
FINAL DEGREE THESIS
TELECOMMUNICATIONS TECHNOLOGIES ENGINEERING

Control system in open
FPGAs for autonomous

robots.

Author
Juan Ordóñez Cerezo

Directors
Encarnación del Castillo Morales

Jose Maŕıa Cañas Plaza

Escuela Técnica Superior de Ingenieŕıas Informática y de
Telecomunicación

—
Granada, November 2018

3

Control system in open
FPGAs for autonomous

robots.

Author
Juan Ordóñez Cerezo

Directors
Encarnación del Castillo Morales

Jose Maŕıa Cañas Plaza

Control system in open FPGAs for autonomous robots.

Juan Ordóñez Cerezo

Key words: FPGA, IceStudio, IceZumAlhambra, microcontroller, Self-Balancing,
quadcopter, OpenSource.

Abstract

This paper proposes a new use of FPGAs in educational robotics field. For
that, different robotic behaviors are being developed creating a module library
that is useful and giving their user the possibility to work at a high abstraction
level. As an example, a self-balance robot is proposed and which explanation
consists about this project. Without loosing sight of the initial finality, tools
used for that will be in the open source community, as can be IceStudio and
IceZum Alhambra.

Me, Juan Ordóñez Cerezo, student of the degree in Telecommunications
Technologies Engineering from Escuela Técnica Superior de Ingenieŕıas
Informática y de Telecomunicación de la Universidad de Granada,
with DNI 77143207-B, authorize the location of my Final Degree Thesis in the
library of the center so that it can be consulted by people who need it.

Fdo: Juan Ordóñez Cerezo

Granada on November 19, 2018.

D. Encarnación del Castillo Morales, Teacher from Electronic Area
of the Electronic Department and Computer Technology from Universidad de
Granada.

D. Jose Maŕıa Cañas Plaza, Teacher from Theory of Signal and Commu-
nications and Telematic Systems and Computing department from Universidad
Rey Juan Carlos, Madrid.

Inform:

That the present project, titled Autonomous control system for Robots
in FPGA, has been developed under supervision by Juan Ordóñez Cerezo,
and we authorize the defense from this project in front of the corresponding
tribunal.

And for the record, the report has been issued and signed in Granada on
November 19, 2018.

The directors:

Encarnación del Castillo Morales Jose Maŕıa Cañas Plaza

Acknowledgements

In first place, and for that reason the most important, I want to thank my
family, Juan, Paqui and Maŕıa, who have suffered and enjoyed this project
as much as I have, for their credibility, patience, for the moments of weakness
supplied with joy and above all for believing in the capacity of someone who
never gave reasons for it.
Of course, to my tutors Jose Maŕıa Cañas Plaza and Encarnación del Castillo
Morales who believed and made me believe since the beginning in this project
and who have taken me to what I am now.
To my colleagues and friends from Munich, from Eesy-Innovation and Infineon
Technologies, who turned last summer into the best summer in the world and
who helped me without asking why, because if something has to go right, it
would come out all right.
To my friends from Granada whom I have had to say so many times not because
of spending time, but because I never get tired of being with them and because
they cheered me up with laughter and jokes.
Finally, I remember part of the speech of two professors in my graduation, two
professors, who not just for being teachers forget to treat us as people and who
saw us cry, laugh and above all, to grow up. And, if I have to take something
from here, it’s not only the knowledge learned, it’s the friends and those people
who help you climb when you do not have the strength to keep climbing, people
who believe in you even when you’ve fallen a few times.
For all of that, thanks.

Granada on November 19, 2018.

Contents

1 Introduction 19
1.0.1 Motivation and Objectives 19
1.0.2 Planning (Gantt Diagram) 21
1.0.3 Work Methodology . 22
1.0.4 Memory Structure . 24

2 State of the art 25
2.1 FPGA concept . 25

2.1.1 Evolution and scenario . 26
2.1.2 FPGA Architecture . 28
2.1.3 Hardware Description Languages 29
2.1.4 Verilog . 29

2.2 Open FPGAs evolution . 32
2.2.1 IceZum Alhambra . 34
2.2.2 IceStudio . 36

2.3 Microcontroller-FPGA coexistence 39
2.3.1 Microcontroller-FPGA differences 39
2.3.2 Importance . 41

2.4 Inertial Measurement Unit . 44
2.5 Educational Robotics – Motivations 48
2.6 Sensors, actuators and control system 49
2.7 Classic PID controller . 52

3 Self-Balancing Robot 55
3.1 Problem Description . 55
3.2 System Design . 57
3.3 System Implementation . 58

3.3.1 Mechanical Structure Manufacturing 58
3.3.2 Inertial Measurement Unit MPU6050 in Arduino Nano . . 61
3.3.3 PCB Implementation . 63
3.3.4 IceZum Alhambra-Arduino Nano Implementation 72
3.3.5 PID Control in IceZum Alhambra 84
3.3.6 Motor controller . 89
3.3.7 Power Supply System . 92
3.3.8 Materials and Prototype Cost 95

3.4 Experiments and final results . 96
3.4.1 Self-Balancing Robot . 96
3.4.2 VGA Module . 97

11

12 CONTENTS

3.4.3 Motor brushless Controller 98

4 Quadcopter with artificial vision 99
4.1 Design . 99
4.2 Perception Implementation . 100
4.3 Control Design . 110

5 Conclusions and future work 113

List of Figures

1.1 . 21
1.2 GitHub Logo. 22
1.3 Commits GitHub. 23
1.4 Appear.in. 24

2.1 PLD vs FPGA . 25
2.2 Moore’s Law . 27
2.3 PLD vs FPGA . 28
2.4 Process Parallelism . 30
2.5 Lattice iCE40HX1K . 32
2.6 Tiny FPGA BX . 33
2.7 BlackIce II . 33
2.8 ico Board . 33
2.9 IceZum Alhambra Board . 35
2.10 IceZum Alhambra II Board . 36
2.11 Main Window IceStudio. 37
2.12 High-Level I2C writing . 38
2.13 Low-Level I2C writing . 38
2.14 Funcionalidad FPGA y Micro-controlador. 39
2.15 Basic architecture in a processor 40
2.16 Logic gates in a hardware implementation. 40
2.17 Flow diagram in a processor. 41
2.18 Flow diagram in a FPGA. 42
2.19 Bipedal System coexistence between microcontroller and FPGA. 43
2.20 Tait-Brain angles. 44
2.21 IMU. 45
2.22 IMU. 45
2.23 IMU. 45
2.24 Trigonometry in accelerometer system 2D. 46
2.25 Trigonometry in accelerometer system 3D. 46
2.26 Sensor CMOS to image adquisition. 51
2.27 IMU. 51
2.28 Potenciometter. 51
2.29 DC Motor. 52
2.30 Block diagram PID controller. 54

3.1 Commercial Segway. 55
3.2 Inverted pendulum representation. 56

13

14 LIST OF FIGURES

3.3 Final block diagram. 57
3.4 Frontal view Balancing Robot. 58
3.5 Lateral view derecha Balancing Robot. 59
3.6 Balancing Robot perspective. 60
3.7 Center of mass final system. 61
3.8 MPU6050 IMU. 61
3.9 MPU6050 IMU. 62
3.10 Advantaje in the use of DMP. 63
3.11 Pin headers for IceZum Alhambra II. 64
3.12 Connector GND and VCC. 64
3.13 Module MPU6050. 65
3.14 Jumpers to configurate i2c MPU6050. 65
3.15 3D View of Shield for IceZum Alhambra II. 66
3.16 3D View of Shield for IceZum Alhambra II. 67
3.17 3D of shield for IceZum Alhambra II. 67
3.18 3D of shield for IceZum Alhambra II. 68
3.19 Schematic Shield IceZum Alhambra II 69
3.20 Composition layers in Altium. 72
3.21 Hardware coexistence microcontroller-FPGA. 73
3.22 Serial communication example. 73
3.23 Separation microcontroller-FPGA. 74
3.24 Inner diagram Arduino Nano. 75
3.25 Flow diagram to send angle. 75
3.26 Correction angle in Self-Balance Robot. 76
3.27 Appearance of Arduino Nano module in IceStudio. 77
3.28 Flow diagram for Arduino interface. 79
3.29 Module to arrange data from Arduino. 81
3.30 Flow diagram to arrange bytes. 82
3.31 Communication between Arduino and IceZum Alhambra. 83
3.32 Flow diagram P control. 84
3.33 Appearance of P control in IceStudio 85
3.34 Flow diagram D control. 86
3.35 Appearance of D control module in IceStudio. 87
3.36 Final appearance of Self-Balancin in IceStudio. 88
3.37 PWM signal example with different dutty. 89
3.38 MC33926 to control DC motors. 90
3.39 Schematic MC33926. 90
3.40 Appearance PWM module in IceStudio. 91
3.41 Flow diagram PWM generator in Verilog. 91
3.42 LIPO Battery 11.1V y 2.2A. 93
3.43 LIPO Battery 3.7V y 4mAh. 94
3.44 . 96
3.45 . 97
3.46 . 98

4.1 Vision quad-copter high level design. 99
4.2 OV7670 camera. 101
4.3 OV7670 Pixel Formation . 101
4.4 I2C writing module in IceStudio aspect. 102
4.5 Flow diagram of I2C writing. 103

LIST OF FIGURES 15

4.6 OV7670 camera schematics. 104
4.7 Tri-state buffer for I2C bus. 105
4.8 I2C on OV7670 writing example. 105
4.9 Row module in IceStudio. 107
4.10 Column module in IceStudio. 107
4.11 Flow diagram to the row counter. 107
4.12 Synchronize signal OV7670. 108
4.13 Synchronize signal OV7670. 108
4.14 Synchronize signal OV7670. 108
4.15 Bits assigments. 109
4.16 Bits assigments in IceStudio. 109
4.17 Diagram of control Implementation. 110

List of Tables

3.1 Layers composition in PCB. 71
3.2 Total cost of Self-Balancing Robot. 95

17

Chapter 1

Introduction

1.0.1 Motivation and Objectives

Digital electronics[1] is part of the most modern branch of electronics and is
evolving rapidly nowadays mainly due to the advantages it offers and which
will be analyzed in the present project. Therefore, it is important to bring this
technology to the whole world, to make it friendly and provide society with the
necessary tools for its correct understanding, without this implying of higher
education achievement.

Getting involved in a project not so developed and with lack of information,
it may seem a bit overwhelming at first, especially when problems start to come
out, but for any engineer it is quite a challenge to be able to start working on a
determined field, offering society some useful tools for future implementations
and improvements.

Working on a platform native from Granada, Spain, such as the Ice-Zum
Alhambra board, considering the lack of development in this field, is also an
honor that should not be forgotten when it comes to naming the motivations
and objectives.

Digital electronics, FPGAs[2], microcontroller, hardware description
language[3], educational robotics[4], etc, are only some of the most important
concepts on which this work is based and are also part of one of the most im-
portant research lines from engineers from all over the world. It is an objective
to take this concept to the classrooms, specially to little kids, making use of the
libraries of implementation hardware blocks that would help in the successive
works and widening the educational robotic concept.

The most important objectives from this work and which must be achieved
are presented:

• Ability to understand and implement all kinds of robotic behaviors through
hardware implementation languages.

• Current robotic systems featuring.

• Open tools usage for educational robotics such as IceStudio.

19

20

• Ability to develop Printed Circuit Boards (PCB) with Altium Designer[5].

• Ability to design and construct mechanical structures by using SolidWorks[6]
and 3D printers.

• Understating about the importance of the coexistence between Microcon-
troller and FPGA.

Introduction 21

1.0.2 Planning (Gantt Diagram)

1
1
/1
1
/2
0
1
7

3
1
/1
2
/2
0
1
7

1
9
/0
2
/2
0
1
8

1
0
/0
4
/2
0
1
8

3
0
/0
5
/2
0
1
8

1
9
/0
7
/2
0
1
8

0
7
/0
9
/2
0
1
8

2
7
/1
0
/2
0
1
8

N
acim

ie
n

to
 Id

e
a

R
e

u
n

io
n

 co
n

 p
ro

fe
so

re
s

D
e

fin
icio

n
 d

e
 b

ase
s

D
e

fin
icio

n
 d

e
 arq

u
ite

ctu
ra a u

tilizar

To
m

a d
e co

n
tacto

 co
n

 IceZu
m

 A
lh

am
b

ra, H
o

la M
u

n
d

o

To
m

a d
e

 co
n

tacto
 co

n
 V

erilo
g, M

o
d

u
lo

 V
G

A

M
o

d
u

lo
 I2

C
 p

ara trab
ajo

 co
n

 IM
U

 d
e

sd
e

 FP
G

A

Fisica d
e

 u
n

 B
alan

cin
g R

o
b

o
t

Elecció
n

 co
m

p
o

n
e

n
te

s

D
ise

ñ
o

 m
e

cán
ico

 B
alan

cig R
o

b
o

t

Im
p

re
sió

n
 B

alan
cin

g R
o

b
o

t

C
o

e
xiste

n
cia A

rd
u

in
o

-FP
G

A

M
P

U
6

0
5

0
 d

e
sd

e
 A

rd
u

in
o

D
e

sarro
llo

 P
C

B

Em
sam

b
lad

o
 sistem

a co
m

p
leto

C
o

n
tro

l P
ID

 y p
ru

eb
a fin

al

C
am

ara O
V

7
6

7
0

M
o

d
u

lo
 V

G
A

 p
ara e

l te
ste

o

D
e

sarro
llo

 p
ro

to
tip

o
 V

G
A

A
d

q
u

isicio
n

 d
e

 P
ixe

le
s

P
ro

to
co

lo
 P

e
lo

ta R
o

ja

In
clu

sio
n

 e
n

 P
ixH

aw
k

P
ru

e
b

a Fin
al

M
e

m
o

ria

D
iagram

a d
e

 G
an

tt TFG
 Ju

an
 O

rd
ó

ñ
ez C

e
rezo

Figure 1.1

22

1.0.3 Work Methodology

In order to introduce the work methodology, GitHub tool will be introduced[7]
(figure 1.2).

Figure 1.2: GitHub Logo.

GitHub is a collaborative software development platform for hosting projects
using the Git version control system. GitHub hosts your project in a repository
and provides very useful tools for teamwork.
It also provides the possibility of a Wiki for the maintenance of the versions and
information about them.
In the present project GitHub has been used as a container, where everything
has been partially uploaded, normally, when a stable version was obtained on
any of the branches.
This way, and to be wide open, anyone has been able to follow the progress of
this, doubts, problems, or even use some of the modules or material uploaded.

This project can be found at [8].

An example of the trajectory of this project is represented in the screenshot
of GitHub in Figure 1.3.

Introduction 23

Figure 1.3: Commits GitHub.

For the good fulfillment of the objectives settled out at first instance and
taking into account the different location of the components of the work, it was
necessary to propose weekly meetings (usually on Fridays) where the work done
during the week was put together and new objectives were settled.

For that, Appear.in[9] tool, was used, which is a free software and offers
videoconferences between several users at the same time.(figure 1.4).

24

Figure 1.4: Appear.in.

1.0.4 Memory Structure

Memory is divides in three chapters or differenced sections.
In section 2 will be briefly explained the whole theoretical part and basic knowl-
edges for the understanding of this project. Also, the evolution through nowa-
days of some proposed systems will be commented.

In section 3 3 the Balancing Robot problem would be covered and a design
part and an implementation part will be differentiated. The self-balance robot
will be able to stay stable on two horizontal wheels.

In section 4 the vision problem on board a quad-copter will be covered as a
first aproximation.

At last but not least, in section 5 conclusions from the whole work done will
be exposed, as well as a possible future work to be done, errors to be corrected,
etc.

Chapter 2

State of the art

In the following section, theoretical aspects will be considered for a correct
understanding of the work done. In addition, the evolution of some systems will
be presented, as well as its advantages and disadvantages.

2.1 FPGA concept

An FPGA[2] (Field Programmable Gate Arrays) is a reconfigurable device that
can be electrically programmed to implement a high variety of logic circuits. It
consists in a uniform logic programmable structures array which are intercon-
nected by configurable routing network. A routing network example is shown
in 2.1.

Connection

Resources

□
□

,.

Input/Output
 Blocks

□
□

..

□
□

□
□

□□
II II II
II... II II
11 II II

II II II
II II II

II II II
II II II

II II II
I II II

II II II
II II II

II � �

□

□

□

□

II II II
II I I II
II I I II

II II II
II II II

II II II
II II II

II II II
II II II

II I I II
II II

� I I I

□□
II II II
II I I II
II I I II

□
II II II
II II II

□
II II II
II II II

□
II II II
II II II

□
II II II
I II II

11 � �

□□ □□
II I I II II JI II
II I I II II JI II
II I I II II l I II

□ 111 111
II II II II J I II
II II II II l I II

□ □
II II II II JI II
II II II II l I II

□ □
II II II I J I II
II I II I JI II

□ □
II II II II J I II
II I I II I II

� I I � II II

□□ □□ □□ □□

-

Logic
- Block

□
□

□
□

□
□

□
□

Figure 2.1: PLD vs FPGA

25

26 2.1. FPGA concept

The logic and structures interconnection can be configured thanks to the
powerful CAD tools, which allow that the final user could define this physical
logic blocks interconnection through Hardware Description Language (HDL).
Some of the best known are the VHDL or ABEL. Although it is not the most
used nowadays, along the 2.1.4 section a brief introduction to Verilog will be
done, discussing and analyzing its main features.

2.1.1 Evolution and scenario

FPGAs were invented in 1984 by Ross Freeman and Bernard Vonderschmitt,
co-founders of Xilinx[10]. They were mainly designed to work as prototypes
or demonstrations of digital electronic circuits. FPGAs conform the maximum
evolution of PLDs (Programmable Logic Device), defined as integrated circuits
which can be programmed Boolean Logic equations. Some usage examples
nowadays are:

• Artificial Vision Systems

• Medical Image Systems

• Coding and Encryption

• Voice Recognition

• Aeronautics and Defense

Revolutionary success from this programmable device can be attributed to
the flexibility in design implementation. This way, the capacity to instantly
reprogram the FPGA with several circuits without additional cost, promotes
the reuse of the device and allows a fast design verification y because of that,
reduces the cost in the developing stage. Even though they do not actually rep-
resent the whole system from a final product, its advantages in the properties of
the design are making them to become much more important in the electronic
products developing.

In order to try to understand the importance of hardware implementation
devices, it would be adequate to introduce the Moore’s Law. Moore’s Law
expresses that approximately every 22 years, the number of transistors is du-
plicated in a microprocessor. As it is shown in 2.2, this law formulated by the
Intel cofounder, E. Moore, in April the 19th of 1965, is not so far from reality.

State of the art 27

Figure 2.2: Moore’s Law

However, as it has been announced form the main microprocessors enter-
prises like Intel and AMD, in their technological roadmap for semiconductors,
the Moore’s Law will get to its end in 2021. After this date, it won’t be eco-
nomically efficient to keep reducing the silicon transistor’s size. The industry
prediction is not only that its reduction rate will become slower and slower, but
that will definitely stop. At that point, digital electronics will start to have an
important role with microprocessors. This is forcing Multinational Enterprises
dedicated to Microprocessors manufacturing like Intel or AMD, to implement
those behaviors in FPGAs. Its advantages and disadvantages will be presented
in 2.1.2 and 2.1.3.

28 2.1. FPGA concept

2.1.2 FPGA Architecture

In a PLD, interconnections between elements is already prefixed and it is only
possible to enable or disable this connection. Otherwise, FPGAs connections
are no prefixed, making possible to the final user to decide the logic blocks in-
terconnections. (figura 2.3).

PLD Blocks Interconnections
Interconnections Logic Blocks

-

, '

, , □

□ □ □

- □ □ □
HIERARCHICAL PLD SYMETRICAL MATRIX

Figure 2.3: PLD vs FPGA

When choosing a FPGA for a specific project, it is important to keep in
mind one of its most important property: The number of logic blocks. This
number determines the device capability and is part of one the most limited
features from nowadays FPGAs/ Logic blocks are independent between them
and are able to interconnect in order to build a more complex module.

Now fine-grained and coarse-grained meanings will be introduced, which will
lead to the correct understanding to the FPGA architecture.

This complex module performs the basic operation which together represent
the function that will operate in a FPGA. It is said that FPGAs are Advanced
Architecture devices because of the density of its components and because of
the different interconnection paths between modules. According to the module
types that conform it, we have two structural configurations:

• Fine-grained

• Coarse-grained

Logic modules in a coarse-grained architecture are big modules generally
consistent which have one or more query tables and two or more Flip-Flops.
The query table is also known as the Look Up Table (LUT). It performs like
a memory where the truth table, which represents the circuit logic function is
located, this way, any desired function could be implemented in a LUT. De-
pending of the LUT size, more or less variable functions can be implemented.

State of the art 29

On the other hand, a fine-grained architecture is structured by a huge quan-
tity of small logic modules which perform relatively simple tasks. Each module
has a two-input circuit that performs a determined logic function, or in some
other cases by a multiplexor. It may also contain any Flip-Flop.

The most used FPGAs nowadays have the coarse-grained technology, which
allows to increase the abstraction level with respect to fine-grained FPGAs.

The first case allows less detailed implementations since from a very low
level there are much more complex modules and the fact of using LUT suggests
that larger designs can be created. Along this project the first case will be
considered, as an example of that is the FPGAs used, IceZum Alhambra II.

The designer proposes the logic function to be performed throughout the
description hardware methods and define the parameter to its design. This is
done through programmable code, that can be a description hardware language,
which is introduced in section 2.1.3.

2.1.3 Hardware Description Languages

A Hardware Description Language[3] (HDL) is a language used to model the
hardware block functionality in a textual way. As we can find differences be-
tween the different type of programming languages according to their coding
syntax and their simulation methods and synthesis, we can find several differ-
ences between HDLs. There are two different hardware description languages
types:

• Low level: They do not allow the hierarchy of modules and they are able
to perform only simple descriptions.

• High level: They are the most used currently, they allow to design more
complex systems. Examples of high modeling are Verilog (Verify Logic)
and VHDL (VHSIC Hardware Description Language).

This work would be based on Verilog for allowing a higher level of implementa-
tion than VHDL, as would be discussed in section 2.1.4.

Both languages share some common characteristics, such as support for any
level of modeling and abstraction, and that each design element has well defined
interphase to allow fast connection with other logical elements.

2.1.4 Verilog

Due to its use throughout this project, some important characteristics, whose
knowledge would be basic to understand the code, will be analyzed.

Type of data

There are two types of data in Verilog which must be understood in order to
reach the desired functionality:

• reg: Represent variables with information storage capacity.

30 2.1. FPGA concept

• wire: They represent connections between components, they do not have
storage capacity.

Modules Implementation

In most cases and in order not to lose the abstraction level, a project in Verilog[11]
is usually composed of a set of modules which form a complete functionality,
and each of them, a specific one.

The main features of the digital implementation by modules are:

• Each module has a series of inputs and outputs whose main function is to
interconnect other modules, although it may not have inputs and outputs.

• Each module can be described architecturally or behavioral.

This implementation by Verilog modules allows the configuration of the ab-
straction level desired by the end user. The development of specific functionality
modules can have their advantages and disadvantages depending on their final
use. If they want to be reused for other workflows (example: 8-bits adder), it
is good to have very defined modules according to their functionality (exam-
ple: 2-bit adder). However, polarization does not have to be essential, although
advised.

Process Parallelism

One of the most important features that differentiates Verilog from the rest of
the procedural languages 1 is the possibility of executing several processes in
parallel, a fundamental aspect in the language which provides a great part of
the advantages of using hardware implementation.

PARALLEL ORGANIZED PROCESS

A PROCESS 1---------------1� B PROCESS ,__ ____ __

C PROCESS,__ ___________ _

D PROCESS

Figure 2.4: Process Parallelism

1Procedural Languages: The application execution starts in the code’s first line and follows
a predefined root through the application, calling procedures as it is necessary.

State of the art 31

The whole implementation of Verilog is declared inside a process that can be of
two types:

• Initial: This type of process is executed only once starting its execution
at the beginning, therefore, there are no delays. This process is not syn-
thesizable, which means it cannot be used in an RTL description.

• Always: This type of process is continuously executed as a loop, as its own
name indicates, is continually running. This is a synthesizable process and
is controlled by timing or events. If this block is executed by more than
one event, its set is called sensitive list.

Control Structures

Just like other procedure languages, Verilog has a series of control structures:

• if - else

• Case. This is one of the most used along this project. It allows the state
machines generation.

• For

• While

• Forever

• Wait

Continuous Assignment

Through continuous assignment a logic combinational can be modeled, that
means, there’s no need a sensibility list to complete the task. It can only be
declared outside of any process.

Procedural Assigment

Variables have a value assigned inside an always or initial process, the type of
variable to which the value is assigned can be of any type.

32 2.2. Open FPGAs evolution

2.2 Open FPGAs evolution

Many hardware implementation languages as well as its FPGA architecture
used, are linked to important companies such as Xilinx, Intel (formerly Altera),
etc, and being able to work with them requires a large budget.
This leads us to the fact that not many companies or individuals can benefit
from the advantages of using FPGAs, and at the same time, that technologi-
cal progress is at a slower rate. One of the keys of success of companies like
Arduino is not more than the community of people that stands behind cre-
ating new libraries, components, etc. This is all thanks to the low price of its
products and the possibility of finding all the hardware and software on the web.

To understand the formation of free FPGAs it is important to know what
the bytestream is.
A bytestream is a sequence of bytes that is used in telecommunications and IT.
The term bytestream is used to describe the configuration with which a specific
design will be implemented in an FPGA. This detailed bitstream format for a
particular FPGA is typically owned by the FPGA provider.

This is why Clifford Wolf decided to interpret the bytestream of the Lattice[12]
iCE40 model and developed the IceStorm[13] tool.
IceStorm was developed as a translate software from Verilog (Description Lan-
guage in FPGAs, 2.1.4) and bytestream. This translation was possible thanks
to the inverse engineering, this means that the usual usage is not give, but the
inverse.

There’s no longer dependency on any manufacturer and all knowledge is also
available. From these tools you can create any interface or any application that
has not been foreseen by the manufacturer.

Only Lattice iCE40 FPGAs (HX1K-TQ144 and HX8K-CT256 models) are
at the moment the ones that can be worked with (figura 2.5), but since it is a
open project 2,a lot of people are increasing their chances.

Figure 2.5: Lattice iCE40HX1K

2Open project: This refers to the user freedom to execute, copy, distribute, study, change
and improve that hardware or software.

State of the art 33

Some FPGAs examples that are now available for users are shown in figures
2.6, 2.7, 2.8

Figure 2.6: Tiny FPGA BX

Figure 2.7: BlackIce II

Figure 2.8: ico Board

34 2.2. Open FPGAs evolution

2.2.1 IceZum Alhambra

For this project, IceZum Alhambra[14] has been used, which has been completely
designed and assembled in Granada (Spain).
This is a free FPGA compatible with IceStudio (to be analyzed in section 2.2.2).
Some of its most important features are:

• Development FPGA board iCE40HX1K-TQ144 from Lattice company.

• Open hardware.

• Compatible with IceStorm toolchain.

• Compatible with Arduino Uno shields.

• 12MHz oscillator.

• ON/OFF switch to enable or disable digital pins.

• 20 Input/Output 5V pins.

• 8 Input/Output 3.3V pins.

• Micro-B USB to program FPGA from PC.

• Reset button.

• 8 general purpose LEDs.

• TX/RX LEDs.

• 4 analogic inputs available through i2c.

It is known that there are better features board, but the fact that it is Open
Hardware and that can be implemented with IceStudio, has led to the final
choice of this board for the development of this project.

State of the art 35

Figure 2.9: IceZum Alhambra Board

One point to keep in mind for the hardware development with this FPGA is its
1K memory, which has been a significant limitation in the development. For the
present project, the new version of the IceZum Alhambra, IceZum Alhambra II,
was also used, which was not in the market at the beginning of the project and
which takes some improvements, such as the expansion of 8K in its memory,
the improvement of the data bus i2c, the possibility of powering through LIPO.
battery, etc. IceZum is presented in figure 2.10.

36 2.2. Open FPGAs evolution

Figure 2.10: IceZum Alhambra II Board

2.2.2 IceStudio

HDL languages usually have a difficult learning curve, this is largely due to the
low level of abstraction needed to design a particular system. It is necessary to
know the hardware features of our system in order to work with this type of logic.

As previously developed, some manufacturers provide commercial tools to
program their own FPGAs. Although in the present, they are complex environ-
ments, they have a great number of tools and functionalities. Unfortunately,
most of them are not free and are linked to the architecture of a unique manu-
facturer.
With the evolution of FPGAs, languages that allow a higher level of abstrac-
tion have started to appear. In addition, tools focused on the implementation of
graphic design have also appeared. An example of this type of implementation
is LabVIEW FPGA or IceStudio[15].
IceStudio is an Open Source project developed by Jesús Arroyo Torrens, on
which the present document will be based.

IceStudio is a graphic IDE for free FPGAs and is built on the IceStorm
project. The objective of the IceStorm project is the reverse engineering and
the bitstream format of the FPGA Lattice iCE40 (although a few more were
emerging) documentation. It provides simple tools to analyze and create bit-
stream files, that is, the lowest level of implementation for an FPGA.

To get the reader closer to the knowledge and operation of IceStudio, a series
of representative screenshots will be incorporated throughout the document so
that the vision of what is being done is not lost. For example, the main win-
dow of IceStudio and on which everything else will be developed, is the same as
shown in figure 2.11.

State of the art 37

Figure 2.11: Main Window IceStudio.

The fact that IceStudio is a graphic editor can make believe that the abstrac-
tion level could be higher that desired, but the truth is that this a configurable
level. The final user who decides which abstraction level will be working with,
making necessary for this a large modules library as we will se ahead. In order
to explain the IceStudio power, a practical case will be shown.

The module represented in figure 2.12 is a normal writing of i2c, in which
the slave direction is parameterized and also the direction that wants to be read
on (will be explained in detail ahead).

38 2.2. Open FPGAs evolution

Figure 2.12: High-Level I2C writing

Thus, if someone who is not familiarized with this type of code and whose
objective is not to understand it but wants to make use of it, it should not
lower a lot of level. However, there is a possibility that it is necessary to change
some values such as clock frequency, i2c operation mode, etc. To do this we can
lower the level and enter the module being worked with, in this case, by double
clicking, as shown in figure 2.13.

Figure 2.13: Low-Level I2C writing

State of the art 39

The it could be said that a level of abstraction has been lowered, being now
able to enter in more specific hardware details if necessary.

In the previous practical case, one of the advantages of IceStudio has been
seen. Modularity allows to configure the abstraction level. For this, we need a
module’s library, some of which will be developed throughout this work, some
other modules are being developed, and can be found at [16].

2.3 Microcontroller-FPGA coexistence

2.3.1 Microcontroller-FPGA differences

At first it may seem that a processor and FPGA are similar devices because
both can perform certain pre-configured tasks. The truth is that digging deeper
we can find more differences than similarities. Both are able to implement a
transfer function, but the way they do it is different for each of them.

This, we could see FPGA and microcontrollers in a black box in which we
have some inputs and several outputs as shown in figure 2.14.

INPUT OUTPUT

-

-

-

-

FPGA or
 Microcontroller

Functionality

Figure 2.14: Funcionalidad FPGA y Micro-controlador.

To summarize how they implement this transfer function differently, the way
to work with a processor will be briefly explained.
A processor contains a series of instructions that perform operations on a set
of bits (add, increase, read and write in memory). Depending on the processor
type and its architecture we have more or less associated instructions, this being
one of the most important aspects that determine its performance.

40 2.3. Microcontroller-FPGA coexistence

Figure 2.15: Basic architecture in a processor

It has a series of registers, a memory to store the information and a stack
of instructions, which contains the program to be executed in machine code, in
addition to a clock.

Its operation mode at a high level; in each clock cycle the processor reads
from its instruction stack all necessary values, calls the appropriate instruction
and executes a determining calculation.
As discussed in 2.1.2, when implementing a logic design in an FPGA, a matrix of
physical connections is being modified. By modifying that connection matrix,
different functionality blocks can be implemented, which means, it could be
represented as several transfer functions in a same hardware system.
Figure 2.16 shows a real example of how the physical connections of logical gates
are implemented in an FPGA, and how it allows to have independent modules
from each other. Also, notice the problem of the memory in an FPGA, being
this the total number of physical logical doors that can be used.

E- F-

G-

Transfer Function 1

Transfer Function 2

Figure 2.16: Logic gates in a hardware implementation.

State of the art 41

2.3.2 Importance

The following practical case is proposed:

It is required to monitor with accuracy 4 different sensors coming from the
outside, in an exact way, all four at the same time and at a specific speed by
an external clock, being necessary in addition an actuation of the system (valve
opening, closes gates, etc).

The workflow block diagram in a processor that implements the above, might
look like figure 2.17

Sensor 1 Actuator 1 Sensor 2 Actuator 2

Sensor 3Actuator 3Sensor 4Actuator 4

Figure 2.17: Flow diagram in a processor.

Thus, the end user of this system should be able to check in a cyclic way,
each sensor and its following performance, thus failing to meet the specifications
(the four sensors will not be monitored at the same time). If the work was done
with interruptions, the different external interruptions would be configured or
cyclic executives would be used in order to approach those final requirements.
However, any of these solutions, they are still an approximation.
In contrast, with the use of an FPGA, the block diagram of the workflow would
look like figure 2.18.

42 2.3. Microcontroller-FPGA coexistence

Sensor 1 Actuator 1

Sensor 2 Actuator 2

Sensor 3 Actuator 3

Sensor 4 Actuator 4

Figure 2.18: Flow diagram in a FPGA.

Different transfer functions will be implemented for each one of the blocks
to be developed, which can be executed in parallel. However, it is not always
necessary to have parallel execution, and not only may it not be necessary, but
it could be harmful. When a system must be sequential, why to use a parallel
nature implementation?

It is very common to have systems where it is convenient to be able to
implement both types of operation, for that reason an FPGA/Microcontroller
coexistence could be enough to adapt to the requirements.

In figure 2.19 a real example of a bipedal system can be seen, which would
be more detailed explained in the following chapters.

State of the art 43

SENSOR

12C Read

 Microcontroller
"----- ____)

y

Sequential
Design

P CONTROL

D CONTROL

 I CONTROL

FPGA

"----- ____)
y

Parallel Design

Figure 2.19: Bipedal System coexistence between microcontroller and FPGA.

44 2.4. Inertial Measurement Unit

2.4 Inertial Measurement Unit

The central component of the proposed system is defined as IMU or inertial
measurement unit. It is composed of a series of sensors which will be used to
know exactly many on-board location system aspects such as speed, orientation,
gravitational forces, etc.
This information can be used for control or simple knowledge of the system at
a specific time.

In the case of the present project, it will be used to obtain the navigation
angles or Tait-Brain angles, in which the orientation is presented with three
orthogonal rotations around the X, Y and Z axis. An example of this type of
representation can be found in Figure 2.20.

Figure 2.20: Tait-Brain angles.

An IMU is defined by its number of degrees of freedom (DOF) which would
depend on the number of sensors on board (accelerometer, gyroscope) and the
number of axis on which are applied. Thus, an IMU with six DOF (for example
a 3-axis accelerometer and a 3-axis gyroscope) would be said to be 6DOF.

State of the art 45

Figures 2.21, 2.22, 2.22 present some IMUs examples.

Figure 2.21: IMU.

Figure 2.22: IMU.

Figure 2.23: IMU.

Another important feature and one on which will largely depend the price
of the product, is the range of the on-board sensors and the availability in the
digital analogous converters system, which are in charge to convert the value of
the sensor to a binary value that can be used for further analysis.
Following there are some of the most important aspects that can be found in
an Inertial Measurement Unit and those that would be very useful throughout
the present project.

Accelerometer

An accelerometer, as its name suggests, is a device that allows measuring the
acceleration to which a body is subjected. It is a fundamental component in
the inertial measurement units because it can detect, for example, free fall con-
ditions, although the main use is to determine the sensor’s orientation.

46 2.4. Inertial Measurement Unit

Normally accelerometer have 3 axis, which means, they are capable to inde-
pendently measure the acceleration in X, Y and Z axis, which allows to know
the magnitude and direction of the acceleration vector on each one of the axis.

The important case in this project is to be able to determine the sensor
orientation. For that, trigonometry must be applied. Supposing a 2D system
according to Figure 2.24.

Figure 2.24: Trigonometry in accelerometer system 2D.

θ = atan
Ax

Az
(2.1)

If it is applied in a 3D representation as shown on Figure 2.25

Figure 2.25: Trigonometry in accelerometer system 3D.

θx = atan
Ax√

Ay2 +Az2

(2.2)

θy = atan
Ay√

Ax2 +Az2

(2.3)

θz = atan
Az√

Ax2 +Ay2

(2.4)

State of the art 47

Gyroscope

A Gyroscope is a device that allows to measure the rotation angle of a certain
device.

In a gyroscope, relative angles are always measured to an arbitrary reference
(unlike accelerometers). Gyroscope used in this project is called a Coriolis Vi-
bratory Gyroscope.

As in the accelerometer in the previous section, gyroscopes usually employ
three axes, that is, they are able to independently register the rotation in the
X, Y and Z axis, so the module and direction of the rotation vector are obtained.

It is important to keep in mind that this kind of Gyroscopes based in Cori-
olis effect are not able to detect the rotated angle, but the angular speed, an
important aspect to its depuration.

Reminding the angular speed concept (2.5):

ω =
δω

δt
(2.5)

In order to obtain the angle, it is necessary to perform the integration with
respect to time (ecquation 2.6):

θgyro = ωgyro ∗∆t (2.6)

Accelerometers are devices that are often very sensitive to vibrations, so for
its correct processing must take into account that it will present a lot of high
frequency noise. A filtering at a certain frequency will solve part of this problem.

Having to make an integration with respect to time brings with it some
problems which would be seen in the next section.

Drift Problem

A huge part of the Inertial Measurement Units on the market are at least com-
posed with accelerometers and gyroscopes, the reason for this combination is
that one complements the limitations of the other and vice versa.

The drift in an electronic sensor is a variation over time of the output of
the meter (with respect to the real measurement) although the variable may
be constant, is in a way cause by extent changes in the temperature or by the
accumulation of errors.

In both accelerometer and gyroscope, we find drift associated errors:

• Accelerometers do not have medium or long-term drift; however, they are
influenced by the movements of the sensor and the noise, reason why they
are not reliable to medium or short term.

48 2.5. Educational Robotics – Motivations

• As for gyroscopes, they work very well in sudden and short movements
but when making an integration with respect to time the drift problem
appears in the medium or long term.

After analyzing both accelerometers and gyroscopes problems, it seems rea-
sonable to combine both measurements to obtain more precise orientations.

Possible solutions

To solve some of the above problems, it can be very useful to apply some of the
following proposed solutions:

• Combine and filter the signals by using a complementary filter. It is the
most used nowadays due to its not very high complexity. Its simplest
expression is represented in equation 2.7.

θ = A ∗ (θprev + θgyro) +B ∗ θaccel (2.7)

• Combine and filter the signals using a Kalman filter, which evaluates the
future value of the measurement. However, it uses complex calculations.

• Some inertial measurement units internally incorporate DMPs processors
(Digital Motion Processor) which execute complex algorithms avoiding
having to perform filters and freeing the processing system.

One explained the basic features of commercial IMUs, in section 3.3.2 will
be developed the IMU chosen for this system and its own features.

2.5 Educational Robotics – Motivations

Robotics[4] can be considered as one of the technological areas with more boom
nowadays and based on the study of robots, which are systems composed of
mechanisms that allow to make movements and perform specific tasks, pro-
grammable and intelligent.

Depending on the application, therefore, robotics can be extended and gen-
erate benefits not only in the industry but also in classrooms, enabling the
appearance of new learning systems.

In addition, in a world whose future is aimed at the use of robots for any
activity, the approach from classrooms with these systems, enables the student’s
technological development at an early age, making their integration easier into
an adult age.

Some robotics educational benefits are:

• Drives initiative and creativity

• Larger sociability

• Encourages algorithmic and mathematical thinking

State of the art 49

• Teamwork

• Problem resolution

• Active learning.

• Self-Esteem increase.

However, so that the integration in the classroom of educational robotics
could be easier, the systems must fulfill some characteristics:

• High technological integration level not recommended

• Robots must be sociable and fun

• Programming environments should not be complex, and even its function-
ality is kind of limited, it has to draw the attention of the student and
make them feel comfortable.

• It is important that the robot has a series of sensors and actuators, inputs
and outputs so that results must be visuals.

After analyzing the advantages of digital electronics, it is convenient to be
able to bring these two knowledge fields closer together; educational digital-
robotics electronics.

If digital electronics and the world of robots are called to be part of our lives
in the near future, the need of an approach to these two concepts at an early
age is basic for a correct technological improvement.

IceStudio was born with this idea, making digital electronics to be friendly
so that the little aged students can use it, and so, meets the requirements before
explained.

2.6 Sensors, actuators and control system

Before starting the development of the project, it is important to be clear about
the concepts of sensors, actuators and elements of the control system, which are
part of any mobile robotic platform.

Any control installation, being robotic or imnotic, is composed by three
fundamental components.

• Sensors

• Actuators

• Control systems

Sensors are devices that collect information from the world around us and
transform it into electrical signals that can be input to a control system.

Thus, the control system receives information from the environment on which
we want to perform some kind of action through the sensors, which is the transfer

50 2.6. Sensors, actuators and control system

function of the system. From some known type inputs, outputs are generated,
usually, dependent on the inputs.

These outputs are called actuators, which are devices that, following the
parameters given by the control system, perform actions that affect the envi-
ronment.

Example 2.1 A sensor indicates to the control system the luminous intensity
of a room. The control system recognized that the luminous level is not adequate
for reading and activates an actuator, in this case, a light to balance that level.

When choosing a specific sensor, it is important to know its operation mod-
ule, in order to configure or maintain incorporated systems. There are different
type of sensors according to:

• Ouput:

– Analogic

– Binary

– Digitals

• Internal structure:

– Passive

– Active

• Kind of parameter able to detect.

Another possible classification is that of the application scope, that is, where
and what for these sensors are used.
Between the most important technical features from a sensor and making an
introduction to the possible vocabulary that will be used, there are:

• Measurement range: Domain to the measured magnitude to which the
sensor can be applied.

• Precision: Expected maximum measurement error.

• Offset or zero deviation: Value of the output variable when the input
variable is zero.

• Sensor sensitivity: Assuming it is input to output and the variation of the
input magnitude.

• Resolution: Minimum variation of the input magnitude that can be de-
tected at the output.

• Drifts: Are other magnitudes, apart from the measure as input magnitude,
that influence the output variable.

In general, the output signal from these sensors is not suitable for direct
reading and sometimes not for processing, which is why conditioning circuits
are used Figures 2.26, 2.27 and 2.28 show some sensors examples.

State of the art 51

Figure 2.26: Sensor CMOS to image adquisition.

Figure 2.27: IMU.

Figure 2.28: Potenciometter.

Actuators are devices that allow the control system to ”act” on the “real
world” to perform desired actions. One of the best-known actuators are motors,
which will be very used throughout this application.

52 2.7. Classic PID controller

Figure 2.29: DC Motor.

There are many different types of control systems in relation to the applica-
tion to be developed, normally a microcontroller is chosen as a control system
and the transfer function to be performed is programmed.
In the case of this project, and in order to acquire the advantages of an FPGA
and on the other hand the advantages of a microcontroller (seccion 2.3), both
Arduino will be used for sequential tasks or the IceZum Alhambra for the tasks
that can be parallelized.

2.7 Classic PID controller

Proportional, Integral and Derivative[17] (Proportional-Integral-Derivative, PID)
is the most common and the most used control in the industry and has been uni-
versally accepted in the control industry. The popularity of this control is due
to its robustness and ease of use, which allows engineers to work in a simple way.

As its name indicates, the algorithm consists in three basic operators: Pro-
portional, Integral and Derivative which are the clue to obtain an optimal re-
sponse.

The basic idea of a PID controller is to reed a sensor and calculate a pro-
portional response, integral and derivative with the objective of calculating the
best output from an actuator.

State of the art 53

To know very well how a PID controller actuates and to know the meaning
of each one of its components, it is necessary to know what a closed loop system
is.

Closed loop system

A closed loop control system is s systems in which the action of the control is
in function of the output signal. Closed loop systems use feedback from a final
result to adjust the control action accordingly. The set point is the value that
the system wants to reach.

Now it is digged a little deeper about is what’s the meaning of each of the
components by which the PID control is formed.

Proportional Response

The proportional component depends only on the difference between the current
value and the setpoint. This difference is known as the “Error”. Thus, the
proportional gain Kp determines the relationship between the output response
and the error signal. If the error has a magnitude of 10, a proportional gain of
5 will produce a proportional response of 50. The gain indicates the correction
speed of that error, but if it is too fast, the system will oscillate.

Integral Response

The integral component adds the error-in-time component, a small increase in
the error until the integral component increases slightly with time. The integral
response will increase continuously over time unless the error is zero, so the
effect is to bring the steady state error to zero.

Derivate Response

The derivative response causes the output to decrease if the process variable
increases rapidly. The derived response is proportional to the rate of change
of the process variable. Increasing the derivative constant Kd will make the
control system stronger to changes in the error and will increase the speed of
the overall response of the control system.

A block diagram of the complete system of a PID controller is shown in
Figure 2.30.

54 2.7. Classic PID controller

I

P

D

Error PROCESS OutputSetPoint
+

-

Figure 2.30: Block diagram PID controller.

Example 2.2 A PID is used to control the temperature of a room. The set
point is the temperature you want to reach, the plant is the room itself, which
can be modeled as a transfer function. A temperature sensor closes the loop,
indicating the temperature at each moment, while a valve opens and closes the
air duct depending on the values of the PID controller, which will be calculated
in relation to the setpoint value and to the value of the current temperature in
the room.

Chapter 3

Self-Balancing Robot

In this chapter, the objective is to address the inverted pendulum problem
through the usage of an FPGA in coexistence with a microcontroller. For this,
in the respective chapters, physics of a self-balancing robot, the calculation of
its structure, the sensors and actuators used, the control system and the design
and manufacture of a PCB that solves in a more adequate way some problems of
those previously raised, will be treated.A communication between FPGA/Mi-
crocontroller will be used and a more global version of the proposed system will
be given, with a general block diagram.

It starts with a problem description (section 3.1) to continue with a brief
high level solution (section 3.2). To finish, an explanation of each blocks will be
described (section 3.3).

3.1 Problem Description

To understand the work to be done, the problem of inverted pendulum will
be briefly enunciated, whose solution has given rise to many very famous tools
nowadays, one of them, called SegWay (Figure 3.1).

Figure 3.1: Commercial Segway.

Definition 3.1 Pendulum [18]: It is a physical system that can oscillate under
the gravitational action or other physical characteristic (elasticity, for example)
and that is configured by a mass suspended from a point or a horizontal axis by

55

56 3.1. Problem Description

a wire, a rod, or other device that is used to measure time.

As can be imagined, an inverted pendulum has the aspect shown in Figure 3.2.

Figure 3.2: Inverted pendulum representation.

Consists of a pendulum where the mass center is located above the point or
balancing axis. As expected, this layout gives the system static instability. We
recall that a system is stable when its gravity center is closer to the support
horizontal plane.

The base of this project will therefore be to correct this instability and is
part of one of the most famous problems in terms of control theory and systems
dynamics.

Self-Balancing Robot 57

3.2 System Design

By i2c communication with an IMU sensor, the microcontroller obtains the
current angle of the system. Obtained the angle by the microcontroller a com-
munication of serial type sends it to the FPGA in a binary format of 1 byte
for the integral part and 1 byte for the decimal part. A shield with a driver of
DC motors connected to the FPGA brings the possibility of varying the speed
and direction of two DC motors that allow the stabilization of the system. The
speed of the motors for a correct correction of the angle is calculated by a basic
PD controller implemented in the FPGA.

i2c

Serial
Communication

P

D

Error
Set Point

0º +

-

Current Angle

Current Angle

Motor Driver

PWM1

PWM2

IceZum
Alhambra II

Figure 3.3: Final block diagram.

The following chapters will go deeper into each of the previous blocks that
form the final solution (Figure 3.3).

58 3.3. System Implementation

3.3 System Implementation

3.3.1 Mechanical Structure Manufacturing

Knowing the physics of a self-balancing robot [19] [20] and with the aim, there-
fore, of solving the classic problem of the inverted pendulum, the mechanical
structure of the Figures 3.4, 3.5 y 3.6,designed with SolidWorks is proposed and
from which the rest of the components will be assembled.

Figure 3.4: Frontal view Balancing Robot.

Self-Balancing Robot 59

Figure 3.5: Lateral view derecha Balancing Robot.

60 3.3. System Implementation

Figure 3.6: Balancing Robot perspective.

Different aspects of the design of this structure are considered, which are di-
rectly related to the physics of a self-balance Robot, and with it, of the inverted
pendulum.
As argued in section 3.1, a system at rest is stable when its mass center is closer
to the horizontal plane. If we consider that the nature of the proposed system
is inherently unstable, it is necessary to know the best point where the mass
center must be in order to allow a better stability.

Assuming the of mathematical modeling characterization, it is therefore as-
sumed that to achieve greater ease in stabilization, the center of mass should
be placed above the midpoint of the vertical axis of our system. Therefore,
we must consider the weight of all components for a placement that allows the
above.
In Figure 3.7, a SolidWorks calculation is represented from this mass center
where there have only been considered the heavier components of the final sys-
tem, which includes, DC motors, batteries, mechanical structures and wheels.

Self-Balancing Robot 61

Figure 3.7: Center of mass final system.

3.3.2 Inertial Measurement Unit MPU6050 in Arduino
Nano

A constant knowledge of the angle of the system is necessary for its analysis
and correction, for this purpose the MPU6050 sensor has been used, connected
by an i2c communication to an Arduino Nano.

The MPU6050 is an Inertial Measure Unit (IMU) with 6 degrees of freedom
(6DOF) manufactured by Invensense. It has an accelerometer and gyroscope
and allows communication by both SPI and i2c bus. To correct some of the
data collection problems, mentioned in section 2.4 it incorporates an internal
processor (Digital Motion Processor, DMP) that executes data fusion algorithms
(Motion Fusion) to combine the measurements of the internal sensors, avoiding
having to perform the filters externally.

Due to its low cost and big quality, this is one of the most used IMUs
nowadays. In Figure 3.8 a MPU6050 image is shown.

Figure 3.8: MPU6050 IMU.

62 3.3. System Implementation

Pin-out

Figure 3.9 shows the schematic connections diagram of the MPU6050.

Figure 3.9: MPU6050 IMU.

It has a 3.3V power supply voltage. The clock pin for the I2C connection
(Serial Clock Line, SCL) and the data pin (Serial Data Line, SDA) represent the
connection for the bus with Arduino Nano. AD0 pin allows the user to change
the address of the MPU (slave), which by default is 0x68h connected to GND.
If it is connected to Vcc, the address changes to 0x69h. INT pin produces a
signal on high when the data in issue is available from the MPU to be captured
and will warn by an interruption to the Arduino Nano with the purpose to be
obtained.

Arduino Nano Program

For the Arduino Nano implementation it is used a library developed by Jeff
Rowberg. The reason of the use of this library is because it incorporates the
usage of the DMP. This use exempts the microprocessor (Arduino Nano in this
case) from a complex filtered and calculation with the purpose to obtain the
values pitch, yaw and roll. A representation of this advantages are represented
in Figure 3.10.

Self-Balancing Robot 63

Acelerometter

Gyrospcope

DMP

YAW

PITCH

ROLL

MPU6050

i2c

Acelerometter

Gyroscope

MPU6050

i2c

12 bit DATA

12 bit DATA

FILTER and
COMBINATION CALCULATIONS

YAW

PITCH

ROLL

Figure 3.10: Advantaje in the use of DMP.

3.3.3 PCB Implementation

After featuring the entire system and considering the necessary connection dia-
gram not only between the microcontroller and FPGA but also for the OV7670
(it uses in section 4) and the motor driver, it is convenient and appropriate a
printed circuit that solves some noise problems, excessive cables, etc.

The printed circuit contains the following components and behaviors:

• A total of 28 pins on the outside of the PCB and arranged in the correct
position for a fit in the IceZum Alhambra II board (Figure 3.11), which
allows to use as inputs or outputs the pins of the FPGA. In order to know
the exact position of the pins on the plate, the Altium project was used,

64 3.3. System Implementation

which is available on GitHub.

Figure 3.11: Pin headers for IceZum Alhambra II.

• 4 VDC and 12 Volt GND connections to power the ESCs of the brushless
motors of the aerial vehicle. For this, the component of figure 3.12, has
been chosen, because it has adequate features of maximum temperature
to which it may be subjected and which would be analyzed further on.

Figure 3.12: Connector GND and VCC.

• A VCC and GND connection to feed the previous connections. This
connector would go directly to a LIPO battery of 11.1V (3 cells) and
2200mAh. The fact of choosing this battery is due to the minimum volt-
age by which the ESCs of the brushless motors are fed, as well like the
motors and the motor driver used for the self-balancing Robot. A more
detailed analysis of the battery can be found in subsection ??

Self-Balancing Robot 65

• Header pin modules for the MPU6050 connection previously described.
(Figure 3.13).

Figure 3.13: Module MPU6050.

• An extension of the most important pins of the MPU6050 is made so that
they can be used by the microcontroller in the case of angle analysis, as
in this project, is part of a process governed by the microcontroller.

• Two jumpers connection (Figure 3.14) in I2C bus allow the user to decide
who governs the SDA and SCL line, microcontroller or FPGA.

Figure 3.14: Jumpers to configurate i2c MPU6050.

When hosting a bus line, it is not necessary to consider the thermal char-
acteristics of the connector in issue, and when working at a relatively
small frequency, the noise that the jumpers can introduce into the I2C
communication may be accepted.

• A great part of actual microcontrollers works at 3.3-5V but the input volt-
age supported can go high to 12V, because of that it is taken advantage
of the LIPO battery power and a new connector with two header pin is
implemented that goes to VCC and GND which will power the microcon-
troller.

66 3.3. System Implementation

• A module that can host the OV7670 camera (section 4)formed by male
headers pin and each of which will be attached to one of the FPGA’s
in-out pins, as will be seen later in the general schematic.

• A module that can host the driver of the DC motor used in this case and
that allows direct connection with IceZum Alhambra II pins, for example,
the pwm signal that will define the speed of the engines will be an output
on one of the FPGA pins, and it should be an input to the motor driver.

• So that there are no errors in the I2C transmission, there’s a 4,7KΩ resistor
in each of the lines.

In Figures 3.15, 3.16, 3.17, 3.18 is included a 3D representation of the final
system with all its added component

Figure 3.15: 3D View of Shield for IceZum Alhambra II.

Self-Balancing Robot 67

Figure 3.16: 3D View of Shield for IceZum Alhambra II.

Figure 3.17: 3D of shield for IceZum Alhambra II.

68 3.3. System Implementation

Figure 3.18: 3D of shield for IceZum Alhambra II.

For a PCB development with the described requirements it has been used
Altium Designer. The elaboration process of a PCB in Altium can be different
depending on the final user, but in this project the following root has been
followed:

• At first the project in issue is created.

• For each of the components used a new library is created, formed by the
schematic and the layout in the PCB.

• Once all the libraries are created, the schematic of the plate is designed,
taking special care that the connections are adequate.

• With the schematic already created, the PCB can be implemented defining
its edges, tracks, pads, etc.

The scheme is represented in 3.19.

Self-Balancing Robot 69

11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

R
ev

is
io

n
Si

ze A
4

D
at

e:
23

/0
9/

20
18

Sh
ee

t

 o
f

Fi
le

:
D

:\P
R

O
Y

EC
TO

_T
FG

\..
\p

cb
_d

ro
n_

sc
he

m
at

ic
.S

ch
D

oc
D

ra
w

n
B

y:

In
pu

t V
ol

ta
ge

10
K

R
3

Pu
ll-

up

G
N

D
M

1_
PW

M

IN
V

M
1_

PW
M

M
2_

PW
M

3V
3

PI
X

EL
_0

PI
X

EL
_2

PI
X

EL
_4

PI
X

EL
_6

PI
X

EL
_1

PI
X

EL
_3

PI
X

EL
_7

PI
X

EL
_5

IN
V

M
2_

PW
M

M
3_

PW
M

M
4_

PW
M

/P
C

LK
PI

X
EL

_0
PI

X
EL

_2
PI

X
EL

_4

PI
X

EL
_6

C
LK

H
R

EF
V

SY
N

C
PI

X
EL

_7

SC
L

SD
A

G
N

D
2

V
C

C
1

SC
R

EW
_2

PI
N

G
N

D
G

N
D

G
N

D

M
ot

or
 c

on
ne

ct
io

ns

V
C

C
V

C
C

V
C

C

3V
3

5V
_P

H
R

EF

PI
X

EL
_1

V
SY

N
C

PI
X

EL
_3

PI
X

EL
_5

C
LK

TX R
X

5V
_P

SD
A

SC
L

GND 2

VCC 1

M
ot

or
4

GND 2

VCC 1

M
ot

or
3

GND 2

VCC 1

M
ot

or
2

GND 2

VCC 1

M
ot

or
1

G
N

D
V

C
C

G
N

D

10
K

R
1

Pu
ll-

up
10

K

R
2

Pu
ll-

up

G
N

D

SC
LM

PU
SD

A
M

PU

3V
3

3V
3

3V
3

M
4_

PW
M

/P
C

LK

G
N

D

V
C

C

G
N

D

IN
T

A
D

0
X

C
L

X
D

A

G
N

D

R
ES

ET

R
ES

ET

10
K

R
5

Pu
ll-

up
10

K

R
4

Pu
ll-

up

3V
3

3V
3

C
on

fig
ur

at
io

ns

SD
A

M
PU

SC
LM

PU

SD
A

SC
L

1 2 3 4

4P
IN

S-
C

O
N

N
EC

TO
R

IN
T

A
D

0
X

C
L

X
D

A

D
D

5
18

D
D

4
19

D
D

3
20

D
D

2
21

D
D

1
22

D
D

0
23

V
IN

24
G

N
D

25
G

N
D

26
5V

_P
27

3V
3

28

D
13

13

D
12

12

D
11

11

D
10

10

D
9

9

D
8

8

D
7

7

D
6

6

D
5

5

D
4

4

D
3

3

D
2

2

D
1

1

D
0

0

G
N

D
14

A
R

EF
15

R
ES

ET
29

Ic
eZ

um
A

lh
am

br
aI

I

G
N

D
2

V
D

D
3

M
1I

N
2

4
M

1I
N

1
5

M
1S

F
8

M
1F

B
9

EN
10

SL
EW

11
IN

V
12

M
2I

N
2

13
M

2I
N

1
14

M
2D

2
15

M
2D

1
16

M
2S

F
17

M
2S

B
18

V
IN

1

M
1D

2
6

M
1D

1
7

M
C

33
92

6

1
2

3
4

SW
IT

C
H

_P
C

B

R
ES

ET
1

D
1

2
D

3
3

D
5

4
D

7
5

PC
LK

6
V

SY
N

C
7

SI
O

C
8

3V
3

9
G

N
D

10

SI
O

D
11

H
R

EF
12

X
C

LK
13

D
6

14

D
4

15

D
2

16

D
0

17

PW
D

N
18

O
V

76
70

IN
T

1
A

D
0

2
X

C
L

3
X

D
A

4
SD

A
5

SC
L

6
G

N
D

7
V

C
C

8

M
PU

60
50

JU
A

N
 O

R
D
Ó
Ñ

EZ
 C

ER
EZ

O
 T

FG

P
I
0
0
1

P
I
0
0
2

P
I
0
0
3

P
I
0
0
4

P
I
0
0
5

P
I
0
0
6

P
I
0
0
7

P
I
0
0
8

CO0
B

P
I
0
0
1

P
I
0
0
2

P
I
0
0
3

P
I
0
0
4

P
I
0
0
1

P
I
0
0
2

P
I
0
0
3

P
I
0
0
4

P
I
0
0
5

P
I
0
0
6

P
I
0
0
7

P
I
0
0
8

P
I
0
0
9

P
I
0
0
1
0

P
I
0
0
1
1

P
I
0
0
1
2

P
I
0
0
1
3

P
I
0
0
1
4

P
I
0
0
1
5

P
I
0
0
1
6

P
I
0
0
1
7

P
I
0
0
1
8

CO0

P
I
0
0
1

P
I
0
0
2

P
I
0
0
3

P
I
0
0
4

P
I
0
0
5

P
I
0
0
6

P
I
0
0
7

P
I
0
0
8

P
I
0
0
9

P
I
0
0
1
0

P
I
0
0
1
1

P
I
0
0
1
2

P
I
0
0
1
3

P
I
0
0
1
4

P
I
0
0
1
5

P
I
0
0
1
6

P
I
0
0
1
7

P
I
0
0
1
8

P
I
0
0
0

P
I
0
0
1

P
I
0
0
2

P
I
0
0
3

P
I
0
0
4

P
I
0
0
5

P
I
0
0
6

P
I
0
0
7

P
I
0
0
8

P
I
0
0
9

P
I
0
0
1
0

P
I
0
0
1
1

P
I
0
0
1
2

P
I
0
0
1
3

P
I
0
0
1
4

P
I
0
0
1
5

P
I
0
0
1
8

P
I
0
0
1
9

P
I
0
0
2
0

P
I
0
0
2
1

P
I
0
0
2
2

P
I
0
0
2
3

P
I
0
0
2
4

P
I
0
0
2
5

P
I
0
0
2
6

P
I
0
0
2
7

P
I
0
0
2
8

P
I
0
0
2
9

P
I
0
0
1

P
I
0
0
2

P
I
0
0
3

P
I
0
0
4

PI
LI

PO
0I

NP
UT

01

PI
LI

PO
0I

NP
UT

02

CO
LI
PO

0I
NP
UT

PIMotor101
PIMotor102 CO

Mo
to

r1

PIMotor201
PIMotor202 CO

Mo
to

r2

PIMotor301
PIMotor302 CO

Mo
to

r3

PIMotor401
PIMotor402 CO

Mo
to

r4

PIR101 PIR102 COR
1

PIR201 PIR202 COR
2

PIR301 PIR302 COR
3

PIR401 PIR402 COR
4

PIR501 PIR502 COR
5

Figure 3.19: Schematic Shield IceZum Alhambra II

70 3.3. System Implementation

Trace size
When designing the PCB, the size of the copper trace should be considered,
especially if the current could be very high. Otherwise, the PCB could suffer
damage or even burn out.

To calculate the trace width, it is necessary first to know the maximum in-
tensity that could circulate through it. It is based on the knowledge that one of
the engines of the unmanned aerial vehicle (this is the worst case and for which
the calculation of tracks is necessary) can consume a maximum of 20 amps.
This amount has been extracted from the datasheet and is usually common for
this type of motors.

The formula used to obtain the trace width has been extracted from the
standar IPC-2221B, which establishes the generic requirements for the design
of PCB.

The formula is defined as in equation 3.1:

I = K ∗ dT 0.44 ∗ (W ∗H)0.725 (3.1)

Donde:

• I = Max. Intensity (A).

• dT =Temperature rise over ambient (Co)

• W,H = With and Height (mils)

• K = 0.024 for internal traces and 0.048 for external traces.

The following results were obtained either for inner and outer traces:

Wexternas = 18.716mm

Hexternas = 0.035mm

Winternas = 48.6876mm

Hinternas = 0.035mm

The thickness of the layer is provided by the manufacturer. In this project,
this web has been used for ordering the PCBs.
Trace thickness is commonly measured in ”oz” and in this case, the manufac-
turing company allows a 1oz trace thickness in a PCB with, which is equal to a
0.035mm thickness.
If the results obtained from equation 3.1 are analyzed, the difference between a
track in an inner layer and a track in an outer layer is clearly seen.
A PCB is divided into layers, each of the layers has its function and organizing
them properly is a good practice to avoid bad behavior. Thus, once the re-
quirements were analyzed, two layers were necessary for the connection of data
pins, in addition a ground plane is always recommended in which all the pins
connected to GND have a common layer. This avoids noise and interference
besides ensuring a good ground reference.
In the used PCB provider, there is no price difference between a three-layer PCB

Self-Balancing Robot 71

and a four-layer PCB and considering that in the best case the trace width for
the brushless motors should be of 1.8716cm, it was reached the determination of
the usage of one of the layers as a common plane for the powering traces of the
motors. The distribution of the layers would therefore be represented in Table
3.1.

For the rest of data traces, it is assumed a width of 20 mm, which allows a
1.46 A current, enough for this application.

Top Overlay Overlay
Top Solder Solder Mask/Coverlay
Top Layer Signal
Dielectric 1 Dielectric
VCC Signal
Dielectric 2 Dielectric
GND Signal
Dielectric 4 Dielectric
Bottom Layer Signal
Bottom Solder Solder Mask/Coverlay
Bottom Overlay Overlay

Table 3.1: Layers composition in PCB.

A 2D image of the Top Layer, VCC, GND, Bottom Layer, Top Overlay and
Bottom Overlay layers are shown in Figure 3.20.

72 3.3. System Implementation

Figure 3.20: Composition layers in Altium.

3.3.4 IceZum Alhambra-Arduino Nano Implementation

An integration between a microcontroller and FPGA allows to distinguish se-
quential and parallel tasks, assigning each process to the microcontroller if it
necessarily has to be sequential, or to the FPGA if the process can be paral-
lelized and obtain with it some advantages

There are some options to make a Microcontroller/FPGA integration:

• Emulate the behavior of a microcontroller in an FPGA.

• Physical coexistence of an FPGA and microcontroller creating a commu-
nication between each one of them.

In this project the second one has been chosen as an option because there are
not enough resources to carry out the first one, although this would be the most
adequate in terms of saving resources and ease of use.

There are two possible communication types to this purpose:

• Serial communication: It is a sequential communication. The bits are sent
one by one, sequentially and using only one data bus.

Self-Balancing Robot 73

• Parallel communication: All bits of each symbol are sent at the same time.

To make usage of the communication in parallel you need as many channels
as bits to have the information to be transmitted (if you want to send a byte
you should use a total of 8 channels, corresponding to each bit). In this case
there will be used 8 pins of the FPGA to be able to carry out this type of trans-
mission. Therefore, and despite the fact that parallel communication is quicker
than serial communication, the first one is chosen as the most convenient option.

The type of serial communication developed could be alike an SPI protocol,
although it only has data capacity in one direction. The schematic of this
developed communication is shown in Figure 3.21.

SERIAL DATA

Microcontroller FPGA

BAUD RATE

Figure 3.21: Hardware coexistence microcontroller-FPGA.

The general system has two connections:

• A data line to send the information.

• A clock line so that the FPGA could obtain at every time the information
speed.

A possible example of a serial communication of a data byte could be shown
in Figure 3.22.

Figure 3.22: Serial communication example.

The angle has to be known in the IceZum-Alhambra in order to make decision
both in direction as in the speed of the engines. It is therefore necessary a
microcontroller/FPGA communication (Figure 3.23).

74 3.3. System Implementation

COMUNICATION

SEQUENTIAL PROCESS PARALLEL PROCESS

Figure 3.23: Separation microcontroller-FPGA.

The communication would be only unidirectional, the microcontroller will
send information to the FPGA about the current angle of the object in issue
with the purpose that the FPGA analyzes and actuates starting from that angle.

Therefore, there’s a two-part separation: from the point of view of the mi-
crocontroller and from the point of view of the FPGA. Both will be explained
specifically in subsection 3.3.4 y 3.3.4

Microcontroller POV

For the development of this sub-chapter, it is assumed that the current angle
has already been obtained in the microcontroller. Thus, and for the clarity of
the reader, an internal schematic of the Arduino Nano is shown in figure 3.24. In
this section and according to the part of the microcontroller, only the shadowed
part is analyzed.

Self-Balancing Robot 75

OBTENCIÓN DEL
ÁNGULO ACTUAL

PREPARACIÓN PARA LA
COMUNICACIÓN SERIE

MICRO-CONTROLADOR ARDUINO NANO

Figure 3.24: Inner diagram Arduino Nano.

The flow diagram in which the C code of the microcontroller is based on, is
shown in Figure 3.25.

0

Angle obtained in previous
process

si

DIGITAL PIN = 1

Serial.print(ingeger_part,
BIN)

Serial.print(decimal_part,
BIN)

0

no

DIGITAL PIN= 0 0

C)

TX

0

TX

0

Figure 3.25: Flow diagram to send angle.

76 3.3. System Implementation

The most relevant features will be explained:

• It is based on the assumption that the angle has already been obtained
and is correct. In section 3.3.2 you can find more information about it.

• As it has been said before 3.3.2, one of the most important parts to correct
the control of the self-balance robot, is to know the inclination at every
moment to correct this desviation (3.26). To do this, the FPGA must
know if the angle is positive or negative. This aspect would not form part
of the communication protocol itself, as will be seen below.

ANGLE > 0º ANGLE < 0º

Figure 3.26: Correction angle in Self-Balance Robot.

• A single pin of the microcontroller is used, which will change its value to
1 or 0 depending on the sign of the angle at each moment. This way the
FPGA will only have to read this information when it is necessary.

• For a correct understanding by the FPGA it is necessary to send the
represented Angle in bytes and not in ASCII code. This is why for that
sending the ”Serial.print(Angle)” command will be used. This Arduino
function sends by the serial port the representation in bytes of the angle
in issue.
If the whole angle is intended to be sent, both the symbol and the ASCII

Self-Balancing Robot 77

code of the comma will be sent, and this is an aspect that does not matter
to be considered when processing the FPGA is referred. To correct it, first
the module of the angle is made (the sign is not needed because there is
already a pin designated for it) and later it makes a separation between the
integer and the decimal part in order to eliminate the ”comma” character.

• The integer part corresponding byte is sent by the serial port.

• The decimal part corresponding byte is sent by parallel port.

• This is a loop that will be reproducing each “x” seconds, this is, the angle
that could be corrected each “x” seconds.

FPGA POV

For an input PIN to the FPGA it will be continuously entering data from the
transmission pin and so that it can make a correct reading of the byte it is
necessary to know:

• When a byte transmission starts.

• When a byte transmission ends.

• When a bit can be captured.

• When the necessary bits are saved in a buffed until the byte is complete.

In order to implement an intermediate module in the FPGA with the pre-
vious features (aspect in IceStudio Figure 3.27) it is necessary previously know
the speed of the transmission by the microcontroller, which has been 16200 baud.

Figure 3.27: Appearance of Arduino Nano module in IceStudio.

The inputs and outputs from the previous module are detailed:

• data[7:0]:Consists in a buffer in which bits are being stored when it is
necessary until we have the byte. It is important that the following module
knows when the byte is prepared for its capture.

78 3.3. System Implementation

• clock data debug: The usage of this output is for depuration only.

• byte ready: A clock flag will change its state when a byte is ready to be
captured. As there has been seen in previous developments, this byte will
be both integer or decimal part.

• bit ready:The usage of this output is for depuration only.

The implementation in IceStudio of the previous behavior is implemented
by two machine states with their corresponding sensitivity lists and the flow
diagram is represented in Figure 3.28.

Self-Balancing Robot 79

P
ro

ce
so

ID
LE

S
TA

R
T

D
A

TA
S

S
T

O
P

16
20

0
B

au
di

os

B
it_

re
ad

y

sa
ve

_b
uf

fe
r[

7:
0]

B
Y

T
E

_R
E

A
D

Y

F
P

G
A

 C
LO

C
K

8
bi

ts
 in

 b
uf

fe
r?

G
en

er
at

ed
 P

ul
se

 b
y

P
ro

ce
ss

 1
 w

he
n

bi
t i

s
re

ad
y

S
í

P
ro

ce
ss

 1

P
ro

ce
ss

 2

S
E

R
IA

L
_D

A
TA

F
P

G
A

_C
L

O
C

K

D
A

TA
_B

U
F

F
E

R

B
Y

T
E

_R
E

A
D

Y

Figure 3.28: Flow diagram for Arduino interface.

80 3.3. System Implementation

Two well differenced processes are used:
Process 1: This process only gives the next system the exact moment at which
it can capture a bit and save it in the buffer, for this, you must know the speed
of the transmission discussed above. The states would be the following:

• IDLE: The process remains in this state until the transmission starts,
which will go to the next state (START).

• START: How was it developed in the section . . . The serial transmission
protocol begins with a start condition, this state will allow to recognize
when this condition ends to start saving bits in the buffer.

• DATA: Since the transmission speed is already known and the condition
of START in the previous state has been recognized, in this state a flag
will change its value when the bit is ready to be stored in the buffer, of
which process 2 will be in charge of.

• STOP: In addition to a START condition, the serial transmission protocol
used in Arduino has a STOP condition. This state allows to recognize the
time it takes Arduino to carry out this last condition, then, it will return
to the first state until a new transaction begins.

Process 2: This process activated by process 1. When process 1 determines
that a bit is available on the bus to be captured, it will set a clock flag on,
initiating process 1 through a sensitivity list. The flow diagram could be:

• Wait until the sensibility list is activates, this will indicate that a bit could
be captured.

• Bits will be storing in a buffer that will form a byte, which will represent
the integer or decimal part of the angle at that moment.

• When the byte is prepared to be captured by two consecutive modules, a
channel will be on, being available both the outputs and the buffer with
the 8 bits and the channel ”byte ready”.

At this point the FPGA is able to differentiate when it can capture a byte
(BYTE READY) and from where it has to capture the data bus (DATA BUFFER).
However, an aspect that is not part of the communication itself, it is important
to analyze if you want to get a correct operation. That is, if it has been previ-
ously said that the microcontroller continuously sends the integer and decimal
part of the angle, if a good interpretation of this data is not made, it is possible
that an angle on the FPGA is formed by a decimal part of an angle n and the
integer part of the angle n + 1.

To do this, a module is created in IceStudio that is capable of ordering these
values. The aspect of this module in IceStudio is shown in Figure 3.29. 3.29.

Self-Balancing Robot 81

Figure 3.29: Module to arrange data from Arduino.

As Inputs there are:

• Data [7:0]: This is the output buffer of the previous module where all
captured bits are being stored until the byte is completed.

• byte ready : Clock flag which activates when the byte is available to be
captured.

It is important to consider that the data will be available as long as the
entire part as well as the decimal part of the angle in issue is available. Thus,
as outputs are:

• integer part[7:0] :Byte that represents the integer part of the angle.

• decimal part[7:0] : Byte that represents the decimal part of the angle.

• data ready : Clock flag that activates when the data (decimal and integer
part) is waiting to be captured.

As has been previously discussed, the flow diagram of the code in Verilog
that implements the previous behavior is shown in Figure 3.30.

82 3.3. System Implementation

DATA1

DATA2

pulse generated
when byte is ready

DATA1
starts when

pulse is
generated

Figure 3.30: Flow diagram to arrange bytes.

In this case is a process with a sensibility list that counts as a sensible signal
the ”byte ready”, bus and which is the output from the previous module.

Each time the flag is activated that indicates that a byte Is ready to be
captured, a cyclic state machine starts that counts with the following states:

• DATA1: It is the first data to be captured and corresponds to the whole
part of the first angle. The second time the ”byte ready” flag is activated,
it corresponds to the decimal part of the first angle and therefore it will
pass to the next DATA2 state.

• DATA2: In this state not only is the decimal part of the angle in issue cap-
tured, but also a new flag is activated, which indicates that the complete
data (Angle) is ready to be captured.

Thus, the module will have as outputs, the buffer of the integer part, the
buffer of the decimal part and a bus that will notify the successive modules of
the complete data is ready to be captured. In this way, the problem explained
above of the non-ordering in the data arrived from the microcontroller has been
avoided.

The Arduino-FPGA communication protocol is terminated and the neces-
sary tools are provided so that the successive processes and modules can know
the angle at each moment represented by its integer part (8 bits), decimal part
(8 bits) and a pin that indicates the value of the sign (positive or negative).

The final communication system between Arduino and IceZum Alhambra
from a POV of the FPGA is represented in Figure 3.31.

Self-Balancing Robot 83

Figure 3.31: Communication between Arduino and IceZum Alhambra.

84 3.3. System Implementation

3.3.5 PID Control in IceZum Alhambra

As it has been explained in section 2.7, a PID controller can be used in a simple
way to control the stability of the system.
One of the facilities in the use of this kinds of controllers is because its ease of
implementation.

P Controller

The flow diagram that features the behavior of the P controller is shown in
Figure 3.32.

Always data_ready

Integer_part

decimal_part

100

Velocity

Kp

2

1

3

4

Figure 3.32: Flow diagram P control.

Due to its importance, the functionality is briefly explained ahead:

• 1.-The complete process will be refreshed every time there is a new datum,
this is in this case, every time the angle system is changing.

• 2.-As inputs there are both the integer part as the decimal part from the
angle.

• 3.-Both the integer part and the decimal part are represented as 8 bits
data without sign. So, in order to give more importance to the integer
part, there is the option to divide the decimal part by 100 or to multiply
the integer part by 100. In the first option there is not a good behavior
obtained due to the digital treat of the floating comma, which is why the
second option is better.

• 4.- At the end, the two integer and decimal components are added and
then it is multiplied by a Kp constant, defined as a parameter which can
be didactically changed.

Self-Balancing Robot 85

Its representation in IceStudio has the aspect as shown in Figure 3.33.

Figure 3.33: Appearance of P control in IceStudio

86 3.3. System Implementation

D Controller

Referring to the D controller, the flow diagram implemented in Verilog is shown
in Figure 3.34.

Always data_ready

integer_part * 100

decimal_part

DATA1

DATA2

STATE1

-

Kd

Velocity

integer_part*100

decimal_part

DATA1

DATA2

STATE2

Figure 3.34: Flow diagram D control.

Its implementation is composed by a state machine with two states, which
will change at each pulse on the dataready, which means, will change whenever
a new angle is available.

If remembered, D controller is based in its operation on the prediction of
future errors. The derivative control action generates a control signal propor-
tional to the derivative of the error signal.
A subtraction (derived from the error in time) is therefore carried out between
the current error and the last error. Its result is multiplied by the constant Kd.
Its representation in IceStudio is represented in 3.35.

Self-Balancing Robot 87

Figure 3.35: Appearance of D control module in IceStudio.

Controlador PD

Referring to the closed loop feedback system analyzed in section 2.7, it is im-
portant to show the final result of the aspect of the present project in IceStudio,
making a direct comparison between this (figure 3.36) and figure 2.30.

88 3.3. System Implementation

Figure 3.36: Final appearance of Self-Balancin in IceStudio.

Self-Balancing Robot 89

3.3.6 Motor controller

Having a module with the ability to generate PWM solves many subsequent
problems while improving the visibility of the code in the final system. As can
be seen in the motor features, most of them are commanded by a PWM signal
that, although it is true, depends on the motor in issue.
Pulse Width Modulation (PWM) is a technique that modifies the work cycle
of a periodic signal (squared in our case) that is used to transmit information
through a communication channel or to control the amount of energy that is
sent to a load. An example of a PWM squared signal is shown in figure 3.37.

Figure 3.37: PWM signal example with different dutty.

Applying this signal, for example, to a classic DC motor the amount of en-
ergy that is applied to the load is varied, the motor in this case. It simply works
as a switch in which a high logical level is open and a low level closed. If it is
managed to vary the time the motor is being charged and the time in where
there’s no current, you can control its speed.

The features of a PWM signal are:

• D = Work cycle.

• τ = Time-lapse while the function is positive.

• T = Function period.

The motor driver used to control DC motors (MC3392 figure 3.38),needs a
series of configurations to work according to the needs which could be obtained
from its datasheet. The final inputs and outputs diagram and also the necessary
connections are detailed in the scheme of the 3.39 figure.

90 3.3. System Implementation

Figure 3.38: MC33926 to control DC motors.

Proceso

PCB SHIELD ICEZUM ALHAMBRA II

VIN

GND

MOTOR1

MOTOR2

Figure 3.39: Schematic MC33926.

PWM Control

The speed of the motors is controlled by a PWM which is connected to pin 15 or
M2D2, from figure 3.39 for each one of the motors and another PWM generator
connected to pin 6 or M1D1 from the DC motor driver. This generator module
has the aspect shown in figure 3.40 in IceStudio.

Self-Balancing Robot 91

Figure 3.40: Appearance PWM module in IceStudio.

The block diagram of its performance is exposed in figure 3.41.

FPGA CLOCK
START

FPGA CLOCK COUNTER + 1

TRUE

FALSE

COUNTER == VELOCITY ?

FALSE

FLAG ACTIVE

TRUE

START

VELOCITY PWM

Figure 3.41: Flow diagram PWM generator in Verilog.

Its performance is based in an input clock pulse counter from the FPGA.
A speed log will dictate how many pulses have to be counted before an output
signal is settled on (desired PWM). As inputs are:

• FPGA Clock: Is the 12Mhz FPGA clock which is in charge of the pulse
counter.

• Start: It is a common signal to the whole system, performing as a switch
to give a general start.

• Velocity: Is a record that marks how many clock pulses need to be counted
before activating the output signal PWM.

As outputs are:

92 3.3. System Implementation

• As outputs are:

3.3.7 Power Supply System

As with any electronic system, a power source is necessary to allow the correct
operation of all the components.

As a fundamental task, an analysis of the requirements of these components
that make up the complete system is a priority in order to choose an adequate
power supply. In addition, it is considered that the purpose is to have a mobile
system and that, as far as possible, a direct connection to the electrical network
or a USB connection to a computer is avoided. So, it only remains to choose
what type of battery is suitable.

Next, the different types of battery currently in the market are named, an-
alyzing their most important advantages and disadvantages:

• Lead-acid Batteries: They are inexpensive and easy to manufacture but
do not admit overloads or deep discharges, besides, they are heavy and
have a big volume compared with the small amount of energy they are
capable of storing.

• Nickel-cadmium Batteries (Ni-Cd): They work well over a wide range of
temperatures and can be overloaded without damage. They allow deep
discharges and provide a good number of cycles. As in the previous one,
they have a very high weight and volume.

• Nickel-metal Hydride Batteries (Ni-MH): Features compared to the previ-
ous batteries are improved, however, it provides a fewer number of cycles.

• Lithium Ion Batteries (Li-ion): In comparison with the previous ones,
these are from a recent development and have facilitated the existence
of portable technologies. They have a high capacity in relation to their
weight and volume, they have a very high self-discharge factor. They are
almost unaffected by the memory effect and can be charged without having
been previously discharged. On the other hand, they do not support
temperature changes too good.

• Lithium Polymer Batteries (Li-Po): They are a variation of the Li-ion
batteries that improve their weight and volume features as its discharge
rate. They remain practically unused if they are discharged in excess.

Considering that the final and most restrictive system is a remotely piloted
aerial vehicle, and that the self-balance robot needs a not very high weight, it
is important that the weight features, volume, and discharge are adequate. For
this reason, Li-po type batteries are chosen for the power supply of the systems
in this project, which can store a large amount of energy and offer a very high
discharge rate.

The Li-Po type batteries have a different nomenclature from the rest, which
is necessary to analyze:

Self-Balancing Robot 93

• Sort by number of cells ”S”: The number S corresponds to the number
of cells, which are 3.7 volts but can reach 4.2 if they are fully charged. A
3-cell (3S) battery is composed of 3 sub-batteries placed in series, which
is, a total of 11.1 volts.

• Capacity indicated in ”mAh”: The higher the number of mAh, the higher
the load capacity. A common mistake is to think that the greater the
capacity, the greater the possibility of lengthening the time of the system
in issue. At higher capacity, weight and volume of the battery increase,
so the best configuration for this system must be found.

• Download rate ”C”: The number from C corresponds to the battery dis-
charge rate. If a battery is 1C, it means that the maximum discharge rate
it can reach is the one corresponding to its capacity. If the number C is
different from 1 means that we multiply the discharge rate by that value,
reducing the discharge time proportionally, that is, a battery of 1000mAh
2C will be discharged to 2A in half an hour.

The following approach will be to choose which of the previous values is
the most adequate for the system. For this and after analyzig the differents
components separately, two independent subsystems are distinguished in terms
of the power supply:

• DC Motors and Arduino Nano Power Supply.

• IceZum Alhambra II and other components Power Supply.

DC Motors and Arduino Nano Power Supply

For the DC motors and Arduino Nano power supply, a 11.1V and 2200mAh
LIPO battery of is used as in figure 3.42. As it is presented in the final schematic
from the controller shield (Figure 3.19), the battery is connected to the shield,
which is in charge to supply both the motors and Arduino Nano.

Figure 3.42: LIPO Battery 11.1V y 2.2A.

94 3.3. System Implementation

Alhambra IceZum II and other components Power Supply

For the IceZum Alhambra II power supply and the rest of the components, a
3.7V and 4mAh LIPO battery has been used, as shown in Figure 3.43.

Figure 3.43: LIPO Battery 3.7V y 4mAh.

Self-Balancing Robot 95

3.3.8 Materials and Prototype Cost

In the table 3.2 the total cost of the prototype along chapter 3 is pulled apart.
It is differenciated by four columns called material, number of units, unit cost
and total cost in euros.

M
A

T
E

R
IA

L
Q

U
A

N
T

IT
Y

U
N

IT
C

O
S

T
(e

)
T

O
T

A
L

C
O

S
T

(e
)

Ic
eZ

u
m

A
lh

am
b
ra

II
1

6
0

6
0

A
rd

u
in

o
N

an
o

1
8

8
H

ex
ag

on
al

N
y
lo

n
10

m
m

S
ep

ar
at

or
4

0
.2

0
0
.8

0
M

et
ál

ic
o

H
ex

a
go

n
al

M
3

25
m

m
S
ep

ar
at

o
r

8
0
.2

5
2

M
et

ál
ic

o
H

ex
a
go

n
al

M
3

50
m

m
S
ep

ar
at

o
r

4
0
.4

1
1
.6

4
N

y
lo

n
M

3
S
cr

ew
16

0
.0

9
1
.4

4
N

y
lo

n
M

3
N

u
t

8
0
.0

5
0
.4

0
N

y
lo

n
M

1
S
cr

ew
4

0
.0

9
0
.3

9
N

y
lo

n
M

1
N

u
t

8
0
.0

5
0
.4

0
P

C
B

4
la

ye
rs

1
5

5
W

h
ee

l
7

cm
2

7
.9

0
1
5.

80
M

ot
or

D
C

2
2
4
.9

5
4
9.

9
D

ri
ve

r
M

ot
or

D
C

D
u
al

M
C

33
92

6
1

3
0

3
0

IM
U

M
P

U
60

50
1

2
.5

0
2
.5

0
M

ec
h
an

ic
al

3
D

S
tr

u
ct

u
re

1
2
0

2
0

S
cr

ew
3.

5
m

m
5

0
.8

0
4

C
ab

le
5
-p

in
1

0
.8

2
0
.8

2
P

IN
2,

5
4

m
m

4
co

n
ta

ct
s

M
ac

h
o

1
0
.0

8
0
.0

8
P

IN
2,

5
4

m
m

8
co

n
ta

ct
s

S
h
ie

ld
2

0
.5

4
1
.0

8
P

IN
2,

5
4

m
m

6
co

n
ta

ct
s

S
h
ie

ld
2

0
.5

8
1
.1

6
J
u
m

p
er

2.
54

m
m

2
0
.0

8
0
.1

6
P

IN
2,

5
4

m
m

10
co

n
ta

ct
s

F
em

al
e

2
0
.1

0
0
.2

0
P

IN
2,

5
4

m
m

10
co

n
ta

ct
s

M
al

e
5

0
.1

0
0
.5

0
R

es
is

ta
n
ce

4K
7

5%
3

0
.2

1
0
.6

3
T

in
1

5
.5

0
5
.5

0
R

et
ra

ct
ab

le
th

er
m

an
T

ap
e

2
1
.5

0
3

C
ab

le
1
2

A
W

G
1

0
.9

0
0
.9

0
B

at
te

ry
L

ip
o

11
.1

V
22

00
m

A
1

1
9
.9

5
1
9.

95
B

at
te

ry
L

ip
o

3.
7

V
5

m
A

1
4
.2

0
4
.2

0

P
R

O
T

O
T

Y
P

E
T

O
T

A
L

C
O

S
T

:
2
4
0
.4

5
e

Table 3.2: Total cost of Self-Balancing Robot.

96 3.4. Experiments and final results

3.4 Experiments and final results

3.4.1 Self-Balancing Robot

A set of demostrative video of the correct behaviour in the Self-Balancing robot
can be seen in [21]. Also, the process to the end in [22] [23].

In order to manufacture the mechanical structure, a 3D printer was used
[24].

A set of images wich form the final system are shown in 3.44, 3.45.

Figure 3.44

Self-Balancing Robot 97

Figure 3.45

3.4.2 VGA Module

For a more adequate knowledge of the hardware implementation language Ver-
ilog, prior to the realization of this project and as an initial idea to use it in
future projects, a shield is carried out for the connection with a screen, having
to know for it this communication protocol. A video demonstration is found in
[25].
The manufactured shield is represented in the figure 3.46

98 3.4. Experiments and final results

Figure 3.46

3.4.3 Motor brushless Controller

With the fundamental idea of using the PCB for a totally independent quad-
copter system and as a first approximation to the control of brushless motors,
the model of the figure is developed such that it allows a control over this type
of actuators. A demonstration video can be found in [26].

Chapter 4

Quadcopter with artificial
vision

In this chapter it is pretended to approach the design and development of a
quad-copter which is able to follow an object, using for that a FPGA as a fun-
damental part and some other tools that will be exposed throughout this section.

4.1 Design

In the following figure, a high abstraction level scheme is presented in which a
first approach about the general system functionality is given. (4.1).

5 Channel PWM

5 Channel PWM

PIXEL 1 BYTE
I2C

COMMUNICATION

ON BOARD
SYSTEM

Figure 4.1: Vision quad-copter high level design.

99

100 4.2. Perception Implementation

The design of this project has two parts, the part of stabilization control
and the part of perception. As for the perception part, a low-cost camera will
connect to the FPGA, which should implement the entire object recognition
algorithm. Prior to this, and through the i2c protocol, the camera will be
configured in such a way to make this recognition simpler. Subsequently and as
an output of this recognition algorithm, the FPGA generates 4 PWM channels
corresponding to the yaw, pitch, roll and altitude. It makes use of a PPM
encoder, which transforms these 8 PWM signals into a PPM channel, input of
the stabilization system of the quad-copter ”Pixhawk”.

4.2 Perception Implementation

Module OV7670[27] has a CMOS VGA image sensor OV7670, which allows to
work at a maximum of 30 frames per second and a resolution of 640x480 pixels.
It is a System on Chip (SoC) that is capable of processing images, such as:
exposure control, gamma, white balance, color saturation, tone control. These
parameters can be configured through the SCCB interface[28] (Serial Control
Bus Camera). Some of the most important features are presented below, and
which could be obtained from its datasheet[27].

• 3.3 VDC Operation Voltage.

• Sleep state current. µA

• 8 bits parallel data transmission.

• SCCB Standard control Interface compatible with I2C.

• optic objective 1/6”

• Field of View (FOV): 25◦C

• 640x480 VGA resolution

• 1.3V/(Lux-sex) sensibility

• Signal to Noise Ratio: 46 dB.

• High sensibility in low light environments.

• Low voltage, according to portable applications

Quadcopter with artificial vision 101

An image from OV7670 module is pressent in Figure 4.2.

Figure 4.2: OV7670 camera.

The camera configuration is done through an SCCB interface[28], very simi-
lar to an I2C communication and whose registers can be found in the datasheet[27].
Therefore, it is necessary to choose a suitable configuration for this purpose:

• A 640x480 window size is chosen because of the limited resources of the
FPGA card used.

• The type of output data will be RGB, for the simplicity of use. We will
therefore obtain two bytes for each pixel captured in the order represented
in 4.3.

Figure 4.3: OV7670 Pixel Formation

• The velocity of adquisition in the outputs pixels has to be defined. This
signal is in charge to notify when the next pixel can be captured. it is
imposed that this signal is the half of the input clock. If the input clock
frecuency is 12Mhz, the pixel signal generation will be 6MHz.

I2C Protocol

In order to achieve this configuration, an I2C communication is necessary with
the OV7670 module that allows writing in certain records.

The appearance in IceStudio of this writing in I2C has the aspect of Figure
4.4.

102 4.2. Perception Implementation

Figure 4.4: I2C writing module in IceStudio aspect.

Since it has been an entirely module developed for this application, it is
represented in the flow diagram in figure 4.5.

Quadcopter with artificial vision 103

SDA_START

SCL_START

SCL_LOW_prev SCL_LOW SCL_HIGH ACK_LOW ACK_HIGH_prev ACK_HIGH

CONTROL_TRANSACTION

TRANFER WRITING 1 BYTE AND ACK

Direction = registrer2read

SCL_STOP

2-Direction = direction_read

FINISH

SDA_STOP

DATA_FINAL_LOW DATA_FINAL_HIGH NMAK_LOW NMAK_HIGH

if(finish)

if(!finish)

1 3

2,4

TRANFER RECEIVING 1 BYTE AND NMAK

4-finish=1

Figure 4.5: Flow diagram of I2C writing.

104 4.2. Perception Implementation

It is composed of a machine of 13 states in which each one has a fundamental
function to achieve the desired result. You have to work at a very low level to
avoid errors in the transmission and provide the system with the necessary tools
for the detection of possible anomalies.

In an I2C communication it is important that both the master and the
slave share the SCL and SDA buses, which will be always on high except when
one of the two previous ones impose their path at a low voltage level, ground
in this case. I2C bases it functionality in recognizing at every moment this
voltage levels, which is why it is important to make sure that there is always
the condition that if the bus is free, the voltage level is high. For that, both
buses use to have a connection with a pull-up resistor that eases this feature
and avoids at every moment possible clock glitches, bad ground reference, noise,
etc. The connection schematics from the camera is below represented in figure
4.6.

Figure 4.6: OV7670 camera schematics.

One of the most important problem is this module’s development, which
falls in temporal government of this buses by the slave and the master. For a
better comprehension, it is described in example 4.1.

Example 4.1 It is required at first instance that the master imposes the SDA
bus at a high voltage level. Then, the master must be waiting for an answer
coming from the slave, which is a non-controlled device and extern to our system.
When the slave tries to write in the bus, it will find an imposed voltage level by
the master which will not be able to be changed.

In order to correct the problem exposed in example 4.1 the device waiting
for a response much impose its high electric impedance state respect to the bus.
This is why a tri-state bus is used which is represented in figure 4.7 and that
allows this behavior in a controlled way.

Quadcopter with artificial vision 105

Figure 4.7: Tri-state buffer for I2C bus.

A writing example in I2C in OV7670 module is represented in Figure 4.8.

Figure 4.8: I2C on OV7670 writing example.

Pixels Storage

One of the most important problems that must be solved when working with
an OV7670 module and with the intention of objects recognizing in real time
without delay, is the need for a FIFO memory that stores the pixels that are
getting in, since to obtain a complete image of 640x480 it is necessary to store
in memory 307200 pixels. In this case and considering that each cell is formed
by two bytes, the total size of a frame will be the one shown in equation 4.1.

(640 ∗ 480) ∗ (16) = 4915200 bits por fotograma (4.1)

The device that controls the camera must be able to store that quantity of
information so that later could be analyzed.

In case of using a microcontroller, a FIFO memory could be incorporated
to the system with the capacity to store that quantity of information. In this
project it is used to the image analysis the FPGA IceZum Alhambra board and
the shield exposed in 3.3.3. The operating mode changes considerably compared
to the previous one.

After analyzing different alternatives, the most adequate and which a better
performance could be reached, it is based in the no necessity to store a complete
image, to understand this concept, it will be briefly explained in the section
related to the position and volume of an object.

106 4.2. Perception Implementation

Volume and position recognize

The recognition of the volume and positioning of the object will be calculated
pixel by pixel instead of when obtained the complete image, thus the algorithm
would be as follows:

• At first instance, the color filter will be used, which will allow to recog-
nize the color range of the pixel, in this case of the red ball. Therefore,
a maximun and minimun will be defined for each red, green and blue
component.

• Pixels will arrive sequentially, two bytes per pixels. The OV7670 module
has as outputs pins D7, D6, D5, D4, D3, D2, D1, D0 corresponding to the
bits of each component of the panel as shown in Figure 4.6.

• An internal counter will be in charge of keeping track of the number of
total pixels that has passed through the filter. When the complete frame
is finished, the object volume can be obtained, and with it, the distance
to it, as shown in equation 4.2.

V olume = Numfiltered pixels/Numtotal pixels (4.2)

• Considering the position within the frame where the pixels that have
passed through the filter are, the position in columns and rows and from
which you can obtain an estimate of the position of the object within the
area of view as explained in equations 4.5 and 4.8.

AcumX =
∑

columns of filtered pixels (4.3)

Xaverage =
AcumX

Numfiltered pixels
(4.4)

ErrorX = Xaverage −
width

2
(4.5)

AcumY =
∑

row filtered pixels (4.6)

Yaverage =
AcumY

Numfiltered pixels
(4.7)

ErrorY = Yaverage −
height

2
(4.8)

To achieve the above behavior, it is therefore necessary to know at each
exact moment what the value of the column and row in issue is.
There are two independent modules developed; whose outputs provide these
required positions.

Quadcopter with artificial vision 107

Figure 4.9: Row module in IceStudio.

Figure 4.10: Column module in IceStudio.

Due to the importance of these modules, the development of one of them is
explained through its flow diagram exposed in figure 4.11.

Texto

VSYNC1

HREF_HIGH_1

HREF_HIGH_2

HREF_LOW

Row <= Row+1

PXCLK

1

2

3

4

Figure 4.11: Flow diagram to the row counter.

As is known, the OV7670 module provides a clock signal called PXCLK
which will provide the synchronization of this module. On the other hand, it is
important to know the synchrony signals with which every VGA signal count
and which is represented in the figures 4.12, 4.13 y 4.14.

108 4.2. Perception Implementation

Figure 4.12: Synchronize signal OV7670.

Figure 4.13: Synchronize signal OV7670.

Figure 4.14: Synchronize signal OV7670.

There is a horizontal sync signal that will notify the change of the row in
the frame and a vertical sync signal for the frame change.

In the first place in the process of rows recognizing, it is necessary to detect
when it begins and when it ends. A state machine has therefore been proposed in
which each state assumes a change in the bus of the horizontal synchronization
signal.

Once known the actual row and column, an auxiliar module is in charge
to store the color components in different register. D7,D6,D5,D4,D3,D2,D1,D0
bits will be received wich correspond with red component and the three most
significative bits of green component as it is indicated in 4.9.

RED = (D7, D6, D5, D4, D3) (4.9)

GREENprev = (D2, D1, D0)

In second place, the second byte will be received with the other green part
and the hole blue component (4.10).

GREEN = (GREENprev, D7, D6, D5) (4.10)

BLUE = (D4, D3, D2, D1, D0)

The behaviour showed in equations 4.9 and 4.10 can be developed with a
state machine as it is represented in 4.15. PXCLK is used as sensibility list.

Quadcopter with artificial vision 109

BYTE1

RED<= D7,D6,D5,D4,D3

GREEN_Prev<= D2,D1,D0

BYTE2

GREEN<= GREEN_prev,D7,D6,D5

BLUE<= D4,D3,D2,D1

D7

D6

D5

D4
D3

D2

D1

D0

RED

GREEN

RED

Figure 4.15: Bits assigments.

The final appearance of this module is represented in figure 4.16.

Figure 4.16: Bits assigments in IceStudio.

If it is observed in figure 4.16 in the output of this module the three color
components will be obtained and a signal will be in charge to notify when the
three color components are ready.

110 4.3. Control Design

The next module has enough iformation to implement the whole showed
algorithm in 4.2.

4.3 Control Design

Respect to the control implementation on quadcopter board, it is presented only
the theorical basis in order to improves it in following works.

To understand this behaviour, the figure 4.17 is represented.

FPGA
switchs
between

manual or
automatic

mode

Stabilization
Control on

board

AUTOMATIC
MODE

MANUAL
MODE

Figure 4.17: Diagram of control Implementation.

The stabilization control will take part of the inter processes from PixHawk
board. This has a PPM signal connected corresponding to the reception of the
signal coming from a frequency transmitter, which sends the PWM signal from
the Yaw, Pitch and Roll.

The objetive is to modify this signal wich provoke the quadcopter movement
in relation with the output recognition object protocol. The FPGA will be in
the middle between signal receptor (FrSky) and PixHawk in order to allow the
both behaviour.

Both behaviour can be:

• Automatic mode: The quad-copter will move in relation to the object,
having as a principal objective it is positioned at the center of the vision
area. To maximize this tracing a PID control an be used which is devel-
oped in this project. Quadcopter will move in relation to the position of
the object being detected.

Quadcopter with artificial vision 111

• Manual mode: Quadcopter will move in relation to the signal received
from the radio transmitter.

Chapter 5

Conclusions and future
work

With this chapter the project documentation is closed. Throughout this report,
design and implementation from two robotic systems have been exposed by
using open FPGAs. The key points developed in this project can be summarized
ahead:

• Learning about educational robotic and open projects

• Design and implementation of the mechanical structure of the self-balance
robot through the usage of SolidWorks and 3D printing

• Design and implementation of a PCB shield for IceZum Alhambra II by
using Altium Designer

• Hardware implementation using PID controller Verilog and all other sys-
tems that compose the self-balance robot

• Design and implementation of the quad-copter ball recognition protocol

• Low-cost camera reading through FPGA and Verilog

• Design of the quad-copter control system

Through this project, there have been a lot of learned aspects that has noth-
ing specifically to do with the work done. Between them the problem resolution
capability and autonomous work can stand out, through which directors have
served as a guide, bringing necessary tools for different problems resolution.

The objectives settled at the beginning of the work have been achieved,
however, some of them remain as challenges that could not be covered or that
have come out during the development of the same. The main challenges that
came out for future work are presented below:

• Determine a more accurately the mathematical model of the balancing
robot for an improvement in the mechanical structure.

• Integrate a PID controller (It is a PD controller until now) or use other
control systems that could improve the stability.

113

114

• Improvement in the I2C protocol developed to allow some errors in trans-
mission.

• Improvement in the FPGA-Microcontroller communication protocol to
raise the speed and allow bidirectional communication.

• Improvement in the recognition of the red ball to allow a less ideal per-
formance environment.

• Implementation of control on board in a quadcopter.

Special interest is shown, and is still working on it, about being able to take
what has been learned to the classrooms, specially for little kids, allowing an
early evolution in a technology whose future is evident and early.

Bibliography

[1] WikiPedia. Digital electonics. https://en.wikipedia.org/wiki/

Digital_electronics, 2018. Accessed 20-03-2018.

[2] What is a fpga? http://fpgayxilinx.blogspot.com/2016/08/

cuando-se-aborda-el-diseno-de-un.html, 2018. Accessed 23-05-2018.

[3] Wikipedia. Descripción hardware languaje. https://es.wikipedia.org/
wiki/Lenguaje_de_descripci%C3%B3n_de_hardware, 2018. Accessed 01-
10-2018.

[4] N. Eteokleous and D. Ktoridou. Educational robotics as learning tools
within the teaching and learning practice. In 2014 IEEE Global Engineering
Education Conference (EDUCON), pages 1055–1058, April 2014.

[5] Altium designer. https://www.altium.com/altium-designer/.

[6] Solidworks. https://www.solidworks.com/es.

[7] Github. https://github.com/.

[8] Juan Ordoñez. Repositorio github. https://github.com/

RoboticsURJC-students/2017-tfg-juan-ordonez.

[9] Appear. https://appear.in/.

[10] Xilinx. https://www.xilinx.com/, 2018. Accessed 01-10-2018.

[11] C. Dawson, S. K. Pattanam, and D. Roberts. The verilog procedural inter-
face for the verilog hardware description language. In Proceedings. IEEE
International Verilog HDL Conference, pages 17–23, Feb 1996.

[12] Lattice Semiconductor. Fpga lattice. https://www.latticesemi.com/,
2018.

[13] A. Romanov, M. Romanov, and A. Kharchenko. Fpga-based control sys-
tem reconfiguration using open source software. In 2017 IEEE Confer-
ence of Russian Young Researchers in Electrical and Electronic Engineering
(EIConRus), pages 976–981, Feb 2017.

[14] Tarjeta icezum alhambra ii. https://alhambrabits.com/alhambra/.

[15] Icestudio. https://icestudio.readthedocs.io/en/latest/.

115

https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Digital_electronics
http://fpgayxilinx.blogspot.com/2016/08/cuando-se-aborda-el-diseno-de-un.html
http://fpgayxilinx.blogspot.com/2016/08/cuando-se-aborda-el-diseno-de-un.html
https://es.wikipedia.org/wiki/Lenguaje_de_descripci%C3%B3n_de_hardware
https://es.wikipedia.org/wiki/Lenguaje_de_descripci%C3%B3n_de_hardware
https://www.altium.com/altium-designer/
https://www.solidworks.com/es
https://github.com/
https://github.com/RoboticsURJC-students/2017-tfg-juan-ordonez
https://github.com/RoboticsURJC-students/2017-tfg-juan-ordonez
https://appear.in/
https://www.xilinx.com/
https://www.latticesemi.com/
https://alhambrabits.com/alhambra/
https://icestudio.readthedocs.io/en/latest/

116 BIBLIOGRAPHY

[16] Google groups fpga wars. https://groups.google.com/forum/#!forum/
fpga-wars-explorando-el-lado-libre.

[17] Rajesh Nema, Rajeev Thakur, and Ruchi Gupta. Design & implementation
of pid controller based on fpga with pwm modulator.

[18] Wikipedia. Inverted pendulum. https://en.wikipedia.org/wiki/

Inverted_pendulum, 2018. Accessed 01-10-2018.

[19] L. H. Yu and F. Jian. An inverted pendulum fuzzy controller design and
simulation. In 2014 International Symposium on Computer, Consumer and
Control, pages 557–559, June 2014.

[20] L. M. Lizarraga Orozco, G. Ronquillo Lomeli, J. G. Rios Moreno, and
M. Trejo Perea. Identification inverted pendulum system using multi-
layer and polynomial neural networks. IEEE Latin America Transactions,
13(5):1569–1576, May 2015.

[21] Juan Ordoñez. Demostrative video self-balancing robot. https://youtu.

be/d_1bnjbpQks, 2018.

[22] Juan Ordoñez. Demostrative video self-balancing robot. https://youtu.

be/dQg8NQP7CfQ, 2018.

[23] Juan Ordoñez. Demostrative video self-balancing robot. https://youtu.

be/mLyxewOVGug, 2018.

[24] Juan Ordoñez. Demostrative video of printing 3d structure. https://

youtu.be/rKoIdgaJU2k, 2018.

[25] Juan Ordoñez. Demostrative video vga module. https://www.youtube.

com/watch?v=b3I2MBhlZ9g, 2018.

[26] Juan Ordoñez. Demostrative video brushless motor. https://youtu.be/

OFD7vlm7f3A, 2018.

[27] Omnivision. Ov7670 vga module. https://www.voti.nl/docs/OV7670.

pdf, 2018.

[28] NXP. Sccb interface information. https://www.nxp.com/docs/en/

supporting-information/flexibleCameraInterfaceSolution_1.pdf,
2018.

[29] Driver para motor mc33926. https://www.pololu.com/product/1213.

[30] Julián Caro, Antonio Barrientos, and Enric Mayas. Hybrid bio-inspired
architecture for walking robots through central pattern generators using
open source fpgas. In Intelligent Robots and Systems, 2018.(IROS 2018).
2018 IEEE/RSJ International Conference on, volume -, pages –. IEEE,
2018.

[31] Freescale Semiconductor. Technical data mc33926. https://www.pololu.
com/product/1213, 2014.

https://groups.google.com/forum/#!forum/fpga-wars-explorando-el-lado-libre
https://groups.google.com/forum/#!forum/fpga-wars-explorando-el-lado-libre
https://en.wikipedia.org/wiki/Inverted_pendulum
https://en.wikipedia.org/wiki/Inverted_pendulum
https://youtu.be/d_1bnjbpQks
https://youtu.be/d_1bnjbpQks
https://youtu.be/dQg8NQP7CfQ
https://youtu.be/dQg8NQP7CfQ
https://youtu.be/mLyxewOVGug
https://youtu.be/mLyxewOVGug
https://youtu.be/rKoIdgaJU2k
https://youtu.be/rKoIdgaJU2k
https://www.youtube.com/watch?v=b3I2MBhlZ9g
https://www.youtube.com/watch?v=b3I2MBhlZ9g
https://youtu.be/OFD7vlm7f3A
https://youtu.be/OFD7vlm7f3A
https://www.voti.nl/docs/OV7670.pdf
https://www.voti.nl/docs/OV7670.pdf
https://www.nxp.com/docs/en/supporting-information/flexibleCameraInterfaceSolution_1.pdf
https://www.nxp.com/docs/en/supporting-information/flexibleCameraInterfaceSolution_1.pdf
https://www.pololu.com/product/1213
https://www.pololu.com/product/1213
https://www.pololu.com/product/1213

BIBLIOGRAPHY 117

[32] K. Pathak, J. Franch, and S. K. Agrawal. Velocity and position control
of a wheeled inverted pendulum by partial feedback linearization. IEEE
Transactions on Robotics, 21(3):505–513, June 2005.

[33] Github. https://github.com/.

[34] Wikipedia. Sensor. https://es.wikipedia.org/wiki/Sensor, 2018. Ac-
cessed 01-10-201.

https://github.com/
https://es.wikipedia.org/wiki/Sensor

	Introduction
	Motivation and Objectives
	Planning (Gantt Diagram)
	Work Methodology
	Memory Structure

	State of the art
	FPGA concept
	Evolution and scenario
	FPGA Architecture
	Hardware Description Languages
	Verilog

	Open FPGAs evolution
	IceZum Alhambra
	IceStudio

	Microcontroller-FPGA coexistence
	Microcontroller-FPGA differences
	Importance

	Inertial Measurement Unit
	Educational Robotics – Motivations
	Sensors, actuators and control system
	Classic PID controller

	Self-Balancing Robot
	Problem Description
	System Design
	System Implementation
	Mechanical Structure Manufacturing
	Inertial Measurement Unit MPU6050 in Arduino Nano
	PCB Implementation
	IceZum Alhambra-Arduino Nano Implementation
	PID Control in IceZum Alhambra
	Motor controller
	Power Supply System
	Materials and Prototype Cost

	Experiments and final results
	Self-Balancing Robot
	VGA Module
	Motor brushless Controller

	Quadcopter with artificial vision
	Design
	Perception Implementation
	Control Design

	Conclusions and future work

