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SUMMARY

This project describes the development process of an embedded system capable of
performing a reactive following of a person. It makes use of convolutional neural
networks and probabilistic tracking for processing the perception acquired by a RGBD
camera. This input is processed in a NVIDIA Jetson TX2, an embedded SoM (System-on-
Module). This device is capable of performing computationally demanding tasks onboard,
coping with the complexity required to run a robust tracking and following algorithm. The
full design is implemented on a robotic mobile base, which receives velocity commands
from the board, intended to move towards the desired person.
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1. INTRODUCTION

This chapter presents the motivation that led to the development of the proposed work.
Later, the general objectives of the developed system are outlined, followed by a summary
of the structure of this document.

1.1. Motivation

Last decades, the production prices of digital cameras and high-resolution sensors
have been greatly reduced, bringing these devices into the consumer market segment:
nowadays, everybody carries at least 2 cameras in their mobile phone, aside of high-
quality web cameras, or even driving-assistance cameras in cars. This, beside an increase
in the hardware performance, has resulted in a strong drive for the computer vision
research (Figure 1.1): there are many possibilities out of industrial environments for
applications using cameras, such as fancy image modifications, or autonomous driving,
as it can be seen on Figure 1.2.

Fig. 1.1. Computer Vision revenues in the last years, and forecast for 2022 (source: [1]).

Specially, the latest times have been notoriously active in this field because of the
massive use of deep learning for addressing high complexity tasks, such as language
understanding [2], speech recognition [3] and computer vision problems, which are
linked to the growing interest shown in Figure 1.1. This massive use began in the
ImageNet classification contest, where a deep neural network system, AlexNet [4],
achieved an overwhelming victory over other approaches [5]. This discovery, along with
the significant advances in computing power and parallel computing, has stimulated the
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(a) Modifications of a subject on a portrait, such
as apparent gender, or age.

(b) Autonomous driving on a Tesla Model X.

Fig. 1.2. Examples of contemporary computer-vision applications.

usage of these technologies, which show an outstanding performance with the available
means nowadays [5].

Moreover, robotics applications can be really useful at daily tasks. These tasks are
of greater interest when the behavior of a robot tends to emulate the human one, or
even pets1, with the advantage of no people exposed to a significant risk, or, in a less
gloomy scenario, without human body physical limitations. This requires a polished (and
somehow complex) behavior, which is triggered by a certain input. At this point, two
main branches emerge in robotics:

Teleoperated robots: this kind of robots are capable of performing certain actions,
which are remotely controlled by a human operator. This type is the mostly used
one on hazardousness (Figure 1.3a) [6] or high-precision environments [7]. Some
advances are made nowadays improving the teleoperation function, implementing
feedback from the robot, such as haptic feedback [8], or VR (Virtual Reality)
sensation, to allow that person to sense the environment as if they were in the robot
position.

Autonomous robots: these robots are much more complex machines, as they are
distinguished for implementing a response by themselves, independently of any
kind of remote operator. This is seeked on certain scenarios, where there are some
factors (as the time elapsed performing an action, or the cost of a control link with
the robot) with a considerable weight in the design [9]. This is the kind of robots
that concern us on this work: the state-of-the-art techniques try to emulate human
behavior (Figure 1.3b), so some actions can begin to be performed autonomously
with a certain intelligence, as it will be described below.

The important advances on the last decades on the image processing and audio
recognition fields have fostered the development of personal assistants, apart from critical
machines as the previously described examples.

1https://www.engadget.com/2018/01/08/new-sony-aibo-first-impressions/
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(a) Pioneer robot, designed to
perform hazardous teleoperated explorations
in a deadly radioactive environment.

(b) Pepper, an autonomous humanoid
capable of performing
on-board processing and reacting to
external stimuli intelligently.

Fig. 1.3. Example of a teleoperated (a) and an autonomous (b) robot.

There are outstanding synergies between robotics and computer vision, as it is
explored on the system proposed in this work: these fields are combined for obtaining a
robust robot capable of following a certain person, navigating towards them on a reactive
behavior, and using deep-learning based visual perception. This behavior is composed of
two main components: the perception block, in charge of processing the images from
an embedded RGBD camera, and the actuation block, which moves the robotic base
accordingly to the relative position of the person to be followed.

This application can be specially interesting on social robots, which are designed to
follow a person at home or in a hospital. According to [10]: “robots that operate around
people in the real world need to move in coherent, easily-understood ways, so that they
will not startle or harm the people around them. In particular, for robots that operate in
hospitals or in nursing homes”.

The work proposed in this thesis improves the system developed on [11], where a
neural-network-based following system was run in a standard laptop, with a camera and
a robot plugged. In the following dissertation, this work will be revisited, and the points
of interest which have allowed to enhance the previous version will be described.

The main contributions of this dissertation may be summarized as follows:

Embedded solution: the final system is mounted on a battery-powered mobile base.
This robot features a high-performance GPU embedded on a SoM (System-on-
Module). In contrast to the previous work, this assembly can operate on its own,
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without requiring an external computer to perform the deep learning inferences or
running algorithms in parallel. A remote monitoring of the behavior is available as
well, but it is not required for the system to work. In addition, specific optimization
engines allow the system to run faster with 3 neural networks than previously with
only 2 networks, on a low-consumption hardware. This will be described in detail
in Chapter 4.

Person identification: the proposed system runs 3 neural networks. These networks
perform inferences over the images captured by the RGBD sensor, which is attached
to the system as the sensing source of the robot. The inferences are devoted to detect
the different persons in the scene, as well as to distinguish them by means of a
discriminant feature: their face. Unlike the previous development, all the detection
and identification tasks are based on neural networks, achieving greater robustness
and reliability as it will be discussed in Chapter 4.

Tracking: the full system includes also a person tracker based on optical flow. This
tracker aims to guess the trajectories followed by each person that the robot can see.
As opposed to the previous work, this tracker allows to roughly follow the persons
while the neural network yields a new update, as this tracker takes considerably
less time to predict the person displacement. As a result, the robustness of the
entire system is improved, compared to a version governed exclusively by the neural
inferences, which are sensitive to visual occlusions as well. Trusting just on these
inferences could easily result on an unsteady behavior. However, the introduction
of the tracker softens the robot movements ensuring a greater robustness in the
observable behavior, as it will be explained on Section 3.2.
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1.2. Objectives

The main objective of this work is to design and develop an embedded system which
allows a low-cost robot with a camera to follow a certain person on a robust way. The
result will be an autonomous robot which will follow a specific person, whose face has to
be known beforehand (using a reference face image). This objective, in turn, can be split
into specific subgoals:

1. Implement a real-time person following behavior using embedded low-power
hardware and a low-complexity educational robot.

2. Build the inference pipeline using exclusively CNNs (convolutional neural
networks), as they offer robustness on detection under harsh lighting conditions,
such as the ones observed in Figure 1.4.

Fig. 1.4. Poor lighting situations for a low-positioned camera.

3. Combine a neural visual perception with optical tracking to carry out a robust
following of the persons in front of the robot. This will provide the system with
extra reliability and robustness against detection losses/occlusions.

These subgoals allow to summarize the starting point for the development of this
project: the available materials are an educational robot equipped with a battery, an
embedded SoM and a RGBD sensor.
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1.3. Structure of the document

The structure of this work is organized as follows:

• Chapter 1 presents the motivation of this work, as well as summarizing the
objectives to be addressed.

• Chapter 2 discusses the state of the art techniques on person detection and robotic
following behaviors, placing the work of this document in a technological frame.

• Chapter 3 describes the hardware and software means for developing this work.
Later, a full functional description of the implemented system is given, describing
the Perception and Actuation modules that compose the system. Finally, a
description of the software architecture that implements the following behavior and
makes the robot to follow the person.

• Chapter 4 describes the experiments conducted on the subsystems and modules of
this work. The results of each test are shown as well in order to demonstrate the
convenience of the design decisions made over the project development. Finally, a
global system experiment is shown, where the following behavior of the robot has
been studied.

• Chapter 5 discusses the obtained results. Later, conclusions are drawn from the
developed work, revisiting the goals and subgoals presented above, and proposing
future lines of work that can improve the robot and address its main drawbacks.

The Annexes provide additional tables and results, as it will be mentioned later.
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2. STATE OF THE ART

This chapter delivers a review of the state of the art, to provide a general panorama of
the problems and methods that this work addresses.

As it was previously introduced, this work is performed to explore the synergies on
robotics and deep-learning-based visual perception. In this section, the current approaches
and tools will be described in order to outline a general panorama where this work may
be framed.

The problem to be addressed is to get a robot with a camera to follow a person. This
problem can be split into several steps, where different approaches have been previously
proposed. These steps will be covered in the following sections.

2.1. Visual person detection

One of the most common approaches is known as the Viola-Jones detector [12]. This
algorithm relies on a rigid body model, which fits a specific shape. On a grayscale
image, this shape can be typically distinguished by means of the pixel intensity levels.
Although this method was originally designed to detect faces, the rigid body model
allows to generalize its usage for detecting different objects, such as persons. With this
purpose, several spatial filters called Haar features (Figure 2.1) are introduced: these are
used across the image looking for the intensity pattern of each template, which should
resemble a part of the rigid body. Since this detector provides a weak decision by itself,
several filters (previously chosen in a training process) are combined on a boosted cascade
(Figure 2.2). A person is detected if the weighted combination of several filters are
triggered inside a certain area, which is decided to potentially contain a person [13].

Fig. 2.1. Haar features: some examples [13].

The open-source standard image processing library, OpenCV, includes pre-trained
models2, which can be directly used with their Viola-Jones implementation. Scale
invariance can be achieved evaluating the image at multiple scales on runtime.

2https://github.com/opencv/opencv/blob/master/data/haarcascades
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Fig. 2.2. Boosted weak classifiers [13].

Another common approach for person detection is based on HoG (Histograms of
Gradients) [14]. This method computes local features by means of the intensity gradients
across the image, and quantizes them according to their orientations (creating a histogram
of oriented gradients for an image block), as it can be seen on Figure 2.3.

These gradients are collected in 64 × 128 windows, and treated as features. These
features are evaluated by a linear SVM (Support Vector Machine), which is trained to
classify a window as person/non-person. Figure 2.3 shows the average gradient patch for
a person (the direction of each gradient is not shown). A visual inspection immediately
resembles the shape of a person standing up. Thus, this detector will yield the best
performance when the person to be detected stands in that specific pose. This template
allows as well to retain the gradients placed in the edges of the body (positive gradients),
and discard those inside the body (negative gradients), weighting them according to their
position inside the mentioned template.

Fig. 2.3. Example of the HoG computed for a person. From left to right: original image,
average magnitude of the gradients on a person, directions weighted positive and negative
gradients found in the input image. Image from [14].

These methods, among several more, have been the state-of-the-art techniques: the
cornerstone are the image gradients, which can be computed with a high efficiency,
represented in a compact way by means of a histogram and provide decent performance.
Their main drawback is the generalization capability, as a successful detection is highly
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dependent on the person pose. However, in the latest advances, the detection techniques
have moved towards the spreading paradigm: deep learning, especially the most salient
tools on image processing: CNNs (convolutional neural networks).

CNNs are based on standard neural networks, which combine lots of neurons or
perceptrons organizing them into layers. These perceptrons (Figure 2.4a) implement
simple non-linear operations, that allow to extract (after a proper training process) abstract
features, which gain in complexity when the number of internal layers increases. When a
neural network is composed by many hidden layers (in addition to the input/output ones),
it is placed into the deep learning paradigm (Figure 2.4b), as opposed to shallow learning.

(a) Basic unit of a neural network:
the perceptron (source: [11]).

(b) Standard neural network vs. deep neural network
(source: [11]).

Fig. 2.4. Basis of deep neural networks. (a), schematic of a perceptron. (b), increment on the
number of hidden layers on deep learning approaches.

Based on this approach, and taking advantage of the spatial correlation when the
signal to process is an image, a neural network can be modified to implement a different
operation on each perceptron: a convolution (Figure 2.5).

Fig. 2.5. Convolution applied to an image, applying the mask (red) on a region (purple) of the
input image, storing the result on the mapping of the central pixel of the region (green).
The computation is the sum weighted by the mask values (bottom) (source: [11]).

As it can be seen on Figure 2.6, convolutional units may be arranged conforming a
set of layers to build feature extraction stages (shown in red in the figure). Several layers
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can be concatenated, gaining in depth and obtaining more complex feature maps. These
layers are finally followed by a detection/classification ensemble of dense layers (shown
in blue in the figure): a set of layers with standard perceptrons fully-connected among
them, yielding a final output, dependent on the classification structure of the network.

Fig. 2.6. Schematic of a digit classification CNN (source: [11]).

In the case of object detection networks (the ones involved in this work), the output
varies depending on the implementation, but it is generally composed of a set of (location,
probability) tuples, one for each class the network is capable of detecting. Figure 2.7
shows the activation maps of an object detection network, where the map presents higher
values in the regions with high probability of containing the object of the class it is
designed for. On a convolutional layer, each neuron computes several activation maps
across the dimensions of the input data.

Fig. 2.7. Activation maps of a detection CNN searching for dogs on different images (source:
[11]).

One possible application of this concept is focused on what is called Region-based
Convolutional Neural Networks (R-CNNs) [16], which require a previous step on the
image called region proposal. This step is devoted to find potential regions on the image
to contain an object. This way, the challenge is to label these regions according to the
objects contained inside, reducing the problem to a classification task. However, the
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process to find these regions and iterate over them makes the process too slow for real-
time requirements, which are explicitly considered in our requirements. A notable effort
has been made in later works [17] [18] to reduce this computation time.

2.1.1. Single-Shot Multibox Detector (SSD)

Another outstanding object detection architecture is SSD (Single-Shot Multibox Detector)
[19]. The main benefit from this architecture is the fact that it embeds all the required
computations in a single neural network, reducing the complexity compared to other
approaches requiring external region proposals, as it was explained above. This greatly
reduces the computational time when the network has to process an image. The
architecture can be seen at Figure 2.13, and can be split into several stages [11], namely:

Reshape: the first task to be addressed by the network is to reshape the input image(s) to
a fixed size on which the rest of the layers work. In the case of an SSD detector, this
shape is n × 300 × 300 × 3 (being n the size of the input batch, as n images can be
evaluated simultaneously on the neural network). Other image sizes might be used,
however this one offers a good trade-off between performance and computational
load.

Base network: this first group of layers are reused from a typical image classification
model, such as VGG-16 [20]. The first layers of this architecture are utilized in
this design, truncated before the first classification layer. This way, the network can
leverage the feature maps from the classification network, in order to find objects
inside the input image. Following the first part of the network, several convolutional
layers are appended, decreasing in size. This has the objective of predict detections
at multiple scales. One thing to mention at this point is that the base network can
be a different one rather than VGG-16, such as a MobileNet [21], which is highly
optimized for running on low-end devices. This is interesting as our embedded
system will be limited in computing power. It will be revisited in future sections.

Box predictors: for each layer in the base network, an image convolution is performed,
generating a small set (typically 3 or 4) of fixed-size anchors, with varying aspect
ratios for each cell on a grid over the activation map (Figure 2.8). As these maps
have different sizes, the system is able to detect objects in different scales. The
anchors are then convolved with small filters (one per depth channel), which output
confidence scores for each known class, and offsets for the generated bounding
box. These scores are passed through a softmax operation, that compresses them
into a probability vector. Thus, for each detected object (on that scale), the network
computes the score on every class and its estimated position inside the feature map
(hence, in the image as well).
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Postprocessor: as several detections might be triggered in the same area for different
classes and scales, a Non-Maximum-Supression [22] operation is performed at the
output of the network to retain the best boxes, under a combined criteria of detection
score and IoU score (Intersection over Union), which measures the overlapping
quality between two bounding boxes, as it can be seen in Figure 2.9.

Fig. 2.8. A set of boxes are generated centered on each point of every feature map [19].

Fig. 2.9. Graphical representation of the IoU score between two bounding boxes.

2.1.2. YOLO (You Only Look Once)

Another interesting approach is the YOLO (You Only Look Once) system [23]. Its main
advantage is its inference speed, due to the fact that it performs a single analysis on the
entire image, dividing it into a grid of cells. Each cell predicts up to 5 boxes, containing an
objectness score (the predicted IoU of the proposal with an object, regardless its class), the
coordinates of the bounding box, and a probability for the object belonging to each class.
This design run faster than other methods [23], however it presents a poor performance
when detecting small objects.

This design was revisited in YOLO9000 [24], introducing several improvements such
as batch normalization at the input of the convolutional layers, or the concept of anchor
boxes: the box proposals follow a fixed set of aspect ratios, chosen previously using
clustering on a training set. As it can be seen on Figure 2.10, limiting the proposal shapes
to 5 fixed sizes improves the performance while maintaining a high IoU metric. A visual
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inspection shows that the selected anchors seem like a reasonable shape for the majority
of the objects the network aims to detect. Additionally, the number of deep layers was
increased from 26 layers to 30, and a semantic modeling is performed on the labels across
different datasets, allowing the network to be trained in different datasets under a common
semantic structure called WordTree (Figure 2.11).

Fig. 2.10. Result of the anchor k-means clustering on VOC and COCO for YOLO9000. Using k =
5 anchor sizes on the right yields a good tradeoff between simplicity and improvement
on the obtained IoU with respect to using k − 1 clusters (source: [24]).

The latest improvement of YOLO, YOLOv3 [25], relies on residual networks [26],
which tackle the problem of vanishing gradients when the networks become deeper.
The stacking of several layers results on gradients diminishing its value up to a point
the arithmetical precision of the machine is not able to handle. The gradients are
canceled, hindering the training process, as the first layers parameters take a substantially
higher time to converge. The residual networks added in this revision of the design add
shortcut connections across the layers, focusing the backpropagation gradients on the
differences between the input and the output of the layer. As this reference states [25], the
combination of these residual layers and convolutional ones allows to train much deeper
architectures (53 convolutional layers), capable of yielding a higher generalization. As
in the SSD detectors, the YOLO architecture performs multi-scale detections, using 3
scales for splitting the feature maps into cell grids. A similar k-means clustering than in
Figure 2.10 is performed on the COCO dataset, selecting 9 anchor sizes instead of 5, and
grouping them in 3 scales. Now, on each of the cells, 9 anchor bounding boxes are fit (3
anchor shapes × 3 scales). This aims to improve the poor performance of the previous
version when dealing with small objects, as well as to produce better generalization: in the
R-CNN [16] and the SSD [19] the anchor shapes are hand-picked. These changes, with
a tuning on the error function, conform the YOLOv3 improvements over the previous
versions.
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Fig. 2.11. Comparison between simple labeling structures (top) and a WordTree semantic
grouping under categories (bottom). This allows to follow a dataset-agnostic training
process as the labels can be combined using WordTree. Image from [24].

For each (anchor, cell, scale) combination, YOLOv3 predicts:

• The coordinates of the object within the anchor. Details can be visualized on
Figure 2.12.

• objectness score, which is computed by means of a logistic regression in order
to maximizing the probability of overlap with a ground truth bounding box with
respect to that of any other prior anchor.

• 80 scores, as the original implementation is trained in the COCO dataset, which
contains 80 classes. These classes might be overlapping (e.g. “woman” and
“person”). Thus, these scores are computed by independent logistic classifiers and
are not passed through a softmax operation.

The architecture of a YOLO-based detection network can be compared to that of a
SSD-based one in Figure 2.13. This allows to see the fundamental difference in the feature
extraction stage of each approach.
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Fig. 2.12. Output on YOLO for each anchor and cell. The dashed line represents the prior anchor,
while the blue line represents the detection which corrects that anchor.

Fig. 2.13. General architecture of a SSD network (top) and a YOLO one (bottom). Image from
[19].

2.2. Person identification

On a controlled environment, where the only present person is the one to be followed,
a person detection system could be enough for following purposes. However, in a real
scenario, there might be several people inside the field of vision of the robot. This problem
can be approached by means of a distinguishing feature of the person of interest, provided
beforehand. One example is [27], which computes the color distribution of the person
of interest, and later compares this distribution with the ones belonging to the different
persons using the Bhattacharyya coefficient [28] (a measurement of similarity between
two probability distributions). This metric can be applied for computing the similarity
between the color histograms of the reference person and the detected one. However, this
system can be deceived replicating the color distribution of the person of interest: wearing
similar clothes helps to reduce the distance between the histogram, leaving a chance to
confound another person with the one to follow.
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A more robust approach is to use the face of the person as the discriminant feature,
as its uniqueness makes it a good reference to identify the detected person. As it is
summarized in [29], several applications extract facial landmarks from the morphology
of a given face (Figure 2.14), and use them to recognize the face, comparing it with a
set of known faces and estimating the identity based on the distance to each known face.
Some open-source libraries such as dlib and OpenCV provide algorithms to perform these
processes.

Fig. 2.14. Facial landmarks are dependent of the face shape and morphology (image from [29]).

The intuition behind these methods are to project the image of the face into a
lower-dimensional space, which allows to extract significant features from each face.
These features have to be consistent for the same face across different pose and lighting
conditions (Figure 2.15). An useful transformation when a dimensionality reduction is
pursued is PCA (Principal Component Analysis), a linear transformation that can be
implemented to deal with the face recognition problem [30].
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Fig. 2.15. Examples of poses and light conditions across which the face projections are desired to
be consistent for the same person (image from [31]).

2.2.1. Deep learning face identification: FaceNet

However, once again neural networks can be leveraged in order to achieve better
performance: as the PCA is a linear operation, it could be learned by a single layer
neural network. Thus, the introduction of deep networks can yield interesting results.
The most relevant approach so far uses deep convolutional networks for performing this
process [31], implementing an architecture called FaceNet, which is partially based on
the Inception [32] module, designed by Google researchers in order to greatly reduce
the number of parameters in a neural network. What this network computes is called
an embedding, a projection of the input face image into a point in a 128-dimensional
hyper-sphere. This allows to translate the identification into linear algebra terms, such as
distance between two faces, as well as clustering and applying unsupervised algorithms.
The architecture can be visualized in Figure 2.16. These networks can be trained
using a loss function called triplet loss, inspired by the work in [33]. Given a training
sample (anchor), a positive example (same class than the anchor) and a negative example
(different class than the anchor) are chosen, and the network is tuned to maximize the
anchor-negative embeddings distance, and minimize at the same time the anchor-positive
one (Figure 2.17).

Fig. 2.16. Architecture of the FaceNet system (from [31]).

One thing to mention about the algorithms described above is that they perform the
operations on the face image. Thus, a face detection is required for previously cropping
the face of the person to be identified. One interesting approach using this technique is
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Fig. 2.17. Triplet loss training. It minimizes the distance between an anchor (current example) and
a positive, both of which have the same identity, and maximizes the distance between
the anchor and a negative of a different identity (from [31]).

faced [34]. This is a custom small ensemble of two neural networks, responsible to detect
faces and correct the bounding boxes found. The main objective of the system is speed,
so the main detector architecture is based in YOLO [23], and the second correction stage
raises the precision achieved by the detector, achieving better results than a classical Haar
approach, as illustrated on Figure 2.18. Further comparisons are performed on Chapter 4
between these two detection methods.

Fig. 2.18. Classical Haar based face detector [12] (left) vs. faced (right). Image from [34].

2.3. Embedded deployment

One of the requirements of this work is to be integrated in an autonomous robot.
This imposes a power limitation on the algorithms to be deployed. Generally, the
robotic systems are deployed using laptops connected to robots, as it was done in [11]
(Figure 2.19).

Nowadays, the mentioned increase in the interest into the real-time computer vision
applications has fostered the development of specific low-power embedded devices to
be integrated in mobile systems. The extending usage of devices such as Arduino or
Raspberry Pi has led to embedded robotics systems, such as PiBot [35] (Figure 2.20).
These robots are useful in the educational scope, as they are capable of running simple
vision and navigation algorithms at a low cost.

Unfortunately, the requirements for running more complex algorithms, such as neural
networks, require of the next tier in power terms, keeping the portability nevertheless. The
ideal device could be an ASIC (Application-Specific Integrated Circuit), as the custom
design would lead to a very tight optimization of the performance. However, the objective
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(a) Frontal view. (b) Side view.

Fig. 2.19. Laptop+robot deployment on [11].

Fig. 2.20. PiBot, an open low-cost robotic platform for education (image from [35]).

is to run the algorithms on existing software frameworks, requiring to use general purpose
computers instead. The most remarkable advance in this scope are the Jetson devices
manufactured by NVIDIA. These development boards are SoM computers running a
tailored version of Linux. The fundamental feature of these systems is that they include
a high-performance GPU featuring CUDA, a low-level parallel computation library, as
well as several toolkits (such as TensorRT3) designed to optimize as much as possible the
software implementations for the plethora of possibilities to be designed on this board.
As it can be seen in Figure 2.21, its size and power consumption make this system a good
choice to be included in an autonomous robot.

3https://developer.nvidia.com/tensorrt
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Fig. 2.21. NVIDIA Jetson TX2: an embedded high-performance device including a GPU.

2.4. Person following

Several approaches have been developed pursuing this challenge of following a person.
Once the visual perception algorithms are established, the final output of the pipeline
has to be a movement command for the robot to move towards the desired point. Mobile
robots can be classified according to their locomotion capabilities. A robot is holonomic if
the number of its controllable degrees of freedom is equal to its total degrees of freedom.
If the controllable degrees of freedom are lower than the total degrees of freedom, the
robot is non-holonomic. This difference can be observed on Figure 2.22. In the case of
a holonomic robot, the navigation process is simplified, as the robot can instantaneously
move to a desired target. However, a non-holonomic robot needs to perform maneuvers
in order to move towards a point.

(a) Holonomic robot. (b) Schematic of the degrees of freedom of a
non-holonomic vehicle (a standard car).

Fig. 2.22. Comparison of a holonomic system with a non-holonomic one.

The summary on [36] shows an interesting classification of some existing person
following algorithms and their applications (Figure 2.23).

Some approaches leverage the detected objects in order to estimate the relative
homography of the orthogonal planes, which allows to partially know the environment
of the robot and trace a safe path towards the person, as it can be seen on Figure 2.24a.
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Fig. 2.23. In-depth classification of the existing person following algorithms (image from [36]).

(a) Following with path computation using
homographies (image from [36]).

(b) Example of underwater reactive following
(image from [37]).

Fig. 2.24. Examples of robotic following behavior.

Other approaches act without a path planning component, implementing what is
called a reactive behavior [37], similar to the proposed solution on this work. On these
approaches, the vector between the center of the image and the center of the person is
used to command movements on the robot, as it can be seen on Figure 2.24b.
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3. MATERIALS AND METHODS

This chapter is devoted to describe the developed system. The development strategy
was based in splitting up the functionality into different modules, which have been tackled
sequentially. The next sections will cover each one of the modules, and will describe the
achieved solution. Finally, the full ensemble will be described and tested.

3.1. Available materials

3.1.1. Hardware

Base board

As it was described in Chapter 2, typical following behaviors work on a personal computer
attached to a robot. However, our solution is developed using a devoted SoM: the NVIDIA
Jetson TX2, similar to the one described in Figure 2.21. This system features a high-
performance GPU, and low-level optimization engines, which greatly reduce the time
required to perform the operations required for deep learning applications, such as tensor
convolutions. The low power consumption of this board (15W at full power) makes it
suitable to be embedded in a portable robot equipped with a battery. One drawback of
this system is the scarce storage space. However, this can be immediately solved by
installing an external storage device using its integrated SATA connector. In this project,
a 120 GB Kingston SSD (Solid State Drive) was used for this purpose, leveraging as well
on the high transference throughput this device can achieve. It features a 64-bit ARM
processor, and it mounts a fully functional Linux system. As it is equipped with two WiFi
antennas, a remote control interface can be easily set using SSH connections. Regarding
the available RAM in the board, it is limited to 8 GB, to be shared by the GPU and the
CPU. This jeopardizes the execution of the deployed software and the neural networks,
which have to be controlled in every moment in order to save the maximum amount of
RAM possible. The resulting board can be visualized on Figure 3.1.

Fig. 3.1. Resulting system: Jetson TX2 board and the installed SSD drive, plugged into the SATA
connector.
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RGBD sensor

The vision system used in this work, the ASUS Xtion Pro Live (Figure 3.2), is a USB
device composed by a RGB camera and an IR (Infra-Red) emitter + sensor system,
capable of retrieving depth data for each pixel on the image. This is achieved by emitting
a known light pattern (Figure 3.3), which reflects in the present surfaces on the scene.
These reflections are captured by the IR sensor, inferring the position of the surfaces from
the received distribution of the IR pattern.

Fig. 3.2. ASUS Xtion Pro Live

Fig. 3.3. Infrared pattern emitted by the Xtion (images from [38]).

The last problem to be tackled by this device is the discrepancy caused by the different
points of view of the RGB and depth sensor. However, as the distance between these two
sensors is fixed and known, a registration process can be carried on inside the device,
projecting the depth data into the RGB pixels [39].

The systems which implement the described design are called RGBD sensors. These
are suitable for robotics, as the yielded result is a point cloud, reflecting the distance from
the camera for each pixel in the image. Using this, the device is capable of projecting the
2-dimensional RGB image into the 3D space by means of the depth data (Figure 3.5).
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Fig. 3.4. Discrepancy between the RGB and depth images (image from [11]).

Fig. 3.5. Visualization of the RGB image (bottom left) and the resulting point cloud projected into
the 3D space (right).

Robotic platform

On the other hand, the robot used in this work is the Turtlebot2 educational set. It is based
on a Yujinn Robotics Kobuki mobile base (Figure 3.6), which is a non-holonomic robot
with 2 degrees of freedom: linear speed and angular speed.

In the Turtlebot2 set, the mobile base has an attached structure, carrying the RGBD
sensor and a platform where typically a computer can be placed. This platform is useful
to mount the NVIDIA Jetson device on. Additionally, as it can be seen in Figure 3.6b, the
Kobuki panel is equipped with a 12V output, yielding up to 1.5A, which in power terms
can be translated to a maximum power of 18W. Since the TX2 board peak consumption is
15W, this connector is suitable to power the system up, with an additional power margin of
3W. A lookup in the Kobuki user guide [40] allows to find the suitable Molex connector,
which can then be attached to two-wire cable and a rounded connector. This provides the
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(a) Appearance of the mobile base robot.

(b) Schematic of the connections panel of the Kobuki.

Fig. 3.6. Kobuki mobile base, which carries the rest of the structure.

NVIDIA Jetson of a 12V DC supply, similar to what it would obtain from a power outlet
with a transformer. As the power input is equipped with a DC voltage regulator, it accepts
voltages from 5.5V to 19V (table 59 in [41]).

Hence, this is a successful approach to build an autonomous system: powering the
computing board from the batteries of the robot, with enough autonomy to be powered on
for several hours. The amount of time strongly depends on the usage of the motors of the
mobile base, which are the most consuming component of the ensemble.

The final hardware setup is displayed on Figure 3.7, where the described components
are combined to build the autonomous setup capable of running high-complexity person
following algorithms.

(a) Front view. (b) Rear view.

Fig. 3.7. Autonomous setup: Turtlebot2 + Jetson TX2 + ASUS Xtion Pro Live.
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3.1.2. Software

NVIDIA JetPack

The development of our person following behavior has been tackled using exclusively
open-source software. The Jetson computing board follows a tightly optimized embedded
design guidelines. A tailored version of Ubuntu Linux, named NVIDIA JetPack, is
developed and maintained by NVIDIA, and it is available for download and install as the
board firmware. For the developed system, the version used is JetPack 4.2.2 (R32.2)4.
This custom implementation includes low-level interfaces for implementing parallel
computing operations (CUDA), and several optimizations SDKs (Software Development
Kits), such as TensorRT. This engine is of special interest for us, as it allows to optimize
the low-level implementation of a neural network, swapping certain modules (such as a
convolution operation, a ReLU, or an Inception block), for a low-level optimized version
of that module, allowing to greatly increase the inference speed without losing precision.
More details about these optimizations will be explained later.

Python

This work has been developed using the Python programming language. In the previous
work [11], the used version of the language was Python 2.7. However, as of today, that
version has reached its EOL (End of Life) date, remaining unsupported. For avoiding the
obsolescence, all the code base was migrated to Python 3.6, a currently supported release,
before making any change or improvement in the functionality.

NumPy

NumPy5 (Numeric Python) is a library for Python (written in C++), born to extend the
numerical capabilities of this language. It provides a powerful ndarray class, which
allows to keep an N-dimensional collection of values/objects in a really handy way (in
comparison with Python’s standard lists). It also provides a rich set of methods to manage
arrays (such as advanced indexing, shaping, data formatting, etc.).

These capabilities immediately turn this library into an excellent framework for data
processing in a lower level. It allows to store and handle images and tensors on an
intuitive way, providing methods to perform typical tasks such as row-wise/column-
wise averaging, transposing, type conversion, or matrix slicing. The majority of these

4Details available on: https://docs.nvidia.com/jetson/archives/jetpack-archived/

jetpack-422/release-notes/index.html
5http://www.numpy.org/
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structures and methods are implemented using the C++ language, which provides a higher
speed than a Python implementation.

ROS

This project requires hardware-software interaction, as the development board needs to
read the images captured by the Xtion sensor, as well as sending the final velocity
commands to the robot. For this purpose, the ROS middleware is used. ROS
(Robot Operating System) is “an open-source, meta-operating system for your robot”,
maintained by the OSRF (Open Source Robotics Foundation) [42]. It is a framework
that provides a distributed, easily-scalable environment of nodes. These nodes are
programs which run independently on the computer (or distributed over a network), so
they can perform individual tasks. However, they can communicate between themselves
on a synchronous way (over services, implementing a client-server role system between
nodes), or on an asynchronous way, via topics. These topics, which rely on a standard
TCP/UDP communication between sockets, are intended for an unidirectional, streaming
communication, where a node can take roles: publisher (if it is writing data inside the
topic), or subscriber (if it is reading the data that publishers are broadcasting into the
topic). The data stream through the topic is not unrestricted, it must follow a ROS
specific syntax, a Message type, which is strictly defined for the communication purpose
(geometry, sensoring, etc.).

For this project, the packages cv_bridge and openni2_camera have been used for
handling the RGBD data. The robot can be controlled with the package kobuki_node.
All the software architecture is controlled by rospy, the interface for Python to
communicate with the described ROS infrastructure.

Another useful feature of ROS middleware is the ROSBag storage system. Recording
a ROSBag allows to save in a single file the messages read from several topics for the
time it is recorded. Later, the ROSBag can be played again to recover the messages
from the topics, in the same order they were recorded. This is useful for recording
video sequences from the RGBD camera, saving simultaneously the image and depth
information, allowing the user to perform testing of different parameters using the exact
same image source.

As well as in the Python case, the version of ROS used on [11] reached its EOL
date. Thus, the ROS version has been migrated as well to the currently supported release:
Melodic Morenia, which firstly provided the compatibility with Python 3. As the Jetson
TX2 board is based on an ARM architecture, this upgrade has required several tweaks
on the software compiling and implementation processes, which have been properly
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documented in the project repository6 for the sake of repeatability.

OpenCV

For general image processing, OpenCV (Open Source Computer Vision) is a
C++/Python/Java open-source library (natively written in C++) for Computer Vision
purposes. Among the classic/state-of-the-art methods it bundles, several functions
can be found suitable for face recognition, image stitching, eye tracking, computing
homographies, establishing markers for augmented reality, etc.

OpenCV focuses on efficiency and real-time functionality, due to the low-level
optimizations at hardware level (i.e., integration with NVIDIA CUDA and OpenCL GPU
processing libraries). Thus, the excellent performance achieved by this open source
library has turned it into the de facto standard for every kind of users (from researchers to
big companies or even governmental bodies, as their website stands7).

This library has been used across the entire project, on its version number 4.2. It
has been useful for diverse tasks, such as image normalization, drawing, computing local
features or optical flow approximations.

TensorFlow

The deep learning framework used is TensorFlow. This is a high-performance numerical
computation library, strongly focused on parallel computing, typically carried on by
GPUs or processing clusters. This library is a state-of-the-art tool to deploy deep neural
networks because of its efficiency. Besides of training/running a neural model, this library
allows to load a pretrained model from a storage device, by means of a frozen graph file.
This file contains both the network definition and the weights of its nodes.

Additionally, a binding component called TensorFlowRT/TRT have been used to
implement the low-level optimizations on the TensorFlow neural engines, as it will be
described later.

6https://github.com/RoboticsLabURJC/2017-tfg-nacho_condes
7https://opencv.org/
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3.2. Design

The software implemented in this work has been divided into two main components or
modules, namely the Perception module and the Actuation module, which can be observed
in Figure 3.8.

Fig. 3.8. Functional architecture of the developed work, showing the two main blocks.

These two modules cope with specific tasks on an independent manner, as it will be
described in the following subsections.

3.2.1. Perception Module

This module encompasses what the robot perceives from its sensors (the camera, in this
case), and the subsequent processing of the images in order to determine the location of
the person to be followed.

Camera

As it was described before, the Xtion device yields two simultaneous images: an RGB
image and a depth image. The ROS controller for the camera, OpenNI28, fetches the
image and registered depth map from the camera, making this information available
through several ROS topics. As ROS follows a publisher-subscriber semantics, once the
driver is up and running, any application may subscribe to the topics in order to receive
all the published messages. In our Camera module, two subscribers are deployed to
retrieve the latest (RGB, depth) pair on an asynchronous way. These images are then
converted into the standard image format in the OpenCV library, and they are ready to
be used by other components. Additionally, in order to be able to perform objective
testing and benchmarks, the Camera module is able to retrieve the images from a recorded
ROSBag instead of the online camera. This is useful to obtain objective metrics of another
components of the software on unit tests, as the ROSBag ensures that exactly the same
images are used regardless the tested system.

8https://structure.io/openni
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The implemented Camera module abstracts this condition, allowing to apply the
system to an online source (camera) or an offline source (recorded ROSBag), with a
transparent adaptation to the rest of the system. Whenever a new (RGB, depth) pair
is required, the Camera module will serve the latest available image from the specified
source.

Neural pipeline

The captured images are passed through an ensemble of neural networks, which provide
the capability of detecting the persons in the scene, as well as identifying which one is
the one to be followed. As it was studied in Chapter 2, the most powerful and robust
approaches are achieved nowadays using deep learning. Thus, the complex problem of
determining the identity and location of the person of interest has been decomposed into
three tasks, which are all addressed using the corresponding deep learning techniques:

1. Person detection: the object detection task (Figure 3.9) is a common one in
computer vision. The existing solutions use object detectors similar to those
explained in Chapter 2, which are typically trained with large image datasets.
The classes these models are capable to detect contain the person class. Thus,
as it was demonstrated in [11], a deep object detector can be readily used for
detecting persons. In this work, several models have been tested, varying the
base network architecture and its depth. Since one of the objectives of the system
is to work on a portable (low-power) system, only the architectures which yield
a good performance with a sufficiently low inference time are considered. The
two most suitable models for this purpose are SSD [19] using a MobileNet [21]
for feature extraction, and the tiny version9 of YOLOv3 [25]. These models are
already trained and publicly available on the TensorFlow Model Zoo [43] and on
repositories hosted on GitHub10. In-depth tests have been conducted to compare the
performance of these two models, which can be found in Chapter 4. The previously
developed work [11] only supported SSD-based detectors, however, the object
detection component of the program has been upgraded and it features YOLOv3
support as well, making it available through the configuration file specified on
launch.

2. Face detection: as the previous task, this problem can be addressed using an
object detection neural network. However, the previously described models are
not suitable for detecting faces, as that object class was not included among the
labels on the datasets used for training the networks. In this case, the adopted

9The usage of the tiny version of YOLOv3 is due to issues with the limited memory on the Jetson TX2
board. The full model was tried unsuccessfully, as it requires more memory than the available one on a
typical execution.

10https://github.com/mystic123/tensorflow-yolo-v3
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Fig. 3.9. Example of a person detection task.

solution is a single-class detection system. The network trained in [34] implements
a two-stage neural network capable of detecting faces. As it was explained in
Chapter 2, this detector is based on YOLO, which ensures a high-speed and efficient
detection based on a class-specific neural network, which is lighter than a multi-
class detection system. The repository where the project is hosted11 contains a video
sequence comparison comparing the accuracy of this system against a classical Haar
cascade approach [12]. Chapter 4 contains data and captions of this sequence to
show the superior performance for the face detection issue.

3. Face identification: Once the face of a person has been detected, it can be used
as a discriminant feature for determining their identity. As the basis of this work
is to take advantage of deep learning power, a neural system has been selected
to perform this task too. For this purpose, FaceNet (described on Section 2.2.1)
has been used to perform identification, using a publicly available implementation
in TensorFlow12. As a result, the image of a face is transformed into a 128-
dimensional vector, known as projection or embedding. This transformation is
learned after a triplet-loss training process, which separates different faces as much
as possible, while projecting similar faces as close as possible. As it can be seen
on Figure 2.15, it produces similar projections when two images of the same face
are evaluated, despite different lighting conditions (as a channel-wise normalization
step is performed before passing the image through the network).

To sum up, this ensemble of 3 neural networks provides a sequential pipeline to
obtain person locations, face detections and face projections from a single image, taking
advantage of the flexibility and robustness that deep learning methods offer, in order to
address three different problems ion an efficient way. Its functionality has been depicted
in Figure 3.10.

11https://github.com/iitzco/faced
12https://github.com/davidsandberg/facenet
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Fig. 3.10. Neural pipeline, showing the cascade of the three neural networks used to output
persons, faces and similarities with the reference face.

Once the inference pipeline has been designed and implemented, it can take advantage
of the optimization libraries of the Jetson TX2 board, using TensorRT for this purpose.
Using this library, several segments from the architecture of a given network can be
modified according to certain parameters, as explained next.

MSS (Minimum Segment Size): the threshold above which a segment is selected to be
replaced by the TensorRT optimization. Increasing this value makes the optimizer
more selective, in order to optimize only the heaviest segments of the network.
A low value aims to optimize smaller segments, although this may cause an
excessively high overhead, causing the resulting graph to run slower than the
original one.

MCE (Maximum Cached Engines): TensorRT keeps a cache of engines on runtime,
with the purpose of reducing the time spent for loading them into the GPU. This
parameter modulates the amount of engines kept in that cache, as the available
memory to establish the cache is limited.

Precision mode: typically, the weights and parameters of the trained neural networks are
handled as 64-bit floating point numbers. A reduction in the precision to 32-bit or
16-bit achieves very similar results (as it will be demonstrated later on Subsection
4.4.2), making the operations much lighter as the precision mode is reduced to
the half or the quarter. A more daring approach reduces the precision up to 8-bit
integers, performing an additional quantization step since the range will be limited
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to 256 values. The quantization step analyzes the segment, computing the numeric
range of its weights. This range is typically narrow enough to perform a 8-bit
quantization, mapping the high-precision weights into a range composed of 256
steps between the minimum and maximum values of the weights.

An experimental tuning of these parameters has been performed in Chapter 4, looking
for an optimization of the inference time and taking into account that the enhanced
models of the three neural networks have to share the limited available memory on board.
Thus, special attention has been payed to the memory footprint that an excessive runtime
optimization might cause, as it would lead to a strong penalization if the system cache is
utilized to store the models.

The Camera and Neural components form the Perception module, responsible of
capturing the external image and extracting pertinent information from the image:
position and identity of the person to be followed. This information serves as input to
the Actuation module, explained below.

3.2.2. Actuation Module

The second module of the system addresses the actuation task: once the external stimuli
have been acquired and processed, an action has to be performed in order to move the
robot towards its goal. As the final objective of the system is to follow a person, these
movements have to be reactive, happening as soon as possible whenever the person
changes their position.

Motion Tracker

The previously depicted Neural component outputs reliable inferences with a certain
refresh rate, namely k frames, which can reach a relatively high value depending on the
current load and power profile in the development board. If k is too high, the system
may be affected by an important delay when the movement is performed. This may lead
to unsteady movements, increasing the probability of losing the reference person. To
avoid this, a Tracker component is added to the system. Its functionality is to be able to
estimate the person movement along k frames, while the neural pipeline is performing the
next detection. This way, currently detected persons can be tracked along the image while
they wander, until the neural ensemble outputs the latest predictions, which determine
the true new position of the persons. To fulfill this requirement, the tracking method has
to be able to run at a higher rate than k, preferably with a considerably lower inference
time. This way, the system counts on a slow, reliable detection system backed-up by a
fast tracking system, devoted to guess the movements between detections. This tracker
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has been situated in the Actuation module. This is because it is focused on keeping the
position of the person updated, in order to move towards them as fast as possible. This
task is performed without a detection algorithm behind, just moving the box using the
estimated optical flow, which is a completely different task than that of the Perception
module one. For this reason, it has been separated from the neural pipeline and placed in
the Actuation module.

The method chosen for this purpose is a Lucas-Kanade visual tracker [44]. This
technique estimates the motion field between the images taken in two time instants,
addressing the problem using a differential approach [45].

This algorithm relies on the fact that in a video sequence, for small changes in space
and time, the intensity remains almost constant within a certain pixel neighborhood:

I(x, t) ≈ I(x + ∆x, t + ∆t)

Using a 1st order Taylor series approximation and algebra, the optical flow equation
can be found[46]:

fxu + fyv + ft = 0

where
fx =
∂ f
∂x

; fy =
∂ f
∂y

u =
dx
dt

; v =
dy
dt

i.e., fx and fy represent the image gradients with respect to the space, ft with respect
to time, and (u, v) represents the movement vector over the scene.

Fig. 3.11. Optical flow for different time instants. Image from [46].

At this point, the resulting system is under-determined as the problem presents 1
equation with 2 unknown variables. Lucas-Kanade algorithm addresses this problem
taking advantage of the previously mentioned assumption: in a pixel neighborhood,
one can expect the same movement. All the contained pixels will share a common
(u, v) movement vector (typically, a small square or circular neighborhood is assumed).
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Assembling together those equations results in an over-determined system, where a
Least-Squares solution yields the best-fitting motion vector (u, v) for that neighborhood,
allowing to have a local estimation for the movement in that area:

⎡⎢⎢⎢⎢⎣uv
⎤⎥⎥⎥⎥⎦ = ⎡⎢⎢⎢⎢⎣ ∑︁i fxi

2 ∑︁
i fxi fyi∑︁

i fxi fyi

∑︁
i fyi

2

⎤⎥⎥⎥⎥⎦−1 ⎡⎢⎢⎢⎢⎣−∑︁i fxi fti

−
∑︁

i fyi fti

⎤⎥⎥⎥⎥⎦ (3.1)

The solution of Equation 3.1 can be efficiently obtained with high-performance
libraries, such as NumPy or TBB, which ensure a fast execution. This makes Lucas-
Kanade estimation an efficient approach to compute the optical flow in tasks such as
image registration, video stabilization or depth computation in stereo vision systems. This
technique is implemented in the OpenCV library through the method
cv2.calcOpticalFlowPyrLK, which iteratively evaluates regions of the image on a
pyramid of scales to improve the robustness. This method offers a set of tunable
parameters to detect the new position of the corners:

winSize size of the window to solve the LS problem.

maxLevel number of additional scales to evaluate the image on a scale pyramid.

criteria flags to determine the stop condition on the iterations of the algorithm.

However, in the case of study of this work, the objective is not to compute the entire
optical flow (it would be an unnecessary consume of computational resources, which are
scarce). The estimation can be limited to the pixels inside and surrounding the persons in
the scene. Furthermore, one can notice the existence of more informative regions inside
the person than others, given its texture: typically object corners will be the best choice
to be tracked [15], given their easiness to be identified and the fact that they provide
more motion information than another areas (aperture problem) [44]. In order to detect
these corners, a Harris corner detector can be used. A corner response can be computed,
yielding a score depending on the eigenvalues and their ratio:

R = det M − c(trace(M))2

with c being an empirical constant c = 0.04 − 0.06, and M being the diagonal matrix
resulting of the singular value decomposition of the current window.

The value of R determines the decision taken in the window containing a corner.

A modification of this algorithm, known as the Shi-Tomasi corner detector, was
published on [47], improving the performance of the corner detector by changing the
corner response computation to:

R = min(λ1, λ2)
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taking the window as a corner if R is greater than a given threshold. The scoring
diagrams for determining the corner response on the described methods can be observed
in Figure 3.12. One advantage of this methodology is its invariance to rotation, as it
works using the eigenvalues, that automatically align to the highest variation directions.
However, one important thing to mention as a flaw is the variance to scale: the relative
size of the corner with respect to the window size has influence on the eigenvalues, as
illustrated on Figure 3.13.

Other methods for corner detection are widely used in state-of-the-art developments,
such as SIFT [48] or FAST [49]. However, according to the evaluation among several
corner detectors in [50], the Harris/Shi-Tomasi approach yields a more reliable result for
this purpose, while taking a low time to execute: it takes around 25 ms to evaluate the
640 × 480 image from the Asus Xtion, which makes the tracking module to run 5× faster
than the neural pipeline.

Fig. 3.12. Corner response R scoring functions on λ1 − λ2 on the Harris (left) and Shi-Tomasi
(right) detectors (source:[51]).

Fig. 3.13. Scale variance of the Harris/Shi-Tomasi methods. It can be seen that the size of the
corner with respect to the winSize jeopardizes the eigenvalues. Image from [15].

Using this method returns what the authors call the good features to track, namely, the
best N corners of the image or region provided.

This method is implemented in the OpenCV library through the method
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cv2.goodFeaturesToTrack, which offers a set of tunable parameters to extract corners
from a given image:

maxCorners maximum number of corners to be found.

qualityLevel multiplicative factor for the R of the best corner. A corner response
below qualityLevel · Rmax will be discarded.

minDistance minimum euclidean distance between the selected corners.

blockSize size of the pixel block to compute the eigenvalues.

The combination of these two methods provides a fast methodology to estimate the
movement of a region using exclusively algebraic calculations on the pixel intensities.
As these computations are bounded in complexity, the iteration time is around 5x faster
than the neural pipeline. Thus, the simultaneous combination of both algorithms allows to
track the movements of the persons during k frames, until the next neural update arrives.
This is shown in Figure 3.14.

Fig. 3.14. Operation of the tracking module: the last detection (green) determines the person
position. The keypoints (red) are tracked during k frames until the next neural update.

As the OpenCV implementation of Lucas-Kanade identifies the points that have been
found in both frames, the average displacement of all the points can be computed. This
allows to shift the bounding box of that person using the computed displacement vector.
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This is required, as the bounding box changes its position and size when the person
moves, as Figure 3.14 shows. Additionally, it can be rescaled in case the person moves
closer or further from the camera, using the distribution of the points in the previous and
current frame. As it can be seen on Figure 3.15, the Shi-Tomasi corner detector finds
a set of corners (keypoints) in the frame t. These points are distributed with a given
mean: the centroid of the cloud, represented with an “x”, besides of a standard deviation
pair (σt

x, σ
t
y). On the next frame, some new keypoints are found (yellow), whereas other

keypoints from the previous frame are successfully identified (green). These points are
useful for computing the new centroid (µt+1

x , µ
t+1
y ) and deviations pair (σt+1

x , σ
t+1
y ). The

remaining points from t (red) are not used since they could not be located on t + 1. With
this information, the person box can be updated accordingly:

person_coordinates(t) =
[︂
µt

x, µ
t
y,w, h

]︂
person_coordinates(t + 1) =

⎡⎢⎢⎢⎢⎣µt+1
x , µ

t+1
y ,w ·

σt+1
x

σt
x
, h ·
σt+1

y

σt
y

⎤⎥⎥⎥⎥⎦

Fig. 3.15. Update of the Lucas-Kanade tracker from frame t to frame t + 1. The green points are
the correctly detected in both frames, while red and yellow points are only detected
in t and t + 1, respectively. The green points determine the new centroid and the size
deformation of the box.

This way, the update is sensitive to displacements and scale changes in both directions,
in case the person changes their linear distance to the camera.
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The incorporation of this Motion Tracker enhances the robustness since the output of
the system will not depend only on the neural detections. This improves the performance
as partial occlusions might cause some detections to be discarded momentarily. The
introduction of the tracker can alleviate this effect, as the person will be kept as detected
for a number of frames even if it is not detected by the neural pipeline, and its position
will be tracked using Lucas-Kanade. This number of frames is called patience, P, and
introduces a hysteresis in the tracker, as a person has to be lost for P frames in a row to
be discarded.

On the same way, a detection has to be maintained during P frames to be joined
to the tracked persons. The patience component is introduced in pursuit of stability in
complicated scenarios. In such cases a detection flickering is observable, and this could
lead to an erratic movement on the robot. The introduction of the patience solves this
problem successfully.

PID Controllers

The combination of the described systems results in a efficient way to detect and identify
the person to be followed, and additionally, track their movements on a fast way between
slower neural detections.

The last block of the system is responsible of translating this location information of
the reference person into velocity commands that move the robot towards an acceptable
position with respect to the person, where certain conditions are fulfilled.

As it was described on Section 3.1, the robot offers 2 degrees of freedom: rotation
speed and linear speed. Thus, this acceptable position can be described in those 2
dimensions:

Angular position: the reference person has to be placed at a side angle of 0º with respect
to the robot front.

Linear position: the reference person has to be placed at a distance of 1 m with respect
to the robot front.

Due to the sensors uncertainty, the prediction and tracking estimation, and the
movements of the person, these positions have to be extended to safe areas, inside of
which the robot will not trigger a velocity command for that dimension. This is achieved
introducing a margin/tolerance on each dimension. Additionally, these geometric criteria
have to be translated to measurable discrepancies. This way, the safe zones can be defined
as:
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Angular zone: the reference person has to be placed at the horizontal center of the image,
with a margin of ±50 pixels on the sides.

Linear zone: the reference person has to be placed at a distance of 1 m with respect to
the robot front, with a distance margin of ±30 cm13.

These regions, which are completely tunable using the configuration file, can be
visualized on Figure 3.16.

Fig. 3.16. Safe zones for each controller. Image from [11].

To place the person inside these safe zones, the robot has to move on certain directions.
For determining a movement, an error vector (ex, ew) is computed, using the tracked
person coordinates:

ex: the linear error or range is computed using the depth image, estimating the distance
from the robot to the person. As the Xtion sensor registers the depth image into
the RGB one, the person coordinates can be used in the depth image in order to
find the distance of each pixel inside the bounding box of the reference person: the
person depth map. As it is feasible that the box contains an important region of
the background (specially if the person opens their arms, as the neural detection
will encompass the entire body), the edges of the depth map are trimmed. Later,
a 10x10 grid is computed to have 100 uniformly distributed samples of the depth
of the person. In order to ensure that the background does not affect the range
measurement, the median value is computed, as even if some outlier points belong

13This criterion can be maintained in metric distance, as the depth sensor specifically yields that
information. In the angular case, the image is a 2D projection on the camera plane, which does not allow to
infer the relative angle with the person without extra computations using the relative distance.
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to the background, they would have to make up the 50% of the sampled set to
deviate the measurement from the true range.

ew: the angular error can be computed taking into account that if the robot and the person
are aligned, its bounding box will be horizontally placed near the center of the
image. Therefore, an error metric can be extracted computing the difference on the
horizontal coordinate between the image center and the center of the bounding box
of the reference person.

These computations can be visualized on Figure 3.17.

Fig. 3.17. Error computation on each controller.

The last step of the controller takes care of computing two proper responses (linear
and angular) for the robot. If these responses depended only on the error readouts, the
robot might receive unsteady commands, that might cause a total loss of the person from
the field of view. This can be solved introducing a slightly more complex system: a PID
controller [52], which is a closed-loop control system that outputs a response taking into
account the previously sent responses.

The PID acronym stands for Proportional, Integral and Derivative, as that is the
methodology followed to output a response. The output in the time instant t, u[t] depends
on the currently measured error, e[n], and it is computed as it can be seen on Figure 3.18:

This can be expressed by means of the following equation:

u[n] = kpe[n] + ki

n∑︂
i=0

e[i] + kd(e[n] − e[n − 1]) (3.2)

This equation can be split into the three components:

Proportional: kpe[n]. This is the basic component, that computes a response directly
proportional to the measured error.
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Fig. 3.18. Schematic of a generic PID controller.

Integral: ki
∑︁n

i=0 e[i]. An additional response, equivalent to the sum of the total error until
the current instant. This way, although a proportional response is not enough and
the error gets stabilized in a non-zero value, the system will accumulate that error,
increasing the response magnitude in order to close the existing gap between the
error and the desired readout14.

Derivative: kd(e[n] − e[n − 1]). This part stands for the difference between the last
measured error and the current one, and it quantifies how well is the system
responding15. If the difference is positive, that means that the system is on a further
state/position with respect to the last iteration. So, in order to eliminate the inertia
the system could have acquired (which might bring oscillations and overshooting),
the derivative part acts, braking or accelerating the robot depending on the value of
the derivative.

Figure 3.19 shows that the combination of the three sub-responses can achieve a fast
and steady response (Figure 3.19), bringing back the system under control on an efficient
way.

Each contribution is parameterized by its corresponding constant (kp, ki, kd), so a task
to perform is to find the optimum value for each one of them. Visual assessments of the
robot stability under different combinations lead to the values present in Table 3.1, which
yielded a steady behavior of the robot when it is subject to typical indoor conditions
of following a wandering person. As for previous parameters, all these values can be

14When the monitored variable goes into the tolerated zone again, the total error has to be reset, as it is
not required from now on.

15On systems without inertia, this contribution is generally ignored, having a simple PI control loop
instead.
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(a) Proportional. (b) PI. (c) Full PID.

Fig. 3.19. Different controllers response along time.

changed using the configuration file.

Linear Angular
kp 0.4 0.005
kd 0.04 0.0003
ki 0.05 0.006

Table 3.1. Optimal found values for the parameters in each PID
controller.

Finally, when the speed is computed, it is adapted to a ROS Twist message, and it
is published to the topic devoted to velocity commands to the robot. On the other side
of the topic, the driver reads these messages and moves the robot accordingly with the
commands received.

This last block completes the design of the full proposed person following behavior.

3.3. Software architecture

The developed software puts all the previous components together, offering two
application modes:

followperson mode: this is the default mode of the system. When running on this
mode, the program feeds the tracker and the neural pipeline with images from the
ASUS Xtion, and sends the velocity commands to the robot, writing them into the
specified ROS topic.

benchmark mode: this mode is designed to test the entire infrastructure, with the
purpose of tuning parameters or extracting objective metrics for comparisons,
such as precision, or inference time. The images are read from a previously
recorded ROSBag, emulating the Xtion sensor and providing always the same
RGBD sequence to be fed in different implementations, allowing to compare the
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performance of different configurations under identical conditions. On this mode,
the velocity commands are not sent to the robot, just drawn in the output image
(Figure 3.21), which is also saved into an output video for later visualization. Aside
of the video, execution graphs and YAML16 files are stored containing information
about the tracked persons and times for each frame processed by the Main thread.

This mode, and other parameters, can be configured on the program execution without
modifying the source code. The program receives a YAML configuration file specifying
all the required parameters in order to run the system:

1 NodeName: "followperson"

2 Benchmark: true # true for benchmark , false for followperson

3 RosbagFile: "resources/bag1.bag" # path to the ROSBag if benchmark

4 LogDir: "resources/benchmarks" # where to write the results

5

6 Networks:

7 # Parameters for the neural pipeline

8 Arch: ssd # detection architecture [ssd, yolov3, yolov3tiny]

9 DetectionModel: "models/ssd_mobilenet_v1_0.75_depth_coco.pb"

10 DetectionWidth: 416 # usually 300 for SSD, 416 for YOLOv3tiny

11 DetectionHeight: 416 # usually 300 for SSD, 416 for YOLOv3tiny

12 FaceEncoderModel: "models/facenet_inception_resnet_vggface2.pb"

13

14 RefFace: "resources/ref_face.jpg" # Image of the reference face

15

16 Topics:

17 RGB: "/camera/rgb/image_raw" # topic publishing the RGB images

18 Depth: "/camera/depth_registered/image_raw" # topic publishing the

depth images

19

20 # Parameters for the speed controllers

21 XController:

22 Kp: 0.4

23 Ki: 0.04

24 Kd: 0.05

25 Min: 0.7

26 Max: 1

27

28 WController:

29 Kp: 0.005

30 Ki: 0.0003

31 Kd: 0.006

32 Min: -50

33 Max: 50

34 # Parameters for the people tracker

35 PeopleTracker:

16YAML is a plain-text data serialization format. It has been chosen as a standard format on this project
as it offers a good tradeoff between serialization (allowing the data to be converted back into data structures
in Python) and readability of the file without processing it.
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36 Patience: 5

37 RefSimThr: 1.0

38 SamePersonThr: 60

The previously depicted structure can be implemented on the Jetson board using the
programming language Python. As the tracking module has to run asynchronously, the
threading library is used, deploying the following threads:

Main thread: the purpose of this thread is to continuously draw the output image (shown
in Figure 3.21 and explained below), and compute the errors and suitable responses,
as well as sending them to the robot. One thing to notice about this thread is that it
does not process all the frames in the sequence, as its rate depends on the drawing
time and the computation time of the response. It works asynchronously, fetching
the latest frame from the tracker thread.

networks_controller thread: this controller handles the 3 described neural networks,
running sequential inferences on them. In the Jetson platform, these neural
networks are deployed in the GPU of the board. Therefore, this thread can be seen
as the one which interacts with the GPU in order to pass, retrieve and transform
tensors from the networks.

tracker thread: as it was shown before, the tracker must inherently iterate at a higher
rate than the neural infrastructure. However, including it in the main thread would
be bad for its performance, as the speed would be limited by the image drawing
and responses publication in the speed topics. Therefore, it is extracted to an
specific thread. The simplicity of the Lucas-Kanade tracker makes it fast to execute,
however it would be pointless to track a person several times before a new image
arrives from the camera. To avoid this, the thread has a rate limitation of 30 Hz,
equal to the framerate of the Xtion sensor.

As this is the fastest thread to execute, and it is crucial that the tracker has access
to each and every image from the camera, this is the first component to receive the
images from the source, on a 30 Hz synchronous manner. The rest of components
can fetch the images asynchronously from the tracker whenever they need them.

ROSCam: this component, responsible of fetching the images from the source (a
ROSBag or the Xtion camera, as explained before), is not deployed as a thread.
However, as it works by means of subscribers when a synchronous mode is required
(thus, when the source is the Xtion camera), the ROS API for Python, rospy
automatically deploys these subscribers on independent threads.

This software architecture can be seen in Figure 3.20, where the interaction between
the threads can be visualized. The Main thread varies its behavior depending on

45



the configured mode (followperson/benchmark), whereas the rest of threads behave
similarly in both configurations.

Fig. 3.20. Software architecture for the system.

The visible output of the system is the image shown in Figure 3.21. This image is
drawn by the main thread, when the position errors are computed and the responses have
been sent to the robot, and it serves for monitoring the execution, showing the images, the
tracked persons and the sent commands. If the benchmark mode is enabled, these image
are appended to a output video, which serves for posterior visualizations or assessments
of the performance.

Fig. 3.21. Output image drawn by the program. Upper left: input RGB image. Bottom left: input
depth image. Upper right: velocity commands sent to the robot, and information about
the neural rate and number of current frame. Bottom right: tracked persons (green if it
is reference, red otherwise) and their faces
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4. RESULTS

This chapter describes the different experiments and benchmarks applied to the
proposed system and its subsystems. These tests have the purpose of taking design or
implementation decisions, selecting the best choices to improve performance, accuracy
and robustness of the final system and subsystems. For this purpose, several video
sequences were recorded with the ASUS Xtion inside ROSBag files. This way, the
same video can be used to assess the performance of different configurations, ensuring
that the results will not be affected by external variability due to different environmental
conditions on the test data.

The majority of the tests described below for the neural pipeline measure the IoU score
(Figure 2.9), which determines the overlapping quality between two bounding boxes.
Thus, it is required to label the video sequences, specifying on each frame the location
of the ground truth labels for every video. For this purpose, the tool LabelMe [53] was
used to provide the labels to the video, creating a JSON file for each frame of the video
sequence. A screenshot of this tool is shown on Figure 4.1.

The source code of the experiments conducted below can be found in a separate
experiments branch of the source repository on GitHub17, hosting both the testing and
plotting source files, as well as the CSV files containing the data plotted in the figures
below.

Fig. 4.1. Interface of the LabelMe annotation tool [53].

17https://github.com/RoboticsLabURJC/2017-tfg-nacho_condes/tree/experiments
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4.1. Person detection experiments

This experiment compares the two detection architectures implemented on this system:
YOLO [25] and SSD[19].

In the case of YOLO, the implemented architecture is YOLOv3, in its tiny version.
This is due to the memory constraints of the Jetson board where the models are loaded.
The available memory (8 GB) has to be shared among TensorFlow and the rest of
processes, causing the more memory-intensive models to fail on loading. The YOLOv3
full model demands too much memory, making impossible to use it properly on the Jetson
TX2 board. Thus, the chosen architecture is a lighter one, publicly available on the YOLO
website18: the Tiny YOLOv3 model.

On the other hand, as it was explained in Chapter 2, on a real-time application the most
convenient variant of the SSD-based detectors is the one that uses a MobileNet [21] as
a feature extraction network. The TensorFlow Model Zoo [43] offers several pre-trained
models implementing this network, along which a selection has been carried out (as it will
be described in other tests). The chosen model integrates a MobileNetv1 whose weights
have been quantized [54] in order to reduce the computational cost without reducing the
accuracy.

In order to quantify the different accuracy vs. inference time tradeoffs that these
architectures offer, a specific test has been designed. A specific video sequence of
721 frames long has been recorded, containing a person wandering across the field of
view of the camera. Several extracted frames from this sequence can be observed on
Figure 4.2. For every frame of the sequence, the persons are detected using YOLO and
SSD respectively, and the IoU and the inference time have been measured, as it can be
seen on Figure 4.3. Some gaps can be noticed on the detections, corresponding to the
frames where the person was out of the sight of the camera.

(a) Frame 322. (b) Frame 479. (c) Frame 648.

Fig. 4.2. 3 frames from the test video sequence.

The two outstanding object detection architectures have been compared, using both to
extract inferences on the same video sequence. The results can be visualized on Figure 4.3
and summarized on Table 4.1. The YOLO-based detector offers a slightly minor IoU than

18https://pjreddie.com/darknet/yolo/
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Fig. 4.3. Results of the person detection test: IoU score with ground truth (left) and inference time
per frame (right). A discontinuity represents absence of detections.

YOLO SSD
IoU 0.858 ± 0.068 0.926 ± 0.044
Inf. time (ms) 35.003 ± 1.503 172.237 ± 8.791
Frames with detection 123 (17.06%) 533 (73.93%)

Table 4.1. Numeric summary (average ± standard deviation) for the
person detection experiment.

the SSD-based one (around 0.858 and 0.926 respectively), while taking 5 times less time
to make inferences (35 ms vs. 172 ms). On these terms, the YOLO-based detector seems
much more efficient. However, Table 4.1 shows as well a very unstable detection in the
YOLO case, being able to detect the person only in 17% of the frames, whereas SSD
detects the person successfully in 74% of the cases. In fact, as there are several frames
where the person is not seen, SSD is successful practically in all the cases.
This shows that the YOLO detector is too dependent on pose and lighting conditions
for the detections to be successful. On the other hand, the SSD detector yields steady
predictions, only cutting on the periods where the person was truly out of the field of
view. Hence, this system is much more robust for our application scenario.

One fundamental requirement of the system is the real-time behavior, which makes
inference time an important factor to be taken into account. However, as the system
includes the described optical tracker, the YOLO detector can be discarded in favor of the
SSD-based one, given that the YOLO version has a much lower detection rate19 and this
can not be palliated by the motion tracker.

19As it was described before, the implemented version of the YOLO detector is Tiny YOLOv3, due to the
memory requirements for deploying the full YOLOv3 model, which are higher than what the Jetson TX2
can handle. Thus, it is probable to expect a better performance on the full model in a different computer
capable of handling it.
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4.2. Face detection experiments

One of the improvements of the proposed system over the previous work [11] is the
utilization of a fully neural detection pipeline, as it was described on Chapter 3. This
requires the replacement of the face detection Haar cascade classifier explained on
Chapter 2 by a neural alternative: faced.

This experiment is devoted to compare the performance of both face detection
systems. Its design is similar to the previous experiment, using the same video sequence
(Figure 4.2) with the ground truth faces labeled using LabelMe. For each frame in the
sequence, the faces are extracted using each one of the described methods, and the IoU
score is computed with the ground truth face bounding box. The result can be visualized
in Figure 4.4.
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IoU with ground truth
faced
Haar cascade

Fig. 4.4. IoU score with the ground truth for each one of the face detection systems.

haar faced
IoU 0.579 ± 0.202 0.559 ± 0.221
Frames with detection 248 (34.40%) 266 (36.89%)

Table 4.2. Numeric summary (average ± standard deviation) for the face
detection experiment.

Figure 4.4 and Table 4.2 show the detection scores for the two mentioned systems
on the same video sequence. It can be seen that both yield similar IoU scores and drop
at the same time when the person turns their back to the camera. However, the faced
implementation (which uses deep learning to predict the face positions) is capable of
keeping a non-zero IoU at several instants where the Haar performance drops to zero. This
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is due to pose variances of the person, as the main drawback of the Haar cascade classifier
is that it is only capable of detecting frontal faces, dropping the performance whenever
the person turns the face towards a side. This effect is observable in Table 4.2, since both
methods yield similar IoU on average, but the deep-learning approach, faced, detects a
face in 36.89% of the frames, whereas the Haar cascade slightly drops the detection rate
to 34.40%.

Hence, this test validates the improvement of the face detection performance when
using a specific neural network trained for that purpose.

4.3. Face recognition experiments

The last component of the neural pipeline is a face recognition neural network, devoted
to confirm the identity of the reference person. This is useful for discerning whether that
person has to be followed even if they turns back later, as their position is tracked with
the described means. This subsystem is based on a FaceNet [31] network, which projects
a face into a 128-dimensional space. These projections are used by the proposed system,
as their euclidean distance to the projection of a reference face is used to determine if the
input face belongs to the reference person.

This experiment is designed to assess the quality of the projection system, which
should yield far points for a different face and near points for a matching face. For this
proposal, a video sequence was recorded containing two persons wandering in front of
the robot. The faces of each frame are labeled, separating the faces of the two persons in
two different classes. A caption of the video with the labels can be seen on Figure 4.5.
Figure 4.6 shows several frames from the sequence as well, where some occlusions on the
faces can be observed.

Fig. 4.5. A frame of the test sequence showing the labels on the faces.
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(a) Frame 74. (b) Frame 735. (c) Frame 1136.

Fig. 4.6. 3 frames from the test video sequence.

For computing the distance, the reference face was set using the image on Figure 4.7a,
and the distance to the reference face of each one of the faces in the video was stored. The
result can be observed on Figure 4.7b.

(a) Image of the reference
face.
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(b) Resulting distance for the two faces present in the video.

Fig. 4.7. Results of the face recognition experiment. (a): reference face used for the test. (b):
distance of each face to the reference projection of (a).

Ref. person Non-ref. person
IoU 1.160 ± 0.128 1.344 ± 0.102

Table 4.3. Numeric summary (average ± standard deviation) for the face
recognition experiment.

The results obtained on Figure 4.7 and Table 4.3 allow to extract two conclusions
about the quality of the projections of the faces:

• The encodings of the reference person (the person with the same face than the
reference one) have an overall remarkable stability. In average, the obtained
projections for every frame are located at an approximate distance of 1.16 (threshold
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chosen for accepting a person as the reference one). Exceptional rises in the
distance can be found as well, but they are due to changes in the pose of the face
and occlusions, that reduce the quality of the projection.

• The encodings of a person different than the reference one have an overall higher
distance from the reference face. This is convenient for avoiding false positives
while determining that a face is the reference one.

This allows to conclude a correct performance of the triplet loss (Figure 2.17) on
which a FaceNet is trained [31]. This yields an efficient separation between the encodings
of different persons, as well as close encodings for faces belonging to the same person,
making this system a robust approach to perform person recognition tasks, since the
distance of a projection to the reference face has to be below the threshold for being
labeled as the reference face.

4.4. TensorRT experiments

4.4.1. Performance tuning the optimization parameters

In Section 3.2, the TensorRT engine was introduced. This engine is used to optimize,
using a binding component between TensorFlow network graphs and TensorRT itself, the
implementation of a neural network on a compatible NVIDIA GPU. There are several
tunable parameters for customizing the implementation, and the most relevant ones were
described in Section 3.2 as well. As varying these parameters changes the model size and
the inference time, an experiment has been conducted in order to test the inference time
of each model. The optimization script performs a grid search between a set of values for
each parameter (MSS, MCE and precision mode, as described on Section 3.2), and tests
the performance on a specific ROSBag sequence, storing the detections and the inference
times on a YAML file, besides the optimized graph to be loaded without requiring to
perform the optimization again.

The inference times for the fastest SSD-based model and the Tiny YOLOv3
implementations are shown below in Table 4.4 and Table 4.5. The impact of this
optimization on the precision is studied on Subsection 4.4.2. The performance tables
for the rest of models can be found in Chapter 6.
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Precision MSS MCE Avg. inference time (ms)

FP32

3
1 59,223
3 57,139
5 58,210

20
1 58,398
3 58,240
5 57,910

50
1 41,077
3 41,410
5 41,080

FP16

3
1 57,423
3 56,777
5 57,286

20
1 56,783
3 56,591
5 56,637

50
1 40,053
3 39,738
5 40,115

INT8

3
1 62,859
3 61,105
5 62,383

20
1 62,439
3 61,810
5 63,477

50
1 46,123
3 46,835
5 47,387

GPU without TensorRT 172,269
CPU 112,111

Table 4.4. Grid search results for the
ssd_mobilenet_v1_0.75_depth_coco model. The lowest inference

time is boldfaced.
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Precision MSS MCE Avg. inference time (ms)

FP32

3
1 20,898
3 21,032
5 21,112

20
1 21,373
3 21,208
5 21,639

50
1 22,506
3 22,301
5 22,239

FP16

3
1 16,180
3 15,922
5 16,061

20
1 16,200
3 16,208
5 16,183

50
1 18,294
3 18,110
5 18,248

INT8

3
1 35,266
3 36,329
5 36,289

20
1 36,305
3 35,420
5 35,734

50
1 35,195
3 34,815
5 35,178

GPU without TensorRT 35,996
CPU NHWC

Table 4.5. Grid search results for the yolo_v3_tiny model. The lowest
inference time is boldfaced. The CPU inferences could not be

performed due to hardware incompatibility issues.
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4.4.2. Optimized graphs vs. standard graphs

As it has been studied, tuning the TensorRT optimization parameters greatly varies the
inference time required for processing an image. However, as it was explained in Section
3.2, this acceleration additionally entails a reduction on the precision, as the weights of the
neural network layers are trimmed in the process. The precision mode choice determines
the precision of the weights. In the case of the SSD-MobileNet detector, the best inference
time (Table 4.4) was yielded by the FP16 precision mode, which trims the weights to a
16-bit long floating point number. This will cause the inference precision to be reduced
as the operations are performed on a coarser mode.

This experiment aims to quantify the loss of precision when the SSD model is
optimized by TensorRT using the FP16 precision model, which is the fastest mode to infer,
as shown in Table 4.4. To do so, the test sequence (Figure 4.2) is used again, passing each
frame forward on the standard neural network and storing the detected persons. Later,
the same video sequence is passed through the TensorRT version of the same graph,
storing the detections of each person as well. When both passes are performed, the IoU
score is computed on each frame between the standard inferences (considered as ground-
truth labels) and the TensorRT inferences. This IoU score on each frame, along with the
inference times for each network model, can be seen on Figure 4.8.
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Fig. 4.8. IoU between the standard graph and the TensorRT graph inferences (left) and inference
times for both networks (right). The IoU graph has been rescaled between 0.6 and 1 to
have a better visualization of the IoU variability.

Original graph TensorRT graph
Inference time (ms) 184.477 ± 11.827 56.769 ± 4.148

Table 4.6. Numeric summary (average ± standard deviation) for the
inference time with and without TensorRT.

Figure 4.8 and Table 4.6 illustrate the differences between a standard graph and an
optimized one. One of the premises of the optimization process is the reduction of the
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precision of the parameters in the neural network, which can be reduced from 64-bit
values up to 16-bit or even 8-bit (performing an additional quantization process), as it
was described on Section 3.2.

The loss of precision is clear as well on Figure 4.8, as the IoU of the optimized graph
drops at several frames. On the one hand, this loss of precision is small, with some
observable exceptions with a loss above 5% of the original performance. On the other
hand, the inference time gap can be observed as well. The difference is more notorious,
as the TensorRT optimized model performs the inferences 3 times faster than the original
graph (56.769 ms vs. 184.477 ms), as Table 4.6 shows.

Given these results, the TensorRT optimizations are a convenient tool to greatly
increase the performance of the system, allowing the slower component (the neural
pipeline) to experiment an important reduction on the inference time. As a result, the
overall performance is greatly improved, receiving reliable neural updates more often.

As it was described on Subsection 4.4.1, a set of parameters can be tuned when
optimizing a graph with TensorRT, yielding different performances. As Table 4.4 and
Table 4.5 show, important reductions on the inference time can be obtained when the rest
of parameters (Maximum Cached Engines and Minimum Segment Size) are tuned as well.
However, these parameters only affect the inference time, as the precision loss is only due
to the Precision Mode parameter, which has been already analyzed.

The resulting models can be loaded in the program, instead of the original TensorFlow
graphs, and offer an overall higher performance, as it has been demonstrated.

4.5. Motion tracker experiments

In Section 3.2, the Lucas-Kanade tracker was described. This tracker aims to follow the
movements of the person between two consecutive inferences from the neural pipeline.
As in embedded systems these inferences might take a long time, an interpolation of
the detections using optical flow can be crucial for avoiding a loss of the location of the
person, especially if a partial occlusion of the person causes that the network does not
detect them for a while.

This experiment aims to identify the conditions under which a tracker can palliate
these drawbacks of the neural detection pipeline, depending on the parameter k. This k
modulates the number of elapsed frames between two consecutive neural detections, and
takes a higher value if the inferences take longer to be computed by the neural pipeline. On
the test, a specific test sequence was recorded and labeled, using a hanging blanket with
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the purpose of partially occlude the person, making the network to lose the detections.
Several frames of the sequence can be visualized on Figure 4.9.

(a) Frame 285. (b) Frame 788. (c) Frame 864.

Fig. 4.9. 3 frames from the test video sequence.

A correctly tuned tracker keeps the detection active and updates the bounding box for
a number of frames (determined by the patience parameter, as described in Section 3.2).
The video sequence was evaluated using k = 10 and k = 20, checking the influence of
the tracker in the IoU with the ground truth labels of the sequence. The result for both
values of k can be observed on Figure 4.10, where the lapse corresponding to the person
occlusion has been emphasized.
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Fig. 4.10. Results of the motion tracker test, for k = 10 (left) and k = 20 (right). The lapse
corresponding to the person occlusion has been emphasized and zoomed in in the
bottom graphs.

The results on Figure 4.10 show the IoU score between the persons and the ground
truth labels on the test sequence. Regardless of the value of k (the number of frames
elapsed between neural detections), a similar performance can be expected under standard
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conditions (the faded portion of the graph). However, the emphasized region corresponds
to an occlusion behind a hanging blanket (Figure 4.9), and it is zoomed-in on the bottom
plots. On this lapse, a better performance is perceptible, especially when the inference
time of the neural pipeline is higher (k = 20). The hanging blanket occludes the person,
causing the neural network to stop detecting them. However, as the tracker retains the
detection for several updates because of the patience parameter, the person is not lost
until several frames later. Additionally, the Lucas-Kanade algorithm allows to determine
the displacement of the person even when it is not being detected by the neural pipeline.
This explains the higher IoU when the tracker is active due to the bounding box shifting
computed using Lucas-Kanade, confirming the improvement in the performance when
using the tracker. Outside this region (top plots), some regions can be detected, such as
the ending lapse of the sequence for k = 20. This is probably due to non-optimal values
for the parameters of the tracker, which do not correctly shift the bounding box towards
the true direction of movement of the person. A proper in-depth tuning of the parameters
can potentially fix this lower performance for situations similar to that lapse.

Additionally, while the neural pipeline runs on the GPU of the board, the Lucas-
Kanade tracker, whose calculations are much lighter, runs on the CPU. This separation
allows to combine both systems asynchronously without affecting the overall load of the
system.

4.6. Global system experiments

Finally, a visual assessment can be derived from a sample of the fully functional system20.
Figure 4.11 shows the behavior of the robot, expected to follow the person properly. The
top region of the images shows several screen captures of the program output, with the
RGB and depth images (left), and the movement commands and tracked persons (right).
The bottom region of the plots show the scene recorded from a mobile phone, allowing to
observe the performance externally.

This video presents a sequence of the robot following the typical use case: the
reference person enters into the field of view of the robot, showing their face to the
camera. After some consecutive frames detecting the person, it is identified using the
detected face. When its projection is close enough to the reference one, the robot starts
following the person. For each frame, the linear and angular errors are computed, even if
the face of the person is not seen anymore, as the system has checked previously that the
person has to be followed. If the errors are outside the safe zones, a velocity command is
computed and sent to the robot. This routine is executed iteratively until the person gets
lost, causing the robot to stop waiting for the person to be seen again.

20https://www.youtube.com/watch?v=WZ0riKMwJWA
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(a) Person detection. (b) Person recognition and
following.

(c) Following without face
feedback.

Fig. 4.11. 3 frames from the full test (available on YouTube, URL on the previous footnote).
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5. DISCUSSIONS

On this last chapter, the objectives summarized on Section 1.2 are individually
revisited, analyzing the degree of accomplishment of the solution on each one of them.
Additionally, suggestions are made for further improvements in future works, that can
address the drawbacks of the solution proposed in this dissertation.

5.1. Conclusions

This section revisits the objectives stated in Section 1.2, and reviews the degree of
accomplishment of each one of them.

Regarding the first objective, this work has focused on the development and testing
of an embedded system that follows a reference person in a robust way, relying on the
robustness of deep learning for being capable of working in real environments. This
project has been developed using an affordable educational robot and a consumer RGBD
sensor.

As the second objective requires, the detection and recognition pipeline has been
exclusively designed using deep neural networks, ensuring a robust performance in non-
controlled environments. As it has been seen along the project description, this robustness
is crucial, especially because the camera is located at a very low position: the lens has
an vertical inclination in order to see the full body of the persons in front of the robot.
However, this causes as well an excessive amount of light from ceiling lamps to enter
into the camera, dimming the persons on the image (Figure 1.4). As it has been tested in
Chapter 4, classical systems tend to fail given this issue.

This neural pipeline has been complemented by a tracking component, improving the
performance under certain issues, such as partial occlusions, or a higher inference time.
This could happen if the networks are more complex or the inference device does not
provide a low detection time. This fulfills the third objective of the project.
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5.2. Future lines

However, further improvements can be addressed on future works, for example:

• Implement a multimodal tracking using sensor fusion, like in works such as
[55]. The depth data of the person also provides information about their position,
and bringing this information into the tracker can potentially lead to a better
performance.

• Implement a probabilistic tracker, such as an EKF (Extended Kalman Filter),
relying on the person trajectory. This approach may avoid confusions between
two persons if they cross each other, or help the system to follow the trajectory
of a person even if it is temporarily lost. In addition, this can solve problems
coming from using optical flow, such as a person moving a part of their body. The
displacement of the keypoints on that part of the body cause the full bounding box
to suffer a displacement even if the person has not changed its position. This can be
addressed using probabilistic subsystems to predict the movement of the person.

• Add a navigation component to the robot. The used robot is additionally equipped
with a laser scanner, it can be used to detect possible obstacles between the robot
and the person. Thus, a simple planning algorithm such as VFF (Virtual Force
Field) can be combined with this system in order to avoid collisions while the robot
is moving.
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6. ANNEXES

6.1. Optimization results for all the models

This annex shows the optimization results using TensorRT for all the neural network
models used and tested on this work. The inference time results have been stored in
several spreadsheets, classified according to the optimization parameters (described in
Section 3.3), and a color scale has been added according to the FPS (Frames per Second)
the resulting graph is capable to process. These numbers are compared as well to the
original implementation (GPU without using TensorRT) and to the CPU implementation.
The results can be observed in the following subsections.

6.1.1. Object detection models

The optimized models correspond to the different implementations of SSD-based and
YOLO-based object detectors, as described in Chapter 2.

6.1.2. Face detection models

These models are the specifically trained for the faced library [34]. They have been
optimized as well, swapping the originally included models in the package for the
TensorRT optimized ones.

6.1.3. Face encoding model

This is the FaceNet implementation [31], which has been optimized as well using
TensorRT:



(a) Optimization results for the object detection
model ssd_mobilenet_v1_coco.

(b) Optimization results for the object detection
model ssd_mobilenet_v2_coco.

(c) Optimization results for the object detection
model
ssd_mobilenet_v1_07̇5_depth_coco.

(d) Optimization results for the object detection
model ssdlite_mobilenet_v2_coco.

Fig. 6.1. Optimization results for the SSD-based object detection networks.



Fig. 6.2. Optimization results for the object detection model yolov3_tiny (due to hardware
compatibility issues, the CPU testing was impossible to perform).



(a) Optimization results for the face detector
model face_yolo.

(b) Optimization results for the face corrector
mdoel face_corrector.

Fig. 6.3. Optimization results for the face detection (faced) networks.



Fig. 6.4. Optimization results for the face encoding model facenet.
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