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Abstract

This Final Degree Project contributes with the JdeRobot organization in the creation of an open

source toolchain for the development of FPGA applications for robots. With this objective,

several pieces of software have been developed and tested to be included in its public repository.

The work undertaken focused on two different scenarios, one physical and hardware-oriented,

and the other, simulated and software-oriented. A real GoPiGo robot, physical cameras, the

Gazebo robotics simulator and FPGA technologies like the Verilog hardware description lan-

guage and the Verilator simulator have been extensively used.

The research and developments presented in this paper take place inside the JdeRobot’s

FPGA-Robotics project with the aim of expanding its library of reusable nodes or ”blocks”. As

experimental validation, several POCs (Proof of Concept) and robotic applications for FPGAs,

both physical and simulated, have been designed, developed and tested. For instance a robot

following a colored object using its onboard camera.

V



VI ABSTRACT



Resumen

Este Trabajo de Fin de Grado contribuye con la organización JdeRobot en la creación de una

cadena de herramientas de código abierto para el desarrollo de aplicaciones FPGA para robots.

Con este objetivo, se han desarrollado y probado varias piezas de software para ser incluidas en

su repositorio público.

El trabajo realizado se ha centrado en dos escenarios diferentes, uno fı́sico y orientado al

hardware, y otro simulado y orientado al software. Un robot GoPiGo real, cámaras fı́sicas, el

simulador de robótica Gazebo y tecnologı́as FPGA como el lenguaje de descripción de hardware

Verilog y el simulador Verilator se han utilizado de manera extensiva.

La investigación y los desarrollos presentados en este trabajo tienen lugar dentro del proyecto

FPGA-Robotics de JdeRobot con el objetivo de ampliar su biblioteca de nodos o ”bloques” re-

utilizables. Como validación experimental, se han diseñado, desarrollado y probado varias

POCs (Proof of Concept) y aplicaciones robóticas para FPGAs, tanto fı́sicas como simuladas.

Por ejemplo, un robot que sigue un objeto de color utilizando su cámara de a bordo.
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Chapter 1

Introduction

This project is framed in a very rich environment dedicated to developing open source solutions

in the fields of Robotics and Computer Vision. Specifically, it is developed in a branch that aims

to use Field-Programmable Gate Arrays (FPGAs) as the main processing unit of robots instead

of the more common general-purpose Central Processing Units (CPUs) or application-specific

integrated circuits (ASICs).

Robotics is one of the fastest growing fields in science and technology so innovation is

highly sought after, the use of FPGAs opens a wide range of possibilities for increasing per-

formance and diminishing costs. Even though it is a growing sector, FPGAs are already being

used in many high-end robotics applications, usually for computer vision and motor control

where sub-microsecond precision programming can be a sizeable advantage and also because

their re-programmable nature and flexibility eases the prototyping stage of development.

Still, FPGAs only constitute a small portion of the controllers present in robots today. Users

of robotic products usually demand either highly optimized or highly flexible products, while

FPGAs provide functionality somewhere in between. A strong community of developers is the

backbone of every technology but the free and open source environment surrounding FPGAs

is still, although growing, rather small, therefore students and enthusiasts will struggle finding

collaborative settings to learn, try and contribute.

This project represents further steps in the aim of the JdeRobot1 open source organiza-

tion and its FPGA-robotics2 project, and myself to work towards an ever growing free and open

1https://github.com/JdeRobot
2https://github.com/JdeRobot/FPGA-robotics

1
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Figure 1.1: KUKA KR 210 R2700 Robot

source development environment for Robotics, Computer Vision and FPGAs making these tech-

nologies more accessible for everyone.

1.1 Robotics

Robotics is an interdisciplinary sector of science and engineering dedicated to the design, con-

struction and use of mechanical robots. These machines are intended to reduce or eliminate the

workload performed by humans in production, execution or service processes. Actuators, end

effectors, robotic manipulators, controllers and sensors like inertial measurement units, micro-

phones and cameras make up the majority of robots.

The robotics sector is hugely diverse and continues to expand, feeding into several key

areas that include healthcare, machine vision, warehouse and production line automation, au-

tonomous vehicles, the military complex and general industrial operations.

Production processes employ the vast majority of robots nowadays. The global industrial

robots market size was valued at USD 15.60 billion in 2021 and is expected to triple by the
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Figure 1.2: Amazon ”Proteus” Warehouse Robot

end of the decade3. Industrial robots, like the Kuka KR 210 R2700 production line automation

robot pictured in Figure 1.1, are a kind of mechanical equipment that is fed with data and

programmed to execute activities linked to industry production automatically. This type of robot

helps to improve productivity, reducing costs and generating high quality goods in automation

applications.

Among the robots dedicated to industrial processes, one of the fastest growing sectors is lo-

gistics. Companies like Amazon, Alibaba or JD.com, which are among the biggest e-commerce

corporations in the world, are spending billions of USD in the research and development of

automation and robotics applications to optimize their production processes.

Examples of this technological revolution are the latest version of Amazon’s warehouse

robot ”Proteus” pictured in Figure 1.2. Hailed as ”fully-autonomous” it can safely navigate

around human employees, unlike some previous versions that had to be kept separated in a caged

area. Another example is JD’s fully automated 40.000m2 Shanghai facility4, this warehouse

used to be operated by around 500 human employees but now only relies on a few to perform

robot maintenance.

3https://www.fortunebusinessinsights.com/industry-reports/

industrial-robots-market-100360
4https://www.youtube.com/watch?v=RFV8IkY52iY&t
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Figure 1.3: iRobot’s Roomba J7 Autonomous Vacuum Cleaner

Beyond industrial production processes, robotics has a very important future in the direct

provision of services to humans. The aging of the population or the emergence of circumstances

that isolate people, such as pandemics, highlight the growing need for autonomous solutions for

everyday tasks.

Robots rely on their sensors and actuators to perform these functions. Cameras are amongst

the most popular sensors found in most of advanced robots today as they provide extensive

information about the robot’s surroundings, but computer vision is not an easy task.

Computer Vision and Robotics

Computer or machine vision is a field of research that has a strong presence in robotics. It

attempts to simulate the capabilities of the human eye and brain. this is typically done with the

help of sensors that provide the robot with the necessary data to help with the perception of the

environment and its surroundings. Cameras are commonly found in most robots as they may

potentially provide much information. Nevertheless, extraction of this information from camera

pixels is not simple. Computer vision involves image processing, a very resource-intensive and

complex task. Usually, the costs of image recognition is driven by the powerful processors and

complex software needed to handle these processes. The most advanced prototypes are already

taking advantage of the hardware optimization that devices like ASICs and FPGAs provide to

increase performance and reduce costs.
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Figure 1.4: Self-driving Waymo Jaguar I-Pace on the streets of San Francisco.

One of the main problems studied extensively in computer vision during the last decades

is autonomous navigation. Currently, there is extensive research on how to use Artificial intel-

ligence and specifically, Artificial Neural Networks (ANN) to realize autonomous behavior in

vehicles and robots. Even though full autonomous driving is still to be achieved we can already

see examples of very advanced robotic navigation in popular consumer products.

Autonomous robotic vacuum cleaners have been available on the market for years but the

latest versions, such as the iRobot Roomba J7 pictured in Figure 1.3, are incorporating novel

computer vision and machine learning techniques to improve its capabilities. Such as visually

detecting wires or sockets which could block the vacuum or recognizing and avoiding obstacles

blocking its path. These robots are no longer just vacuum cleaners but ”smart” devices capable

of adaptative behaviour and complex decision making.

Companies like Google’s Waymo, Baidu or Tesla have spearheaded the research and devel-

opment in the field of autonomous driving in the last decades but thousands of other enterprises

have joined the race to develop new technologies that have the potential to disrupt markets

worth trillions of USD, like freight shipping or public transportation. Examples of this revo-

lution can already be seen, vehicles carrying Waymo’s latest prototypes, like the self-driving

Waymo Jaguar I-Pace pictured in Figure 1.4, have already begun offering driver-less rides in



6 CHAPTER 1. INTRODUCTION

San Francisco5 while companies like TuSimple and Tesla are already testing self-driving trucks

on public roads in the United States.

Other sectors also employ computer vision extensively, military applications are probably

one of the largest areas for computer vision. Automatic terrain recognition can provide a rich set

of information about combat scenes which can be used to support strategic decisions. Missile

guidance and target selection also rely heavily in computer vision algorithms.

The fields of robotics and computer vision are set to grow dramatically in the next decades

expanding their presence in every aspect of life. One of the main research and development

branches for these technologies is hardware optimization. This project aims to research how

open source FPGAs can be used for this purpose in both real and simulated robots.

1.2 Field-Programmable Gate Arrays

A Field-Programmable Gate Array or ”FPGA” is an integrated circuit whose internal structure

is not predefined but designed to be configured after manufacturing by the end user. Robots have

traditionally relied on Central Processing Units (CPUs) with generic processors or Application-

Specific Integrated Circuits (ASICs) to perform all the resource-intensive processing needed,

but the use of FPGAs for these purposes has been increasing in the last decades.

An FPGA is based on a matrix of configurable logic blocks that are connected by pro-

grammable interconnects. These integrated circuits are not made to be application-specific as

opposed to ASICs, but do benefit from the hardware optimization aspect of their design. Unlike

traditional micro-processors that require multiple cores to perform parallel computing, these

type of integrated circuits make use of hardware description languages (HDLs) to design mul-

tiple concurrent processing structures, allowing for much higher performance. Another core

aspect of FPGAs is their re-programmability, their flexible structure allows this piece of hard-

ware to be repurposed when needed. This has become much a more important consideration

when taking into account the reduction of semiconductor production the world has seen in re-

cent years. The scarcity of primary resources, geopolitical tensions and the slowdown of global

supply lines are seriously straining the capacity of companies to acquire additional hardware

5https://www.bloomberg.com/news/articles/2022-03-30/

google-s-waymo-to-offer-public-fully-driverless-rides-in-san-francisco
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Figure 1.5: Summary Comparison between CPUs, ASICs and FPGAs

and this only highlights the importance of FPGA’s re-programmability.

In Figure 1.5 a summary of the comparison between the three hardware architectures men-

tioned can be seen [1].

(a) CPUs are probably the most widespread technology, as every PC is equipped with one

of them. Their availability, flexibility and ease-of-use make them the perfect early development

candidates when deploying algorithms or developing code.

(b) ASICs are extremely geared towards high-performance and low unitary cost for high

production environments. Products designed for specific tasks where economies of scale allow

for a custom solution will use this kind of device expecting to offset the high fixed costs.

(c) Field Programmable Gate Arrays (FPGAs) offer a unique combination of flexibility and

high performance, they play a big role in the design and implementation of product prototypes

as they can be programmed to perform similarly to highly specialized platforms. FPGAs may

also be more cost-effective for smaller designs or lower production volumes.

The field of robotics and computer vision can benefit particularly from these features. General-

purpose micro-processors waste resources that may be critical for robots, with the use of FPGAs
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Figure 1.6: FPGA Internal Structure Diagram

autonomy and performance can be increased, and operation costs reduced.

1.2.1 FPGA Structure

The general FPGA architecture consists of three types of modules: Configurable logic blocks

(CLB), programmable interconnects and programmable I/O cells. Arrays of configurable logic

blocks, also known as Logic Cells (LCs) are interconnected to each other with input/output cells

through vertical and horizontal connection channels, as shown in Figure 1.6.

In general, FPGAs can be said to have a fairly regular structure, although the logic blocks

and routing architecture varies from one manufacturer to another. Logic Blocks contain the

application logic and usually are made up of multiplexed Look-up tables (LUTs) that implement

the combinational logic functions. An example of CLB architecture is shown in Figure 1.7, it

portrays a simplified Diagram of Xilinx XC4000 CLB.

Not only are the logic blocks configurable, but the routing matrix as well as the input and

output cells are programmable, giving the FPGAs great flexibility in adjusting to the specifica-

tions of each design.
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Figure 1.7: Block Diagram of Xilinx XC4000 CLB
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Figure 1.8: Altera EP300

1.2.2 History

Programmable read-only memory (PROM) and programmable logic devices (PLDs) are the

precursor technologies that eventually led to Field-Programmable Gate Arrays. These devices

could be programmed on the factory or ”field” but were manufactured in hard-wired batches.

The first reprogrammable logic device is the Altera EP300 1.8 manufactured in 1984, its

configuration cells could be erased by shining an Ultraviolet light though a quartz present on

the device [11].

The first commercially viable field-programmable gate array dates from 1985 and was in-

vented by Xilinx co-founders Ross Freeman and Bernard Vonderschmitt. The XC2064 [6]

offered 800 programmable gates, 64 configurable logic blocks and programmable interconnects

between them. It meant the beginning of a whole new sector of integrated circuits.

In the following years Xilinx and Altera became the two main manufacturers. By the end of

the decade FPGAs were already presenting up to 10000 logic gates like the ones in the Xilinx

XC3000 series or Altera’s X.

During the 90s prototypes reached hundred of thousands of gates, like the one funded by

the Naval Surface Warfare Center and developed by Steve Casselman 1992 which presented

600000 array gates [4] The whole decade became a period of rapid growth for FPGAs, both

in sophistication and volume of production. Multiple companies joined the field eroding a

significant portion of the market held by Xilinx and Altera until that point.

By the early 2000s the number of logic gates was reaching millions and FPGAs, which up

until that point were being primarily used in telecommunications and networking, found their
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Figure 1.9: Global FPGA market share, by application, 2019 (%)

way into the automotive, consumer electronics and industrial markets. Updated data of FPGA’s

distribution by application can be seen at Figure 1.9.

Growth continued during the 2010s, hardware optimization has become more relevant as

the limits of semiconductor advancement has slowed industry-wide as Moore’s law predicted

improvements in micro-processors reach its physical limits. The number of gate arrays was

reaching dozens of millions as Xilinx and Altera remained the two biggest companies develop-

ing FPGAs.

By the end of the decade some of the world’s largest semiconductor manufacturing compa-

nies were investing heavily in the technology, Altera was acquired by Intel Corporation in 2015

and AMD announced its acquisition of Xilinx in October 2020. Some companies like Google

are still focusing on ASICs for AI acceleration and machine learning while others began focus-

ing on innovations in FPGA-based acceleration for their projects and infrastructure. Companies

running the world’s largest data centers like Amazon, Baidu, and Microsoft are proving that FP-

GAs can compete in performance while providing the versatility of being able to be repurposed

for other uses later on.

1.3 Open source FPGA toolchain

FPGA development usually takes place in integrated development environments provided by

the FPGA manufacturers. In most cases these applications are proprietary and almost always

not free, although versions with limited functionality are sometimes available free of charge.
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Figure 1.10: F4PGA project structure

Examples of this are Xilinx’s ”Vitis” and ”Vivado ML” software platforms6 or ”Quartus” dis-

tributed by Intel (formerly Altera)7.

Many open source projects have been sprouting around FPGA development due to its in-

creasing popularity. These projects aim to create a complete set of open source development

tools to manage and program FPGAs. The Project IceStorm [8], led by Clifford Wolf, is a rele-

vant example, it aims to document the bitstream format of the Lattice iCE40 FPGAs and provide

simple tools for analyzing and creating bitstream files. Expanding on the IceStorm project is

the Icestudio tool, Figure 1.11, which has been used extensively for this paper. It provides a

combination of Verilog and a visual programming environment for the development of FPGA

applications.

Another example is the F4PGA8 (formerly Symbiflow) organization, Figure 1.12, which of-

6https://www.xilinx.com/products/design-tools.html
7https://www.intel.com/content/www/us/en/products/details/fpga/

development-tools.html
8https://f4pga.org/
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fers a fully open source toolchain for the development of FPGAs of multiple vendors. F4PGA

aims to push FPGAs towards more widespread adoption by optimising and automating FPGA

development workflows with a set of pluggable open source tools. Its goal is to become a com-

plete FOSS (Free and open source software) toolchain that is Multi-platform, Vendor-neutral

and Interchangeable tool suite. Currently, it targets the Xilinx 7-Series, Lattice iCE40, Lattice

ECP5 FPGAs, QuickLogic EOS S3 and is gradually being expanded to provide a comprehen-

sive end-to-end FPGA synthesis flow [3]. Lately, projects under the F4PGA organization um-

brella have become the main platforms and communities for open source FPGA development.

In Figure 1.10 the F4PGA project structure can be seen.

All these projects seek to push FPGAs develpment towards more widespread adoption by

providing open source frameworks, but as a relatively recent endeavor, there is a lack of litera-

ture and tools showing its potential in the robotics field.

JdeRobot9, Figure 1.13, is a non-profit organization that aims to provide tools, libraries and

reusable nodes for Robotics, Artificial Intelligence and Computer Vision. This organization is

investigating via projects like ”Neural FPGA”10 and ”FPGA-Robotics”11 how these fields can

benefit from incorporating FPGAs in their designs using only open source tools.

The research and developments presented in this paper take place inside the FPGA-Robotics

project with the aim of expanding its library of reusable nodes or ”blocks” and, designing and

testing both physical and simulated POCs (Proof of Concept) and applications for FPGAs.

9https://jderobot.github.io/
10https://github.com/JdeRobot/neuralFPGA
11https://github.com/JdeRobot/FPGA-robotics
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Figure 1.11: Icestudio logo. Open IDE for FPGA development

Figure 1.12: F4PGA logo

Figure 1.13: JdeRobot organization logo



Chapter 2

Objectives

This chapter outlines the main objectives to be achieved in this project, the motivation behind

them and the methodology followed to accomplish them.

2.1 Motivation

Multiple things motivated me towards making this project, first and foremost I am passionate

about science and technology as a whole, this project allowed me to use the knowledge acquired

during my studies to climb the steps leading to state of the art software development. Not only

learning but also contributing to projects and organizations working at the cutting edge of the

free and open source movements in the fields of Robotics, FPGAs, and Computer Vision.

I was also motivated by the fact that I had limited knowledge of many of the topics re-

searched during this assignment, during my studies I did not get to dive very deep in some really

interesting subjects that proved to be essential in reaching certain milestones. Hardware simula-

tion, electronic circuits, Hardware Description Languages (HDLs), high frequency timed-based

programming, Robotics or Computer Vision are just some of the incredibly interesting fields

with growing real-life application and environments I got to work with during this process.

2.2 General Goals

The main objective of this project is developing FPGA applications for robots, focusing on the

areas of artificial vision, image processing and locomotion. This main objective can be divided

15
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in two major sections.

The first one takes place in the real, physical world. Developing applications to be synthe-

sized and deployed on real FPGAs that can be connected to real robots. The work done in this

section can be grouped in a series of ”blocks” created with the intent of providing additional

functionality that can be incorporated with other programs already developed by collabora-

tors to the FPGA-Robotics project repository. Two applications are presented in this paper to

demonstrate the use of the developed blocks and many others in working examples: 4.3.1 Ob-

ject detection POC and 4.3.2 GoPiGo 3 robot following a color ball POC. This task does not

only imply the development of software but the assembly of the robot with different peripherals

like cameras, motors and wheels, monitors and their respective connections.

The second objective is achieving the same results in a completely simulated environment,

including both simulated robots and simulated FPGAs. Robotics and Hardware oriented devel-

opment is somewhat slow, expensive and cumbersome, so being able to simulate the complete

chain of technologies involved in these areas is an extremely helpful tool for the development

of new applications. Easier debugging, infinitely flexible testing environments, deterministic

results and very low cost are some of the advantages that bringing these applications to a simu-

lated world can provide. In a similar fashion to the previous objective this one also focused on

developing ”blocks” that help provide functionality to large, complex applications that include

the simulation of the processing unit (FPGA), the simulation of the robot and its environment,

and the connections between them. A final application is presented to demonstrate the use of

the different blocks of technology: 5.3.1 Simulated Tracking Robot POC.

For each of these objectives the following sub goals were undertaken:

1. Researching and understanding the different systems that make an FPGA run a robot

2. Developing code; C++ applications and Verilog modules for data processing in robots and

interfacing the real or simulated FPGA with the real or simulated sensors and actuators

that provide this information.

3. Assembling both a real and a simulated camera wielding differential drive robot and using

it to test the different modules and functionalities.

4. Analysing the results and including the applications into the organization’s repositories.
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Figure 2.1: Spiral Model (Boehm, 1988).

Each of these steps required researching a wide range of different topics and technologies

for the Physical and Simulated parts. The Verilog code for data processing was intentionally

shared between the two domains. This requirement aims to prove that the same Verilog applica-

tion may run on both the physical FPGA toolchain and the simulated FPGA toolchain without

modification.

2.3 Methodology

The Spiral model, shown in Figure 2.1, first described by Barry Boehm in his 1986 paper, ”A

Spiral Model of Software Development and Enhancement” [7] was used throughout this project

as the main development process model, it is a risk-driven incremental development system

based on four phases: Planning, Design, Construct and Evaluation. Every incremental cycle of

development engaged in each of these steps as a way to reach certain milestones.

This model was complemented by weekly meetings with the tutors where we reviewed the

results of the previous cycle and established well defined objectives to be undertaken by the

next one. This model allowed me to tackle very complex issues in a manageable way.

Researching was a major part of the work done for this project as many of the topics in-

vestigated represent the state-of-the-art of their respective fields, particularly for the free and
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open source FPGA community. There was a general lack of information and online community

support, consequently, reaching dead-ends and relying on work-arounds were pretty common

situations encountered in many of the paths taken towards achieving results.

All the software and code developed was archived in a personal Github repository created

for this project1 were most of the design, prototyping and testing was carried out. Working ap-

plications and examples were integrated into the JdeRobot FPGA-robotics Github repositories2

through ”issues” and ”pull-requests” that were reviewed by other contributors to the organiza-

tion.

During this whole process an online blog3 was kept that can be accessed in the project’s

Github repository, where one can take a deeper look at the research and development process.

1https://github.com/RoboticsLabURJC/2017-tfg-richard-nicklas
2https://github.com/JdeRobot/FPGA-robotics
3https://roboticslaburjc.github.io/2017-tfg-richard-nicklas/logbook/



Chapter 3

Tools and Framework

This chapter portrays the most important tools that allowed the development of this project. The

achieved results represent a new layer in a big technological pile that uses multiple programming

languages, libraries/APIs, frameworks and general and specific use software and hardware.

3.1 Development Environment

3.1.1 Programming Languages

Verilog

Verilog1 is a Hardware Description Language (HDL). HDLs are used to model the electronic

systems and digital logic circuits that exist on FPGAs, they represent a high-level abstraction

of the logic designs that are synthesized onto FPGA boards. Verilog modules handle most of

the data processing and computer vision algorithms throughout this project and are used in both

physical and simulated applications.

Verilog differs from conventional programming languages in that the execution of state-

ments is not strictly linear. Verilog designs consist of a hierarchy of modules. Each module is

defined with sets of input, output and bidirectional ports. Internally a module contains a list of

wires, registers and the combinational logic in charge of performing tasks.

Concurrent and sequential statements define the behavior of the module, describing the rela-

tionships between ports, wires and registers. Sequential statements are placed inside begin/end

1https://www.verilog.com/
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blocks and executed in sequential order, but all concurrent statements and all begin/end blocks

are executed in parallel in the design. Modules may contain one or more instances of another

module to define a sub-behavior.

Verilog IEEE 1364-2005 was selected to be used in this project as it is one of the most popu-

lar HDL available and it is fully compatible with the open source toolchain used for developing

the programs discussed in this paper.

C++

C++2 11 is known as one of the best alternatives for coding time-critical applications and

has the advantage of being a very popular library/API language. In this project C++ 11 is

used mainly for the FPGA simulation applications. In plugins interconnecting the different

simulation platforms and to provide additional logic to the system.

Python

Python3 version 3.6.5 played an important role as a scripting and testing tool. Some ex-

amples of use were image format manipulation, testing hardware like the GoPiGo 3 robot or

compilation and build scripts for the simulation environment.

3.1.2 OS and Development tools

Linux distributions like Ubuntu 20.04, CentOS 8, and Raspberry Pi OS were used as the main

development environments for simulated applications and testing while the IDE for FPGA de-

sign and coding ”Icestudio” ran on Windows.

Git/Github4 was used for version control of this project’s repository and also to work and

contribute to JdeRobot’s 5 organization repositories.

Sublime text 36, Visual Studio Code7 and plain Vi/Vim8 served at times as IDEs for C/C++

2https://isocpp.org/
3https://www.python.org/
4https://github.com/
5https://jderobot.github.io/
6https://www.sublimetext.com/
7https://code.visualstudio.com/
8https://www.vim.org/
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and Python development. Most of the Verilog/HDL development was done on Icestudio, Sub-

lime Text 3 and EDAPlayground.

3.2 Applied Software and Frameworks

3.2.1 IceStudio

Icestudio is a open source graphic IDE for open FPGAs released by the FPGAWars organiza-

tion9. It includes driver configuration, complete tool-chain installation, graphical design, build,

verification and loading into FPGA hardware boards. It also provides some basic building

blocks and functionalities to help develop FPGA applications.

As a graphic IDE it greatly simplifies some of the most complex aspects of FPGA program-

ming and has the advantage of being fully compatible with the open source FPGA boards used

for this project, the Icezum Alhambra I and II.

The Icestudio IDE is software still in development, the first versions used, 0.3.3 and 0.4.0,

presented some major bugs and the lack of a big user base or community behind to provide

support proved to be at times a challenging environment to work with. Latter versions tried like

the 0.5.0 addressed some of these issues and allowed the project to progress. A screenshot of

the IDE version 0.4.0-dev can be seen in Figure 3.1

In this project Icestudio served as the main integration development environment for the

”physical” FPGA applications. It covered the instantiation and integration of different Verilog

modules. Also the compiling, building, synthesizing and uploading of the programs to the real

FPGA.

3.2.2 Verilator

Verilator10 v4.216 is a free and open source software tool which converts synthesizable Verilog

code to cycle-accurate behavioral models in C++, thus allowing the simulated Verilog modules

to run on regular processors and providing a way to easily interface with its inputs and outputs.

With Verilator we can achieve a completely simulated execution environment, the advan-

9https://github.com/FPGAwars/icestudio
10https://www.veripool.org/verilator/
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Figure 3.1: Icestudio IDE v0.4.0-dev

tages this provides for the development of FPGA applications cannot be overstated. Reduced

costs as no hardware is needed, easier development as C++ can be used to interface with the

modules and possibly most important, accurate, fast and replicable testing and debugging.

3.2.3 ROS and Gazebo

• ROS

The Robot Operating System (ROS)11 is an open source set of software libraries and

tools that help build robot applications. It works like a meta-operating system and pro-

vides functionality like hardware abstraction, low-level device control, implementation of

commonly-used functionality, message-passing between processes and package manage-

ment. ROS is rather complex and has a somewhat steep learning curve but adds a lot of

value to many robotics applications.

For this project ROS version ”Noetic Ninjemys” is used to define and implement sim-

ulated robots that can test the functionalities developed in Verilog modules and as the

messaging application connecting the different processes.

11https://www.ros.org
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Figure 3.2: Simulation of a robotic arm on the Gazebo software

• Gazebo

Gazebo12 is an open source 3D robotics simulator, an example can be seen in Figure 3.2.

It provides realistic rendering of environments including high-quality lighting, shadows,

and textures. It can model sensors that ”see” the simulated environment, such as laser

range finders, Kinect style sensors and most important to this project, cameras.

In this project Gazebo version 11.11.0 is used to simulate robots and the environment

from which a simulated FPGA can gather information for image processing and object

detection.

With ROS and Gazebo a complete framework capable of accurately simulating robots and

their environment is achieved. This framework is capable of both sending and receiving data

from different processes running other parts of the system like a OpenCV webcam plugin or

Verilog code running on a simulated FPGA.

3.2.4 OpenCV

OpenCV13 (Open Source Computer Vision Library) is an open source library of programming

functions mainly aimed at real-time computer vision. OpenCV primary interface is written

in C++ which eased development of this project. OpenCV is used to handle and transform the
12https://gazebosim.org/
13https://opencv.org/
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Figure 3.3: Icezum Alhambra v1.1.

image related data that is transferred between the different parts of the software. It also provides

complex image processing functions that can be used to compare and test similar functionality

developed for FPGAs.

For the simulation part of this project version 4.2.0 of OpenCV is widely used as an image

and video handling tool. Examples of this are the integration of webcams as C++ plugins or the

resizing of the recorded videos to fit the Verilog modules interface.

3.3 Hardware

3.3.1 FPGA Boards

The Icezum Alhambra I, and Icezum Alhambra II14 (figures 3.3 and 3.4) electronic boards are

open source both in software and hardware, and are compatible with open source toolchains,

fulfilling one of the main goals in this project of using free and open source resources. Both

come with an iCE40HX4K embedded FPGA from Lattice, 20+ Input/output 3.3/5V pins, mul-

tiple general-purpose LEDs and buttons, USB power supply and more.

These boards were designed by the FPGAWars organization following the open source

movement spirit for educational purposes and therefore, are not particularly powerful nor have

14https://alhambrabits.com/alhambra/
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Figure 3.4: Icezum Alhambra v2.

the best technical specifications available on the market. Still, they are fully compatible with

the IceStudio IDE and are suitable for the proof of concept designs developed in this project.

3.3.2 GoPiGo 3 Robot

GoPiGo 315 is a differential drive robot manufactured by Dexter Industries that offers a wide

range of sensors and actuators to assemble on it. The GopiGo 3 runs on an operating voltage

of 7-12V and comes with two 66.5mm wheels attached to two direct current (DC) motors,

odometry is provided by two magnetic encoders capable of 720 pulses per wheel rotation. It

is ROS compatible and comes with a very complete set of libraries to run software in several

languages on its onboard Raspberry Pi 3.

The robot comes with a proprietary board that connects via two I2C ports, a serial port (SPI)

and two analog digital ports to external devices like the mentioned Rasperry Pi. For this project

project the Raspberry Pi was only used for testing purposes as the Robot’s ”brain” was switched

for the Icezum Alhambra II to serve as the image data processor, to control the different sensors,

actuators and the GoPiGo 3 proprietary board with its FPGA.

15https://www.dexterindustries.com/gopigo3/
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Figure 3.5: GoPiGo3 Robot

3.3.3 OV7670 Camera

The OV7670 [9] is a low cost CMOS image sensor that provides the functionality of a single-

chip VGA camera and image processor. It provides full-frame 8-bit images in multiple formats,

controlled through the Serial Camera Control Bus (SCCB) interface. The camera operates at up

to 30 frames per second in VGA and allows for user control over image quality, formatting and

output data transfer. Image processing functions like exposure, gamma, white balance, color

saturation, hue control and more, are also programmable through the SCCB interface.

The OV7670 Camera was extensively used as the main image data producer, its small foot-

print and specification requisites were ideal for the Icezum Alhambra II board and it proved

powerful enough to handle the proof of concepts and tests undertaken during this project.

3.3.4 Aditional HW, Electronic Circuits and Signal/Logic Analyzer

All the different hardware components were manually interconnected with 10/15 centimeter

jumper wires. A protoboard was used to extend the circuits allowing the use of a signal ana-

lyzer. The “AZ-Delivery Logic Analyzer” is an 8 channel logic analyzer purposed for analog

data recording, this device connects to a PC over an USB port and uses the “Saleae Logic Soft-
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Figure 3.6: OV7670 Camera

ware” to record signals traveling between the different hardware components. Interpreting and

analyzing these signals proved essential for the configuration of the hardware components and

the debugging of the software application.

Some additional hardware was used, like a VGA adaptor to display the FPGA processed

images on a monitor or some custom PCBs that helped with hardware interconections.
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Chapter 4

Physical FPGA

This chapter’s main objective is researching and developing Computer Vision algorithms and

other functionalities as ”blocks” to be included in FPGA applications. Also designing and

testing some working examples that make use of these and several other blocks in physical

FPGA boards and real robots that incorporate them.

4.1 FPGA-Robotics

The developments presented in this chapter take place in the JdeRobot organization FPGA-

Robotics project. As explained in the introduction, FPGA-robotics is a development environ-

ment that intends to create open source FPGA tools, libraries and reusable nodes for Robotics.

When this project started there were already several blocks and tools developed, as well as

some applications or Proof of Concepts (POCs) by other collaborators in the FPGA-Robotics

repository. General support functionality was provided by Icestudio Verilog modules or blocks

that can be easily incorporated in IceStudio projects; examples of this are addition, multipli-

cation, square roots and other mathematics related functionality blocks, or bit manipulation

modules that covered assignation and counters. Other general functionality blocks provided

more complex behaviours like SCCB/I2C interfacing and communication, or PWM (Pulse-

Width Modulation) Control. Some blocks provide functionality to integrate specific peripherals

like displays through VGA or connecting to a OV7670 camera1.

1https://github.com/JdeRobot/FPGA-robotics/tree/master/blocks/icestudio/

icestudioCollection/FPGA-Robotics-v1-stable/blocks

29
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A self-balancing robot that solves the inverted pendulum control problem has been success-

fully programmed using an open FPGA toolchain by Juan Ordoñez et al [5]. The code can

be found in FPGA-Robotics repository2. The application includes a perception module for an

inertial sensor, a proportional–derivative controller, and a driver module for two DC motors.

The system includes an Arduino micro-controller for the sensor driver and an Icezum Alham-

bra board (with an iCE40 FPGA from Lattice) as the primary computing unit. All of the FPGA

modules were developed using Icestudio.

Researching and analyzing this previous work served as the basis for the developments

described in this Final Degree Project. The present work constitutes a step forward from the

previous work developed on FPGA-Robotics, demonstrating that using open source tools for

reconfigurable computing is a viable alternative for the development of robotics and machine

vision applications.

Icestudio Icestudio is the main IDE used for the developments presented in this chapter. It

covers the whole cycle of development, from module design and coding to the upload of the

software on an FPGA. Icestudio provides a visual interface to easily integrate different Verilog

modules or blocks like the ones described before into a single application to be uploaded to a

real FPGA.

These modules are compiled, synthesized and analyzed in search of syntax errors, impos-

sible to generate constructions (logically functional hardware, but with no possibility of being

synthesized on the target FPGA) or timing problems (time related issues regarding the execution

speed of the logic blocks).

During the FPGA synthesis process, an RTL (Register Transfer Level) or HDL design is

converted into a gate level representation or a logic component. This means that FPGA code

provided in high level language such as Verilog is converted into logic gates. There are 3 main

steps undertaken during FPGA synthesis

• Instantiation and Substitution

A library consisting of primitive modules such as Boolean functions including AND, OR,

2https://github.com/JdeRobot/FPGA-robotics/tree/master/phys_fpga/old/

Self-Balancing_Robot
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NOR, etc., and other modules that have been defined by the user are created. These

primitive modules are further expanded by adding language operators and constructors.

• Inference

The synthesis tool detects and recognizes particular patterns in the Verilog logic design

and treats them in particular user defined manner.

• Logic Optimization

In the final step the Boolean operations are grouped together in various combinations

using logic optimization techniques.

Afterwards, the synthesized elements are placed and connected to the FPGA blocks check-

ing availability and feasibility. The process ends with the generation of the bit stream to load

into the FPGA. This process has to be performed every time changes are made to the design or

code.

4.2 Physical Blocks

Several modules covering very different functionality were researched and developed with the

intent of achieving complex image processing applications for robots in an open source FPGA.

All of them will be further described in detail in this section.

• Basic Image Processing Blocks

Research and development of simple Verilog modules to test FPGA functionalities on an

online IDE and test bench application called ”EDAPlayground”. Achieving automation

of image file reading, writing and encoding. Developing basic image processing(color

filtering) blocks.

• Camera and Display Blocks

Transitioning to a real FPGA. Integrating VGA Display modules and connecting a VGA

output and display to the FPGA. Afterwards, including real input data from a camera into

the system, now capable of recording, processing and displaying live video with an open

source FPGA board.



32 CHAPTER 4. PHYSICAL FPGA

• SPI Communication Block. GoPiGo 3 robot integration

Transition to the Icezum Alhambra II and developing Serial Peripheral Interface (SPI)

communication modules for the ”GoPiGo 3” robot.

• Improved Color filter and Object detection Block

Developing a color filtering and histogram-based object detection block.

4.2.1 Basic Image Processing Blocks

Several Modules were developed to test basic functionalities of FPGAs and achieve simple

image processing. After considering multiple options, an online IDE and test-bench called

EDAPlayground3 was selected to develop, simulate, synthesize and test the first Verilog mod-

ules. EDAplayground provides a versatile development environment that was enough to fit the

early projects needs.

The following blocks were created and are archived in the FPGA-Robotics Github reposi-

tory4

• Logic Gates

Verilog code and test-bench to test basic HDL behaviours like inputs/outputs and some

simple logic operations like AND, NOR, OR, etc.

• RAM and RGB RAM

Two modules were developed to provide data storage and memory access on Verilog. One

for simple data (ram.v) and a custom data storage to handle 24bit-RGB data (rgb ram.v)

• Hex to RGB

A new module capable of reading hexadecimal data from a .BMP image file and store it

in the RAM/rgb ram.v module.

• Color Filter
3https://www.edaplayground.com/
4https://github.com/JdeRobot/FPGA-robotics/tree/master/phys_fpga/old/

Basics
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Figure 4.1: HexImageFilter module diagram

A final module that provides the functionality of color filtering was included to the repos-

itory. It reads the RGB data from the memory storage block and applies a simple RGB

mask to delete a specific color component.

An application called ”HexImageFilter” incorporates the mentioned blocks into a Verilog

Module capable of simple image processing, the code can be accessed here5. A diagram of the

three modules, their interfaces and how they interconnect is shown in Figure 4.1.

4.2.2 Camera and Display Blocks

The main goal in this section is the transitioning to a real FPGA board and incorporating real

input and output device blocks to start physical testing of the image processing Verilog modules.

The project was designed to be uploaded to an Icezum Alhambra I. This board is quite

restricted in hardware specifications so the image processing had to be limited in resolution,

size and frame rate. This also meant that both the input and output video streams needed

trimming in order to be successfully stored, processed and displayed.

4.2.2.1 VGA Output

A Verilog module was developed and included into the project that allowed images to be dis-

played through VGA6. This node handles the synchronization signals, hsync and vsync, to

5https://github.com/JdeRobot/FPGA-robotics/tree/master/phys_fpga/old/

ComputerVision/HexToVGA/examples
6https://github.com/JdeRobot/FPGA-robotics/tree/master/phys_fpga/old/

ComputerVision/VGA
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Figure 4.2: 3-bit RGB Color palette

produce a video array visible on a PC monitor. This module is very useful for debugging of

vision-based applications.

The first prototype application that made use of this module read a simple 170x300 binary

map to test the correct behaviour of the VGA block. The hardware restrictions of the Alhambra

I board meant that the Verilog modules could only process 3 bits of data per pixel for images of

this size, thus producing output in what is known as a 3-bit RGB, Figure 4.2.

The input image in this prototype was monochrome (1-bit grayscale), so even though the

FPGA modules could process and display 8 colors per pixel, the filtered image shows only two

of them.

The next iteration included a 32x32 hex image as input with 24 bits of RGB data per pixel,

this color palette is known as ”truecolor” and is used in most modern display systems. As

only 3-bit color can be displayed with the Verilog modules, simple RGB filters needed to be

implemented to display a reduced version of the image. As can be seen coded in Figure 4.3,

color components exceeding a 50 % threshold on its RGB 8 bit value were translated a 1 or

otherwise as 0, effectively subsampling from 16,777,216 colors to 8.

The results of applying 3 of the 8 different RGB masks possible to an example 32x32 image

can be seen in Figure 4.4. Filtering the R, RB and G components respectively.

All the data processing in these modules was done on the spot. Pixels were read, processed

and displayed one after the other without any notion of the previous pixels or frames. This

architecture is enough for simple image processing but the aim of this project is to use more

complex computer vision algorithms like convolutions and complex filters. These operations

require access to different parts of the images data at the same time, making storage a necessity.

The last iterations of this example incorporated the rgb ram.v Verilog module from the
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Figure 4.3: Color Filter Verilog Code

Figure 4.4: Three examples of RGB Filtering.
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previous section to provide storage capabilities to the system. The final module was capable

of storing a complete frame of data per cycle consisting of 32x32 24-bit RGB pixels. The

declaration of the memory register is shown in the following code snippet.

parameter sizeOfLengthReal = 3072; // image data : bytes: 3073 32 * 32

* 3 (RGB components)

// Memory

reg [7 : 0] img_storage [0 : sizeOfLengthReal-1];// memory to store

24-bit data image

4.2.2.2 Camera Input

This section’s main objective is to start using real input data from a camera instead of hexadec-

imal or binary images. After incorporating the OV7670 block a system capable of recording,

processing and displaying live video with an open source FPGA is finally created.

The OV7670 camera is used for this purpose. As described in previous chapters, the Alham-

bra I has serious hardware limitations so the default behavior of the OV7670 overwhelmingly

outperforms its capabilities. For this reason a modified version of the camera module developed

by JdeRobot’s team was included into the system7. The data stored in the FPGA is 18 bit per

pixel (instead of 24bit per pixel) and only a 60x80 pixel subset of the recorded image is used

for image processing and display.

The module added to the system handles the configuration and initialization of the camera

and feeds the video stream to the Image Processing modules. A signal analyzer has become a

necessity to be able to debug these behaviours.

A Logic Analyzer and the ”Saleae Logic 1.2.18” software were used for sampling and de-

coding of the different input and out channels that connect to the OV7670 camera. This commu-

nication was using the SCCB compatible I2C (Inter-Integrated Circuit) protocol. An example

of the recorded signal and decoding can be seen in Figure 4.5.

At first glance it seemed that the I2C protocol was working as intended but sampling differ-

7https://github.com/JdeRobot/FPGA-robotics/tree/master/phys_fpga/

alhambra_ii/icestudio
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Figure 4.5: I2C sampling

ent channels like VSYNC (Vertical synchronization (Output)) and HREF (Horizontal synchro-

nization (Output)) noise could be seen polluting the signals.

Several hardware upgrades were needed to finally achieve a working camera input, the

Icezum Alhambra I was replaced with the Icezum Alhambra II with better specs. The length

of the wires connecting the different components of the system, that up until that point were

20cm long, were replaced by 10cm ones to reduce the degradation of the signals, redundant

connections were removed and a 6-bit VGA adapter was incorporated to manage the reduced

image size our sobel/color filters were producing. The end result was a much cleaner solution

capable of recording, processing and displaying video stream.

4.2.3 SPI Communication Block. GoPiGo 3 robot integration

The Camera and FPGA board were incorporated into a GoPiGo 3 robot with the aim of using

the processed image data to feed linear and angular velocity to the robot’s motors.

After setting up the robot and testing its native applications the next steps were to unravel

the different layers that exist between the Python code used to control its motors and actuators.

The idea is to identify the point where the FPGA board will fully replace the Raspberry Pi that

was doing all the processing up to that point.

The Raspberry Pi uses an SPI interface to connect to the GoPiGo board. The Serial Pe-

ripheral Interface (SPI) is a synchronous serial communication interface specification used for

short-distance communication used mainly in embeded systems. It follows a master-slave ar-

chitecture and uses 4 signals; Serial Clock (SCLK), Master Out Slave In (MOSI), Master In

Slave Out (MISO) and Slave Select (SSEL).

By analyzing the SPI communication performed by the GoPiGo c++ libraries instructions

a new SPI Verilog module could be developed whose job was to replace the initialization and

instruction mechanisms that up until that point were being handled by the Raspberry Pi and from

now on would be done by the FPGA. This reverse-engineering task was necessary because there
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Figure 4.6: Alhambra II - GoPiGo3 SPI connections

was no available documentation or code for the GoPiGo 3 proprietary board. In Figure 4.6 an

schema of the connections between the Alhambra II board and the GoPiGo 3 board is shown.

A Verilog module from the open source ”FPGA Libre” organization8 called SPI Master was

selected and expanded to facilitate communication between the Alhambra II and the GoPiGo’s

board. A block diagram of this module can be seen at Figure 4.7.

The GPG3 folder9 in my personal repository for this project contains all the developed code

and modules that were produced with the intent of creating the GPG3 SPI communication POC.

Even though my involvement with this particular block was more focused on the SPI com-

munication itself and developing and testing basic applications like using this module to light

GoPiGo’s LEDs, this work was later used by my tutor Felipe Machado to produce the final

blocks that handle SPI communication. They can be found in FPGA-Robotics repository10.

These blocks were later expanded to handle further functionality of the GoPiGo like Motor

control.

8http://fpgalibre.sf.net
9https://github.com/RoboticsLabURJC/2017-tfg-richard-nicklas/tree/main/

GPG3
10https://github.com/JdeRobot/FPGA-robotics/tree/master/blocks/verilog/

utils/spi/alhambra_ii
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Figure 4.7: Interface of the spi master block shown in Icestudio

4.2.4 Improved Color Filter and Object Detection Block

This section relies on the research done to produce a block that intends to tackle the classical

problem in computer vision and image processing of object recognition and detection. Or in

other words, determining whether or not the image data contains some specific object, feature,

or activity.

The best algorithms for such tasks are currently developed on convolutional neural net-

works. Algorithms based on Fast R-CNN (Fast Regional-Based Convolutional Neural Net-

works) or single-shot detectors like YOLO (You Only Look Once) are already close in perfor-

mance to humans. Other solutions rely on Histogram-based techniques for object detection.

Mechanisms like SIFT (Scale-Invariant Feature Transform) or feature descriptors like HOG

(Histogram of Oriented Gradients) rely on pixel histograms to locate local features in images

for the purpose of object detection.

Due to the constrains that FPGA development entails the engineered block in this section is

designed as a proof of concept for histogram-based object recognition yet not as complex as the

algorithms mentioned in the previous paragraph.
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4.2.4.1 Improved Color filter

The image processor Verilog module color proc.v expands on the implementation discussed

in previous sections to provide more complex RGB based filtering. This version receives the

original pixel and a 3 bit signal to select the colors to filter as input and establishes the value or

the processed pixel to be displayed by the VGA module as output.

The 3 bit mask signal enables filtering for the 8 color values shown in Figure 4.2

The following Verilog code snippet exemplifies how this process is done inside the module.

always @ (orig_pxl, rgbfilter) // should include RGB mode

begin

case (rgbfilter)

3’b000: // No filter, output same as input

proc_pxl <= orig_pxl;

3’b100: begin // Red filter

if (orig_pxl[c_msb_red])

proc_pxl <= orig_pxl;

else

proc_pxl <= BLACK_PXL;

end

3’b010: begin // Green filter

if (orig_pxl[c_msb_green])

proc_pxl <= orig_pxl;

else

proc_pxl <= BLACK_PXL;

end

3’b001: begin // Blue filter

if (orig_pxl[c_msb_blue])

proc_pxl <= orig_pxl;

else

proc_pxl <= BLACK_PXL;

end

3’b110: begin // Red and Green filter

if (orig_pxl[c_msb_red] & orig_pxl[c_msb_green])

proc_pxl <= orig_pxl;

else
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proc_pxl <= BLACK_PXL;

end

3’b101: begin // Red and Blue filter

if (orig_pxl[c_msb_red] & orig_pxl[c_msb_blue])

proc_pxl <= orig_pxl;

else

proc_pxl <= BLACK_PXL;

end

3’b011: begin // Green and Blue filter

if (orig_pxl[c_msb_green] & orig_pxl[c_msb_blue])

proc_pxl <= orig_pxl;

else

proc_pxl <= BLACK_PXL;

end

3’b111: begin // Red, Green and Blue filter

if (orig_pxl[c_msb_red] & orig_pxl[c_msb_green] &

orig_pxl[c_msb_blue])

proc_pxl <= orig_pxl;

else

proc_pxl <= BLACK_PXL;

end

endcase

end

4.2.4.2 Object Detection

The algorithm designed in this section tries to follow the theory behind Color Histograms 11 for

object detection. In image processing and photography, color histograms are a representation

of the distribution of colors in an image, counting the number of pixels present for each value

of color range on each image row or image column.

This implementation counts the pixel distribution over the width of the frame. The most

prominent object’s centroid can be extracted from the histogram by locating the highest con-

centration of filtered pixels and the distribution of the surrounding values. The total number

of pixels filtered can help identify the object’s size relative to the camera, and somehow, the

11https://en.wikipedia.org/wiki/Color_histogram
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Figure 4.8: Histogram of filtered Red Pixels

distance to that object.

This particular implementation is intended to be integrated into a wheeled robot with an

onboard camera, like the GoPiGo 3 discussed in previous sections, to guide it to the detected

objects. For this reason the location of the object on the vertical plane is deemed less relevant

and only the distribution on the horizontal plane is analyzed. The image processing module was

expanded to record histograms of filtered pixels for each image frames processed. A graphical

representation of this structure can be seen at Figure 4.8.

A minimum pixel threshold can be applied to each column in the histogram to filter noise.

This threshold should be fine tuned for the specific camera used and the environment conditions

to help in the selection of the desired objects.

The following Verilog code snippet shows how the filtered red pixels are stored in the ”his-

togram” register.

reg [5:0] histogram [79:0];

//histogram stores the filtered pixels in each column, resets every frame.

always @ (posedge clk, posedge rst)

begin

if (rst) begin

for(i=0;i<=79;i=i+1) begin

histogram[i] <= 0;

end

end

else if (end_pxl_cnt) begin

for(i=0;i<=79;i=i+1) begin
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histogram[i] <= 0;

end

end

else begin

if (orig_pxl[c_msb_red]) begin

histogram[px_pos] <= histogram[px_pos] + 1;

end

end

end

This Verilog snippet shows how the histogram’s bin with the highest value of pixels is stored

for each frame.

always @ (posedge clk, posedge rst)

begin

if (rst) begin

prev_high <=0;

col <=0;

end

else if(tmpw) begin

prev_high <= histogram[px_pos];

col <= px_pos;

end

end

The output for the object detection is an 8 bit register. Even though the histogram has

information from the 80 pixel width of the image, this implementation outputs only 8 possible

values that provide a single dimensional position for the detected object on the horizontal plane.

The following code snippet indicates the possible values for this module’s output

// 1000 0000 left-most

// 0100 0000 more to the left

// 0010 0000 left

// 0001 0000 slightly to the left

// 0000 1000 slightly to the right

// 0000 0100 right



44 CHAPTER 4. PHYSICAL FPGA

// 0000 0010 more to the right

// 0000 0001 right-most
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Figure 4.9: Object Detection POC Module Diagram

4.3 Applications

With the intention of demonstrating the use of the presented blocks on working applications

two POCs will be described in this section.

4.3.1 Object Detection POC

Figure 4.9 shows the final Verilog module diagram on Icestudio for the Object Detection POC.

The black box labeled ”1” contains the Camera modules (section 4.2.2.2) that manage the

OV7670 camera and feed data to the image processor module. The blue box labeled ”2” in-

cludes the VGA display modules (section 4.2.2.1) that receive processed pixels to be presented

on a monitor. The green box labeled ”3” contains the main image processor, the color filter and

object detection module explained in section 4.2.4. Finally, also in green with the label ”4”, the

LED output in charge of displaying the detected objects on the horizontal plane.

In Figure 4.10 a schema of the connections between the Alhambra II board, the OV7670

Camera and a VGA connection is shown.

The presented solution manages to achieve accurate results in object detection as is demon-

strated though the next experimental example. A video recording can be found in YouTube12

Footage of a finger moving over a black background is recorded. Using the OV7670 Camera

12https://www.youtube.com/watch?v=ioeNptRcPDY
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Figure 4.10: VGA - Alhambra II - OV7670 connections

connected to the Icezum Alhambra II and the Camera Verilog modules the application receives

the recorded image data. Afterwards, the images are handled to the image processor module to

filter red pixels and detect the position of the filtered object on the horizontal plane relative to

the camera’s frame.

With the help of the VGA display Verilog modules the processed images can be seen on

a computer monitor through VGA. Figure 4.11 shows two images of the filtered video output

being displayed though VGA on a PC monitor. Note that only the red pixels pass the color filter.

Figure 4.11: Filtered Video Output
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Figure 4.12: Object Detection on Green LEDs

The 8 bit object detection output is also presented on the FPGA board 8 general-purpose

green LEDs.

Figure 4.12 portrays the recording of the scene and the output of the object detection is

wired to the green LED Display of the Icezum Alhambra II, note how the illuminated LEDs

change depending on the position of the finger relative to the camera’s frame.

This physical working application manages to achieve color filtering and object detection on

an open source FPGA board and successfully integrates different peripherals like the Camera

and monitor to the system. This implementation established the first steps for the development

of more sophisticated filters and detection algorithms for FPGAs.

4.3.2 GoPiGo 3 robot following a color ball POC

This POC displays a working prototype for object tracking with a differential drive robot. A

simplified block diagram of the physical system can be seen in Figure 4.13.

Some of the developments and analysis done for the integration of the Alhambra II to the

GoPiGo3 robot ( Section 4.2.3) in addition to subsequent iterations of other Verilog blocks

discussed in this document were integrated by colleagues from the JdeRobot organization to

achieve a more complex and complete object detection POC for the GopiGo 3 robot. The beta-

testing and refinement of parts of this application and its blocks was also done inside this Final

Degree Project. The files and documentation can be found on the FPGA-robotics’s ”phys fpga”
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Figure 4.13: Simplified Physical model diagram
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Figure 4.14: Blocks for camera guided robot

github repository13

Figure 4.14 displays a block diagram of the different components that make the Verilog

application. Besides the functionalities already covered in previous sections of this document,

this POC includes several new modules and improvements, both in software and hardware.

The most important blocks included in this POC are described below:

• GoPiGo Blocks:

– gopigo spi ctrller: Receives Motor PWM and leds commands for the GoPiGo3,

and sends them via SPI. Before sending them, it checks whether there has been any

change since the last sending.

– motors ctrl v4: Control for motors in closed loop with centroid and proximity. The

speed of the motors is generated for the GoPiGo SPI Controller block.

• Image Blocks:

– ov7670 Camera: Blocks related to the OV7670 camera.

· ov7670 iface: OV7670 interface.

· framebuff 80x60 12b: Buffer block for the image.

· ov7670 ctrl: Module in charge of communicating with the SCCB module.

· ov7670 capture: Block that manages image capture.

13https://github.com/JdeRobot/FPGA-robotics/tree/master/phys_fpga
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Figure 4.15: A GPG3 Robot using an FPGA to track a red ball

– Processing: Blocks related to image processing.

· color processing: Basic version of image processing for the color filter.

· color processing v3: Advanced version of image processing for the color filter.

The centroid and proximity are obtained at the output.

· mode sel: Block to select the filter mode for the basic color processing block

(color processing).

– Visualization: Blocks related to visualization.

· vga display: Block to display the image on a VGA screen.

In Figure 4.14 a snap from a YouTube video14 demonstration of this POC done by collabo-

rators from the JdeRobot organization can be seen. The FPGA Modules are configured to filter

and detect red objects and a red ball is presented before the robot’s camera. The robot then

moves to keep track of the detected object.

This POC demonstrates how reconfigurable programming can be used to create complex

image processing algorithms and sensor/actuator control for robotic applications. This way the

application takes advantage of the improved performance and flexibility that FPGAs provide.

14https://www.youtube.com/watch?v=rbdQ36ZJ7Lo
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Simulated FPGA

In the previous chapter the different steps involved in the development and testing of physical

FPGA blocks and applications were described. This somewhat cumbersome process is time-

consuming and resource-expensive. In this chapter an argument for the simulation of some of

the procedures involved in this process is presented as a more efficient alternative.

5.1 SIM FPGA-Robotics

A simulated FPGA toolchain has been created in the FPGA-Robotics project1 to provide a

faster and more versatile alternative framework for the development of FPGA based robotic

applications.

5.1.1 Motivation

Developing robotic computer vision algorithms for FPGAs is a rather complex endeavor, it not

only demands a diverse set of knowledge and tools but also can require pretty large budgets.

Having to acquire all the necessary hardware and building an actual robot to test applications

is expensive and time-consuming. Furthermore, hardware development carries inherent dif-

ficulties that one may want to avoid. Many of the setbacks encountered during the research

and development of the previous chapter were examples of this; Hardware malfunctions, noise

polluting the signals travelling between the different hardware components causing bugs and

1https://github.com/JdeRobot/FPGA-robotics/tree/master/sim_fpga

51
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miss-configurations, and possibly most important, the debug and test loop for developing the

different blocks and applications was extremely lengthy.

FPGA Simulation The synthesis and upload processes of physical FPGAs can take a lot of

time. For the largest FPGAs and most complex modules, debugging the hardest systematic

errors like synthesis mismatchs, can take days through the method of prototyping on the actual

board. Furthermore, the latest synthesis tools employ advanced optimizations that can lead to

errors. Even for relatively simple applications and FPGA boards like the ones presented in

this document this process can take several minutes. Compare this to the almost instant time it

would take to compile regular software versions of the same algorithms.

FPGA simulation allows for the optimization of the lengthy test and debug loop present in

hardware development, and eliminates the need to purchase hardware beyond the ubiquitous

PCs where the simulations can take place.

Another important difference to be noted between hardware and software development are

debugging tools. When developing hardware applications programmers may often find them-

selves stuck when things don’t work as the usual tools used for debugging are missing or require

additional software and hardware.

Test Environment Simulation Test benches are the most common way to directly test the

logic inside the RTL designs. A test bench allows the system to bypass the need to test with

additional hardware, this is done by simulating the different input signals and handling the

output signals that the FPGA modules use. Afterwards, the recorded chronograms of the control

signals must be checked to verify the functional correctness of the hardware model.

This is a necessary step when creating hardware designs and quite convenient during the

first steps of development, but as prototypes grow more complicated and involve more complex

inputs and outputs the design of the test benches becomes a very complicated task. This is

usually the case for robotic applications, specially the ones that rely on computer vision and

image processing.

In this chapter a series of simulation based software applications and plugins/blocks are

designed and developed to provide a versatile alternative to hardware testing for FPGA robotics

applications. With the help of open source software like OpenCV, ROS and Gazebo a more
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powerful, controlled and configurable framework for testing has been created.

Compared to Hardware testing this environment provides simulations that can be performed

with exactly the same deterministic results every time. This contrasts with real world applica-

tions where, for example, visual inputs are never exactly the same and noise can interfere with

the signals traveling between the different hardware components. This framework can easily

produce very complex inputs and outputs that can be seamlessly generated and fed to the, in

this case, simulated FPGA.

5.1.2 Simulating FPGAs with Verilator

FPGA manufacturing companies offer proprietary simulation software at a price but there is a

growing set of open source alternatives. The developments presented on this chapter make use

of the Verilator tool to replace the physical FPGA with cycle-accurate behavioral models of

the Verilog modules in C++ or SystemC. With the use of Verilator we can address many of the

aforementioned issues but it also comes with some drawbacks.

Verilator is a cycle-based simulator, which means it does not evaluate time within a single

clock cycle, and does not simulate exact circuit timing. Instead, the circuit state is typically

evaluated once per clock-cycle. This means it cannot be used for timing simulations, asyn-

chronous (clockless) logic, timed signal delays, or in general any signal changes that involve

the concept of time. On the other hand, because everything between clock edges is ignored,

Verilator’s simulations run extremely fast and work great for simulating the functionality of

synchronous digital logic circuits.

Verilated models expose the inner hardware logic on software, this means that a more tradi-

tional approach to debugging can be used. Tools like gdb (GNU Debugger) or simple fprint

tracing can help tremendously when developing Verilog RTL files. Verilated modules can also

produce VCD output files containing the series of time-ordered value changes for the signals in

a given simulation model. With the help of waveform viewer software like GTKWave2 these

signals can be analyzed to help with debugging.

Structure of the Verilated Model For a given class ”prefix” Verilator outputs a prefix.h

header file which defines a class named prefix which represents the generated model to be

2http://gtkwave.sourceforge.net/
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instantiated. It will additionally create a prefix.cpp file, together with additional header

and implementation files for internals. This model class defines the interface of the Verilated

model. The output of the process will also contain a prefix.mk file that may be used with

”Make” to build a static library with all required objects in it.

The generated model class file manages all internal state required by the model, and exposes

the following interface to allow interaction:

· Top level IO ports are exposed as references to the appropriate internal equivalents.

· Public top level module instances are exposed as pointers to allow access to inner items.

· The root of the design hierarchy is exposed via the rootp member pointer to allow access

to model internals.

In C++ output mode, like it is used for this project, a C++ wrapper and main loop for the

simulation must be written by the end user, this file instantiates the model class and links with

the Verilated model.

5.1.3 Design

Verilator simulates the FPGA Verilog code and several software extensions may be developed to

connect that Verilog code to real or simulated robot sensors and actuators. These proposed soft-

ware drivers make the sensory readings available to the Verilog modules and send the outputs

to the appropriate actuator to extend the usefulness of the simulated FPGA-Robotics toolchain.

Figure 5.1 displays a block diagram of the design concept this simulated toolchain is trying

to achieve.

Connection to sensors and actuators: drivers and blocks As was the case with Physical

FPGA-Robotics, the SIM FPGA-Robotics3 repository already presented some developments

that implement a functional POC of Verilated modules and a GUI.

This proof of concept on how to build hardware simulators using Verilator was developed by

David Lobato (JdeRobot member) and can be accessed here4. The application features ”Input-

Driver” and ”OutputMonitor” classes that, as their name suggests, handle the mentioned inputs

3https://github.com/JdeRobot/FPGA-robotics/tree/master/sim_fpga
4https://github.com/JdeRobot/FPGA-robotics/tree/master/sim_fpga/examples/

example1
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Figure 5.1: Design Concept Diagram

and outputs to and from the Verilated Model.

It includes a Verilog RTL design with complex inputs and outputs that implements a pixel

processor and color filter. A diagram of the Verilog modules can be seen in Figure 5.2 and a

brief description of the most important input and outputs follows:

· Input and output images are stored in 80x60 12-bit memories

· A 3-bit color filtering mask input signal

· An 8-bit output ”Centroid” signal intended for LED displays that indicates the detected

object’s position on the horizontal plane

The POC also comes with a Graphic User Interface (GUI), pictured in Figure 5.3, where

different input signals can be selected and the output signals are displayed. This GUI also

allows to dynamically select the number of FPGA simulation cycles to be run per iteration of

the main software loop. The latest versions of this POC were feeding the Verilated model with

static images to test the functionality of the image processor and color filter.

Using this previous POC example as a stepping stone to simulated FPGA development along

this project a series of plugins or blocks has been developed with the intend of expanding the

functionality in a similar fashion to the one described in the Physical FPGA chapter.
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Figure 5.2: Simplified Verilog Module Diagram

Figure 5.3: Pixel Processor simulator GUI
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5.2 Simulated Blocks

This section presents the three developed software blocks for robotics and computer vision

applications.

5.2.1 Webcam Block

This first block intends to replace the static images that Verilated Model was being fed with real

video footage taken from a webcam.

The target is to test the same RTL designs used by the POC presented in the previous sec-

tion (Image processing and Color filtering Verilog modules). This new block incorporates live

Webcam feed to the system in place of the static images that were being used up until that

point. As discussed in the following sections, creating and incorporating simulated inputs and

environments is a complex task so being able to use this Webcam Block as a versatile testing

platform for the RTL designs is extremely useful. Code can be found in the FPGA-Robotics’s

SIM FPGA repository5

OpenCV is the de facto standard library for computer vision mainly aimed at real-time

operation. It has been used for implementing all the logic necessary to incorporate a webcam.

Integration was facilitated by the fact that OpenCV’s primary interface is written in C++.

Figure 5.4 shows a simplified diagram of the different parts that the C++ application con-

tains, including the Webcam Block

The following code snippets portray some OpenCV functions to receive the image data from

the default webcam installed in the system and transforming that data so the Verilated modules

can process them.

//instantiate and open Webcam

cv::Mat input_feed;

cv::Mat resized_input_feed;

cv::VideoCapture cap(0);

if (!cap.isOpened()) {

std::cout << "cannot open camera";

5https://github.com/JdeRobot/FPGA-robotics/tree/master/sim_fpga/examples/

poc/example4



58 CHAPTER 5. SIMULATED FPGA

Figure 5.4: Webcam block diagram

}

//Inside the main loop

//Feed and resize image data

cap >> input_feed;

cv::resize(input_feed,resized_input_feed,cv::Size(cols,rows),cv::INTER_LINEAR);

Figure 5.5 shows the demo application displaying the processed live webcam images. Fig-

ure 5.6 shows the output with a RED Filter mask is applied by the Verilated modules. Notice

that in Figure 5.6 pink and even gray pixels are passing the filter. The thresholds for the color

filters inside the Verilog Module are too low for accurately tracking an object like the red one

in my hand.

This is a prime example of the utility of this application; the inner system can be easily

debugged dynamically and the correct values for the filters can be found for different lighting

conditions. Finding out the correct values of these parameters with a real FPGA and would take

many tries, each one taking a very long time due to the slow synthesis and uploading processes.

Another alternative, creating a test bench capable of feeding the system with similar inputs

would take a tremendous amount of time.

A video demonstration of this example can be found here6.

6https://www.youtube.com/watch?v=Q-7BDBg4F00



5.2. SIMULATED BLOCKS 59

Figure 5.5: GUI Displaying Webcam feed and LED output
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Figure 5.6: Filtered Webcam Feed



5.2. SIMULATED BLOCKS 61

Figure 5.7: SimCamera block diagram

5.2.2 SimCamera Block

The SimCamera block, located in this github repository7, achieves a completely simulated input

for the Verilated model. This is accomplished with the help of ROS and Gazebo. Figure 5.7

represents a simplified diagram of the designed system.

Gazebo is a open source 3D robotics simulator described in section 3.2.3. For this Block it

was used to create a simulated world where a simulated camera records the footage to be used

by the Verilated Modules. This application is launched independently from the SimCamera but

it is needed to publish the information the block is expecting.

The SimCamera block uses ROS, a middleware for robotic applications described in sec-

tion 3.2.3, to handle all the communication between the C++ application that instantiates the

Verilated model and the simulated world where the image data comes from. This is done

through ”ROS Topics”, which are communication buses over which different nodes or appli-

cations can exchange messages.

Gazebo supports SDF files to describe the simulation to be loaded. An SDF file defines the

world, the robot’s characteristics and what plugins to load. A camera.world SDF file8 was

developed to simulate the robot (consisting of just a camera), the world and also load a camera

plugin that publishes the recorded images to the ROS Topic ”/image raw”.

7https://github.com/JdeRobot/FPGA-robotics/tree/master/sim_fpga/examples/

poc/example5
8https://github.com/JdeRobot/FPGA-robotics/tree/master/sim_fpga/examples/

poc/example5/worlds
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On the other side, the SimCamera block is subscribing to that same Topic and instantiating

a callback function to handle new image data received from the simulated world. This data is

then fed to the Verilated model for image processing. The following code snippets show part of

the code developed for this block, specifically how the subscription to the ROS topic is made

and the mentioned callback function.

//ROS Integration

ros::init(argc, argv, "image_listener");

ros::NodeHandle nh;

image_transport::ImageTransport it(nh);

image_transport::Subscriber sub = it.subscribe("image_raw", 1,

imageCallback);

void imageCallback(const sensor_msgs::ImageConstPtr& msg)

{

try

{

input_feed = cv_bridge::toCvCopy(msg, "bgr8")->image;

cv::waitKey(30);

}

catch (cv_bridge::Exception& e)

{

ROS_ERROR("Could not convert from ’%s’ to ’bgr8’.",

msg->encoding.c_str());

}

}

Figure 5.8 shows a screenshot from a video demonstration9. On the left side of the image, a

Gazebo simulation can be seen where several ”stop signs” are placed in front of the simulated

camera. On the right side, the GUI is displaying the output images processed by the Verilated

model.

9https://www.youtube.com/watch?v=m2YIrA4VZRk
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Figure 5.8: Simulation of Video Recording and FPGA image processing

5.2.3 SimMotors Block

Figure 5.9 shows a simplified block diagram of the developments achieved in this section. The

SimMotors Block completes the simulation by including a differential drive robot into the sim-

ulated world and implementing the logic needed to integrate the necessary inputs and outputs

between the Verilated Model, the main application and the simulated world.

Up until this point the RTL designs being used by the simulated FPGA only provided image

processing and color filtering. This new block10 integrates the updated processing modules used

for the physical GoPiGo POC described in section 4.3.2 11 from the Physical FPGA. These

Verilog modules include new functionality and modified inputs and outputs.

Simulated World developments A differential drive robot was designed in Gazebo to replace

the physical GoPiGo3 in the simulation. The SDF file found here12 includes the new robot

model pictured in Figure 5.10, an updated world and new plugins to communicate with the

10https://github.com/JdeRobot/FPGA-robotics/tree/master/sim_fpga/examples/

poc/example6
11FPGA-robotics/Projects/ComputerVision/ulx3s/apio/ov7670x3_vga160x120_

spipan/
12https://github.com/RoboticsLabURJC/2017-tfg-richard-nicklas/tree/main/

ROS/diffdrive_cam_bot
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Figure 5.9: SimMotor block diagram

ROS Topics that will be receiving commands for the robot’s locomotion.

Main Application Developments Developments in the Main application and GUI include

instantiating the updated interface from the Verilated model. Changes in the RTL design are

summarized below and can be seen in Figure 5.11

· Doubling the image size, from 80x60 pixels to 160x120.

· Capture newframe input: A 1-bit signal to be activated every complete new image frame

to notify the Verilated model.

· Proximity output: A new 3-bit output identifying the distance to the detected object

centroid is calculated by counting the pixels that have passed the selected filter. A value of

”0” means no object detected and values from ”1” to ”7” represent increasing proximity to the

object so ”1” means ”very far away” and ”7”, ”very close”.

With the new RTL design integrated into the system, linear and angular speeds (V and W

respectively) can be calculated to allow object tracking. In this case the V and W values are

estimated with the help of the new 3-bit Proximity signal and the already implemented 8-bit

Centroid signal that the Verilated Module is outputting from its image processing and object

detection mechanisms. If no object is detected the Robot will spin in search of new targets.
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Figure 5.10: Camera equipped Differential Drive Robot in Gazebo

Figure 5.11: Verilog Module Diagram
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New communication mechanisms were developed in the C++ SimMotor Block to transmit

movement commands to the simulated robot. This is achieved with the help of the ROS Topic

/cmd vel. This topic handles geometry msgs/twist13 messages consisting of two 3

dimensional vectors representing linear and angular velocities (V and W respectively).

The GUI was also updated to display the value of the new Proximity output. The final

version can be seen in Figure 5.12, which displays the robot’s camera view of the simulated

world. As no filter is selected every pixel is detected as a single object. The three ”[Dis]” LEDs

display the proximity signal, in this case the object is covering the whole frame so it has a value

of ”7” or ”very close”. The right ”POS” LEDs display the centroid signal with the position of

the detected object in the horizontal plane relative to the cameras frame, in this case the object

is considered centered.

13http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Twist.html
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Figure 5.12: Final GUI
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Figure 5.13: POC Block diagram

5.3 Application

A POC was developed to display a working integrated example of the different blocks presented

in this chapter. Code for this POC can be found here14.

5.3.1 Simulated Tracking Robot POC

Figure 5.13 shows a simplified diagram with the main blocks included in this robotics applica-

tion POC. The main application, written in C++, expands the discussed software that served as a

testing platform for the previous sections in this chapter. It includes an instance of the Verilated

Modules, a GUI to display the inputs and outputs, the SimCamera Block, the SimMotors Block,

and all the necessary logic to communicate with the Gazebo simulated world.

The simulated world has been expanded to include a moving human model, pictured in

Figure 5.14. This person is wearing a distinctive red shirt so that the image processing logic

running on the Verilated model inside the main application can easily detect the person from the

simulated camera. Thanks to the Proximity and Centroid output signals the SimMotor Block

can produce linear and angular velocity to direct the robot towards the detected object. The

values are selected to track the object and reach a proximity value of ”1”. This information is

then published via the /cmd vel ROS Topic back to the Gazebo simulated world where the

14https://github.com/RoboticsLabURJC/2017-tfg-richard-nicklas/tree/main/

verilator/poc_verilator_simulation/sim/example8
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Figure 5.14: Human model in the Gazebo simulation

robot begins to move.

Figure 5.15 and 5.16 are screenshots from an execution of this POC. In the images the two

discussed applications can be seen working. On the right side is the Gazebo world simulation

with the simulated robot and human. On the left side is the GUI for the Main app, notice that the

red filter is selected. In the processed output display the man’s red shirt can be seen as detected,

its position and distance are displayed with the GUI LEDs. Notice that in the second image the

robot moved towards the detected object.

A video example of this POC has been uploaded to YouTube15. In this video we can see the

robot successfully tracking and following the person that is moving in the simulated world.

This POC manages to reproduce the results of the physical FPGA POC detailed in section

4.3.2. It demonstrates how the complete development and execution environments needed by

FPGA based hardware applications can be simulated. It is not difficult to see the versatility and

benefits these kind of software developments can bring to this space; Easier debugging, less

resources needed, faster developing times and flexible testing environments.

15https://www.youtube.com/watch?v=VUQ8be0lpvI



70 CHAPTER 5. SIMULATED FPGA

Figure 5.15: Simulation of a Robot tracking a person

Figure 5.16: Simulation of a Robot tracking a person



Chapter 6

Conclusion

This chapter concludes the presented project. Throughout this paper the development of several

FPGA based modules and POCs for robots has been portrayed. These applications, tests and

documentation have contributed and will continue to help with the work that is being done in

the international open source Reconfigurable Computing community.

The main goal of producing a series of software blocks for physical and simulated FPGA

based development tool chains has been achieved. This has been done through extensive re-

search and by acquiring a deep understanding of the covered topics. The utility and correct

behaviour of these pieces of software has been proved though a series of POC applications

detailed in sections 4.3.1, 4.3.2 and 5.3.1 of this document.

The field of robotics is particularly concerned with the optimization of its hardware and

software since autonomy is one of the features that restrict functionality the most. Due to the

conclusions reached through the developments presented in this document, it can be said that

transitioning part of the development process from physical hardware to simulated environ-

ments can provide great advantages like reduced costs and, faster and more versatile designing,

prototyping and testing processes. These benefits are already evident from the POCs discussed.

Being able to debug FPGA applications that use live image data without having to create real-

istic test benches significantly accelerates development. Not needing to synthesize and upload

the modules to the actual board greatly helps with the application testing process, facilitating

the verification that everything works correctly.

Tackling the proposed objectives from two very different perspectives, one physical and

hardware-oriented and the other, simulated and software-oriented, has allowed me to expe-
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rience and learn from an incredibly diverse pool of knowledge. These developments cov-

ered very different topics and fields of research including but not limited to Computer Vi-

sion, Hardware Description Languages, Programmable logic devices like FPGAs, code repos-

itories, robotics, diverse simulation software, electronics and embedded-systems, signal sam-

pling, micro-controller communication protocols, middleware software and object detection

algorithms.

Besides all the acquired and applied technical skills I also improved many soft skills like

team-working, keeping a positive attitude and even improving my work ethic.

This project relied on the support of open source tools, projects and organizations but also

contributed to them in the same way. This was one of the objectives that motivated me the most

as I personally believe the free and open source movement is very important for the progress of

science and technology, and I’m satisfied to be a part of it.

6.1 Future Developments

The work presented in this document opens new research paths and establishes the founda-

tions for the development of more complex FPGA Modules for Robots. The different blocks

developed and POCs tested contribute to a living open source ecosystem where hardware and

software are being constantly improved. During the research of this project many areas for

improvement and research became evident, the most relevant are presented below.

Hardware-in-the-loop In this work two different approaches to FPGA based development

have been studied, one based on physical hardware and one completely based on simulated

systems. Hardware-in-the-loop (HIL) simulation proposes a technique that is halfway between

them. It is used in the development and testing of complex real-time embedded systems by

incorporating real controllers into the simulation development loop. In HIL simulation all the

inputs and outputs to the embedded-system need to be simulated but the actual processing is

done on real hardware.

HIL simulation has been recently applied to the automatic generation of complex controllers

for robots. Algorithms such as Back-to-Reality [12] (BTR) and Estimation Exploration [2] have
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been proposed in this context as ways for the robot to infer a self-model and feed sensor and

actuator data via simulation to embedded-systems.

The developments presented in Chapter 5 could be considered a form of HIL, but with

simulated Hardware (via Verilator). HIL simulation with real Hardware has its own benefits and

disadvantages compared to the ones presented in this project and I believe it is worth researching

how other aspects of HIL might be a more fitting for robotic applications.

Algorithm optimization for Simulated blocks The algorithms used in the Simulated FPGA

application POC to control the robot’s linear and angular momentum are enough to demon-

strate the functionalities involved in the POC but still very basic and rough. A PID ( propor-

tional–integral–derivative) control loop mechanism could be used to command more reactive

and smoother movements to the simulated robot.

The framework developed in this project could facilitate the adjustment of these PID param-

eters in the ROS-Gazebo simulation instead of having to do physical testing.

Statistical analysis Even though the benefits that FPGA solutions and simulated environ-

ments provide to Robotics applications are already evident from this work and many others, I

believe it would be very interesting to perform deep statistical performance comparisons be-

tween the same robotic applications deployed on FPGAs and on ordinary micro-processors.

Some research has already been done in this field for simulated software; the ”Proposal of

ROS-compliant FPGA Component for Low-Power Robotic Systems” study [10]. On that paper

ROS compliant FPGA component technology for an easy integration of FPGAs into robots is

proposed. Its research found that the developed ROS-Compliant FPGA component performs

1.7 times faster compared to the ordinary ROS software component.

Another interesting area of research that has arised as a result of this project’s developments

is related to the aforementioned benefits that FPGA simulation development brings over tra-

ditional hardware oriented development. Very interesting statistical analysis can emerge from

studying the improvements in development times and cost reduction that simulated FPGAs pro-

vide to the robotics and computer vision fields.
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