapter 5

Software Driver

This chapter describes the software component developed to autonomously interact with

the drone from the applications. It is responsible for accessing the sensors and actuators

of the vehicle using MAVLink protocol communication messages, and for translating

them into JdeRobot ICE interfaces. The drone applications will access to the vehicle

sensors and actuators talking to this driver.

5.1 Design

MAVLinkServer is a driver based on MAVProxy software (presented in section 3.4) and

developed to act as a translator middleware. It has been designed as a JdeRobot driver in

Python language. This commponent is also responsible for maintaining communication

channels open and updated, both upstream and downstream.

MAVLinkServer relies on the MAVProxy parser, the part of the program that is in

charge of the management of the MAVLink messages to and from the Pixhawk board.

It establishes connection with Pixhawk autopilot, maintains the communication channel

operative, acquires, interprets messages, creates and sends new ones with the information

requested or ordered by the application.

The developed code is mainly in charge of the management of the JdeRobot interfaces. It

is able to handle the information given by the MAVProxy side. It regulates the creation

and modification of the classes where information is temporally stored and opens ICE

communication channels to make the component usable for JdeRobot applications.

43
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These two sides of the component provide a reliable and muli-compatible driver thanks

to the ICE features; MAVLinkServer may connect with applications written in other

different languages, like C++, Python or Java, through JdeRobot interfaces. The figure

5.1 represents an scheme of the blocks inside MAVLinkServer and its connections to

other components.

Figure 5.1: server Scheme

To accomplish the objectives of the project, MAVLinkServer needs to provide a certain

level of control of the vehicle. At first attempt, this component was thought to provide

”intermediate” control based on velocity commands, but this version of MAVProxy does

not implement them. Facing this problem, MAVLinkServer was redesigned to make use

of a higher level of control: waypoints for drone navigation using Pose3D JdeRobot

interface.

The used JdeRobot interfaces in this project are Pose3D (one providing the measured ve-

hicle position and attitude and other one for ordering a waypoint position) and CMDVel

(for sending the landing decision). Note that Pose3D makes use of quaternions instead

of Euler angles. This is done to avoid angle singularities and overlaps and computation-

ally they are simpler than other attitude formalisms such as Euler angles or a direction

cosine matrix.
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Pose3D

1 Pose3DData{

2 f loat x ; /* x coord */

3 f loat y ; /* y coord */

4 f loat z ; /* z coord */

5 f loat h ; /* */

6 f loat q0 ; /* qw */

7 f loat q1 ; /* qx */

8 f loat q2 ; /* qy */

9 f loat q3 ; /* qz */

10 } ;

CMDVel

1 class CMDVelData{

2 f loat l i nearX ;

3 f loat l i nearY ;

4 f loat l i n e a rZ ;

5 f loat angularX ;

6 f loat angularY ;

7 f loat angularZ ;

8 } ;

5.2 Implementation

First step is to define the corresponding interfaces (explained in section 5.1). MAVLinkServer

supplies all the JdeRobot interfaces for the drone access from any external component.

Here it is an example of Pose3D interface.

1 import jderobot , time , thread ing

2 lock = thread ing . Lock ( )

3

4 class Pose3DI ( jde robot . Pose3D) :

5

6 def i n i t ( s e l f , x , y , z , h , q0 , q1 , q2 , q3 ) :

7

8 s e l f . x = x

9 s e l f . y = y
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10 s e l f . z = z

11 s e l f . h = h

12 s e l f . q0 = q0

13 s e l f . q1 = q1

14 s e l f . q2 = q2

15 s e l f . q3 = q3

16

17 print ”Pose3D s t a r t ”

18

19 def setPose3DData ( s e l f , data , cur rent=None ) :

20

21 lock . acqu i r e ( )

22 s e l f . x = data . x

23 s e l f . y = data . y

24 s e l f . z = data . z

25 s e l f . h = data . h

26 s e l f . q0 = data . q0

27 s e l f . q1 = data . q1

28 s e l f . q2 = data . q2

29 s e l f . q3 = data . q3

30 lock . r e l e a s e ( )

31

32 return 0

33

34 def getPose3DData ( s e l f , cu r r ent=None ) :

35

36 time . s l e e p ( 0 . 0 5 ) # 20Hz (50ms) ra t e to t x Pose3D

37

38 lock . acqu i r e ( )

39 data = jderobot . Pose3DData ( )

40 data . x = s e l f . x

41 data . y = s e l f . y

42 data . z = s e l f . z

43 data . h = s e l f . h

44 data . q0 = s e l f . q0

45 data . q1 = s e l f . q1

46 data . q2 = s e l f . q2

47 data . q3 = s e l f . q3

48 lock . r e l e a s e ( )

49

50 return data
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This class inherits “jderobot.Pose3D” and the corresponding functions are defined. It

can be noticed the use of programming “locks” for protecting the data stored in the

class. This is because MAVLinkServer is constantly refreshing the information provided

by the sensors and also constantly publishing it through ICE. This could cause race

conditions. With the use of the locks in the classes (fligure 5.2), the information could

not be read while other task is writing on it and the other way around, ensuring the

correct management of the information in mutual exclusion.

Figure 5.2: Class memory sharing

CMDVel interface has the same structure as Pose3D, also with the use of locks.

1 import jderobot , time , thread ing

2 lock = thread ing . Lock ( )

3

4 class CMDVelI( jde robot .CMDVel) :

5

6 def i n i t ( s e l f , lx , ly , l z , ax , ay , az ) :

7

8 s e l f . l inearX = lx

9 s e l f . l inearY = ly

10 s e l f . l i n e a rZ = l z

11 s e l f . angularX = ax
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12 s e l f . angularY = ay

13 s e l f . angularZ = az

14

15 print ”cmdvel s t a r t ”

16

17 def d e l ( s e l f ) :

18

19 print ”cmdvel end”

20

21 def setCMDVelData ( s e l f , data , cur rent=None ) :

22

23 lock . acqu i r e ( )

24

25 s e l f . l inearX = data . l inearX

26 s e l f . l inearY = data . l inearY

27 s e l f . l i n e a rZ = data . l i n e a rZ

28 s e l f . angularX = data . angularX

29 s e l f . angularY = data . angularY

30 s e l f . angularZ = data . angularZ

31

32 lock . r e l e a s e ( )

33

34 return 0

35

36 def getCMDVelData ( s e l f , cu r r ent=None ) :

37

38 time . s l e e p ( 0 . 0 5 ) # 20Hz (50ms) ra t e to rx CMDVel

39

40 lock . acqu i r e ( )

41

42 data = jderobot .CMDVelData ( )

43 data . l inearX = s e l f . l inearX

44 data . l inearY = s e l f . l inearY

45 data . l i n e a rZ = s e l f . l i n e a rZ

46 data . angularX = s e l f . angularX

47 data . angularY = s e l f . angularY

48 data . angularZ = s e l f . angularZ

49

50 lock . r e l e a s e ( )

51

52 return data
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MAVLinkServer launches several threads for ICE communication channels, one for each

type of information. Despite only Pose3D and CMDVel are to be really used, the

driver offers the remaining interfaces (NavData and ArDroneExtra) for compatibility

and future uses.

1 PH Pose3D = Pose3DI (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) #1 to avoid inde t e rmina t i ons

2 PH CMDVel = CMDVelI ( 0 , 0 , 0 , 0 , 0 , 0 ) #1 to avoid inde t e rmina t i ons

3 PH Extra = ExtraI ( )

4 WP Pose3D = Pose3DI (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

5

6 #Open an ICE TX communication and l e a v e i t open in a p a r a l l e l t h r e a t

7 PoseTheading = thread ing . Thread ( t a r g e t=openPose3DChannel , a rgs=(PH Pose3D , )

, name=’ Pose Theading ’ )

8 PoseTheading . daemon = True

9 PoseTheading . s t a r t ( )

10

11 # Open an ICE RX communication and l e a v e i t open in a p a r a l l e l t h r e a t

12 CMDVelTheading = thread ing . Thread ( t a r g e t=openCMDVelChannel , a rgs=(PH CMDVel

, ) , name=’CMDVel Theading ’ )

13 CMDVelTheading . daemon = True

14 CMDVelTheading . s t a r t ( )

15

16 # Open an ICE TX communication and l e a v e i t open in a p a r a l l e l t h r e a t

17 CMDVelTheading = thread ing . Thread ( t a r g e t=openExtraChannel , a rgs=(PH Extra , )

, name=’ Extra Theading ’ )

18 CMDVelTheading . daemon = True

19 CMDVelTheading . s t a r t ( )

20

21 # Open an ICE channel empty

22 CMDVelTheading = thread ing . Thread ( t a r g e t=openNavdataChannel , a rgs =() , name=

’ Navdata Theading ’ )

23 CMDVelTheading . daemon = True

24 CMDVelTheading . s t a r t ( )

25

26 # Open an ICE TX communication and l e a v e i t open in a p a r a l l e l t h r e a t

27 PoseTheading = thread ing . Thread ( t a r g e t=openPose3DChannelWP , args=(WP Pose3D

, ) , name=’WayPoint Theading ’ )

28 PoseTheading . daemon = True

29 PoseTheading . s t a r t ( )

30

31 # Open an MAVLink TX communication and l e a v e i t open in a p a r a l l e l t h r e a t
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32 PoseTheading = thread ing . Thread ( t a r g e t=sendWayPoint2Vehicle , a rgs=(

WP Pose3D , ) , name=’WayPoint2Vehicle Theading ’ ) PoseTheading . daemon =

True

33 PoseTheading . s t a r t ( )

34

35 # Open an MAVLink TX communication and l e a v e i t open in a p a r a l l e l t h r e a t

36 PoseTheading = thread ing . Thread ( t a r g e t=landDec i s ion , args=(PH CMDVel , ) ,

name=’ LandDecis ion2Vehic le Theading ’ )

37 PoseTheading . daemon = True

38 PoseTheading . s t a r t ( )

Each thread makes use of its own function where the ICE configuration is performed.

There the ICE publication is done and it is important to ensure which data is sent, in

order for other applications to get the information correctly and ensure compatibility.

The same procedure is performed for all the interfaces. The following code represents

the Pose3D function as an example.

1 def openPose3DChannelWP(Pose3D) :

2

3 s t a tu s = 0

4 i c = None

5 Pose2Rx = Pose3D #Pose3D . getPose3DData ()

6

7 try :

8 i c = Ic e . i n i t i a l i z e ( sys . argv )

9 adapter = i c . createObjectAdapterWithEndpoints ( ”Pose3DAdapter” , ”

d e f au l t −p 9994” )

10 object = Pose2Rx

11 #pr in t o b j e c t . getPose3DData ()

12 adapter . add ( object , i c . s t r i ngTo Iden t i t y ( ”Pose3D” ) )

13 adapter . a c t i v a t e ( )

14 i c . waitForShutdown ( )

15

16 except :

17 traceback . p r i n t e x c ( )

18 s t a tu s = 1

19

20 i f i c :

21 # Clean up

22 try :
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23 i c . des t roy ( )

24 except :

25 traceback . p r i n t e x c ( )

26 s t a tu s = 1

27

28 sys . e x i t ( s t a tu s )

MAVproxy is constantly handling MAVLink messages in a parallel thread in a “while

true” loop. This component takes advantage of it and refreshes of the sensor information

required. As a high level driver, this program does not interfere with the data fusion

performed by Pixhawk and it trusts on its performance, which reliability has been widely

tested. The following code is programmed after the MavProxy tasks inside the mentioned

loop:

1 Ro l lva lue = mpstate . s t a tu s . msgs [ ’ATTITUDE’ ] . r o l l #rad

2 Pitchva lue = mpstate . s t a tu s . msgs [ ’ATTITUDE’ ] . p i t ch #rad

3 Yawvalue = mpstate . s t a tu s . msgs [ ’ATTITUDE’ ] . yaw #rad

4

5 # ESTIMATED: fused GPS and acce l e romete r s

6 PoseLatLonHei = {}

7 PoseLatLonHei [ ’ l a t ’ ] = math . rad ians ( ( mpstate . s t a tu s . msgs [ ’

GLOBAL POSITION INT ’ ] . l a t ) /1E7) #rad

8 PoseLatLonHei [ ’ lon ’ ] = math . rad ians ( ( mpstate . s t a tu s . msgs [ ’

GLOBAL POSITION INT ’ ] . lon ) /1E7) #rad

9 PoseLatLonHei [ ’ he i ’ ] = (mpstate . s t a tu s . msgs [ ’GLOBAL POSITION INT ’ ] .

r e l a t i v e a l t ) /1000 #meters

10

11 PH quat = quatern ion . Quaternion ( [ Rol lva lue , Pitchvalue , Yawvalue ] )

12 PH xyz = g l o b a l 2 c a r t e s i a n ( PoseLatLonHei )

13

14 #pr in t PH quat

15 #pr in t PH xyz

16

17 data = jderobot . Pose3DData ( )

18 data . x = PH xyz [ ’ x ’ ]

19 data . y = PH xyz [ ’ y ’ ]

20 data . z = PH xyz [ ’ z ’ ]

21 data . h = 1

22 data . q0 = PH quat . g e t i t em (0)

23 data . q1 = PH quat . g e t i t em (1)
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24 data . q2 = PH quat . g e t i t em (2)

25 data . q3 = PH quat . g e t i t em (3)

26

27 PH Pose3D . setPose3DData ( data )

For the vehicle waypoint delivery other thread is launched, as the ICE channel ones,

which its corresponding associated functions. It makes use of the MAVProxy order

manager, in this case, with the command “guided lat lon hei”, which sends to the

vehicle the waypoint in GPS coordinates to be reached.

1 def sendWayPoint2Vehicle (Pose3D) :

2

3 while True :

4 time . s l e e p (1 )

5 wayPointPoseXYZ = Pose3D . getPose3DData ( )

6 wayPointXYZ = {}

7 wayPointXYZ [ ’ x ’ ] = wayPointPoseXYZ . x

8 wayPointXYZ [ ’ y ’ ] = wayPointPoseXYZ . y

9 wayPointXYZ [ ’ z ’ ] = wayPointPoseXYZ . z

10 wayPointLatLonHei = ca r t e s i a n 2 g l o b a l (wayPointXYZ)

11

12 l a t i t t u d e = str ( wayPointLatLonHei [ ’ l a t ’ ] )

13 l ong i tude = str ( wayPointLatLonHei [ ’ lon ’ ] )

14 a l t i t t u d e = str ( int ( wayPointLatLonHei [ ’ he i ’ ] ) )

15

16 WPstring = ’ guided ’ + l a t i t t u d e + ’ ’ + long i tude + ’ ’ +

a l t i t t u d e

17 p r o c e s s s t d i n (WPstring )

18

19 #pr in t wayPoint

At the final step of the mission, the vehicle is ordered to land. This driver has an special

function dedicated to this task and the management of the possible situations:

1 def l andDec i s i on (CMDVel) :

2

3 while True :

4 time . s l e e p (1 )

5 command = CMDVel . getCMDVelData ( )
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6

7 i f (command . l i n e a rZ == −1) :

8 print ’ Lading d e c i s i o n : True ’

9 p r o c e s s s t d i n ( ’mode land ’ )

10

11 while (command . l i n e a rZ == −1) :

12 time . s l e e p (1 )

13 command = CMDVel . getCMDVelData ( )

14

15 print ’ Target Lost , r e cove r i ng t r a j e c t o r y ’

16 p r o c e s s s t d i n ( ’mode guided ’ )

In addition, several functions have been developed inside MAVLinkServer in order to

complete the driver functionality . Among others, a function to change from GPS coor-

dinates (lat, long, alt) to global Cartesian coordinates (x,y,z) or some simple functions

have been defined for the correct usage of quaternions [25].

1

2 def g l o b a l 2 c a r t e s i a n ( poseLatLonHei ) :

3

4 wgs84 rad ius = 6378137 #meters

5 wg s84 f l a t t en i ng = 1 − 1 / 298.257223563

6 eartPerim = wgs84 radius * 2 * math . p i

7

8 earthRadiusLon = wgs84 radius * math . cos ( poseLatLonHei [ ’ l a t ’ ] ) /

wg s84 f l a t t en i ng

9 eartPerimLon = earthRadiusLon * 2 * math . p i

10

11 poseXYZ = {}

12 poseXYZ [ ’ x ’ ] = poseLatLonHei [ ’ lon ’ ] * eartPerimLon / (2*math . p i )

13 poseXYZ [ ’ y ’ ] = poseLatLonHei [ ’ l a t ’ ] * eartPerim / (2*math . p i )

14 poseXYZ [ ’ z ’ ] = poseLatLonHei [ ’ he i ’ ]

15

16 return poseXYZ

17

18 def c a r t e s i a n 2 g l o b a l (poseXYZ) :

19

20 wgs84 rad ius = 6378137 # meters

21 wg s84 f l a t t en i ng = 1 − 1 / 298.257223563

22 eartPerim = wgs84 radius * 2 * math . p i



54

23 r e f e r en c eLa t = 40.1912 ## Suposed to be Veh ic l e l a t t i t u d e

24

25 radLat = math . rad ians ( r e f e r en c eLa t )

26 earthRadiusLon = wgs84 radius * math . cos ( radLat ) / wg s84 f l a t t en i ng

27 eartPerimLon = earthRadiusLon * 2 * math . p i

28

29 poseLatLonHei = {}

30 poseLatLonHei [ ’ l a t ’ ] = poseXYZ [ ’ y ’ ] * 360 / eartPerim

31 poseLatLonHei [ ’ lon ’ ] = poseXYZ [ ’ x ’ ] * 360 / eartPerimLon

32 poseLatLonHei [ ’ he i ’ ] = poseXYZ [ ’ z ’ ]

33

34 return poseLatLonHei

35

36 def body2NED(CMDVel, Pose3D) :

37

38 q1 = [ 0 , CMDVel . l inearX , CMDVel . l inearY , CMDVel . l i n e a rZ ]

39 q2 = [ Pose3D . q0 , Pose3D . q1 , Pose3D . q2 , Pose3D . q3 ]

40

41 q1 = qNormal ( q1 )

42 q2 = qNormal ( q2 )

43

44 q2 inve r s e = qInver se ( q2 )

45 qtempotal = qMult iply ( q1 , q2 inve r s e )

46 q = qMult iply ( q2 , qtempotal )

47

48 rotatedVector = q [ 1 : len ( q ) ] #obta in [ q1 , q2 , q3 ]

49

50 return rotatedVector

51

52

53 def qMult iply ( q1 , q2 ) :

54

55 q1 = qNormal ( q1 )

56 q2 = qNormal ( q2 )

57

58 # quaternion1

59 w1 = q1 [ 0 ]

60 x1 = q1 [ 1 ]

61 y1 = q1 [ 2 ]

62 z1 = q1 [ 3 ]

63
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64 #quaternion2

65 w2 = q2 [ 0 ]

66 x2 = q2 [ 1 ]

67 y2 = q2 [ 2 ]

68 z2 = q2 [ 3 ]

69

70 w = w1*w2 − x1*x2 − y1*y2 − z1* z2

71 x = w1*x2 + x1*w2 + y1* z2 − z1*y2

72 y = w1*y2 + y1*w2 + z1*x2 − x1* z2

73 z = w1* z2 + z1*w2 + x1*y2 − y1*x2

74

75 q = [w, x , y , z ]

76

77 q = qNormal ( q )

78 return q

79

80 def qNormal ( q1 ) :

81

82 qmodule = math . s q r t ( q1 [ 0 ] * q1 [ 0 ] + q1 [ 1 ] * q1 [ 1 ] + q1 [ 2 ] * q1 [ 2 ] + q1 [ 3 ] * q1

[ 3 ] )

83 q = [ 0 , 0 , 0 , 0 ]

84

85 i f ( qmodule == 0) :

86 qmodule = 0.000000000001

87

88 q [ 0 ] = q1 [ 0 ] / qmodule

89 q [ 1 ] = q1 [ 1 ] / qmodule

90 q [ 2 ] = q1 [ 2 ] / qmodule

91 q [ 3 ] = q1 [ 3 ] / qmodule

92

93 return q

94

95 def qConjugate ( q1 ) :

96

97 q1 = qNormal ( q1 )

98 q = [ 0 , 0 , 0 , 0 ]

99 q [ 0 ] = q1 [ 0 ]

100 q [ 1 ] = −q1 [ 1 ]

101 q [ 2 ] = −q1 [ 2 ]

102 q [ 3 ] = −q1 [ 3 ]

103
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104 q = qNormal ( q )

105 return q

106

107 def qInver se ( q1 ) :

108

109 q1 = qNormal ( q1 )

110 qconjugate = qConjugate ( q1 )

111 qmodule = math . s q r t ( q1 [ 0 ] * q1 [ 0 ] + q1 [ 1 ] * q1 [ 1 ] + q1 [ 2 ] * q1 [ 2 ] + q1

[ 3 ] * q1 [ 3 ] )

112

113 i f ( qmodule == 0) :

114 qmodule = 0.000000000001

115

116 q = [ 0 , 0 , 0 , 0 ]

117 q [ 0 ] = qconjugate [ 0 ] / qmodule

118 q [ 1 ] = qconjugate [ 1 ] / qmodule

119 q [ 2 ] = qconjugate [ 2 ] / qmodule

120 q [ 3 ] = qconjugate [ 3 ] / qmodule

121

122 q = qNormal ( q )

123 return q

5.3 Information pipeline

MAVLinkServer is a multithreaded component. The flow of the information and the

operation of the driver pursue the following task path:

� The driver starts running all the different threads, opening its communication

channels and defining the information that would be in each one. It makes use

of two communication channels based on Pose3D, one for publishing vehicle posi-

tion and attitude and another one for receiving waypoints orders; and a CMDVel

channel for landing commands.

� MAVLink messages from Pixhawk come into the driver, and they are interpreted

in order to get the position and attitude information of the vehicle. Acquired

information is treated to transform it into JdeRobot standards (Pose3D). Latitude
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and longitude are transformed into global xyz coordinates, using WGS84 as Earth

model, and Euler angles attitude are transformed into quaternions.

� Pose3D is written in the corresponding local classes in a controlled way, making

use of the lock.

� Classes are published in the corresponding ICE channels as the threads are running,

to let other JdeRobot components to access to them.

� Landing commands are received through CMDVel and waypoints through Pose3D

channels. Information is extracted from the corresponding classes with the men-

tioned locks and a reference frame change is performed in order to be synchronised

with Pixhawk. Body referenced waypoints are transformed into GPS coordinate

system making use of the designed quaternion functions. Waypoints and landing

decision are finally delivered to MAVProxy command manager.

� Commands are translated into a MAVLink messages and sent to the Pixhawk

board.

It can be seen that each thread has a task but they do not have all the same workload.

For this reason the timing of the control loop of each thread is different. Despite the

threads have different rhythms, the component is successfully working in all its different

tasks.

5.4 Testing

For the verification and validation of the performance of this driver component, some

experimental tests have been carried out.

First, the correct adquisition and trasformation of the sensors data, the correct perfor-

mance of the different threads launched and right publication of the data throught ICE

communication channels were verified. To do so,the well-tested JdeRobot tool, Uav-

viewer developed by Martin Florido, shown in the figure 5.3, was used and connected to

the real HoverWasp running the developed driver. It can be seen that the data collected

by the sensors of the vehicle is correctly sent throught the driver ICE communication

channels and displayed on the Uav-viewer GUI.
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Figure 5.3: Uav-viewer connected to Hoverwasp trought MAVLinkServer

The second experiment was to verify the correct adquisition of the commands provided

by an external component and the right delivery of them to the Pixhawk board via

MAVProxy and MAVLink. The figure 5.4 shows how a waypoint to be reached is

stablished by an external component (right window) and the comand is correctly sent

to the pixhawk obtaining a call back message (left window).

Figure 5.4: MAVLinkServer sending commands to Hoverwasp
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During these experiment some limitations were detected, related to the implementation

of the velocity commands on MAVProxy. The MAVLink messages corresponding with

velocity commands are not well built by MAVProxy, and the Pixhawk board is not

able to interpret the orders. As they were completely out of the scope of this project,

MAVLinkServer was redesigned to accept waypoint orders instead of velocity commands,

as mentioned before.



Chapter 6

Application component

Once the software infrastructure to access the sensors and actuators of the UAV have

been presented, in this chapter the developed application that implements an example

of autonomous navigation will be described. The visual control is a control system in

which the feedback obtained from a video camera is used to decide vehicle behavior.

6.1 Behaviour design

This application aims to perform a target search mission around a designated localisa-

tion; once the target has been spotted, loiter over that position and land in the nearby

area. This mission uses the information supplied by the attitude sensors and the on-

board camera. One possible direct real implementation of this mission would be a “man

overboard” search in the sea.

The searching method is based on a “last-known-position” method which assumes that

the target is more likely to be found around its last known position, if an established

trajectory or movement is not recognised. The scan method chosen in this project is the

spiral, in which the vehicle describes a squared spiral trajectory starting on that last

known position and covering further distance on each loop.

The behavior has been programmed in the MAVLinkClient component, which has four

different functions: First one is to design and manage the mission and to establish the

search trajectory, the second one is to calculate the next waypoint and to send it to

60
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the vehicle, the third function is to analyse the images and identify the target, and the

fourth one is to loiter over the target and land.

MAVLinkClient is a JdeRobot component completely developed in this project using

Python as programming language. The objective of the component is to generate way-

points (Pose3D) based on the processing of the information available, that is, to make

its own decisions and to perform the desired autonomous task. The figure 6.2 represents

the block diagram of the component and its connections.

Figure 6.1: Client Scheme

6.2 Implementation

MAVLinkClient is a multithreaded component that makes use of the available ICE chan-

nels and sends differrent commands depending on the information provided by the

drone driver and the camera driver. This component will be launched appart from

MAVLinkServer and cameraserver, the JdeRobot driver for camera. All the threads

have to be run before starting any computation.
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1 PH Pose3D = Pose3DI (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

2

3 PoseTheading = thread ing . Thread ( t a r g e t=rxPose3D , args=(PH Pose3D , ) , name=’

ClientPHPose Theading ’ )

4 PoseTheading . daemon = True

5 PoseTheading . s t a r t ( )

6

7 WP Pose3D = Pose3DI (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

8

9 PoseTheading = thread ing . Thread ( t a r g e t=txPose3DWP2Server , args=(WP Pose3D , )

, name=’ ClientWPPose Theading ’ )

10 PoseTheading . daemon = True

11 PoseTheading . s t a r t ( )

12

13

14 PH CMDVel = CMDVelI ( 0 , 0 , 0 , 0 , 0 , 0 )

15

16 CMDVelTheading = thread ing . Thread ( t a r g e t=txCMDVel2Server , args=(PH CMDVel , )

, name=’ ClientCMDVel Theading ’ )

17 CMDVelTheading . daemon = True

18 CMDVelTheading . s t a r t ( )

19

20 CameraTheading = thread ing . Thread ( t a r g e t=rxCamera , args =() , name=’

ClientCamera Theading ’ )

21 CameraTheading . daemon = True

22 CameraTheading . s t a r t ( )

As in the driver component, each threas makes use of its own function where the ICE

configuration is performed and the handle of the information in the cannel is done.

1 def rxPose3D (Pose3D) :

2

3 s t a tu s = 0

4 i c = None

5 try :

6 i c = Ic e . i n i t i a l i z e ( sys . argv )

7 base = i c . str ingToProxy ( ”Pose3D : d e f au l t −p 9998” )

8 datos = jderobot . Pose3DPrx . checkedCast ( base )

9 #pr in t datos

10



63

11 i f not datos :

12 raise RuntimeError ( ” Inva l i d proxy” )

13

14

15 while True :

16 time . s l e e p ( 0 . 0 2 )

17 data = datos . getPose3DData ( )

18 Pose3D . setPose3DData ( data )

19 #pr in t Pose3D

20

21 except :

22 traceback . p r i n t e x c ( )

23 s t a tu s = 1

24

25 i f i c :

26 # Clean up

27 try :

28 i c . des t roy ( )

29 except :

30 traceback . p r i n t e x c ( )

31 s t a tu s = 1

32

33 def txPose3DWP2Server (Pose3D) :

34

35 s t a tu s = 0

36 i c = None

37 try :

38 i c = Ic e . i n i t i a l i z e ( sys . argv )

39 base = i c . str ingToProxy ( ”Pose3D : d e f au l t −p 9994” )

40 datos = jderobot . Pose3DPrx . checkedCast ( base )

41 #pr in t datos

42 i f not datos :

43 raise RuntimeError ( ” Inva l i d proxy” )

44

45 while True :

46 time . s l e e p ( 0 . 0 2 )

47

48 Pose3D2send = Pose3D . getPose3DData ( )

49 datos . setPose3DData ( Pose3D2send )

50

51 # pr in t Pose3D
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52

53 except :

54 traceback . p r i n t e x c ( )

55 s t a tu s = 1

56

57 i f i c :

58 # Clean up

59 try :

60 i c . des t roy ( )

61 except :

62 traceback . p r i n t e x c ( )

63 s t a tu s = 1

64

65 def txCMDVel2Server (CMDVel) :

66

67 s t a tu s = 0

68 i c = None

69

70 try :

71 i c = Ic e . i n i t i a l i z e ( sys . argv )

72 base = i c . str ingToProxy ( ”CMDVel : d e f au l t −p 9997” )

73 datos = jderobot .CMDVelPrx . checkedCast ( base )

74 #pr in t datos

75

76 i f not datos :

77 raise RuntimeError ( ” Inva l i d proxy” )

78

79 while True :

80 time . s l e e p ( 0 . 0 5 )

81 CMDVel2send = CMDVel . getCMDVelData ( )

82 datos . setCMDVelData (CMDVel2send)

83 #pr in t CMDVel2send

84

85

86 except :

87 traceback . p r i n t e x c ( )

88 s t a tu s = 1

89

90 i f i c :

91 # Clean up

92 try :
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93 i c . des t roy ( )

94 except :

95 traceback . p r i n t e x c ( )

96 s t a tu s = 1

97

98

99 def rxCamera ( ) :

100

101 s t a tu s = 0

102 i c = None

103

104 try :

105 i c = Ic e . i n i t i a l i z e ( sys . argv )

106 base = i c . str ingToProxy ( ”Camera : d e f au l t −p 9999” )

107 datos = jderobot . CameraPrx . checkedCast ( base )

108 # pr in t datos

109 i f not datos :

110 raise RuntimeError ( ” Inva l i d proxy” )

111

112 while True :

113 time . s l e e p ( 0 . 5 )

114 global PH Camera

115 global CameraHeight

116 global CameraWidth

117 cameraImage = datos . getImageData ( ”RGB8” )

118 CameraHeight = cameraImage . d e s c r i p t i o n . he ight

119 CameraWidth = cameraImage . d e s c r i p t i o n . width

120

121 lock . acqu i r e ( )

122 PH Camera = np . f rombuf f e r ( cameraImage . pixelData , dtype=np . u int8

)

123 PH Camera . shape = CameraHeight , CameraWidth , 3

124 lock . r e l e a s e ( )

125 # cv2 . imshow ( ’PH Camera ’ , PH Camera)

126

127 except :

128 traceback . p r i n t e x c ( )

129 s t a tu s = 1

130

131 i f i c :

132 # Clean up
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133 try :

134 i c . des t roy ( )

135 except :

136 traceback . p r i n t e x c ( )

137 s t a tu s = 1

6.3 Search navigation following a spiral pattern

The vehicle should scan the selected area, so the first step is to define the search trajec-

tory shown in the figure 2.1. The spiral desired is defined by four values:

� Central spiral point (CSP): (x,y) in global coordinates in metres

� Mission height in metres.

� Scan distance (S): distance between parallel sides of the spiral in metres.

� Number of spins: number of revolutions of the spiral before restarting trajectory.

Figure 6.2: Squared spiral trajectory

The next function designs the trajectory based on the information given and returns a

list of waypoints of the path:
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1 def s p i r a lT r a j e c t o r y ( startWP , scanDistance , spinsNumber ) :

2

3 t r a j e c t o r y = [ ]

4

5 x = startWP [ ’ x ’ ]

6 y = startWP [ ’ y ’ ]

7 z = startWP [ ’ z ’ ]

8

9 firstWP = [ x , y , z ]

10 t r a j e c t o r y . append ( firstWP )

11

12 scanDistanceLatLon = scanDistance

13

14 for i in range ( spinsNumber ) :

15

16 x = x + scanDistanceLatLon *(2* i +1)

17 t r a j e c t o r y . append ( [ x , y , z ] )

18 y = y + scanDistanceLatLon *(2* i +1)

19 t r a j e c t o r y . append ( [ x , y , z ] )

20

21 x = x − scanDistanceLatLon *(2* i +2)

22 t r a j e c t o r y . append ( [ x , y , z ] )

23 y = y − scanDistanceLatLon *(2* i +2)

24 t r a j e c t o r y . append ( [ x , y , z ] )

25

26 return t r a j e c t o r y

The following function is in charge of the management of the trayectory. It uses the

current position and attitude of the vehicle (Pose3D) and calculates the relative position

of the waypoint from the vehicle. A waypoint is considered caught up when the distance

between vehicle and waypoint is less than a pre-determined distance (“ReachedDist”).

1 def nextWaypointPose3D ( pos i t i on , t r a j e c t o r y ) :

2

3 waypoint = t r a j e c t o r y [ 0 ]

4 #vec to r = ve lVec tor ( po s i t i on , waypoint )

5 print ”Waypoint : %s ” %waypoint

6 d i s t = d i s t ance ( waypoint , p o s i t i o n )

7 print ” d i s t anc e : %f ” %d i s t

8
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9 i f ( d i s t <= ReachedDist ) :

10 t r a j e c t o r y = t r a j e c t o r y [ 1 : len ( t r a j e c t o r y ) ] #pop

11 print ”Waypoint reached ”

12

13 return t r a j e c t o r y

While the target is not found, the component sends to the driver the position of the

next waypoint to be reached.

1 print ’ Search ing f o r t a r g e t ’

2

3 # command , updatedTra jec tory = nextWaypointCMDVel ( xyz , t r a j e c t o r y )

4 updatedTrajectory = nextWaypointPose3D ( vehicleXYZ , t r a j e c t o r y )

5 t r a j e c t o r y = updatedTrajectory

6

7 #r e s t a r t t r a j e c t o r y when f i n i s h

8 i f ( len ( t r a j e c t o r y ) == 0) :

9 t r a j e c t o r y = DefTrajectory

10 print ”Tra jec tory r e s t a r t e d : ”

11 print t r a j e c t o r y

12

13 #send waypoint to s e r v e r

14 wayPoint = jderobot . Pose3DData ( )

15 wayPoint . x = t r a j e c t o r y [ 0 ] [ 0 ]

16 wayPoint . y = t r a j e c t o r y [ 0 ] [ 1 ]

17 wayPoint . z = t r a j e c t o r y [ 0 ] [ 2 ]

18 WP Pose3D . setPose3DData ( wayPoint )

19 # pr in t wayPoint

If during the trajectory following mode, the target is found, the vehicle changes its

mission and tries to loiter over it; using the camera and image processing to identify the

relative position between the vehicle and the target.

6.4 Visual perception of the target

The visual detection of an object, shown in the figure 6.3, and the decision of landing

nearby are the core funtions of this component. This decision changes the mode and
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the corresponding order is sent to the driver. This code is inserted inside the execution

loop of the component.

Figure 6.3: Target to be found by MAVLinkClient

1 time . s l e e p (1 )#0.05) #20Hz

2 veh i c l ePose = PH Pose3D . getPose3DData ( )

3 vehicleXYZ = [ veh i c l ePose . x , veh i c l ePose . y , veh i c l ePose . z ]

4 vehicleYaw = yawFromQuaternion ( veh i c l ePose )

5

6 lock . acqu i r e ( )

7 Image2Analyze = PH Camera

8 ImageShape = PH Camera . shape

9 lock . r e l e a s e ( )

10

11 GreenCenter , GreenArea , GreenFound = de t e c t i on ( Image2Analyze , hminG , hmaxG,

sminG , smaxG , vminG , vmaxG)

12 OrangeCenter , OrangeArea , OrangeFound = de t e c t i on ( Image2Analyze , hminO ,

hmaxO, sminO , smaxO , vminO , vmaxO)

13 targetArea = GreenArea + OrangeArea

14

15 twoAreas = GreenFound and OrangeFound

16 nearAreas = d i s t ance ( GreenCenter , OrangeCenter ) <= math . sq r t ( targetArea )

17

18 i f twoAreas and nearAreas :

19 ta r g e tCen t r eP ix e l s = ( ( ( GreenCenter [ 0 ] + OrangeCenter [ 0 ] ) / 2) , ( (

GreenCenter [ 1 ] + OrangeCenter [ 1 ] ) / 2) )

20 t a r g e tBu f f e r . append (True )

21 else :

22 t a r g e tBu f f e r . append ( Fa l se )

23

24 targetBuf f e rData = ta r g e tBu f f e r . get ( )

25
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26 targetFound = ta r g e tBu f f e r . d e c i c i on ( )

27 print ta rgetBuf f e rData

For target detection in the image this project has chosen to identify objects from its

colour. This colour detection has some disadvantages compared to other detection

methods. The biggest drawback is that light changes in the environment where the

robot moves and the shadows can project into the target. The images obtained from the

camera are encoded in RGB. This colour space is not very robust to changes in ambient

light. For this reason a change from the RGB colour space to HSV was decided, which

although does not completely solve the problem, it is robust enough for detecting an

object in a changing environment, as long as the light changes are not very high.

Figure 6.4: Pipeline of the perception system of object tracking

The pipeline of the perception system 6.4 is computationally simple and lightweight.

The following sections will explain in more detail each of the stages.

1 def de t e c t i on ( image , hmin , hmax , smin , smax , vmin , vmax) :

2 # −−−−−−− Threso ld Image −−−−−−−#

3

4 rawImage = image

5

6 k s i z e = (5 , 5)

7 sigma = 9

8 gaussImage = cv2 . GaussianBlur ( rawImage , k s i z e , sigma )

9

10 hsvImage = cv2 . cvtColor ( gaussImage , cv2 .COLOR RGB2HSV)

11

12 matrixMin = np . array ( [ hmin , smin , vmin ] )

13 matrixMax = np . array ( [ hmax , smax , vmax ] )

14

15 f i l t e r e d Imag e = cv2 . inRange ( hsvImage , matrixMin , matrixMax )
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16

17 # −−−−−−− Detect Object −−−−−−−#

18

19 cente r = [ ]

20 area = 0

21 cente r = (0 , 0 )

22 colorFound = False

23

24

25 detImage = rawImage

26

27 contour , h i e ra r chy = cv2 . f indContours ( f i l t e r ed Image , cv2 .RETR EXTERNAL,

cv2 .CHAIN APPROX NONE)

28

29 i f len ( contour ) > 0 :

30 contourdx = −1

31 cv2 . drawContours ( detImage , contour , contourdx , (255 , 255 , 0) )

32

33 for i in range ( len ( contour ) ) :

34 contarray = contour [ i ]

35

36 ep s i l o n = 5

37 c l o s ed = True

38 approxCurve = cv2 . approxPolyDP ( contarray , ep s i l on , c l o s ed )

39

40 r e c t ang l e = cv2 . boundingRect ( approxCurve )

41 rectX , rectY , rectW , rectH = re c t ang l e

42

43 i f rectW < maxTargetLado and rectW > minTargetLado and rectH <

maxTargetLado and rectH > minTargetLado :

44 myRectangle = r e c t ang l e

45 else :

46 myRectangle = 0 , 0 , 0 , 0

47

48 myRectX , myRectY , myRectW, myRectH = myRectangle

49 myPoint1 = myRectX , myRectY

50 myPoint2 = myRectX + myRectW, myRectY + myRectH

51 cente r = myRectX + (myRectW / 2) , myRectY + (myRectH / 2)

52 area = myRectW * myRectH

53

54 # cv2 . r e c t an g l e ( detImage , myPoint1 , myPoint2 , (255 ,0 ,0 ) ,2)
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55 cv2 . c i r c l e ( detImage , center , 1 , (255 , 0 , 0) , 2)

56

57 minTargetArea = minTargetLado * minTargetLado

58

59 i f ( area > minTargetArea )and( c en te r != (0 , 0 ) ) :

60 colorFound = True

61 else :

62 colorFound = False

63

64 return center , area , colorFound

As a result, the component obtains a positive or negative identification of the object,

and in the case, the horizontal relative position between the vehicle and the target is

estimated. The detection of the target requires a lot of computational effort. It is the

heaviest part of the component. The detection is performed twice, one for each colour

of the target.

6.4.1 RGB to HSV

If a colour image is about to be treated, the most common encoded values are in the

RGB colour space (Red, Green, Blue) that determines the colour composition in terms

of the intensity of the three primary colours of light. The RGB model is commonly

used to display colours on screens, TVs, etc., but has a big disadvantage when trying to

identify a colour within a real image. The RGB colour space is not very robust against

light changes. In the field of robotics, where robots are in changing environments, it is

convenient to use another colour space more robust to light changes, for example the

HSV space, represented in the figure 6.5.

Figure 6.5: Cone colors space HSV
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HSV (Hue, Saturation, Value) is a nonlinear transformation of RGB model in cylindrical

coordinates. Thus, the colour is defined by:

� Hue: is the angle between 0 and 360 or representing colour tone.

� Saturation: is the offset of black-white brightness values ranging from 0 to 100.

� Value: is the height in the white-black axis, which has values ranging from 0 to

100.

The changes in brightness are usually reflected in V, leaving the S and H more or

less unchanged. Due to the possibility to define a colour based on a hue (H) and

a saturation(S), the HSV model is an excellent candidate for robust identification of

objects through their colour in an image within a changing environment.

6.4.2 Image Smoothing

Within the image processing stage, there are some techniques that improve some aspect

of the image, as the smoothing techniques. Noise, signal degradation, errors in the

adquisition process or image transmission, lack of uniform illumination can interfere the

object analysis. The perception system in the component implements the smoothing

technique Gaussian Blur, which is the result of convoluting an image with the Gaussian

function (figure 6.6):

Figure 6.6: Gauss function in 2D

Distribution values are used to construct a convolution matrix that is applied to the

original image. The central pixel value is given greater weight (higher value of the

Gaussian) and adjacent pixels receive a smaller weight depending on the distance from
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the original pixel. The result of this process is a blur retaining borders and edges of

the object. This task is performed by the function of OpenCV GassianBlur(), and the

result can be seen on the figure 6.7.

Figure 6.7: Gassuian Blur (left: raw image; right: smoothed image)

6.4.3 Colour Filtering

The choice of colour is an important aspect of object detection. A vivid colour will be

easily detectable, but a colour with more muted tones will be more difficult to detect.

The tool in JdeRobot, named ColourTunner, allows us to select the colours that we

want to identify, defining their HSV values. By applying thresholds to a colour image it

is transformed into a binary image, where objects of interest stand out with a different

background pixel value. If the pixel value passes the threshold, the resulting pixel will

be white, while if it fails, it will be black; as can be noticed on the figure 6.8. The result

is the binary image. inRange() function, belonging to OpenCV, applies thresholds to

the image.

Figure 6.8: Image thresholding

6.4.4 Segmentation

The purpose of object detection is to obtain the coordinates of the centre of the object in

the image. Thus, we can distinguish whether the object has moved in different iterations
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of the algorithm and distinguish where. To accomplish this task the perception system

of the MAVLinkClient component performs a series of steps:

� Once the binary image with the desired colour pixel detection has been obtained,

a segmentation technique based on edge detection is used. The idea of this method

is to detect the borders of objects.

� With the outlines of objects located, the next step is to approach them to polygons.

From a list of points that determine the outline of an object, the approxPolyDP()

function OpenCV is used. It is able to return another list of points with a small

number of them that define a particular poligon.

Figure 6.9: Contours detected with the function findContours()

� Knowing some point in the rectangle on the image, it can find the centre of the

box following a simple formula. The boundingRect() function OpenCV returns

a list of rectangles from a list of points. This function attempts to create the

minimum rectangle that contains all the points in the list indicated as parameter

to the function.

� After calculating the rectangle that contains the target, the centre coordinates of

the poligon are obtained in order to stimate the position of the target with respect

to the camera. The coordinates will be in the reference system of the image itself,

so it is necesary to make a change to the used reference system.



76

6.4.5 Noise filtering

Due to the ambient light conditions, the proper motion of the drone or the object we are

detecting would leave the image, the rectangle approximated by the perception system

fluctuates. These fluctuations cause the estimated coordinates of the centre of the object

vary and, in many cases, the object has not actually moved. For example, a change in

ambient light causes the sensing system detecting an object of size different from the size

of the same object previously detected. To combat against this error the application has

implemented a “Buffer” for making a “credibility filter”. This filter takes into account

the previously captured images (a certain number samples) and storse a positive or

negative variable in order to determine whether the target has really been identified or

not.

When the number of positive identifications are higher than an established threshold, a

confirmation is generated and the code changes the drones’s task from following trajec-

tory to loitering control.

The number of samples and the threshold give the filter its reliability and change the

response and the consistency of the MAVLinkClient component

6.5 Loitering Control and Landing

In this control the only aspect to take into account is to position of the drone above the

colour that marks the position of the object on the ground. Only two dimensions are

controlled, the X axis and Y axis; height control is done by the pixhawk itself, with the

established altitude.

Loitering control will take as reference the 2D position of the point corresponding to the

centre of the object in the image, estimated by the perception system, and calculates

the difference of it with respect the image centre point. It will give us the error of the

position of the drone relative to the target in both X and Y. These perception errors are

transformed into real scale errors using a function which depends on the height of the

vehicle.

1 def g l o b a l 2 c a r t e s i a n ( poseLatLonHei ) :
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2

3 wgs84 rad ius = 6378137 #meters

4 wg s84 f l a t t en i ng = 1 − 1 / 298.257223563

5 eartPerim = wgs84 radius * 2 * math . p i

6

7 earthRadiusLon = wgs84 radius * math . cos ( poseLatLonHei [ ’ l a t ’ ] ) /

wg s84 f l a t t en i ng

8 eartPerimLon = earthRadiusLon * 2 * math . p i

9

10 poseXYZ = {}

11 poseXYZ [ ’ x ’ ] = poseLatLonHei [ ’ lon ’ ] * eartPerimLon / (2*math . p i )

12 poseXYZ [ ’ y ’ ] = poseLatLonHei [ ’ l a t ’ ] * eartPerim / (2*math . p i )

13 poseXYZ [ ’ z ’ ] = poseLatLonHei [ ’ he i ’ ]

14 return poseXYZ

15

16 def p ixe l 2met r e s ( pixelXY , pixelNum , height , fov ) :

17

18 he ight = Miss ionHeight #only f o r t e s t i n g

19 veh i c l eAng l e = fov /2

20 groundAngle = (math . p i /2) − veh i c l eAng l e

21 hipoten = he ight / math . s i n ( groundAngle )

22 groundSide = math . s q r t ( ( h ipoten *hipoten ) − ( he ight * he ight ) )

23

24 metersXpixe l = 2* groundSide / pixelNum

25

26 metresXY = [ metersXpixe l *pixelXY [ 0 ] , metersXpixe l *pixelXY [ 1 ] ]

27

28 return metresXY

29

30 def frameChange2D ( vector , ang le ) :

31

32 rotatedX = vecto r [ 0 ] *math . cos ( ang le ) + vector [ 1 ] *math . s i n ( ang le )

33 rotatedY = vecto r [ 1 ] *math . cos ( ang le ) − vec to r [ 0 ] *math . s i n ( ang le )

34

35 rotatedVector = ( rotatedX , rotatedY )

36

37 return rotatedVector

With this information, the component estimates the position of the target and generates

and commands to the MAVLinkServer a new waypoint to be reached. The estimation of

the next waypoint is iterative in order to improve consistency of the component.
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As a high level control and with the intrinsic errors of the system, a landing accurancy

is necessary to be defined. The drone would try to reach the estimated position of the

target and when the relative horizontal distance between target an vehicle is less than

the landing accurancy, the component sends a landing order to the server via CMDVel

ICE channel.

The landing decision is irrevocable from the program point of view; it is, when the

component confirms the landing decision, whatever it happens, the landing decision

is not changed from the program. However, MAVLinkClient still process images and

calculates the next waypoint to reach, for recovering searching mission in the case of

landing decision manually is changed.

6.6 Information pipeline

MAVLinkClient is a multithreaded component at the communication level. Nevertheless,

the information and main task are lineal and follow this path:

� MAVLinkClient starts running all the different threads, receiving information of

the communication channels and defining the information that would be sent to

the driver.

� The component defines the trajectory and returns a list of waypoints.

� The images are updated and analized to detect the target

� Buffer stores the positive or negative detections and makes a decision.

� In the case of not finding the target, next trajectory waypoint is calculated and

sent to the driver

� In the case of target found, the position of the target is calculated and the drone

will try to reach it.

� When the target position is reached, landing command is sent to the server.
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6.7 Testing

The testing of the MAVLinkClient is the final step of the project, the correct perfor-

mance of the component defines the success of the project and this validation as a whole

autonomous system. This experiment validates not only the built drone platform, but

also the developed software driver and application component.

The first test validates mainly the target detection algorithm in simulation. The figure

6.10 shows an example of the test carried out, where it can be noticed that the function

perfectly detects the colours of the target and calculates its central point.

The risk of testing the component directly on the vehicle is high, that is why this

experiment makes use of Gazebo simulator for initial testing of the code. In the figure

6.10 the simulated vehicle is receiving the information provided by the component with

the artificial vision algorithm being executed at the same time.

Figure 6.10: MAVLinkClient simulation test

With the success of the previous test, it was time to perform the final experiment with

the real drone. MAVLinkServer, cameraserver and MAVLinkClient were launched in

the on-board computer via ssh with and external computer, to execute the mission.
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The mission starts and the vehicle starts scanning the area and following the calculated

spiral search trajectory. MAVLinkClient analyzes the images provided by cameraserver,

trying to identify the target. Once the target is found, new waypoints are calculated in

order to get closer to the target and to make the decision of landing in the surroundings,

commanding the decision to the drone through MAVLinkServer. The mission is consid-

ered successfully complete when the vehicle lands smooth and safely. The process of the

mission is shown in the figure 6.11
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(a) Mission start (b) Start scanning

(c) Waypoint A (d) Waypoint B

(e) Approaching to target (f) Landing

(g) Landed A (h) Landed B

Figure 6.11: Project mission



Chapter 7

Conclusions

In this chapter, a critical analysis of the outcomes described in the previous chapters is

done to obtain conclusions, about the vehicle design and construction, the development

of the driver and of the application. Finally, several future lines or next steps that may

extend the work done on this project are suggested.

7.1 Conclusions

The primary objective of this proyect was to design, build and program an aerial vehicle

for the fulfilment of an autonomous complex mission using artificial vision as source of

information.

To acomplish the objective, the project has been divided into three main subgoals:

design and construction of an aerial vehicle, development of the JdeRobot driver for

such vehicle and the programming of a component for the management of the mission.

Each subgoal and its developments has been described in their corresponding chapter.

� The HoverWasp vehicle has been desgined and built from scratch complying the

stablished requirements. It is a reliable and useful platform in which new develop-

ments and missions could be carried on. Multirotor dynamics and electronics are

the technological areas involved in this part, as well as the engineering effort done

for its design and integration.

82
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� MAVLinkServer component is a sofware driver that can be used to connect any

MAVLink based vehicle to the JdeRobot software. The communication channels

and interfaces have been specially selected following an intuitive criteria for its

future use. The API’s supported by this components are: Pose3D for the ac-

cess to the sensors position infomation, and for providing high level control using

waypoints; CMDVel for landing commands, and other extra JdeRobot interfaces

for future applications. Programming capabilities, the undertanding and use of

quaternions and cartography have been the learnt topics in this section.

� MAVLinkClient component makes use of high level point-to-point control of the

UAV to complete an autonomous mission: search and detection of an objective

using image processing scanning an outdoor area and landing in the surround-

ings. Computer vision has been the determining factor on the creation of this

component.

Given the result of the previous chapters, it can be said that the global objective has been

successfully achieved. All the phases of the project have been covered, from requirements

analysis to final validation. The progess has been documented in the project webpage

[13] and the code updated to the repository [14]. The driver software developed in this

project has been integrated into the open source robotics middleware JdeRobot, being

proud contributor to the development of the URJC robotics laboratory.

Along the development of the project, there has been much knowledge adquired. The

field of UAV’s gathers information that comes from different areas: programming, tele-

comunications, electronics, mechanics or aerospace are some of them.

As mentioned before in this document, theory and reality are parallel lines, not con-

vergent ones. It means that it is completely necessary to bring to the real world the

knowledge adquired in the engineering theory. It is a crucial step for a prepared engineer

to have the opportunity to experiment and face real world problems, that at the end of

the day, is the assingment which we have been trained for.
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7.2 Future Lines

The value of this project is not only the achieved goals or the effort made for meet them;

there is a greater value on the high number of applications that can be done using this

project as a benchmark and starting point.

Possibly the main future development is to give support for middle level control, the one

based on velocity commands. For the versions used in this project, this type of control

has not been implemented yet in MAVProxy. Velocity command control would offer the

complete control of the vehicle and the possibilities that would offer are uncountable.

Also, the vehicle taking off is too agresive for a safe use of it. A smoother control would

benefit the platform and would almost cancel the human intervention in the missions.

Moreover, the change of the camera, from visible spectrum to a thermal detection cam,

would improve the search and rescue application developed on this project.
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