
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE
TELECOMUNICACIÓN

MÁSTER UNIVERSITARIO EN VISIÓN ARTIFICIAL

Master thesis

Multiobject tracking using deep learning and
tracking by detection

Author: Alexandre Rodŕıguez Rendo

Tutor: José Maŕıa Cañas Plaza

Academic course 2018/2019

Acknowledgement
Galician version
En primeiro lugar quero dar as grazas ao meu titor Jose Maŕıa polo apoio e axuda neste
proxecto. Por outra banda, agradecer a amig@s, compañeir@s de estudo, de traballo, de
vivenda... tod@s os que me acompañaron e animaron neste camiño.
Aos meus avós, os que están e os que xa non están pero seguen preto, por ser o maior
exemplo de humanidade que un pode ser. Sen vós non seŕıa nada do que son agora.
Gracias de verdade.
A Cintia por ser á vez psicóloga, amiga e irmá.
Especialmente aos meus pais que me ensinaron a importancia de palabras como traballo,
honestidade e valores. A partir do que vós me ensinastes fun capaz de poder aprender
moitas cousas mais. Quérovos moito!
Seguramente me falte moita xente por mencionar pero creo que aqúı está o máis import-
ante.

English version
First of all I would like to thank my tutor Jose Maria for the support and help in this
project. On the other hand, I would like to thank friends, colleagues, work colleagues,
flat mates ... everyone who accompanied me and encouraged me on this path.
To my grandparents, those who are and those who are no longer but there are still close,
for being the greatest example of humanity that one can be. Without you there I would
not be what I am now. Thank you really.
To Cintia for being a psychologist, friend and sister at the same time.
Especially to my parents who taught me the importance of words such as work, honesty
and values. From what you taught me I was able to learn many more things. I love you!
Surely I miss many people to mention but I think that here are the most important ones.

II

Abstract
The visual multiple object tracking is an open problem inside the computer vision
community with multiple applications in the industry such as in the autonomous vehicles
or in the security field. Many efforts has been made in the past to solve this task, especially
for person tracking due to its greater interest.
In the last years, the deep learning techniques have been able to beat the state of the art in
tasks such as image classification or object detection in images. Thus, this work has made
use of deep learning methods to built a visual multiobject tracking application. These
techniques are combined with a tracking by detection scheme to perform the tracking and
achieve a good balance between speed and accuracy in the tracking. The final developed
software component, named as dl-objecttracker, has a mechanism of tracking processing
speed measurement that allows for different tracking processing speed regimes and it is
also configurable.
Finally, the developed solution has been experimentally validated on the MOT17Det
dataset, one of the most well-known datasets of multiple object tracking (MOT).

III

Contents

List of Figures VII

List of Tables VIII

1 Introduction 1

1.1 Multiple Object Tracking in Computer Vision 1
1.2 Deep Learning in Computer Vision . 2
1.3 Objectives . 6
1.4 Methodology . 7

2 State of the Art 8

2.1 Object tracking algorithms . 8
2.2 Datasets for object tracking . 12

2.2.1 Multiple object tracking datasets 12
2.2.2 Single object tracking datasets . 16

2.3 Metrics for multiobject tracking evaluation 19
2.4 Object classification and detection using neural networks 20
2.5 Instance segmentation using neural networks 26
2.6 Datasets for object detection . 27
2.7 Metrics for object detection evaluation . 29
2.8 Deep learning frameworks in computer vision 32

3 Used software infraestructure 33

3.1 OpenCV . 33
3.2 ROS . 34
3.3 Deep learning frameworks . 35
3.4 dlib library . 36
3.5 Object Detection Metrics . 37
3.6 NumPy and PyQt . 37

IV

4 Multiobject tracking using deep learning and tracking by detection 39

4.1 Design . 39
4.2 Video source module . 43
4.3 GUI module . 44
4.4 Neural Network module . 45

4.4.1 Tensorflow models . 46
4.4.1.1 SSD MobileNetV2 . 46
4.4.1.2 Faster R-CNN InceptionV2 46
4.4.1.3 Mask R-CNN InceptionV2 47

4.4.2 Keras models . 47
4.5 Tracker module . 48

4.5.1 Confidence in tracking . 49
4.5.2 OpenCV trackers . 50
4.5.3 dlib trackers . 54

5 Experiments 55

5.1 Experimental setup . 55
5.2 Neural network selection . 56
5.3 Tracker’s performance . 59

5.3.1 Confidence in tracking . 61
5.3.2 GOTURN tracking . 62

5.4 Experimental validation of the final solution 63

6 Conclusions 64

6.1 Future works . 65

Bibliography 67

Annex 75

List of Figures
1.1 The importance of tracking in the autonomous vehicles [1] 2
1.2 Object detection using deep learning techniques [2] 3
1.3 Digit recognition on SVHN dataset [3] . 4
1.4 Example of neural style transfer from famous artworks to a photograph [4] 4
1.5 Example of the Object Detector node working in real-time (from Object

Detector official repository) . 5

2.1 P-N learning mechanism (from [5]) . 9
2.2 SiamRPN++ (from [6]) . 11
2.3 An overview of the MOT16 dataset. Top: train sequences. Bottom: test

sequences [7] . 13
2.4 CAVIAR: From left to right, two frames (ground truth superposed) from

sequences of datasets 1 (entrance lobby of INRIA Labs) and 2 (hallway of
a shopping center) [8] . 14

2.5 BEHAVE: Two snapshots of sequences, with the ground truth bounding
boxes of the objects to track [8] . 14

2.6 PETS 2016: A group of people detected and tracked walking by a truck [9] 15
2.7 TrackingNet: Comparison of current datasets size for object tracking [10] . 16
2.8 OTB: List of the attributes annotated to test sequences [11] 17
2.9 VOT: Images from the VOT2016 sequences (left column) that were replaced

by new sequences in VOT2017 (right column) [12] 18
2.10 MOTA definition: where mt is the number of misdetections (FN), fpt is the

number of false positives (FP), mmet is the number of mismatches (IDs)
and gt is the sum of TP and FN (from [13]) 19

2.11 MOTP definition (from [13]) . 20
2.12 MobileNet v2 [14] . 21
2.13 Residual learning block [15] . 22
2.14 Region Proposal Network (from [16]) . 24
2.15 The YOLO v1 model (from [17]) . 25

VI

https://github.com/JdeRobot/dl-objectdetector
https://github.com/JdeRobot/dl-objectdetector

2.16 Results obtained by FCIS and Mask R-CNN in test images in COCO
Dataset (from [18]) . 26

2.17 IoU definition (from link) . 29
2.18 AUC example: the areas from the trapezoids are 0,335, 0,15875 and 0,1375

respectively, giving an AUC score of 0,63125 (from link) 30
2.19 All points interpolation (from [19]) . 31

3.1 Canny edge detection using OpenCV (from [20]) 34
3.2 ROS-based snake robot (from [21]) . 35
3.3 Facial landmarks with dlib, from the pre-trained model iBUG300-W [22] . 36
3.4 PyQt5 example: common widgets (from [23]) 38

4.1 Modular architecture of the dl-objecttracker application 40
4.2 How the buffer is handled . 41
4.3 The control flow . 42
4.4 The graphical user interface of the dl-objecttracker application 44
4.5 First tests with Mask R-CNN using live video 47
4.6 Updating a discriminative appearance model: (A) using a single positive

image patch. (B) using several positive image patches. (C) using one
positive bag of several image patches (from [24]) 51

4.7 The forward-backward error in Point 2 (from [25]) 51
4.8 Comparison of the output peaks produced by different correlation filters

(from [26]) . 53
4.9 Overview of the CSR-DCF approach (from [27]) 53

5.1 MOT17Det train set samples: left image from MOT17-05, center image
from MOT17-09 and right image from MOT17-11 57

5.2 Faster R-CNN Inception V2 object detections on MOT17-09 59
5.3 Medianflow multiobject tracking on MOT17-05 (selected frames are not

sequential) . 62

https://github.com/rafaelpadilla/Object-Detection-Metrics####intersection-over-union-iou
https://classeval.wordpress.com/introduction/introduction-to-the-precision-recall-plot/

List of Tables
2.1 Accuracy comparison in test on PASCAL VOC 2012 (from [28]) 25

4.1 Tensorflow models performance (from Tensorflow detection model zoo) . . 46
4.2 Keras models performance. Evaluated in the official Pascal VOC 2012 test

server using an NVIDIA GeForce GTX 1070 mobile. 48

5.1 Label equivalences with MOT ground truth in our ground truth 56
5.2 Experiments on MOT17-09 sequence with 512x512 images 57
5.3 Experiments on MOT17-09 sequence with 300x300 images 58
5.4 Experiments with 800x800 images . 58
5.5 Neural network experiments with an image input size of 1000x1000 58
5.6 Tracker experiments on MOT17-09 sequence with 1000x1000 images 60
5.7 Tracker experiments on MOT17-11 sequence with 1000x1000 images 60
5.8 Tracker experiments on MOT17-05 sequence with 1000x1000 images 60
5.9 Confidence influence on tracking performance on MOT17-05 61
5.10 Confidence influence on tracking performance on MOT17-09 61
5.11 Final results on MOT17Det train set . 63

1 Image input size experiments on MOT17-09 75
2 Final results on MOT17Det train set (detailed). TP: true positives, FP:

false positives, GT: ground truth . 75
3 Description of MOT17Det train set data (from [29]) 75

VIII

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md####coco-trained-models

Chapter 1

Introduction

This work is focused in the problem of visual tracking of multiple objects using deep
learning and tracking-by-detection techniques. In this chapter, the context of this project
is presented. Finally, the main objectives of this thesis and the methodology used to fulfil
them are going to be explained.

1.1 Multiple Object Tracking in Computer Vision

The Multiple Object Tracking or MOT is an important computer vision problem which
continues to attract attention because of its potential in both the academic and com-
mercial spheres. The real-world applications of the multiobject tracking are numerous
including human-computer interaction, autonomous vehicles, robotics, video indexing,
surveillance or security, among others. The computer vision community have been mak-
ing big efforts in the past few decades to solve the MOT problem but the task is still open
for improvement.
Many autonomous car projects are taking place globally which require solutions to various
different problems including to keep an eye to all other moving objects in the area where
the car is located (Figure 1.1). The outputs from the tracking module are a basic input for
other modules like maneuver planning and trajectory planning. Autonomous vehicles are
key in the continuous progress made in tracking and in the computer vision community in
general. Many multi-object tracking algorithms have been proposed to solve the problem
of real-world traffic monitoring. In these kind of tasks, the algorithms have to deal with
complex occlusion situations and difficult object matching.
In an era where human-computer interaction has become particularly important, the hand

1

CHAPTER 1. Introduction

is of big interest. Therefore, the object tracking is an important part of this area. For
example, it is being used for tracking the hand movements because of its non-intrusive
nature compared to other types of sensing which could imply the user to wear gloves,
among others. With this tracking we can develop very interesting applications that range
from predicting sign language to games like playing “hand ping pong”.
One of the most studied tracking areas is the pedestrian tracking, mainly because this
particular kind of object can be seen in a large number of applications with commer-
cial potential. As some studies indicate [1], about the 70% of the current research done
in MOT is dedicated to pedestrians. The difficulty of MOT lies in various challenging
situations that can occur such as variation of the illumination, variation of scale, target
deformation or fast motion. Most of this challenges are common to Single Object Tracking
(SOT) but MOT also needs to solve two main tasks: determining the number of objects
and mantaining its identities over the time.

Figure 1.1: The importance of tracking in the autonomous vehicles [1]

1.2 Deep Learning in Computer Vision

Since the birth of Artificial Intelligence (AI) in 1956, the computer vision has followed
a great rhythm of evolution. The AI has taking the machines to equal humans in the
resolution of some tasks and, in certain cases, to overcome them. Artificial intelligence is
defined in [30] as “the subfield of Computer Science dedicated to developing programs that
allow computers to present behaviors that can be characterized as intelligent”. Machine
learning (ML) is defined in [31] as “a field of Computer Science that gives computers the
ability to learn without being explicitly programmed”. Therefore, given this definition,
the ML can be considered a subfield of the AI.

2

CHAPTER 1. Introduction

One of the most well known and currently growing ML subfields is called Deep
Learning [32]. This type of algorithm is intimately linked with the Artificial Neural
Networks (ANNs) and, in practice, they are usually used in an equivalent way although
they are not the same. One of the aspects to be highlighted in the Deep Learning
algorithms is that it is no longer necessary to extract feature vectors for the input to
the machine learning system. This is because these algorithms “learn” how to represent
the data in a hierarchical way. From these networks, the convolutional neural networks
(CNNs) have a special interest to face the problem that this project presents. This type
of networks are characterized by the use of a convolution operation in at least one of the
layers of the network and they are designed for the processing of two-dimensional data
such as images [33].
In the Artificial Intelligence era the multi-object tracking makes use also from the AI to
improve the tracking algorithms. These techniques are being used for a broad range of
applications such as object detection, image classification, biometrics or medical imaging,
among others (Figure 1.2). In most cases, the Deep Learning has beaten the previous
State-of-the-Art in these areas.

Figure 1.2: Object detection using deep learning techniques [2]

A popular example of image classification is the case of classifying a handwritten digit
(multiclass classification) from the MNIST dataset. Numerous applications can surge
from recognizing digits and numbers like the automated recognition of house numbers in
Google Street View images (Figure 1.3).

3

CHAPTER 1. Introduction

Figure 1.3: Digit recognition on SVHN dataset [3]

Apart from the typical deep learning applications, in the last few years other applications
that can be tagged as “artistic” have emerged like, for example, the style transfer. The
neural style transfer consists on learning the style from one or more images and applying
that style to a new image. This can give some very interesting results as it can be seen in
Figure 1.4. There are other examples of “artistic” deep learning such as image colorization
using deep learning. In this case, the neural colorization tries to convert a grayscale image
to a color image which can be very helpful in areas like photography or the film industry.

Figure 1.4: Example of neural style transfer from famous artworks to a photograph [4]

Given the broad areas of application where deep learning is succeeding and the ones who
are still in research it is going to be studied on this master thesis the use of deep learning
techniques to tackle the multi-object tracking problem.
The deep learning for tracking has been used in previous works from other colleagues such
as Marcos [34]. In his work, the task is a visual tracking on people using deep learning
with a classical feature tracking based on the Lucas-Kanade algorithm [35]. The detections

4

CHAPTER 1. Introduction

obtained by the neural networks allow to build a robust hybrid tracker. However, these
detections are calculated in an offline way before launching the tracking.
Other interesting works with neural networks, in this case, for object detection have been
developed such as Object Detector [36]. This application is composed of three modules
working as three asynchronous threads. These modules are: a Camera that provides the
images, a GUI that provides the user interface and a DetectionNetwork that encapsulates
an object detector neural network. As a result this node allows the user to visualize object
detections, i.e. bounding boxes drawn over the image in real-time. The images can be
obtained from different sources as a webcam, a video or via remote proxy. It also provides
functionality to perform on-demand detection. The Figure 1.5 shows the Object Detector
running.

Figure 1.5: Example of the Object Detector node working in real-time (from Object
Detector official repository)

The user can download pre-trained open neural network models for Tensorflow or Keras
and configure the Object Detector to work with them.
As it has been seen, the deep learning and the multiobject tracking are still open areas
where multiple applications can be obtained.

5

https://github.com/JdeRobot/dl-objectdetector
https://github.com/JdeRobot/dl-objectdetector

CHAPTER 1. Introduction

1.3 Objectives

The main objective of this master thesis is to build a multi-object tracking application
which makes use of two techniques: deep learning and 2D-tracking. In this work we
are going to study how to use the best of both techniques to build a robust and fast
multiobject tracker which can be capable of run in resource constrained hardware on real-
time. This work takes the form of a user application and allows multiple configurations.
The developed solution will be tested with well-known datasets of multiobject tracking
challenges which will provide the performances obtained by each configuration of the
application and finally, it will allow the selection of the best configuration.
This task can be divided into different subobjectives:

1. Development of an object detector using deep learning

Learn the fundamentals of object detection using deep learning techniques. Study
the performance on both accuracy and speed of these techniques in datasets. Finally,
select the default object detector.

2. Development of a visual tracking module

Build the tracking module taking into account the necessity of speed in constrained
resources.

3. Combination of neural object detection and object tracking in a single

software component

Integration of the modules needed into a thread infrastructure. This will imply a
sophisticaded synchronization between them.

4. Experimental validation

Finally, several experiments with state-of-the-art datasets will be performed to val-
idate the developed solution and select the best configuration based on the extracted
results.

6

CHAPTER 1. Introduction

1.4 Methodology

The following tools have been employed to follow the project progress and making it
visible for the community:

• GitHub repository: the code of the project is publicly available on GitHub and
was constantly updated. The repository can be accessed in the link1.

• Wiki: it has been used as a blog of the progress of the project. In the link2, the
steps followed to achieve this target can be seen.

The development of this project has been weekly followed by the tutor. In this weekly
meetings the work done in the previous week was evaluated and discussed ending in new
milestones for the following week. This continuous feedback allowed a better development
of the project both in terms of understanding the topic in question and also in terms of
time management.

1 https://github.com/RoboticsURJC-students/2017-tfm-alexandre-rodriguez
2 http://jderobot.org/Arodriguez-tfm

7

https://github.com/RoboticsURJC-students/2017-tfm-alexandre-rodriguez
http://jderobot.org/Arodriguez-tfm

Chapter 2

State of the Art

In this chapter, we will cover the state-of-the-art and the background related to the topic
of the thesis. First, the object tracking will be introduced including the algorithms, data-
sets and metrics used for a good development of a multiobject tracking system. Second,
the object detection will be discussed following the same scheme. Other necessary tools
and interesting subjects from the literature will be also briefly commented.

2.1 Object tracking algorithms

The main objective in object tracking is to estimate the state of the object (target) over
the time in a sequence of images (frames). This state can be defined by different features
such as shape, appearance, position or speed.
It is a difficult field since one or more difficulties must be solved by the algorithm. Among
them the management of variations in lighting and in the point of view of the object that
can lead to changes in its appearance. Likewise, the occlusions that occur when objects
are mixed with other elements of the scene or the quality of the image itself may be a
problem.
To confront these problems the following paradigms have been followed [37]:

• Tracking using matching: these algorithms make a matching between the
representation of the model of the object created from the previous frame and
the possible candidates in the next frame. These methods rely on the correct
representation of the match and the similarity measurement used to perform the

8

CHAPTER 2. State of the Art

matching. The most outstanding methods are Normalized Cross-Correlation [38],
Lucas-Kanade Tracker [35], Kalman Appearance Tracker [39] and Mean Shift
Tracking [40]. Most of them use the intensity values in the images to build the
algorithm, for example, Lucas-Kanade performs spatiotemporal derivatives on these
values.

• Tracking-by-detection: a model is built to distinguish the object from the
background [41]. Once you have one detection it is associated with the previous
detections. Currently, the community is turning to neural networks to compute
detections.

• Tracking, learning and detection: it is an extension of the previous group that
includes a mechanism to update the model that is learned during execution. For
example, you can use the results of an optical flow tracker for this update [5]. This
ensures that the algorithm is invariant to changes in the object.

Figure 2.1: P-N learning mechanism (from [5])

Prior to the modern techniques to be discussed here there are more “classic ways” of
tracking objects that can be useful in problems that require real time, for example. One
of the most well-known is feature tracking. This technique uses characteristic points
that can be found in images and that allow to estimate the movement. These points
must meet some requirements to be able to be characteristic of the image such as
repeatability (the characteristic can be found in the images even if they have undergone
some transformation), compatibility (each characteristic must be descriptive and easy to
find) or efficiency (the representation of the information characteristic of the image must
be done with as few characteristics as possible). The characteristic points most commonly

9

CHAPTER 2. State of the Art

used are corners. They are characterized by gradients with higher values in them in two
or more directions. These techniques can be seen in Harris [42] and Shi-Tomasi corner
detectors [43].
There are tracking systems that take advantage of the speed of feature tracking and the
accuracy of neural networks to create a “hybrid tracking”. In this type of tracking the
detections are done each N frames using some type of neural network and the intermediate
tracking is done through feature tracking.
With the arrival of neural networks this way of grouping the tracking methods changes
to adapt to them [44]:

• Tracking-by-detection: they are designed to follow a certain class of object
(model-based) and to obtain a specific classifier. In practice, the detections are
obtained with neural networks and they are linked in tracking using temporal
information. They are limited to a single class of objects.

• Tracking, learning and detection: they are characterized by being fully trained
online. A typical tracker example of this group samples zones close to the object
and considers them foreground, the same happens with the distant zones that would
be assigned to the background. With this a classifier can be built that differentiates
them and estimates the new location of the object in the following frame [24]. It has
been tried to introduce neural networks in environments with online training but
due to the slowness of the networks when training the results are slow in practice.

• Siamese-based tracking: multiple patch candidates from the new frame are
received and the one with the highest matching score with respect to the previous
frame is chosen as the best candidate, that is, the most similar according to the
matching function.

10

CHAPTER 2. State of the Art

Figure 2.2: SiamRPN++ (from [6])

In the figure above, one of the last siamese network based tracker called Siam-
RPN++. This network, state-of-the-art in visual object tracking on VOT2017/18
and accepted to participate on CVPR 2019, follows the commented strategy which
formulates tracking as convolutional feature cross-correlation between a target tem-
plate and a search region.

• Tracking as regression: in this group, on the other hand, the network receives
only two images (the previous frame and the current one) and directly returns the
location of the object in the current frame. Since this tracker predicts a bounding
box instead of just the position, it is able to model changes in scale and aspect of the
tracked template. However, it only can process a single target and it needs from data
augmentation techniques to learn all possible transformations of the targets [44].

• Tracking with RNN: this type of algorithms use Recurrent Neural Networks to
model the sequence of movement of objects from the detection obtained. Thus
improves the response to prolonged occlusions in time, for example [45]. They are
the state of the art in tracking nowadays in terms of accuracy but they usually do
not perform well in real-time.

11

CHAPTER 2. State of the Art

2.2 Datasets for object tracking

The visual object tracking is a fundamental task in computer vision which has importance
in many applications such as surveillance, autonomous vehicle or video analysis. This task,
the same way as others in the field, needs datasets from which create and evaluate the
algorithms. The datasets are also commonly associated with competitions that allow the
benchmarking of the developed algorithms. These benchmarks often provide the most
objective measure of performance and, for this reason, they are important guides for
research in the area of study.
The visual tracking datasets can be divided according to their tracking target, that is, if
they are focused on the tracking of a single object (SOT) or on the tracking of multiple
objects (MOT).

2.2.1 Multiple object tracking datasets

• MOT [7]
This dataset arises from the need to provide a general and standardized way to
create multi-object tracking algorithms, evaluate the results and present them. In
the recent past, the computer vision community has promoted several benchmarks
for the evaluation of numerous tasks such as object detection, optical flow or stereo
estimation that have advanced the state of the art in these areas. However, not
so much effort has been made in the standardization of the evaluation of multiple
target tracking.
As many other datasets it is associated with a challenge, the MOTChallenge. With
this challenge the organizers try to create a unified framework for the evaluation of
multi-target tracking. The dataset provides a collection of datasets, some of them
coming from datasets already in use and some from new challenging data. The given
data are video sequences.
The first release of the dataset named MOT15 was focused on multiple people
tracking, following the trend of other datasets. The pedestrian tracking is by far
the most studied case in the tracking context. In the next releases, more significant
classes generally seen in urban scenarios were added, like vehicles, bicycles or
motorbikes. The challenge has had three editions: MOT15, MOT16, MOT17. In
each of them the sequences were more challenging than the edition before. This

12

CHAPTER 2. State of the Art

can include different camera viewpoints and positions, more challenging weather
conditions (cloudy, night, sunny). For example, the mean crowd density in MOT16
is three times higher when compared to the first benchmark release.

Figure 2.3: An overview of the MOT16 dataset. Top: train sequences. Bottom: test
sequences [7]

• ALOV1

The Amsterdam Library of Ordinary Videos for tracking is another well-known visual
object tracking dataset in the field. It aims to cover as diverse circumstances as
possible including illuminations, transparency, zoom or low contrast, for example.
The dataset consists of 315 video sequences mainly obtained from YouTube with 64
different types of targets. The sequences are normally short with an average length
of 9.2 seconds and the total number of frames is 89364 (in ALOV300).

• CAVIAR [8]
The CAVIAR project (Context Aware Vision using Image-based Active Recognition)
from INRIA labs was dedicated to the development of algorithms that can describe
and understand video scenes. The scenes were associated with surveillance scen-
arios where people performed some different activities related with the surveillance
area. Those activities included walking, browsing, resting, leaving bags behind or
two people fighting. The annotations contain, apart from the bounding boxes loc-
ations, the head and feet positions, the body direction, among others. Refering to
the tracking task, the challenging problems include occlusions, appearance/disap-
pearance, appearance changing or similar object tracking, for example. In terms of
data size, the first set contains 28 video sequences and the second set contains 44
video sequences (Figure 2.4). It is a well-known dataset and is commonly used for
development and testing of tracking algorithms.

1ALOV Dataset

13

http://alov300pp.joomlafree.it/dataset-resources.html

CHAPTER 2. State of the Art

Figure 2.4: CAVIAR: From left to right, two frames (ground truth superposed) from
sequences of datasets 1 (entrance lobby of INRIA Labs) and 2 (hallway of a shopping
center) [8]

• BEHAVE [8]
Similarly to CAVIAR dataset, the BEHAVE Interactions Test Case Scenarios
dataset contains various video sequences with different scenarios where people
perform different interactions among which are walk together, meet or split (Figure
2.5). The annotations include labels in case of interactions. Proposed for behavior
analysis of interacing groups, this dataset was also used for other purposes like the
validation of visual tracking algorithms that consider occlusions or fast and varying
motion of objects.

Figure 2.5: BEHAVE: Two snapshots of sequences, with the ground truth bounding boxes
of the objects to track [8]

• PETS [8]
The International Workshop on Performance Evaluation of Tracking and Surveil-
lance organizes a visual tracking competition with different objectives on every edi-
tion starting from 2000. In 20132, two of the objectives were the tracking and
counting of people in crowds to estimate the density and detecting events by crowd
analysis. As BEHAVE or CAVIAR, PETS datasets are very popular among the

2PETS 2013

14

http://www.cvg.reading.ac.uk/PETS2013/index.html

CHAPTER 2. State of the Art

computer vision community. The latest PETS edition took place in 20173 and
continued the evaluation theme of on-board surveillance systems for protection of
mobile critical assets started in PETS 2016 [9]. On this edition, the dataset in-
cluded sequences that adressed the protection of trucks (Figure 2.6) or vessels at
sea, among others.

Figure 2.6: PETS 2016: A group of people detected and tracked walking by a truck [9]

• TrackingNet [10]
Most of the commented datasets are limited by its small size. Even more if they are
going to be used by data-hungry trackers based on deep learning. Currently, this
trackers rely on object detection datasets due to the lack of dedicated large-scale
tracking datasets. For this reason, the authors created TrackingNet, the first large-
scale dataset and benchmark for object tracking in the wild. TrackingNet provides
a total of 30643 video segments with more than 14 million dense bounding box
annotations (Figure 2.7). The contributions of this work include different techniques
to generate dense annotations from coarse ones and an extended baseline for state-
of-the-art trackers benchmarked on TrackingNet. Referring to the latter, the authors
affirm that pretraining deep models on this dataset can improve their performance
on other datasets by increasing their metrics by up to 1.7%.

3PETS 2017

15

http://openaccess.thecvf.com/content_cvpr_2017_workshops/w34/papers/Patino_PETS_2017_Dataset_CVPR_2017_paper.pdf

CHAPTER 2. State of the Art

Figure 2.7: TrackingNet: Comparison of current datasets size for object tracking [10]

2.2.2 Single object tracking datasets

• OTB [11]
There are several datasets for visual tracking in surveillance escenarios but often the
target objects are humans or cars of small size with a static background. Also, some
of the scenes are sometimes not annotated with bounding boxes which makes them
not very useful for the comparison of tracking algorithms. To facilitate the evalu-
ation task the authors built a tracking dataset with 50 fully annotated sequences in
the first release OTB50. Later, the dataset was extended with another 50 sequences
(OTB100).
Many factors can affect the tracking performance such as illumination variation or
occlussion, for this reason the authors categorized the sequences with 11 attributes
according to the occurrence of any of the selected factors (Figure 2.8).

16

CHAPTER 2. State of the Art

Figure 2.8: OTB: List of the attributes annotated to test sequences [11]

Apart from the data side, the authors also integrated most of the publicly available
trackers at the time to create a code library with uniform input and output formats
to facilitate large scale performance evaluation. Including TLD [5], MIL [24] or CPF
[46] making a total of 29 tracking algorithms.

• VOT [12]
The Visual Object Tracking initiative started in 2013 to address performance
evaluation of short-term visual object trackers. The short-term tracking means that
trackers are assumed to not be capable of performing successful re-detection after
the target is lost and they are therefore reset after such event. In all the previous
editions the challenge considers single-camera, single-target, model-free4, causal
trackers5, applied to short-term tracking. The main goal of VOT is establishing
datasets, evaluation measures and toolkits for visual object tracking (as many other
initiatives). The successive editions were made in conjunction with Computer Vision
Conferences like ICCV or ECCV. In 2015, a subchallenge focussed on tracking
in thermal infrared (TIR) was made due to the growing interest in this kind of
imaging. The 7th Visual Object Tracking Challenge VOT2019 workshop will be
held in conjunction with the ICCV2019. With respect to the previous edition in
2018, this challenge edition introduces the evaluation of trackers that use 4 channels
(RGB-IR and RGB-depth).

4The only training information provided is the bounding box in the first frame
5The tracker does not use any future frames, or frames prior to re-initialization, to infer the object

position in the current frame

17

CHAPTER 2. State of the Art

Referring to the data itself, the VOT datasets try to pay more attention to the
diversity of the data and the quality of the content and annotation with respect
to the quantity. For example, some datasets assign a global attribute to the entire
sequence when it is happenning in a fragment of it. VOT dataset tries to avoid
the assumption that the quality of the data is correlated with its size. The VOT
Challenge has focused on developing a methodology for automatic construction and
annotation of moderately large datasets from a large pool of sequences (Figure 2.9).
For example, they use sequences from datasets such as the OTB.

Figure 2.9: VOT: Images from the VOT2016 sequences (left column) that were replaced
by new sequences in VOT2017 (right column) [12]

• Need for Speed [47]
Visual object tracking algorithms have been usually evaluated at the canonical
frame rate of 30 frames per second but consumer devices with cameras such as
smartphones, tablets or drones are increasingly coming with higher frame rates.
This can take time for the visual object track community to adapt to what real time
means in terms of how faster frame rates affect the choice of a tracking algorithm.
The authors introduce Need for Speed (NfS) as the first higher frame rate video
dataset and benchmark for visual object tracking. The dataset consists of 100
videos captured with 240 FPS cameras from real world scenarios. The frames are
annotated with bounding boxes and the sequences are manually labelled with nine
visual attributes (occlusion, fast motion, etc.). The work also provides a ranking
of many recent state-of-the-art trackers according to their tracking accuracy and
real-time performance. One interesting conclusion the authors obtained is that at

18

CHAPTER 2. State of the Art

higher frame rates, simple trackers such as correlation filters outperform complex
methods based on deep learning. This must be taken into account when making the
choice of a tracking algorithm in practical applications. It needs to be a tradeoff
between the resources (available bandwidth, computation hardware, etc.) and the
required application accuracy.

2.3 Metrics for multiobject tracking evaluation

Apart from the datasets and algorithms used to solve a given task or problem it is
necessary to use a measure or set of measurements that provide an evaluation of the
performance of the obtained solution. In this section, the most important metrics used
for evaluating multiple object tracking are commented.
For the metrics used in this evaluation, the classification from MOT [7] is used as
reference. As it will be seen, the performance evaluation for MOT algorithms is not
so straightforward as the one presented for object detection.
The metrics for tracking can be classified into four subsets according to different attributes:

• Accuracy: this type of metrics tries to measure how accurately a tracking algorithm
tracks targets. From this type of metric the following two are briefly commented:
IDs [48] and MOTA [13].
The IDs metric measures the ID switches, i.e. given an id for an object it measures
how many times the MOT algorithm changes this id.
The Multiple Object Tracking Accuracy or MOTA is calculated as follows:

MOTA = 1−
∑

t (mt + fpt +mmet)∑
t gt

Figure 2.10: MOTA definition: where mt is the number of misdetections (FN), fpt is the
number of false positives (FP), mmet is the number of mismatches (IDs) and gt is the
sum of TP and FN (from [13])
(2.1)

19

CHAPTER 2. State of the Art

This combination of FP rate, FN rate and mismatch rate into a single number is, as
the authors indicate, “by far the most widely accepted evaluation measure for MOT”
[7] and it gives an intuitive measure on the tracker’s performance at detection and
trajectory. It does not take into account the precision of that detections’ location.

• Precision: in this metrics group the key factor is the description of the precision
that the tracked objects have using criteria such as bounding box overlap or distance.
The most important are MOTP [13], TDE [49] and OSPA [50]. MOTP, for example,
uses a ratio with the distance between the ground-truth detections locations d and
the associated detected locations c.

MOTP =
∑

i,t d
i
t∑

t ct

(2.2)

Figure 2.11: MOTP definition (from [13])

• Completeness: it refers to how completely the ground truth trajectories are
tracked. This set includes the results from Mostly Tracked (MT), Partly Tracked
(PT), Mostly Lost (ML) and Fragmentation (FM) [51].

• Robustness: this last type of metrics are linked to the recovering from occlusion.
Examples of this group are Recover from Short-term occlusion (RS) and Recover
from Long-term occlusion [52].

2.4 Object classification and detection using neural

networks

Much of the progress made in recent years on the classification field of computer vision
can be directly associated with the use of neural network architectures. The first big
step forward came in 2012 when AlexNet [53] beat all the proposals of the state of the
art at that time in the ImageNet challenge, ILSVRC. This competition of classification in
images is a reference in the computer vision community. AlexNet obtained a test error rate
of 15.3% compared to the previous year’s winner error which was 26.2%. This network

20

CHAPTER 2. State of the Art

follows the basic design archetype of convolutional neural networks: a series of convolution
layers, followed by max-pooling and activation layers before the final classification layers
(fully-connected). The next architectures are being used as blocks that serve as the basis
for numerous subsequent works (commonly known as backbone networks) in computer
vision and are briefly commented below:

• VGG [54]: this architecture from the VGG Group (University of Oxford) makes
the improvement over AlexNet by replacing larger kernel-sized filters of size 11 and
5 in the first layers with multiple 3x3 kernel filters one on top of each other. With
multiple stacked smaller kernels the depth of the network increases allowing it to
learn more complex features at a lower cost.

• MobileNet: is a simplified version of Xception [55] for mobile applications that is
currently behind the computer vision applications used on Google mobile devices.
A year after MobileNet v1, MobileNet v2 was introduced with a great improvement
respect to the previous version. For example, the new models used two times
fewer operations [14]. In terms of architecture, the main changes are the residual
connections and the expand/projection layers in the main building block, the
bottleneck residual block (see Figure 2.12).

Figure 2.12: MobileNet v2 [14]

• Inception [56]: this family of networks looks for wider networks, that is, with

21

CHAPTER 2. State of the Art

more intermediate operations between layers. The authors try to increase neural
networks, in terms of operations, without an increase in computational cost. They
try to reduce the still huge computational requirements of VGG specially in terms
of reducing the number of calculations done due to large width of convolutional
layers. Introducing different parallel convolution operations the density of extracted
information increases but also the computational costs. To solve the problem
they use 1x1 convolutions to reduce dimensionality while performing different
transformations in parallel. The resulting networks are simultaneously deep and
wide.
The first version of Inception, known as GoogLeNet, was the winner of the ILSVRC
in 2014. It was improved later with Inception v2 and v3. The last Inception v4
creates a hybrid with ResNet, known as Inception-ResNet [57].

• Res-Net [15]: this network tries to solve the problem that seems to appear when
adding layers to a network which is that it generally behaves worse. For this reason,
the authors propose that instead of trying to learn the hidden mapping of the input
x to the function H(x), learn the difference between the two, that is, the residue
(residual net). The original mapping is recasted into F(x) + x. This is a big change
at the time as it solves the problem of the vanishing gradients that the neural
networks have suffered until the date. In addition, it allows to create much deeper
networks, that is to say, with more layers, that will allow better results.

Figure 2.13: Residual learning block [15]

With the arrival of autonomous vehicles, intelligent video surveillance, face detection and
numerous emerging applications, faster and more accurate object detection systems are
increasingly in demand. This includes not only recognizing and classifying each object
in the image but also obtaining the location with its corresponding bounding box. This

22

CHAPTER 2. State of the Art

makes object detection significantly more complicated than traditional image classifica-
tion. However, the most successful object detection algorithms today are extensions of
image classification models. Usually, network architectures such as VGG or ResNet are
used as backbone networks as they perform the feature extraction. After the backbone,
the head of the network is stacked. The following object detection models follow the
commented scheme [58].

• Faster R-CNN [16]: is one of the current reference models and one of the last
detectors known as region-based from Girshick et al. This model basically work in
the following way: it uses some mechanism to extract regions from an image that
are probably an object and then classifies those proposed regions with a CNN. The
father of this model is the R-CNN and it was the real driver of this type of tech-
niques [59]. In the proposed regions obtained through an algorithm called Selective
Search the characteristics are extracted through a CNN by region and then those
regions are classified based on the characteristics. But its performance was slow.
This performance improves with Fast R-CNN [60] for two main reasons. First, the
CNN is applied over the whole image instead of over each region and then the re-
gions are obtained from the last map of characteristics of the network. Second, the
introduction of a Softmax activation layer simplifies classification. This mechanism
was faster and easier to train than R-CNN but there was still a bottleneck in the
generation of regions.
To solve it the RPN (Region Proposal Network) is introduced and added to the
Fast R-CNN to create Faster R-CNN. The RPN returns proposed regions based
on a score that refers to the probability that the bounding box is an object, the
objectness (Figure 2.14). And these regions are passed directly to the Fast R-CNN
to perform the classification.

23

CHAPTER 2. State of the Art

Figure 2.14: Region Proposal Network (from [16])

• Overfeat [61]: winner of the ILSVRC 2013 in location and detection of objects,
this work showed that training a convolutional network to simultaneously classify,
locate and detect objects in images can enhance the success both in classification,
detection and location. Subsequently, it has been replaced by SSD and YOLO for
tasks that require better performance in real time.

• SSD [2]: it provides great speed gains over Faster R-CNN by performing the phases
of generating regions of interest and subsequent classification jointly (Single Shot
MultiBox Detector). As a result you get a lot of bounding boxes which most of them
are not useful. By applying the techniques known as non-maximum suppression and
hard-negative mining the final detections are achieved.
In the MobileNet v2 paper [14] SSDLite is proposed which reduces parameter count
and computational cost with respect to regular SSD. To do so, the authors replace
all the regular convolutions with separable convolutions.

• R-FCN [62]: there are faster models than Faster R-CNN such as the Region-based
fully convolutional network or R-FCN. The authors try to solve the problems of SSD
for detecting small objects because the detection in SSD was done on the feature
map when features have low spatial resolution. This network tries to improve system
speed by maximizing shared computing and provides a good balance between speed
and accuracy.

• YOLO [17]: this model, also from the “single-shot networks family”, uses a different
approach with respect to the above. This network divides the image into regions
and predicts the bounding box and probabilities of each region. These are then

24

CHAPTER 2. State of the Art

weighted with the probabilities to obtain the definitive detections (Figure 2.15).
This performs, as the authors indicate, a hundred times faster than Fast R-CNN
maintaining a similar accuracy.

Figure 2.15: The YOLO v1 model (from [17])

The YOLO v2 model introduced big improvements: removed all fully connected
layers and used anchor boxes to predict bounding boxes, used batch normalization
on all convolutional layers and allowed for multi-scale training, among others. In
the next table, it can be seen how YOLO v2 is almost on a par with methods like
SSD or Faster R-CNN. However, it has a better balance between speed and accuracy
since it manages to work in some cases at 91 FPS (frames per second) when Faster
R-CNN barely reaches 10 FPS (see Table 3 in [28]).

Table 2.1: Accuracy comparison in test on PASCAL VOC 2012 (from [28])

The latest version of YOLO, called YOLOv3, achieves a 57,9 mAP on COCO test-
dev. The frame rate is lower than the obtained with YOLOv2 (with the same
image input size) but it still performs as a state-of-the-art real-time object detection
system, according to the author [63].

25

CHAPTER 2. State of the Art

2.5 Instance segmentation using neural networks

The machine vision community has improved the results obtained in object detection and
instance segmentation in a short period of time thanks, in large part, to powerful base
systems such as Faster R-CNN. This project will use the detections coming from instance
segmentation networks so this type of segmentation is going to be introduced, including
some recent instance segmentation models such as Mask R-CNN.
The instance segmentation requires the correct detection of all objects in the image along
with the precise segmentation of each instance. Thus, each pixel belongs to one of the
different categories without differentiating whether or not it is in a particular object. Se-
mantic segmentation differs from the instance segmentation in that in the first the labels
are class-aware whereas in the second the labels are instance-aware.
Driven by the effectiveness of the R-CNN family many of the methods proposed for in-
stance segmentation are based on segment proposals where segmentation precedes object
type recognition [64]. This has proved to be slower and more inaccurate than if the predic-
tion of object masks and class labels were done in parallel and separately. Li et al. propose
a system known as FCIS (Fully Convolutional Instance Segmentation) [65] that tries to
predict the output of a set of position-sensitive channels in a completely convolutional
way. These channels perform the tasks of class, bounding box and masks calculations
simultaneously which makes them faster. But it shows errors in instances that overlap
creating spurious edges systematically (Figure 2.16). Recently, Mask R-CNN [18] arose
to solve many of these problems and it has situated itself as a state-of-the-art technique
in segmentation of instances (see Figure 2.16)

Figure 2.16: Results obtained by FCIS and Mask R-CNN in test images in COCO Dataset
(from [18])

26

CHAPTER 2. State of the Art

Conceptually, Mask R-CNN adds a third stage to Faster R-CNN in which it obtains the
mask of the object. The first stage of RPN coincides with that of Faster R-CNN while in
the second stage it calculates, in parallel with the prediction of the class and the bounding
box, a binary mask for each region of interest (RoI). The generation of masks for each
class is done without the classes competing with each other, which allows to separate the
mask and class predictions from the object prediction. According to the authors, this
proves to be the key to obtain good results in the final segmentation.
Another key factor in the proper functioning of this method is the correct alignment
between the RoI and the extracted characteristics. This is usually done using RoIPool in
Fast R-CNN but introduces misalignments if the purpose is to segment rather than classify.
This is why Mask R-CNN authors create RoIAlign. To demonstrate the generality of the
proposed method the authors introduce the mask prediction branch on several existing
neural network architectures such as Faster R-CNN with ResNet, for example, and they
manage to surpass the winners of the 2015 and 2016 COCO Challenge segmentation,
MNC [66] and FCIS [65].

2.6 Datasets for object detection

The datasets used when implementing or testing a certain system are a key factor, since
they influence the performance that the system can achieve. They also allow for a
comparison of the solution found with respect to others that are part of the State of
the Art in the task that is carried out, since they are usually associated with some type
of competition. Therefore, it is necessary to correctly choose the dataset or datasets used
in a computer vision problem. Here are some of the most well-known datasets used in
many object detection applications:

• COCO (Common Objects in Context)6: it is a large scale dataset for detection
and segmentation of objects mainly. It contains 80 categories of objects and 330000
images of which more than 200000 are labeled. It is a dataset widely used between
the community and in congresses such as the ICCV7 (International Conference on
Computer Vision).

6COCO Dataset
7ICCV

27

http://cocodataset.org/##home
http://iccv2019.thecvf.com/

CHAPTER 2. State of the Art

• PASCAL VOC8: this dataset is linked with another challenge, the Pascal VOC
Challenges. The organizers ran this competition from 2005 to 2012. This project
provides standardised image datasets for object class recognition, segmentation or
action classification tasks.

• ImageNet9: it consists of 14 million images approximately and an average of 500
images per category. It organizes the well-known ILSVRC10 competition (ImageNet
Large Scale Visual Recognition Challenge) of location and detection of objects in
images and videos. It is one of the reference datasets in this area.

• KITTI11: centered in the autonomous driving field, this vision benchmark suite
introduces itself as a novel challenging real-world computer vision benchmark. The
main areas of interest include 3D/2D object detection, 3D tracking or stereo vision.
The type of objects for object detection available are focused in the ADAS field such
as car, van, truck, pedestrian or cyclist.

• Cityscapes12: this dataset focuses on semantic segmentation in urban scenes. It
contains 30 kinds of objects, 5000 images labeled with a fine label (more precise)
and 20000 labeled with a coarse label in 50 different cities.

• OpenImages13: it is a dataset of about 9 million images. This makes it the “largest
existing dataset with object location annotations”. It also has a bigger number of
classes than other challenges as the previously cited COCO and PASCAL VOC,
exactly 600 object classes. It must be mentioned that the label distributions are
usually skewed and with OpenImages it ocurres too. This means that there are
many more objects of some kinds than others.

There are many other datasets such as those from research centers like INRIA, MIT or
Caltech that contribute to the continuous improvement of the available data.

8PascalVOC Dataset
9ImageNet Dataset

10ILSVRC
11KITTI Dataset
12Cityscapes Dataset
13OpenImages Dataset

28

http://host.robots.ox.ac.uk/pascal/VOC/
http://www.image-net.org/
http://image-net.org/challenges/LSVRC/
http://www.cvlibs.net/datasets/kitti/
https://www.cityscapes-dataset.com/
https://storage.googleapis.com/openimages/web/index.html

CHAPTER 2. State of the Art

2.7 Metrics for object detection evaluation

Before going deeper with the most common metrics in the evaluation of object detection,
the basic concepts need to be mentioned. When talking about object detection, the
following definitions usually appear:

• Intersection over Union (IoU): also known as Jaccard index, this measure
evaluates the overlap between two bounding boxes, a predicted bounding box and
the ground truth bounding box. With this definition a prediction can be classified
into valid (TP) or invalid (FP). See Figure 2.17.

Figure 2.17: IoU definition (from link)

• True Positive (TP): is a correct detection. The condition is that the IoU must be
above or equal to a given threshold. This threshold is usually defined in percentage
to 50%, 75% or 95%. The results obtained by a system with these three thresholds
can define its behavior. For example, a given object detector can easily have good
results at a 0,5 IoU but not so easily at a 0,95 IoU.

• False Positive (FP): is a false detection. The IoU of the detection must be below
the threshold.

• False Negative (FN): is a detection not detected.

• True Negative (TN): it is not important but it is defined as all the possible
bounding boxes that were correctly not detected. It is not used in metrics.

It is very common to see that the metrics are established by a given challenge or associated
with it. It is the case of the Pascal VOC challenge that uses the precision/recall curve
and the average precision. These terms are now defined:

• Precision: is the proportion of correct positive predictions.

Precision = TP

TP + FP
(2.3)

29

https://github.com/rafaelpadilla/Object-Detection-Metrics##intersection-over-union-iou

CHAPTER 2. State of the Art

• Recall: is the proportion of positive predictions with respect to all positives.

Recall = TP

TP + FN
(2.4)

• Precision/Recall curve: this curve plots the performance of an object detector
as the confidence is changed for each object class. A good precision/recall curve
has a high precision while recall increases, i.e. if the confidence threshold varies, the
precision and recall stay high.

• Average precision (AP): the AP summarizes the shape of the previous curve
allowing to obtain the Area Under the Curve (AUC). This is done because of the
nature of the precision/recall curve in form of “zigzags” that does not permit an
easy comparative between different curves (detectors). This numeric metric is the
precision averaged across all recall values between 0 and 1.

Figure 2.18: AUC example: the areas from the trapezoids are 0,335, 0,15875 and 0,1375
respectively, giving an AUC score of 0,63125 (from link)

This average can be done in two main ways: 11-point interpolation or interpolating
all points.

– 11-point interpolation: is defined as the mean precision at a set of eleven
equally-spaced recall values ranging from 0 to 1 (Equation 2.5). The precision
at each recall value is obtained by taking the maximum precision measured
value for a method for which the corresponding recall is above r (Equation
2.6). This was the method used in Pascal VOC 2008.

30

https://classeval.wordpress.com/introduction/introduction-to-the-precision-recall-plot/

CHAPTER 2. State of the Art

AP = 1
11

∑
r∈{0,0.1,...,1}

ρinterp(r) (2.5)

ρinterp(r) = max
r̃:r̃≥r

ρ(r̃) (2.6)

– All points interpolation: in this case the mean precision is done interpol-
ating through all recall points (Equation 2.7). The precision at each level r is
obtained now taking the maximum precision which has a recall value greater
or equal than the recall value at the level r + 1 (Equation 2.8). This method
of interpolation is used in Pascal VOC metrics from the year 2010 onwards.

1∑
r=0

(rn+1 − rn)ρinterp(rn+1) (2.7)

ρinterp(rn+1) = max
r̃:r̃≥rn+1

ρ(r̃) (2.8)

In the next figure, these calculations are presented in a graphical way. With
this interpolation the AUC obtained is exact.

Figure 2.19: All points interpolation (from [19])

31

CHAPTER 2. State of the Art

2.8 Deep learning frameworks in computer vision

For the use of Deep Learning techniques numerous frameworks have emerged. A deep
learning framework allows us to build deep learning models more easily and quickly,
without getting into all the details of the underlying algorithms. In this section the most
important frameworks used for deep learning and computer vision tasks are introduced:

• Tensorflow [67]: open-source platform developed by Google, it offers a low-level
API that allows complete control over model designs and also a more simplified
high-level API with limited functionality. For debugging purposes, it provides the
Tensorboard tool which allows for the visualization of the model training, among
others.

• Keras [68]: provides a high-level API for the use of neural networks. Compared
to Tensorflow, it offers a more friendly and modular environment which is very
interesting when taking the first steps into the deep learning field. As the official
Keras documentation indicates, it “is a model-level library” and “it does not
handle low-level operations”. For this reason, Keras relies on a optimized tensor
manipulation library which serves as “backend engine”. It can run on different
backends such as Theano or Tensorflow.

• Caffe [69]: Convolutional Architecture for Fast Feature Embedding was originally
developed by the University of California (Berkeley). It supports many different
types of deep learning architectures orientated towards image classification and
image segmentation. It is written in C++ and provides a Python interface.
It is quite common to see this type of architecture in terms of programming
languages. Due to the speed of C++ compared to Python, C++ is commonly used
for deployment environments whereas Python is often used for quick prototyping
because of its user-friendly nature.

• PyTorch [70]: is a machine learning library created originally by the Facebook AI
research group for the Python programming language. Recently, it has been gaining
importance in the “frameworks’ battle”. This is mainly due to its tensor computing
functionality (similar to NumPy) that makes the programming easier.

32

Chapter 3

Used software infraestructure

Before going deeper inside the software implementation made to solve the task of
multiobject tracking it is necessary to introduce the software infraestructure needed
to accomplish it. The name selected for the component or application built is dl-
objecttracker. This component is completely written in Python. In particular, the Python
version used is the 2.7.12 mainly due to the compatibility with ROS. The component needs
a set of parts for its perfect operation which, due to the nature of the task, the majority
of them are related to the fields of computer vision, machine learning, deep learning and
programming. The following are the most important ones.

3.1 OpenCV

OpenCV1 (Open Source Computer Vision Library) is a computer vision and machine
learning software library originally developed by Intel. It was built to provide a common
infraestructure for computer vision applications (Figure 3.1). OpenCV is written in
optimized C and C++ and takes advantage of the IPP instructions of the Intel processors
which makes it highly efficient. OpenCV is a multiplatform library with versions for
GNU/Linux, Mac OS, Windows and Android.
It offers more than 500 functions that provide solutions for areas ranging from the object
recognition to the robotic vision. It includes computer vision algorithms from both classic
and recent periods (including machine learning and deep learning).
In this work, the version used of OpenCV is the 4.0.1.

1OpenCV

33

https://opencv.org/

CHAPTER 3. Software infraestructure

Figure 3.1: Canny edge detection using OpenCV (from [20])

3.2 ROS

The Robot Operating System (ROS2) is a framework to write robot software. Its aim is
to simplify the task of creating complex and robust robot behavior across different robotic
platforms (Figure 3.2). ROS was designed to enhance the collaboration between groups,
allowing to build solutions using collaborative robotics.
In this project, ROS is used to interface with standard USB cameras as a source of images
with the rospy client API for Python. To do so, it is necessary to install the usb cam

driver. For more information on the installation process visit my wiki3. ROS uses a re-
quest and response mechanism which interactuates between them using ROS messages.
The Publisher publishes a ROS topic which can be seen by a Subscriber. This can be
used to read from a V4L USB compatible camera (most of the commercial cameras are
compatible).
The rospy version used is 1.12.12 and the ROS version used is Kinetic Kame.

2ROS
3Using ROS

34

https://www.ros.org/
https://jderobot.org/Arodriguez-tfm#Week_24:_Introducing_ROS

CHAPTER 3. Software infraestructure

Figure 3.2: ROS-based snake robot (from [21])

JdeRobot4 is an opensource toolkit which facilitates the development in the fields of
robotics and computer vision. Mainly written in the C++ programming language it
provides a programming environment based on distributed components which can work
together in an asynchronous and concurrent way to build applications.

3.3 Deep learning frameworks

This project makes use of the deep learning potential for the object detection task and,
for this reason, deep learning frameworks are needed. In particular, the following will be
used: Tensorflow and Keras.
As introduced in section 2.8, Tensorflow is an open-source platform for machine learning
and that includes deep learning. It is often seen in deployment environments due to its
flexibility allowing for more complex optimizations that are necessary when working in
the real world. Keras can run on top of Tensorflow and other backends such as Theano
or CNTK. This framework is more focussed on prototyping and fast experimentation.
Both frameworks will be used as building blocks for the neural network module. The
object detection models selected in this project are going to run over the Python API of
Tensorflow and Keras. The first one is used to prepare the inputs to the neural network
models and to get the outputs (object detections) from the Tensorflow pre-trained object
detectors (see section 4.4.1). The Tensorflow models are saved using the pb5 format from
Google. The Protocol Buffers (commonly known as protobufs) define data structures in

4JdeRobot
5Protocol Buffers

35

https://jderobot.org/Main_Page
https://developers.google.com/protocol-buffers/?hl=en

CHAPTER 3. Software infraestructure

text files that can be loaded or saved using different programming languages. Keras is
used to build an SSD-VGG object detection architecture (see section 4.4.2) and obtain the
object detections. This framework uses the HDF5 6 file format for the data management.
The Tensorflow version used in this project is the 1.12.0 and the Keras version running is
the 2.1.1.

3.4 dlib library

Written in C++, dlib7 is a general purpose cross-platform library that follows the idea
of component-based software engineering, i.e. a set of independent software components.
This toolkit contains machine learning algorithms and tools to solve real world problems
in domains including robotics, embedded devices or mobile phones. For example, dlib has
an interesting face landmark detector. Landmarks in the face are basically key points in
the face that can help in tasks such as person recognition. In the automotive industry
landmarks are widely used to perform interior monitoring, i.e. to monitor the driver status.
In this project, the dlib library is used to perform object tracking. A correlation filter
carries out the tracking using scale pyramid representation to handle large-scale variations
in tracking [71]. The version used is the 19.17.0.

Figure 3.3: Facial landmarks with dlib, from the pre-trained model iBUG300-W [22]

6HDF5
7dlib

36

https://www.hdfgroup.org/solutions/hdf5/
http://dlib.net/

CHAPTER 3. Software infraestructure

3.5 Object Detection Metrics

To obtain the results or statistics from the project the Object-Detection-Metrics tool has
been used. This tool written in Python by Rafael Padilla (thanks for sharing) provides
the metrics used in the Pascal VOC object detection challenge: Precision x Recall curve
and Average Precision.
It offers a simple format to work with results from an object detection application. In
this case, it was used to obtain results from an object tracking application. Apart from
the metrics it has also options to control the IoU threshold or the bounding boxes format,
among others.
For installation and how-to-use instructions please refer to his GitHub repository.

3.6 NumPy and PyQt

Apart from the commented libraries and tools used for the project the following two need
to be mentioned.

• NumPy

NumPy is the fundamental Python package for scientific computing specially for
working with N-dimensional arrays such as matrixes. Images are basically matrixes
at the end so here comes the necessity of this package. The version used of NumPy
is the 1.15.4.

• PyQt

PyQt provides a Python interface to the Qt library. Qt is a group of C++ libraries
and development tools which include functionality to create graphical user interfaces,
networks or threads, among others. In this project, PyQt is used in the GUI module
allowing the visualization of the results and the user interaction. The PyQt version
used is the PyQt5.

37

https://github.com/rafaelpadilla/Object-Detection-Metrics
https://github.com/rafaelpadilla/Object-Detection-Metrics

CHAPTER 3. Software infraestructure

Figure 3.4: PyQt5 example: common widgets (from [23])

38

Chapter 4

Multiobject tracking using deep

learning and tracking by detection

In this chapter, the solution developed for solving the multiobject visual tracking problem
using deep learning and tracking-by-detection is explained.

4.1 Design

The main contribution of this work is the development of a visual tracking algorithm
capable of tracking different types of objects using deep learning techniques. To achieve
this task the selected tracking methodology is the tracking by detection. Our method
combines detections coming from an object detection neural network with classic visual
tracking techniques. With this combination, the final system provides a balance between
speed and accuracy. The detections from the neural networks are usually slower than a
pure tracking but more accurate and robust whereas the tracker results are often quick
but slightly more inaccurate.
A software application, named dl-objecttracker, has been designed and developed which
implements the proposed multiobject visual tracking algorithm. The module architecture
of this application is summarized in the diagram of Figure 4.1.

39

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

Figure 4.1: Modular architecture of the dl-objecttracker application

As it can be seen the system is built in a modularized way with different threads. There are
four threads: Camera, GUI, Network and Tracker. All of them are going to be discussed
more in depth on its corresponding sections of this chapter but the general workflow of
the system is going to be explained here (Figure 4.3).
First, the camera thread provides the images or frames to the rest of the threads, i.e.
it is in charge of the input to the system. The output of the system can be provided
using a mechanism of logging of the results per frame or using the GUI. If the GUI is
configured to show the graphical interface (on), the results are shown on the screen. But
if the graphical interface is not configured (off) the results are saved in JPG files.
The core of the computing is divided into the Network thread and the Tracker thread.
This Tracker has a buffer of frames of different size coming from the Camera to work on
delayed real-time. So, when the first frame is available it is given to the Network thread
which starts doing the inference, i.e. it starts detecting objects. Meanwhile, the buffer is
accumulating the incoming frames from the Camera until the detection from the Network
comes.
When the neural detection is available, the Tracker thread starts the tracking of the
detected objects inside the buffer of frames. The last frame in the buffer is used to feed

40

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

again the Network allowing for a synchronism between the neural detections and the
tracking in the frames. This timing can be observed more clearly in the Figure 4.2.

Figure 4.2: How the buffer is handled

It can be seen that given a complete buffer in Camera of size N, the first frame is assigned
to the Network and, when this frame is processed, a buffer of size N-2 is assigned to the
Tracker to be processed. The last frame of the given buffer is passed to the Network again.
This iterative mechanism continues in time ensuring that no frame is lost or ignored while
the neural processing takes place at its own pace, which can be much slower than the input
frame rate. After the first iteration, the length of the size passed to the Tracker is N-1.
The application has always a delay in output frames of 1 buffer (delayed real-time).
As commented before, the buffer changes its size in every iteration but we can not allow
the buffer to increase or decrease this size in an uncontrolled way because that will end
blocking the application. If the buffer is too big, the tracking will take more time and the
neural network will finish before the tracking is done. This is, the Network is underused.
In the other side, if the buffer is too small the Tracker will end its work before the inference
is done in the Network so the Tracker will have to wait much more time to the Network
to finish (Tracker underused). For these reasons a balance is needed.
The neural network inference time is approximately always the same so this time is taken
as reference. Then, the only part of this processing core where we can change is on
the Tracker side. The obtained solution consists of a Tracker which constantly measures
its frame rate (FPS) allowing it to slow down or speed up depending on the Tracker
processing speed.
Once all the frames have been processed the Network and Tracker thread stop. After
that, the results are logged into the YML files (a file for each frame) and the user can

41

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

close the application.
The general behavior of the application when running video sequences or raw frames was
presented. Nevertheless, it can also handle live stream videos coming from local cameras
connected. In this case, the logging of the results is not performed but the tracking by
detection scheme is the same.
The “main” is done in the update function of the Camera which is continuously called
by the Camera thread. As the system architecture is based in multiple threads, the
synchronism between them is crucial. Because of this, the control of the application is
done taking into account the synchronism between all the threads, their internal status
and variables.

Figure 4.3: The control flow

The application is configurable using an YML file (objecttracker.yml). For the instruc-
tions on how to run the application please refer to the wiki of the project (see 1.4).
In the next sections the implementation of each thread of the system is explained, includ-
ing the available configuration modifications.

42

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

4.2 Video source module

The Camera module provides the input images to the rest of the system. These images
can be obtained using four different sources:

• Local camera (with OpenCV): the Camera can read from a local camera using
the OpenCV routine VideoCapture indicating the device number of the camera.

• Local camera (with ROS): the Camera can use ROS to read from the camera
device. In order to do so, the user needs to launch a terminal and type roslaunch

usb cam.launch. This will publish a ROS topic /usb cam/image raw that can be
subscribed by the Camera module and it will start reading frames from the device.
For more information about the launching process please refer to the wiki of the
project1.

• Local video: to read from a local video the OpenCV routine VideoCapture is also
used but indicating the video path in the configuration file.

• Local image files: the path containing all the image files is required to be passed
to VideoCapture. This video source is very useful because most of the datasets are
provided as sequences of frames instead of videos. And it can avoid problems such
as creating sequences of videos with the wrong duration or frame rate.

The Camera thread source and options can be modified at the configuration file. The
source is selected at ObjectTracker->Source. After that the user is required to indic-
ate the device number ObjectTracker->Local->DeviceNo if using a local camera with
OpenCV, the video path ObjectTracker->Video->Path if using a local video or the im-
ages path ObjectTracker->Images->Path when using local image files.
The user needs to modify the usb cam.launch to change the Camera configuration when
using ROS.
Before being sent to other threads the image is rescaled according to the neural network
input size. It continues all the process with this standard size. When the final results
are obtained this scaling is taken into account to rescale again the coordinates of the
detections or trackers with respect to the original image size.
Apart from providing images the Camera thread also controls the flow of the application.

1Wiki: ROS

43

https://jderobot.org/Arodriguez-tfm#Week_24:_Introducing_ROS

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

It has been implemented in this way because the application offers the option of not hav-
ing GUI. In the first versions of the project the control of the application (the “main”)
was implemented in the GUI thread but when the no-GUI option was added this was
moved to the Camera thread.

4.3 GUI module

The GUI module provides the interface with the human user and, as commented before,
is optional. It was implemented using the tools provided by PyQt5, in particular with
the packages QtGui, QtCore and QtWidgets.
The graphical interface has four windows and two buttons. The top-left window shows the
input frames in real-time while the top-right one shows the final results. The intermediate
results obtained from the Network and the Tracker will be provided at the bottom part
of the display. The application with GUI has two modes with its respective buttons:
“run continuous” and “run now”. In the first one, the application runs continuously until
it finishes the processing (the program finishes depending on the image source). In the
second one, the user can push the Run now button to make a single Network detection
on the current frame and to continue the tracking from that frame onward.

Figure 4.4: The graphical user interface of the dl-objecttracker application

44

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

4.4 Neural Network module

The Network module is tasked with the object detections in the images, which feed the
Tracker on every iteration. It supports Tensorflow and Keras object detection models.
The Tensorflow models can be obtained from the Tensorflow detection model zoo2 and
include SSD and R-CNN detectors. The Keras models are limited to SSD architectures
and it can be obtained from this set3.
The datasets on which the model was trained need to be specified to assign the labels
to the objects. The supported labels include the VOC, COCO, KITTI, OID and PET
datasets.
As it ocurred with the Camera module, the Network module has configurable options
available in objecttracker.yml:

• Framework: Keras or Tensorflow

• Model: the model file

• Dataset: VOC/COCO/KITTI/OID/PET

• Input size: this input size can be modified depending on the selected model. Some
models do not allow to change the input image size

• Confidence: the confidence threshold for the detections obtained. If a detection
obtains a confidence value below that detection is discarded

The Network thread basically receives an image (previously resized) and performs the in-
ference. As a result it outputs the detections obtained in the image (if any) and it draws
these detections in form of bounding boxes containing also the label and the confidence
value.
The logging of the Network and Tracker results are optional and it can be changed at the
YML configuration file in ObjectTracker->Logger->Status. These results are logged in
the logNetwork and logTracker functions respectively.

2Tensorflow detection model zoo
3Keras models

45

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/pierluigiferrari/ssd_keras##download-the-original-trained-model-weights

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

4.4.1 Tensorflow models

These models are obtained from the Tensorflow detection model zoo which provides
models for inference out-of-the-box, i.e. to be directly used. Among the available models
only some of them were tested for its use in the project. The pre-trained models used were
trained on the COCO dataset because the available classes in this dataset were considered
enough for the type of objects that can be seen in the tracking sequences used.
In the table 4.1, the Tensorflow models performance can be seen:

Model name Speed (FPS) COCO mAP
ssd mobilenet v2 coco 32 22

faster rcnn inception v2 coco 17 28
mask rcnn inception v2 coco 13 25

Table 4.1: Tensorflow models performance (from Tensorflow detection model zoo)

The COCO mAP numbers here are evaluated on COCO 14 minival set using the MSCOCO
evaluation protocol. The reported running time in ms is measured for 600x600 images
(including all pre and post-processing). The AP scores are averaged over multiple
Intersection over Union (IoU) values as the MSCOCO evaluation protocol indicates. As
the authors say, “these timings depend highly on one’s specific hardware configuration
(performed using an Nvidia GeForce GTX TITAN X card) and should be treated more
as relative timings in many cases”. However, some characteristics of each model can be
extracted in terms of speed and accuracy. As expected, the R-CNN models achieve better
accuracy while performing a little slower with respect to SSD.

4.4.1.1 SSD MobileNetV2

This SSD implementation uses MobileNetV2 as backbone. As commented in section 2.4,
MobileNetV2 is a network proposed to work on mobile devices, this can be interesting to
the project because of the hardware limits (it needs to work on CPU only).

4.4.1.2 Faster R-CNN InceptionV2

This region-based model was discussed in section 2.4. The implementation uses
InceptionV2 [72] as the feature extractor. This backbone follows the idea of its predecesor

46

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md##coco-trained-models
http://cocodataset.org/#detection-eval
http://cocodataset.org/#detection-eval

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

(InceptionV1) and adds two main ideas: reduce the representational bottleneck and use
smart factorization methods. Refering to the first one, the intuition is that neural networks
usually perform better when the convolutions do not alter the dimensions of the input in
a drastical way (may cause loss of information). To solve this problem they expand the
inception module making it wider (instead of deeper). Apart from that, the convolutions
are made more efficient in terms of computational complexity. The authors propose
factorizing the 5x5 convolution into two 3x3 convolution operations making it 2,78 times
faster, among other improvements.

4.4.1.3 Mask R-CNN InceptionV2

This state-of-the-art instance segmentation network is used as object detection network
because it offers the bounding boxes locations, apart from the instance masks (Figure
4.5). The selected implementation also makes use of InceptionV2 as backbone.

Figure 4.5: First tests with Mask R-CNN using live video

4.4.2 Keras models

The Keras network is a Keras port of the SSD model architecture introduced by Wei Liu
et al. in [2] from SSD-Keras4. The repository offers pre-trained models and allows the
model training from scratch. The base network architecture used is VGG (see section
2.4). The pre-trained models used were trained on the PASCAL VOC dataset. The pre-
trained models available included COCO and ILSVRC datasets but PASCAL was selected
because COCO dataset was already used in the previous SSD model in Tensorflow. In
the next table, it can be seen the author reported performance [73]:

4SSD-Keras

47

https://github.com/pierluigiferrari/ssd_keras

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

Model name Speed (FPS) VOC2007 test mAP @ 0,5
SSD300 VOC0712 39 77,5
SSD512 VOC0712 20 79,8

Table 4.2: Keras models performance. Evaluated in the official Pascal VOC 2012 test
server using an NVIDIA GeForce GTX 1070 mobile.

The authors claim that their implementation performs slightly better than the original
SSD implementation in Caffe5.

4.5 Tracker module

The Tracker module is the core of the project and therefore it is going to be explained
more in depth. As previously commented, the Tracker receives an input detection com-
ing from the Network module and performs the multiobject visual tracking over a frame
buffer of variable size following a tracking by detection scheme. This hybrid tracker it is
intended to show the advantages of the tracking by detection with deep learning over a
pure neural network tracking or a pure classic feature tracking.
The tracker can work in three operating regimes: slow, normal and fast. The calculation
of this regime is performed using an internal buffer of FPS rates of size 3. The length
selected is due to the fact that the tracker is required to respond quickly to changes in
its velocity avoiding slowing down or speeding up in an excessive way. The tracker speed
calculation is explained in Algorithm 1. Three frame rate thresholds are established to
distinguish between a tracker which is behaving in a “normal way” or a slower or a faster
processing time.
If the tracker is performing slower than normal the next three frames that are to be
tracked are discarded from the buffer in the imageToTrack function. In the other hand, if
the tracker is going too fast it is slowed down in getOutputImage by waiting some frames
to return the image to be output.
With this mechanism the buffer does not increase or decrease too much in size allowing
a more stable behavior and a good synchronization between the threads. This dynamic
calculation allows the tracking to behave differently depending on the operating regime in

5SSD-Caffe

48

https://github.com/weiliu89/caffe/tree/ssd

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

which it is on each instant. However, it will be seen in the next chapter that this regime
is very dependent on the tracker that is being used and its own performance.

Algorithm 1 Tracker speed mode
Inputs: averageFPS, lastFPSBuffer, trackerSlow, trackerFast, counterSlow, counterFast
Output: trackerSpeedMode
procedure trackerSpeedMode

if not 0 in lastFPSBuffer and averageFPS <10 then

counterSlow + 1
if counterSlow == 3 then

counterSlow = 0
trackerSlow = True

end if

else if not 0 in lastFPSBuffer and 10 <averageFPS <25 then

trackerSlow = False
trackerFast = False

else if averageFPS >25 and counterFast <1 then

counterFast + 1
trackerFast = True

end if

end procedure

4.5.1 Confidence in tracking

To check if the obtained tracking is acceptable or not the confidence value is used. The
two libraries available to perform the tracking offer this feature so it is used with small
differences. OpenCV returns a boolean value to show the confidence in the tracking, and
that is directly used to threshold the tracking results. In the case of dlib, it returns a
numerical value. The dlib threshold value was established to 7 based on examples of other
works and some experiments.

49

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

4.5.2 OpenCV trackers

The tracking will be performed using several already built tracking implementations of
two libraries: OpenCV and dlib. This will also allow for a good comparative between
them that can lead us to select the preferred option for the tracking algorithm.
OpenCV is known for the great variety of algorithms for which it provides implemented
solutions, one of them is tracking. Tracking libraries are included in the OpenCV extra
modules (opencv contrib).
The tested OpenCV trackers include BOOSTING, MIL, MEDIANFLOW, TLD, KCF,
MOSSE and CSRT (in release order). They are now introduced:

• BOOSTING [74]: based on an online version of AdaBoost, the tracker is trained
at runtime with positive and negative examples of the object to track. An initial
bounding box needs to be provided by the user or other object detection algorithm.
The classifier looks over the pixel neighborhood of a previous location to find the
new location. The classifier is constantly updated with these new positives.

• MIL [24]: the Multiple Instance Learning algorithm tries to solve the problem of
learning an adaptive appearance model for object tracking. To achieve this, the
authors train a discriminative classifier online to separate the object to track from
the background, i.e. positive and negative examples are extracted from the frame
(Figure 4.6). Similarly to the Boosting algorithm, the model searches inside of the
window of the old location. It obtains a probability map with most probably new
location of the object and updates the tracker model.

50

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

Figure 4.6: Updating a discriminative appearance model: (A) using a single positive
image patch. (B) using several positive image patches. (C) using one positive bag of
several image patches (from [24])

• MEDIANFLOW [25]: the Median Flow algorithm introduced a novel method for
tracking failure detection based on the Forward-Backward error. This basically
consists of performing the tracking forward and backward in time in a given frame
and measure the discrepances between trajectories (see Figure 4.7). The authors
claim that these discrepances are highly correlated with real tracking failures.

Figure 4.7: The forward-backward error in Point 2 (from [25])

51

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

• TLD [75]: in the original paper on which is based the implementation, the authors
investigate the long-term object tracking and propose a novel framework that
descomposes this type of tracking into tracking, learning and detection (TLD). The
tracker based on Median Flow follows the object in every frame. The detector is
composed by a patch variance module, followed by an ensemble classifier and finally
a Nearest Neighbor classifier. The function of this detector is to correct the tracker
if necessary. The learning step estimates the errors of the detector and updates it
using a novel method called P-N learning.

• KCF [76]: the Kernelized Correlation Filter is a tracking framework that utilizes
properties of circulant matrix to enhance the processing speed. The authors
observed that the translated and scaled patches used to train discriminative
classifiers contain redundancies and the resulting data matrix from these patches
is circulant. With kernel regression as classification method they derive the KCF
tracking.

• MOSSE [26]: correlation filters can track complex objects in common tracking
scenarios that may include rotations, occlusions or other distractions at high frame
rates. The Minimum Output Sum of Squared Error filter is another type of
correlation filter. Filter based trackers model the appearance of objects using filters
trained in example images (Figure 4.8). With a given initial target in the first frame
the tracking and the filter training start to work together. The idea behind MOSSE
is an optimization problem, given a set of training images fi and training outputs gi,
MOSSE finds a filter H that minimizes the sum of squared error between the actual
output of the convolution and the desired output of the convolution (see Formula
4.1).

min
H∗

∑
i

|Fi �H∗ −Gi|2 (4.1)

52

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

Figure 4.8: Comparison of the output peaks produced by different correlation filters (from
[26])

• CSRT [27]: the CSRT tracker is based on the paper Discriminative Correlation
Filter with Channel and Spatial Reliability. Here the authors introduce the channel
and spatial reliability concepts to DCF tracking to improve the filter update and
the tracking process (Figure 4.9). The spatial information is used to restrict
the searching to the parts suitable for tracking. In the other hand, the channel
information aims to reduce the noise of the weighted-averaged filter response.

Figure 4.9: Overview of the CSR-DCF approach (from [27])

In the next chapter, some experiments are performed to put into practice the advantages
and disadvantages of each OpenCV tracker. Furthermore, the dlib tracking will also be

53

CHAPTER 4. Multiobject tracking using deep learning and tracking by detection

discussed allowing for a comparison between all the proposals and allowing us to select
the best tracker option.

4.5.3 dlib trackers

In chapter 2 the dlib library was introduced as a set of independent software components
that provide different utilities, one of them is tracking. The dlib.correlation tracker

is going to be used for this project. As its name indicates, it is another implementation of
a correlation filter for tracking which has been widely used. This tool is an implementation
of the method described in [71].
In the proposed solution, the authors are centered in solving the challenging problem of
handling large scale variations in visual object tracking. They propose a method for a
robust scale estimation in a tracking by detection framework, as it is the case in this
project. To do so the learning of discriminative correlation filters is based on a scale
pyramid representation.

54

Chapter 5

Experiments

In this chapter, the quality of the Network and Tracker modules is characterized. First,
the available neural networks will be evaluated with a common tracker to select the final
neural network used in the dl-objecttracker application. Second, several trackers imple-
mentations will be also characterized using the selected neural network. The configurable
parameters will be adjusted to select the best performing values. This will give us the
best combination of Network and Tracker modules for the final dl-objecttracker, which
will also be experimentally validated.

5.1 Experimental setup

The experiments were performed on a laptop PC with Intel R© CoreTM i7-4510U CPU @
2.00GHz x 4 and no GPU acceleration.
As commented in section 3.5, the Object Detection Metrics tool was used to compute the
following metrics: precision, recall and AP. It is necessary to mention that the tool was
slightly modified to provide the TP, FP and GT numbers. The speed measuremenents
are obtained directly from the dl-objecttracker for both the Network and the Tracker
modules.
The selected dataset for evaluating the tracking application and its modules is the
MOT17Det [7] train set (see Table 3). The results were not evaluated on the test set
due to the fact that the official web of the challenge does not include in the provided
data the annotated ground truth of the test set. To obtain the ground truth from this
dataset and adapt it to the metrics tool a small Python script was developed in this

55

CHAPTER 5. Experiments

project following the official reference [7]. However, some modifications were done to
allow the compatibility between the metrics tool and the labels of the detections (the
neural networks are trained in COCO or PASCAL) (see Table 5.1). Following the official
MOT interpretation of ground truth detection files, the final ground truth obtained from
the train set only includes the person class.

ID Label in MOT gt Label in our gt

1 Pedestrian Person
2 Person on vehicle Car
3 Car Car
4 Bicycle Bicycle
5 Motorbike Motorbike
6 Non motorized vehicle Bicycle
7 Static person Person
8 Distractor -
9 Occluder -
10 Occluder on the ground -
11 Occluder full -
12 Reflection -

Table 5.1: Label equivalences with MOT ground truth in our ground truth

5.2 Neural network selection

The correct selection of a neural network model for object detection is crucial in this
project as it provides the previous detections the tracker module needs to track. As
commented in section 4.4, the avalable neural networks models which have been integrated
into dl-objecttracker are:

• SSD MobileNetV2, pretrained on COCO (Tensorflow)

• Faster R-CNN InceptionV2, pretrained on COCO (Tensorflow)

• Mask R-CNN InceptionV2, pretrained on COCO (Tensorflow)

• SSD VGG, pretrained on Pascal VOC (Keras)

Three sequences from the MOT17Det dataset were selected to evaluate the performance
of the models. The reason is that these sequences represent most of the possible difficulties
that may appear in multiple object tracking tasks such as occlusions, new targets, fixed

56

CHAPTER 5. Experiments

camera, big motion from frame to frame, etc. The selected sequences are MOT17-05,
MOT17-09 and MOT17-11 (Figure 5.1).

Figure 5.1: MOT17Det train set samples: left image from MOT17-05, center image from
MOT17-09 and right image from MOT17-11

The MOSSE tracker was selected as regular tracker and the threshold for all neural net-
work detection was fixed to 0,6. This was done to allow a fair comparison between the
models.
The MOT17-09 sequence has a fixed camera with several pedestrians walking in groups or
alone. In this sequence, the tracking may find fast motion difficulties as well as continuous
people coming in and out from the scene. To evaluate the performance in that sequence,
two input image sizes were selected due to the Keras SSD-VGG fixed image input size.
From the table 5.2, it can be seen that the maximum AP value is obtained by the Faster
R-CNN using 512x512 whereas Mask R-CNN gets the best AP score for 300x300 images.
As expected, the R-CNN detectors obtain the best accuracy. However, this accuracy is
not linked with the speed in the object detection. The SSD MobileNetV2 gets the best
speed rate in both experiments.

AP @ 0,5 (%) FPS Net

SSD MobileNetV2 16,06 5,282
Faster R-CNN InceptionV2 31,03 1,026
Mask R-CNN InceptionV2 27,89 0,286

SSD VGG 512 23,76 0,339

Table 5.2: Experiments on MOT17-09 sequence with 512x512 images

57

CHAPTER 5. Experiments

AP @ 0,5 (%) FPS Net

SSD MobileNetV2 11,48 8,25
Faster R-CNN InceptionV2 24,36 1,067
Mask R-CNN InceptionV2 26,25 0,292

SSD VGG 300 19,08 0,988

Table 5.3: Experiments on MOT17-09 sequence with 300x300 images

The influence of the image input size in the processing speed and the accuracy of the
models is clear. The smaller the input size of the image the faster the detections are
obtained. In the opposite way, with a bigger input image the final AP result is better.
This trend will be confirmed in following experiments.

The SSD-VGG models were discarded from other experiments due to its lack of flexibility
about the input image size. In the table 5.4 it can be observed the different performances
for 800x800 images of the region-based object detectors and the single-shot object
detectors. As it ocurred with smaller image input sizes, the region-based models have
a better AP performance almost doubling the AP obtained by the SSD (in the case of
Mask R-CNN). For this reason, the SSD MobileNet V2 was eliminated from the neural
net selection procedure despite being the fastest.

AP @ 0,5 (%) FPS Net

SSD MobileNetV2 17,13 7,372
Faster R-CNN InceptionV2 32,00 0,981
Mask R-CNN InceptionV2 34,23 0,272

Table 5.4: Experiments with 800x800 images

The final experiments were done with Faster R-CNN and Mask R-CNN in MOT17-09,
MOT17-11 and MOT17-05. The last two sequences have a common characteristic which
is that the camera is in motion. Thus, the sequences are enumerated in order of increasing
degree of motion, starting from MOT-09 to MOT-05.

AP @ 0,5 (%) MOT17-09 MOT17-11 MOT17-05

Faster R-CNN InceptionV2 35,25 26,21 19,51
Mask R-CNN InceptionV2 31,74 26,44 12,98

Table 5.5: Neural network experiments with an image input size of 1000x1000

58

CHAPTER 5. Experiments

From these experiments on table 5.5, it can be seen that the final average precision is
similar in the sequence MOT17-11, however, the use of Faster R-CNN model outperforms
Mask R-CNN in the other two sequences. These AP scores can be related with the frame
rate obtained from each neural network which is about 0,9 FPS for Faster R-CNN and 0,2
FPS for Mask R-CNN. A higher speed can help the tracking procedure to be “refreshed”
more frequently which may lead to better performance on sequences with varying motion
between frames as it occurs on the evaluated sequences.
In the figure 5.2 it can be observed an example of the detections obtained with Faster
R-CNN. Generally, the results seem to be pretty accurate but they include some false
positives such as the person assigned to a confidence of the 69%.
Given these cuantitative results, the final neural network chosen to perform the object
detection in dl-objecttracker is Faster R-CNN InceptionV2.

Figure 5.2: Faster R-CNN Inception V2 object detections on MOT17-09

5.3 Tracker’s performance

Once the neural network was selected, it is time to evaluate the performance of the second
module involved in the core of the multiobject tracking application, the tracking module.
The following experiments were done on the same sequences as the Network experiments.
In this case, the default configuration includes Faster R-CNN as neural network with a
confidence threshold for detection set to 0,6. The confidence of the tracker is being used if
no comment is made on it. This confidence is going to be modified later in this section to

59

CHAPTER 5. Experiments

see its influence on the results. The following tracking algorithms were evaluated: KCF,
BOOSTING, MIL, TLD, MEDIANFLOW, CSRT, MOSSE and CF-dlib (section 4.5).

AP @ 0,5 (%) FPS Tracker

KCF 23,07 6,39
BOOSTING 13,06 4,78

MIL 15,29 2,21
TLD 8,38 2,22

MEDIANFLOW 32,13 12,01
CSRT 11,78 2,78

MOSSE 34,60 47,07
CF-dlib 27,99 9,51

Table 5.6: Tracker experiments on MOT17-09 sequence with 1000x1000 images

This experiment provides clear results on the performance of the trackers in the MOT17-
09 sequence. The KCF, MEDIANFLOW, MOSSE and CF-dlib outperform in a significant
way the accuracy of the rest of the trackers (in terms of AP). A good AP seems to be
related with a good frame rate in the tracking.
The scheme of evaluating the performance with sequences of increasing difficulty was
followed, the second experiment was performed with the MOT17-11 sequence and its
results are shown in table 5.7.

AP @ 0,5 (%) FPS Tracker

KCF 19,17 4,7
MEDIANFLOW 27,76 12,88

MOSSE 26,23 33,56
CF-dlib 25,49 9,95

Table 5.7: Tracker experiments on MOT17-11 sequence with 1000x1000 images

The results in this sequence seem to indicate that the KCF tracker is not adecuated for the
task. Its results in both AP and the speed measurements are below the overall average.

AP @ 0,5 (%) FPS Tracker

MEDIANFLOW 24,01 13,05
MOSSE 16,15 18,14
CF-dlib 23,97 9,51

Table 5.8: Tracker experiments on MOT17-05 sequence with 1000x1000 images

60

CHAPTER 5. Experiments

The results from table 5.7 led us to three final tracker options: MEDIANFLOW, MOSSE
and CF-dlib. In the experiment on MOT17-05 shown on table 5.8, MEDIANFLOW
gets the overall best performance. It achieves the highest AP score of the three tracker
options and the second faster tracking. The faster tracker is MOSSE, following the trend
of previous experiments.

5.3.1 Confidence in tracking

In section 4.5.1, the mechanism of confidence of the tracker was introduced. The tracker
itself continuously checks if the tracking obtained for each object is reliable enough. In
this section, the importance of this parameter is going to be evaluated. To do so, the
performance of the three best tracking algorithms is measured when the confidence is
taken into account and in the opposite case. The selected sequences are MOT17-05 and
MOT17-09 with a frame size of 500x500 and the neural network used in both cases is
Faster R-CNN InceptionV2.

AP tracker on @ 0,5 (%) AP tracker off @ 0,5 (%)

MEDIANFLOW 36,09 32,35
MOSSE 18,60 10,33
CF-dlib 23,74 30,06

Table 5.9: Confidence influence on tracking performance on MOT17-05

AP tracker on @ 0,5 (%) AP tracker off @ 0,5 (%)

MEDIANFLOW 37,80 36,17
MOSSE 30,16 21,83
CF-dlib 28,06 31,60

Table 5.10: Confidence influence on tracking performance on MOT17-09

In the tables 5.9 and 5.10 the results seem to indicate that the influence of taking into
account the confidence parameter with OpenCV trackers is positive. However, it occurs
the opposite for the dlib tracking with CF.
The MEDIANFLOW tracker was finally selected to perform the tracking in the dl-
objecttracker application given the performace shown in the previous experiments. Figure
5.3 shows an example of the tracking using that tracking algorithm.

61

CHAPTER 5. Experiments

Finally, the image input size was modified to check which size was best appropriate to
our problem. In table 1 of the Annex, the image size of 400x400 gets the best balance
between speed and accuracy for the tracking task. Given the tracker and the image
size, the threshold for the confidence of the detections from the object detection neural
networks was evaluated. Using values ranging from 0,3 to 0,7 the experimental threshold
selected was 0,5.

Figure 5.3: Medianflow multiobject tracking on MOT17-05 (selected frames are not
sequential)

5.3.2 GOTURN tracking

The GOTURN (Generic Object Tracking Using Regression Networks) is a deep learning
based tracking algorithm available in OpenCV which learns the motion of the object in
an offline manner. Many real-time trackers rely on online learning that is usually much
faster than a deep learning based tracking solution. The authors claim in the original pa-
per [44] that their system is “the first neural-network tracker that learns to track generic
objects at 100 FPS” (using GPU acceleration with an Nvidia GTX 680). However, when
using only a CPU the tracker runs at 2,7 FPS according to the authors. This was the
main reason to discard this tracker for the project. Apart from the speed side, in some
tests performed using live video the tracking results were not specially good as it had
problems with occlusion and motion during the tracking.

62

CHAPTER 5. Experiments

5.4 Experimental validation of the final solution

After the unit test experiments, the dl-objecttracker application follows this configuration:

1. Neural network: Faster R-CNN InceptionV2, image input size 400x400, confidence
threshold 0,5

2. Tracker: MedianFlow using tracking confidence

Given this configuration, the whole application was evaluated on the complete train set
of MOT17Det to obtain the results of our final solution.

dl objecttracker AP @ 0,5 (%) FPS Net FPS Tracker

MOT17-02 11,59 0,93 31,4
MOT17-04 17,25 0,869 23,96
MOT17-05 36,53 0,98 37,28
MOT17-09 43,53 0,95 35,83
MOT17-10 23,26 0,943 36,18
MOT17-11 35,74 0,96 41,56
MOT17-13 14,04 0,941 42,01

Table 5.11: Final results on MOT17Det train set

The best results in terms of average precision occur in the MOT17-09 sequence, followed
by MOT17-11 and MOT17-05. This may indicate that the procedure used influences the
results giving the better scores in the sequences used to evaluate the performance of the
Tracker and Network module. However, from table 2 and table 3 it can be observed that
the three mentioned sequences have in common that they have a small number of total
ground truth ocurrences. It can be easier for the developed system to get good results in
this type of sequences. The results indicate that the developed application performs best
on sequences with lowly crowded densities.
Refering to the speed of the developed application, the object detection in the neural
network is returned with a stable frame rate of about 1 FPS and the tracker runs above
20 FPS in every sequence.

63

Chapter 6

Conclusions

This chapter summarizes the main contributions of this work. Possible lines of future
work are also outlined.
This master thesis studied the use of deep learning techniques to build a multiobject
visual tracking system using the tracking-by-detection scheme. To solve this task we
have designed a modular application composed of a Neural Network module, a Classic
Tracker module, a Camera module and a GUI module. The first module provides object
detections using neural network models. These detections are handled by the Tracker
module to track objects inside a buffer of frames before the new detections come. The
application works in delayed real-time. The Camera module controls the general flow of
the application which includes the logging mechanism and the user interface (GUI).
The Tracker module can work on three operating regimes depending on the frame rate of
the tracking at each time: slow, normal and fast. This allows the tracking to adapt its
speed to the processing difficulties (different image sizes, occlusions, appearance changes,
...). It may also help to adapt the tracking processing speed to the hardware on which it
is being run. Refering to the user side, the project application allows the user to change
many configuration options. This feature helps, for example, the quick tests of neural
networks or trackers for multiobject tracking.
Once the multiobject tracking system was developed, the first three objectives of this
project were fullfilled:

1. Development of an object detector using deep learning

2. Development of a visual tracking module

3. Combination of neural object detection and object tracking in a single software

64

CHAPTER 6. Conclusions

component

After this, the last objective was accomplished as the application was evaluated on a well-
known international multiobject tracking dataset (MOT17Det), allowing us to choose the
best configuration based on some experiments. This included the selection of the best
neural network model, the best tracking algorithm and other parameters such as the
confidence thresholds or the image input size (section 5.4). The results obtained allowed
us to extract the following conclusions:

• Region-based object detection neural networks obtain better accuracy than single-
shot based ones. They can be used to perform inference on CPU at low frame
rates.

• MedianFlow seems to be the best tracker available in the OpenCV library because
of its balance between speed and accuracy. MOSSE is the fastest one.

• The confidence is useful to discard bad tracking performance when working with
OpenCV trackers. However, dlib tracking seems to be less influenced by the
confidence thresholding.

• The image input size is a key factor when working with resource limited hardware
to achieve higher throughput.

• The final solution seems to perform better on sequences with lowly crowded density.

We have built a visual multiobject tracking system that performs reasonably well on a
MOT dataset despite is not into the State-of-the-Art. It combines the robustness of deep
learning approaches with the speed of classic tracking methods.

6.1 Future works

This master thesis is a first step into the multi-object tracking with deep learning. Once
it has been developed and the results seen, the following lines of future work are proposed:

1. Train neural network models used (or new ones) in multiobject tracking datasets
such as MOT. This could lead to better results.

65

CHAPTER 6. Conclusions

2. Refering to the tracking, the multiprocessing with dlib for tracking is available but
it was not introduced in the final application. Its integration may speed up the
tracking.

3. Obtain the best configuration in a different way. For example, trying more possible
combinations of parameters in other dataset sequences.

4. Improve the metrics calculation by assigning IDs to the tracked objects allowing for
the calculation of tracking metrics (MOTA, for example). There are official Python
implementations of metrics for benchmarking MOT such as py-motmetrics.

5. Test the application in other non-GPU devices as Raspberry Pi or Intel Computer
Stick and in devices with graphic acceleration.

6. Try weights quantization techniques in neural networks with high number of
parameters (region-based, for example). It can help to speed up the inference time
and it will be more efficient in terms of memory consumption.

66

https://github.com/cheind/py-motmetrics

Bibliography
[1] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin

Balachandar Gnana Sekar, Andreas Geiger, and Bastian Leibe. Mots: Multi-object
tracking and segmentation. arXiv preprint arXiv:1902.03604, 2019.

[2] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer, 2016.

[3] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[4] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of
artistic style. arXiv preprint arXiv:1508.06576, 2015.

[5] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. Pn learning: Bootstrapping
binary classifiers by structural constraints. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 49–56. IEEE, 2010.

[6] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan.
Siamrpn++: Evolution of siamese visual tracking with very deep networks. arXiv
preprint arXiv:1812.11703, 2018.

[7] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. Mot16:
A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831, 2016.

[8] Séverine Dubuisson and Christophe Gonzales. A survey of datasets for visual
tracking. Machine Vision and Applications, 27(1):23–52, 2016.

[9] Luis Patino, Tom Cane, Alain Vallee, and James Ferryman. Pets 2016: Dataset and
challenge. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 1–8, 2016.

[10] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard
Ghanem. Trackingnet: A large-scale dataset and benchmark for object tracking in

67

BIBLIOGRAPHY

the wild. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 300–317, 2018.

[11] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2411–2418, 2013.

[12] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder,
Luka Cehovin Zajc, Tomas Vojir, Gustav Hager, Alan Lukezic, Abdelrahman
Eldesokey, et al. The visual object tracking vot2017 challenge results. In Proceedings
of the IEEE International Conference on Computer Vision, pages 1949–1972, 2017.

[13] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking
performance: the clear mot metrics. Journal on Image and Video Processing, 2008:1,
2008.

[14] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–4520,
2018.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[17] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. arXiv
preprint arXiv:1703.06870, 2017.

[19] Jonathan Hui. mAP (mean Average Precision) for Ob-
ject Detection. https://medium.com/@jonathan_hui/

map-mean-average-precision-for-object-detection-45c121a31173.

68

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

BIBLIOGRAPHY

[20] OpenCV documentation. Canny Edge Detection. https://docs.opencv.org/3.1.

0/da/d22/tutorial_py_canny.html.

[21] Filippo Sanfilippo, Erlend Helgerud, Per Anders Stadheim, and Sondre Lieblein
Aronsen. Serpens: A highly compliant low-cost ros-based snake robot with series
elastic actuators, stereoscopic vision and a screw-less assembly mechanism. Applied
Sciences, 9(3):396, 2019.

[22] Christos Sagonas, Epameinondas Antonakos, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. 300 faces in-the-wild challenge: Database and results.
Image and vision computing, 47:3–18, 2016.

[23] Michael Herrmann. PyQt5 tutorial. https://build-system.fman.io/

pyqt5-tutorial.

[24] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Visual tracking with online
multiple instance learning. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 983–990. IEEE, 2009.

[25] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-backward error:
Automatic detection of tracking failures. In 2010 20th International Conference on
Pattern Recognition, pages 2756–2759. IEEE, 2010.

[26] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. Visual
object tracking using adaptive correlation filters. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 2544–2550. IEEE,
2010.

[27] Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas, and Matej Kristan.
Discriminative correlation filter with channel and spatial reliability. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6309–
6318, 2017.

[28] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7263–7271,
2017.

[29] MOT17Det. https://motchallenge.net/data/MOT17Det/.

69

https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html
https://build-system.fman.io/pyqt5-tutorial
https://build-system.fman.io/pyqt5-tutorial
https://motchallenge.net/data/MOT17Det/

BIBLIOGRAPHY

[30] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shannon. A
proposal for the dartmouth summer research project on artificial intelligence, august
31, 1955. AI magazine, 27(4):12, 2006.

[31] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of research and development, 44(1.2):206–226, 2000.

[32] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations and
Trends R© in Signal Processing, 7(3–4):197–387, 2014.

[33] Tianyi Liu, Shuangsang Fang, Yuehui Zhao, Peng Wang, and Jun Zhang. Implement-
ation of training convolutional neural networks. arXiv preprint arXiv:1506.01195,
2015.

[34] Marcos Pieras Sagardoy. Visual people tracking with deep learning de-
tection and feature tracking. https://gsyc.urjc.es/jmplaza/students/

tfm-visualtracking-marcos_pieras-2017.pdf, TFM, Máster Oficial en Visión
Artificial, curso académico 2016-2017.

[35] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework.
International journal of computer vision, 56(3):221–255, 2004.

[36] Ignacio Condés and José Maŕıa Cañas. Person following robot behavior using deep
learning. In Workshop of Physical Agents, pages 147–161. Springer, 2018.

[37] Arnold WM Smeulders, Dung M Chu, Rita Cucchiara, Simone Calderara, Afshin
Dehghan, and Mubarak Shah. Visual tracking: An experimental survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(7):1442–1468, 2014.

[38] Kai Briechle and Uwe D Hanebeck. Template matching using fast normalized cross
correlation. In Proc. SPIE, volume 4387, pages 95–102, 2001.

[39] Hieu Tat Nguyen and Arnold WM Smeulders. Fast occluded object tracking by
a robust appearance filter. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(8):1099–1104, 2004.

[40] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking of non-
rigid objects using mean shift. In Computer Vision and Pattern Recognition, 2000.
Proceedings. IEEE Conference on, volume 2, pages 142–149. IEEE, 2000.

70

https://gsyc.urjc.es/jmplaza/students/tfm-visualtracking-marcos_pieras-2017.pdf
https://gsyc.urjc.es/jmplaza/students/tfm-visualtracking-marcos_pieras-2017.pdf

BIBLIOGRAPHY

[41] Hieu T Nguyen and Arnold WM Smeulders. Robust tracking using foreground-
background texture discrimination. International Journal of Computer Vision,
69(3):277–293, 2006.

[42] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, pages 10–5244. Manchester, UK, 1988.

[43] Jianbo Shi et al. Good features to track. In Computer Vision and Pattern Recognition,
1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, pages
593–600. IEEE, 1994.

[44] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100 fps
with deep regression networks. In European Conference on Computer Vision, pages
749–765. Springer, 2016.

[45] Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Tracking the untrackable:
Learning to track multiple cues with long-term dependencies. arXiv preprint
arXiv:1701.01909, 2017.

[46] Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel Gangnet. Color-based
probabilistic tracking. In European Conference on Computer Vision, pages 661–675.
Springer, 2002.

[47] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan, and Simon
Lucey. Need for speed: A benchmark for higher frame rate object tracking. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1125–
1134, 2017.

[48] Kota Yamaguchi, Alexander C Berg, Luis E Ortiz, and Tamara L Berg. Who are
you with and where are you going? In CVPR 2011, pages 1345–1352. IEEE, 2011.

[49] Louis Kratz and Ko Nishino. Tracking with local spatio-temporal motion patterns in
extremely crowded scenes. In 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 693–700. IEEE, 2010.

[50] Branko Ristic, Ba-Ngu Vo, Daniel Clark, and Ba-Tuong Vo. A metric for performance
evaluation of multi-target tracking algorithms. IEEE Transactions on Signal
Processing, 59(7):3452–3457, 2011.

71

BIBLIOGRAPHY

[51] Yuan Li, Chang Huang, and Ram Nevatia. Learning to associate: Hybridboosted
multi-target tracker for crowded scene. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 2953–2960. IEEE, 2009.

[52] Bi Song, Ting-Yueh Jeng, Elliot Staudt, and Amit K Roy-Chowdhury. A stochastic
graph evolution framework for robust multi-target tracking. In European Conference
on Computer Vision, pages 605–619. Springer, 2010.

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[54] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[55] François Chollet. Xception: Deep learning with depthwise separable convolutions.
arXiv preprint arXiv:1610.02357, 2016.

[56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1–9, 2015.

[57] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In AAAI, pages 4278–4284, 2017.

[58] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C Berg.
Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659, 2017.

[59] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 580–587,
2014.

[60] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448, 2015.

72

BIBLIOGRAPHY

[61] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[62] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-
based fully convolutional networks. In Advances in neural information processing
systems, pages 379–387, 2016.

[63] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[64] Pedro O Pinheiro, Ronan Collobert, and Piotr Dollár. Learning to segment object
candidates. In Advances in Neural Information Processing Systems, pages 1990–1998,
2015.

[65] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully convolutional
instance-aware semantic segmentation. arXiv preprint arXiv:1611.07709, 2016.

[66] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via
multi-task network cascades. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3150–3158, 2016.

[67] Tensorflow website. https://www.tensorflow.org/.

[68] Keras website. https://keras.io/.

[69] Caffe website. https://caffe.berkeleyvision.org/.

[70] PyTorch website. https://pytorch.org/.

[71] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael Felsberg. Accurate
scale estimation for robust visual tracking. In British Machine Vision Conference,
Nottingham, September 1-5, 2014. BMVA Press, 2014.

[72] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2818–2826,
2016.

[73] SSD-Keras. https://github.com/pierluigiferrari/ssd_keras.

73

https://www.tensorflow.org/
https://keras.io/
https://caffe.berkeleyvision.org/
https://pytorch.org/
https://github.com/pierluigiferrari/ssd_keras

BIBLIOGRAPHY

[74] Helmut Grabner, Michael Grabner, and Horst Bischof. Real-time tracking via on-line
boosting. In Bmvc, volume 1, page 6, 2006.

[75] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection.
IEEE transactions on pattern analysis and machine intelligence, 34(7):1409–1422,
2011.

[76] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. Exploiting the
circulant structure of tracking-by-detection with kernels. In European conference on
computer vision, pages 702–715. Springer, 2012.

74

ANNEX

Annex

MEDIANFLOW AP @ 0,5 (%) FPS Tracker

200x200 33,31 114,74
300x300 39,26 64,57
400x400 43,31 41,21
500x500 40,25 31,49
600x600 34,92 27,36
700x700 40,30 20,58
800x800 37,80 16,58

Table 1: Image input size experiments on MOT17-09

dl objecttracker AP @ 0,5 (%) Precision Recall TP FP GT FPS Net FPS Tracker

MOT17-02 11,59 0,722 0,158 2953 1135 18581 0,93 31,4
MOT17-04 17,25 0,822 0,209 9943 2152 47557 0,869 23,96
MOT17-05 36,53 0,744 0,486 3367 1154 6917 0,98 37,28
MOT17-09 43,53 0,853 0,510 2717 468 5325 0,95 35,83
MOT17-10 23,26 0,797 0,274 3528 896 12839 0,943 36,18
MOT17-11 35,74 0,831 0,429 4052 819 9436 0,96 41,56
MOT17-13 14,04 0,833 0,160 1874 375 11642 0,941 42,01

Table 2: Final results on MOT17Det train set (detailed). TP: true positives, FP: false
positives, GT: ground truth

Sequence FPS Resolution Length Boxes Density Description

MOT17-02 30 1920x1080 600 (00:20) 18581 31.0 People walking around a large square
MOT17-04 30 1920x1080 1050 (00:35) 47557 45.3 Pedestrian street at night, elevated viewpoint
MOT17-05 14 640x480 837 (01:00) 6917 8.3 Street scene from a moving platform
MOT17-09 30 1920x1080 525 (00:18) 5325 10.1 A pedestrian street scene filmed from a low angle
MOT17-10 30 1920x1080 654 (00:22) 12839 19.6 A pedestrian scene filmed at night by a moving camera
MOT17-11 30 1920x1080 900 (00:30) 9436 10.5 Forward moving camera in a busy shopping mall
MOT17-13 25 1920x1080 750 (00:30) 11642 15.5 Filmed from a bus on a busy intersection
Total 5316 (215 s) 112297 21.1

Table 3: Description of MOT17Det train set data (from [29])

75

	List of Figures
	List of Tables
	Introduction
	Multiple Object Tracking in Computer Vision
	Deep Learning in Computer Vision
	Objectives
	Methodology

	State of the Art
	Object tracking algorithms
	Datasets for object tracking
	Multiple object tracking datasets
	Single object tracking datasets

	Metrics for multiobject tracking evaluation
	Object classification and detection using neural networks
	Instance segmentation using neural networks
	Datasets for object detection
	Metrics for object detection evaluation
	Deep learning frameworks in computer vision

	Used software infraestructure
	OpenCV
	ROS
	Deep learning frameworks
	dlib library
	Object Detection Metrics
	NumPy and PyQt

	Multiobject tracking using deep learning and tracking by detection
	Design
	Video source module
	GUI module
	Neural Network module
	Tensorflow models
	SSD MobileNetV2
	Faster R-CNN InceptionV2
	Mask R-CNN InceptionV2

	Keras models

	Tracker module
	Confidence in tracking
	OpenCV trackers
	dlib trackers

	Experiments
	Experimental setup
	Neural network selection
	Tracker's performance
	Confidence in tracking
	GOTURN tracking

	Experimental validation of the final solution

	Conclusions
	Future works

	Bibliography
	Annex

