Multimedia Tools and Applications
https://doi.org/10.1007/5s11042-025-20748-8

®

Check for
updates

G-ARM: An open-source and low-cost robotic arm integrated
with ROS2 for educational purposes

Julio Vega'® - Vidal Pérez’

Received: 23 October 2024 / Revised: 28 January 2025 / Accepted: 28 February 2025
© The Author(s) 2025

Abstract

The high cost of industrial robots limits their accessibility in academic settings. This research
addresses this by developing a low-cost, 3D-printable robotic arm for educational use,
designed using the open-source tool FreeCAD and affordable hardware components. The
robot is integrated with ROS 2 Humble and Movelt 2, enabling motion planning and control,
and includes a simulator for virtual testing and prototyping. The robot was evaluated over
eight months in the Industrial Robotics and Software Architectures for Robots courses at
Rey Juan Carlos University. It demonstrated durability, ease of use, and practical feasibil-
ity, making it a suitable platform for training robotics professionals. This work highlights
the potential of affordable robotics to enhance education and provides a scalable, replicable
solution for academic institutions.

Keywords ROS - Low-cost - Movelt - Robotic arm - Educational robotics - 3D printing -
STEM learning - Autonomous systems - Open-source robotics - Teaching tools

1 Introduction

Currently, robotics is present in numerous sectors, encompassing a wide variety of applica-
tions. This versatility has led to the emergence of various groups and categories that allow
us to classify different types of robots. A clear example of this is industrial robotics, which
revolutionizes manufacturing by integrating advanced robotic systems into production pro-
cesses. These highly specialized machines are designed to perform tasks with precision,
speed, and consistency, ultimately enhancing efficiency and productivity in various indus-
tries. From automotive assembly lines to electronics manufacturing, industrial robots handle
a wide range of applications, including welding, painting, material handling, and assembly.
Their flexibility and programmability allow for seamless adaptation to evolving production
demands, driving innovation and streamlining operations.

Vidal Pérez contributed equally to this work.

B Julio Vega
julio.vega@urjc.es

Vidal Pérez
v.perez@urjc.es; v.perezb.2019 @alumnos.urjc.es

Universidad Rey Juan Carlos, Madrid, Spain

Published online: 26 March 2025 9\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-025-20748-8&domain=pdf
http://orcid.org/0000-0001-8445-359X

Multimedia Tools and Applications

2 3

(a) Turtlebot 2 (b) Dobot Magician

Fig. 1 Robots used in universities

With cutting-edge technologies such as artificial intelligence and machine learning, indus-
trial robotics continues to push the boundaries of what’s possible in modern manufacturing,
promising a future where automation plays an increasingly vital role in shaping the indus-
trial landscape. However, as the demand for skills in robotics and automation increases, the
need to train more people in this field becomes evident, with educational robotics being a
fundamental tool for this purpose.

For this reason, the field of educational robotics has gained great relevance in recent
years, due to the increasing need to educate the new generations in technological skills [16,
17]. In secondary schools, robotics has become an effective pedagogical tool for developing
skills and knowledge in areas such as programming, mathematics, electronics, and problem-
solving. This is known as STEM (Science, Technology, Engineering, and Mathematics).
Thanks to this training, students learn to design, build, and program simple robots to perform
specific tasks, which helps them understand science and technology concepts in a more
practical and interactive way [2] | % 3.

At the university level, robotics has become an essential discipline for educating future
engineers [4, 12]. Students learn to design and build more advanced robots, and they reinforce
their programming skills and control of complex systems. In these institutions, various types
of robots are used, such as industrial arms and mobile robotic platforms as shown in Fig. 1.
Since these are systems used in the professional world, students can learn with robots similar
to those they will use in the future.

However, an inherent problem with this training is that, although some units of these
professional robots are usually available in classrooms, their use is often limited by their
high economic cost, and therefore, their availability is restricted. This deviates from the ideal
scenario where each student could have their own unit to practice freely and comfortably. As
a result, there is a growing need for affordable robots in education [3, 15].

In the context of educational robotics, several key criteria must be addressed to ensure
these robots effectively support teaching and learning. These criteria include:

1. Cost-effectiveness: Low-cost robots are essential for widespread adoption in classrooms,
as expensive industrial robots can limit accessibility. Affordable robotic solutions allow
institutions to equip more students with practical learning tools, democratizing access to
advanced robotics education [16].

2. Accessibility and Ease of Use: The robot must be easy for students to operate, with a
simple interface and minimal setup requirements. This ensures that students can focus on

1 https://www.turtlebot.com/turtlebot2/
B https://www.robotlab.com/store/dobot-robotic-arm

3 https://www.universal-robots.com/es/productos/robot-ur3/

@ Springer

https://www.turtlebot.com/turtlebot2/
https://www.robotlab.com/store/dobot-robotic-arm
https://www.universal-robots.com/es/productos/robot-ur3/

Multimedia Tools and Applications

(a) OSTR (b) Diy-robotics 6-DOF

Fig.2 Low-cost robots

the educational aspects of the robot, such as programming and problem-solving, rather
than on the complexities of the system [17].

3. Educational Value: Educational robots must help students develop critical STEM skills,
including problem-solving, programming, and systems integration. The robot should be
capable of supporting a range of learning activities that align with these objectives, such
as designing, building, and programming robots to perform specific tasks [2, 5].

4. Robustness and Durability: Given the high frequency of use in educational settings, the
robot must be durable and capable of withstanding the wear and tear of regular handling
by students. This is critical to ensuring continuous learning without the interruptions
caused by hardware failures [11].

5. Adaptability and Integration with Educational Software: To maximize educational out-
comes, the robot should integrate easily with widely used platforms such as ROS2
(Robotic Operating System) and Movelt 2, which provide robust tools for motion plan-
ning, simulation, and programming. This compatibility allows students to work on
real-world problems, ensuring that the learning process is closely aligned with indus-
try standards [7].

6. Scalability: The robot should be scalable to accommodate a range of skill levels. From
basic programming to advanced control systems, students should be able to progressively
use the same robotic platform as their knowledge and skills grow, ensuring continuity
throughout their educational journey [8].

7. Diversity of Applications: The robot must be versatile enough to support a variety of
applications, from automation and control theory to artificial intelligence. This adapt-
ability ensures that the robot can be used across multiple disciplines, giving students the
flexibility to explore different areas of robotics [9].

The present work focuses on the development of a small-sized and low-cost industrial
robotic arm, designed with the purpose of facilitating its use and control in university teaching,
specifically in the subjects of the Degree in Software Robotics Engineering at the Rey Juan
Carlos University. This robot has been completely 3D printed and is integrated with tools
widely used in the field of robotics, addressing all the key criteria outlined above* > (Fig. 2).

4 https://www.instructables.com/Low-Cost- Arduino- Compatible- Drawing-Robot/

5 https://diy-robotics.com/educative-robot-cell-free- package/ ?7utm_source=Instructables.com&
utm_medium=referrer&utm_campaign=Educative%20Cell

@ Springer

https://www.instructables.com/Low-Cost-Arduino-Compatible-Drawing-Robot/
https://diy-robotics.com/educative-robot-cell-free-package/?utm_source=Instructables.com&utm_medium=referrer&utm_campaign=Educative%20Cell
https://diy-robotics.com/educative-robot-cell-free-package/?utm_source=Instructables.com&utm_medium=referrer&utm_campaign=Educative%20Cell

Multimedia Tools and Applications

Fig.3 Robot HydraX

2 Related work

In this section, some of the most relevant works, that explore industrial robots for educational
purposes, are described. Various robotic arm solutions are analyzed based on key criteria
such as cost, ease of assembly, integration with educational software, and performance. A
comparative synthesis is provided to identify existing gaps that justify the development of a
new robotic arm solution.

Several studies have investigated the feasibility of 3D-printed robotic arms for educational
environments [6, 14, 18]. For instance, Krimpenis et al. [10] introduced HydraX (Fig. 3), a
6-DOF robotic arm designed for machining applications. With a reach of nearly one meter
and a weight of approximately 13 kg, it offers a robust platform for precision tasks. However,
its relatively high cost (over /000 €), lack of integration with the Robot Operating System
(ROS), and time-consuming assembly process (200 hours) present challenges for educational
adoption (Table 1).

Adediran et al. [1] proposed UIArm (Fig. 4), a smaller, 4-DOF robotic arm aimed at
sorting plastic bottles. The arm features an open-source design and is primarily 3D printed,
which simplifies production and reduces costs. Despite its accessibility, the robot’s limited
workspace and potential accuracy issues due to 3D-printed gears restrict its applicability for
more complex educational tasks (Table 2).

Another notable contribution is the Niryo One robotic arm (Fig. 5), which was developed
through a crowdfunding campaign on Kickstarter and integrates ROS 1 and Movelt [13].
This 6-DOF arm is designed for educational purposes and supports automation through
various programming interfaces. However, its relatively high cost (approximately /000 €) and
reliance on proprietary software such as SolidWorks limit its widespread adoption, especially
in cost-sensitive educational institutions (Table 3).

MeArm (Fig. 6) is another open-source robotic arm widely used in educational settings
due to its simplicity and affordability. Designed for beginners, it features an easy assembly

Table 1 HydraX Robot Strengths and Weaknesses

Strengths Weaknesses

Repetitiveness of + 0.04 mm Lack of ROS integration

Large workspace Material cost exceeding 1000 €

More than 3 DOF, various orientations Requires 200 hours to print and assemble
Max load of 12 kg, practical at 3 kg Proprietary SolidWorks files

@ Springer

Multimedia Tools and Applications

67mm

195mm

202mm

Fig.4 Robot UTArm

process and a lightweight structure. However, its reliance on small servos and the absence
of bearings reduce precision and durability, making it less suitable for advanced robotics
courses (Table 4).

Arecent development in the field is LeRobot, an affordable educational robotic arm costing
only $110. This robot offers a complete Al-based control toolchain and is designed to integrate
seamlessly with machine learning courses. Despite its cost-effectiveness and Al capabilities,
its limited degrees of freedom and hardware constraints may restrict its use in more complex
robotic applications (Table 5).

Table 6 presents a comparative analysis of these robotic arms based on key criteria relevant
to educational applications.

The review highlights several limitations across the existing robotic solutions, including
high costs, limited degrees of freedom, lack of ROS2 integration, and low precision. These
limitations underscore the need for a new cost-effective robotic arm that is easy to assemble,
fully compatible with ROS2, and offers improved precision and robustness. The proposed
robotic arm in this work aims to address these challenges by providing an affordable, 3D-
printed solution tailored for university courses in industrial robotics.

3 Software and hardware tools

This section provides a concise overview of the software and hardware tools used to meet
the research objectives, emphasizing the key choices made based on the project criteria.

3.1 Software tools

The software tools selected for this project were chosen for their ease of use, seamless
integration, and flexibility in control. Well-established, widely supported, and flexible, these

Table 2 UIArm Robot Strengths and Weaknesses

Strengths Weaknesses

Open-source design Limited workspace

Uses small motors with integrated reducers Accuracy issues with 3D-printed gears
Fewer parts reduce assembly time Lack of ROS integration

@ Springer

Multimedia Tools and Applications

NIRYO

Fig.5 Robot Niryo One

Table 3 Niryo One Robot Strengths and Weaknesses

Strengths Weaknesses

Open-source with full documentation Higher cost for 3D-printed version (1000 €)
Integration with ROS1 and Movelt Uses Raspberry Pi, increasing costs

6 DOF with repeatability of 0.5 mm Not officially adapted for ROS2

Can adapt to various tools Designed using proprietary SolidWorks

Fig.6 MeArm open-source robotic arm

Table 4 MeArm Robot Strengths and Weaknesses

Strengths Weaknesses

Highly accessible Limited force due to small servos

Easy assembly with many guides Lack of bearings reduces lifespan

Low center of mass for rapid movements Vibrations under load affect performance
Lightweight design Limited precision

Table 5 LeRobot Strengths and Weaknesses

Strengths Weaknesses

Affordable at $110 Limited degrees of freedom

Al-based control toolchain Limited hardware capabilities compared to more expensive models
Easy to build and use May not be suitable for industrial applications

Seamless integration with Al Simple design may limit complex applications

@ Springer

Multimedia Tools and Applications

Table 6 Summary of Robotic Arms in Educational Settings

Robot Cost DOF Integration with ROS Educational Value
HydraX 1000+ 6 No High

UIArm Low 4 No Moderate

Niryo One €1000 6 Yes (ROS1) High

MeArm Very Low 3 No Moderate
LeRobot $110 4 Yes (Al-based control) High

tools are ideal for educational environments, offering scalability and cost-effectiveness while
meeting the project’s specific needs.

e Robot Operating System (ROS 2): ROS 2 was chosen for its modularity, robust com-
munication capabilities, and decentralization, which was a significant improvement over
the original ROS. The adoption of ROS 2 enhances system reliability and allows for the
integration of various robotic components in a seamless manner. ROS 2’s node-based
architecture is ideal for managing multiple tasks concurrently, which is crucial for edu-
cational environments where students must engage with complex systems.

e Movelt!: Movelt! was incorporated to enable motion planning and manipulation tasks,
which are essential for educational applications in industrial robotics. Its integration with
ROS 2 allows for simplified programming of advanced tasks like grasping and object
manipulation. The flexibility of Movelt! makes it suitable for various robots and tasks,
aligning with the project’s goal of providing a general-purpose robotic arm for educational
use.

e FreeCAD: FreeCAD was selected for designing the robotic components due to its para-
metric modeling approach, which offers flexibility in adjusting designs and creating parts
that are easy to modify. FreeCAD’s open-source nature and wide community support also
made it a practical choice for creating customizable parts, which is essential in an edu-
cational and research context where modifications and iterations are common.

e G-code and Grbl: The project leverages G-code programming for controlling the robotic
arm’s movements. Grbl firmware was adapted to control the motors, with particular
adjustments made to accommodate the rotary joints of the robotic arm. This choice
aligns with the need for cost-effective, open-source solutions, enabling easy control of
the robotic arm using standard CNC software.

3.2 Hardware tools

The hardware choices for the project were made with a focus on affordability, accessibility,
and the ability to meet performance requirements. Components were selected for their cost-
effectiveness, ease of use, and reliability, ensuring the robotic arm can be built and operated
efficiently in an educational setting without the need for extensive technical expertise.

e MKS DLC32 motherboard: This open-source motherboard was chosen for its compati-
bility with Grbl, ability to control three motors, low cost, and ease of integration, making
it ideal for educational robotics. Compared to the Arduino CNC Shield V3, the MKS
DLC32 offers superior features, including an advanced ESP32 microcontroller for faster
processing and a high-power MOSFET for efficient 24V output control via PWM. Its
design reduces electrical assembly errors and integrates components effectively on a PCB

@ Springer

Multimedia Tools and Applications

base plate, ensuring robust performance and cost-effectiveness with only a minimal price
difference.

e Nema 17 stepper motors: These motors were chosen for the robotic arm due to their
reliability, availability, and sufficient torque of 0.65 Nm, providing the precision and
control needed for educational tasks. Unlike conventional brushed motors, which lack
holding torque when stationary, stepper motors maintain significant torque and enable
accurate angular position tracking through discrete steps, even without encoders. Though
relatively heavy, their cost-effectiveness makes them ideal for this application. A mathe-
matical analysis, illustrated in Fig. 7 and detailed in (1), determined the minimum torque
required for the arm’s most demanding scenario, with the arm fully extended.

T1=@mlx(L1/2)+m2x*(L1+ L2/2)+ payload % (L1 + L2)) x g

T2 = (m2 % (L2/2) + payload % (L1 4 L2)) x g M

Equaiont 1 Calculation of the necessary torque for the most demanding joint

The robot’s links, each 17 cm long and weighing 200 g, require minimum torques of 1.66
Nm and 0.92 Nm for the first and second joints, respectively. Nema 17 stepper motors, chosen
for their affordability and availability, are used in a 60 mm length to provide 0.6 Nm of torque
each. While a single motor cannot meet the torque requirements alone, a gearbox amplifying
the torque by a factor of five ensures these motors can deliver the necessary performance,
balancing cost-effectiveness with functionality.

e Gearbox: To achieve precise and reliable force transmission while reducing speed, the
prototype uses toothed belts instead of gears due to their superior precision and constant
tension, avoiding the play that gears can introduce. The GT2 belt type is chosen for its
affordability and suitability, with a 6 mm width meeting the application’s needs, and
lengths detailed later. Cost-effective and customizable GT2 pulleys include a mix of
commercial and 3D-printed designs. A metal pulley with 20 teeth and a 3D-printed one
with 100 teeth provide a 1:5 reduction for two degrees of freedom, while a 120-teeth
pulley achieves a 1:6 reduction for the third, ensuring precise, efficient movement.

e TMC2209 stepper drivers: These drivers were selected for their advanced features, includ-
ing low noise operation, high current handling, and compatibility with Nema 17 motors,
ensuring smooth and precise motor control essential for educational robotics. While the
maker community offers various interchangeable stepper motor drivers for low-current
applications (Table 7), the TMC2209 was chosen over alternatives like the DRV 8825 for
its superior technology. It provides quieter operation, improved signal accuracy, reduced
step loss, and greater energy efficiency, aided by a larger heat sink that minimizes heat
production, making it an optimal choice for the project.

e Power supply: A 24-volt, 5-amp (120W) power supply was selected to ensure stable and
reliable power delivery to the robot’s components, accommodating the estimated total
power consumption of approximately 35W. This supply exceeds the minimum require-

/‘\"m L1 /;\'m L2 .

ml m2 J/Payload

Fig.7 Dynamics of the fully extended manipulator

@ Springer

Multimedia Tools and Applications

Table 7 Comparison of specifications for existing drivers

Model Supply Current Microstepping Noise Price
Voltage Max Level

A4988 8-35V 2A Upto 1/16 Very noisy 1€

DRV8825 8.2-45V 2.5A Upto 1/32 Acceptable noise 2€

TMC2225 4.7-36V 2A Up to 1/32 Low noise 2.8€

TMC2209 5.5-28V 2.5A Up to 1/256 Completely silent 34€

ment, offering flexibility and efficiency, as higher voltages reduce current and manage
voltage drops better. While any 12-24V supply capable of delivering over 40W could suf-
fice, the chosen 24V power supply ensures robust performance, meeting the 21 W required
by the motors, 4W for the microcontroller and drivers, and 3W for the electromagnet,
with ample capacity for operational stability.

e Other components: The project incorporates flanged bearings to enhance joint efficiency
and ensure smooth rotation. These bearings, commonly used in 3D printers, are cost-
effective and designed with a flange that secures integration into 3D-printed parts,
preventing dislodgement when properly fixed. Microswitches are employed for end-
of-travel detection and position establishment due to their affordability and sensitivity.
Additionally, an electromagnet (model D20H15) is used during testing to enable the
robot to manipulate metallic objects. With a diameter of 20 mm, height of 15 mm, and
a lifting capacity of up to 3 kg, the electromagnet exceeds the robot’s expected payload
requirements, making it a practical choice for the application.

3.3 System hardware and software relationships

To better understand the interaction between the hardware and software components in the
proposed robotic system, the structure outlined below describes how key software elements,
suchas ROS 2, Movelt, and G-code, work in tandem with the hardware components, including
motors, controllers, and power supplies.

Hardware Layer

e Motors (Nema 17): These are the actuators that move the robot’s joints, powered by the
stepper drivers.

e Stepper Drivers (TMC2209): These translate the commands sent from the control system
to the motors, managing the motor’s operation.

e Microcontroller (MKS DLC32): This board acts as the intermediary between the hard-
ware and the software, receiving commands from the software and controlling the motors
and other hardware components.

e Power Supply: A 24V power supply, which powers the entire system, ensuring that the
motors and other components receive the required energy.

Software Layer

e ROS 2: The central framework that ties all the software components together. ROS 2
facilitates communication between software modules and the hardware.

e Movelt!: Integrated with ROS 2, Movelt! handles the motion planning and execution for
the robotic arm, allowing for precise control over the robot’s movements.

@ Springer

Multimedia Tools and Applications

Fig.8 Three-dimensional space

e G-code: The motion control commands, typically generated by Movelt! or other planning
tools, are interpreted by the firmware on the microcontroller to drive the hardware.

e Custom Python Scripts: Python is used for scripting, orchestrating the interactions
between ROS 2, Movelt!, and the hardware, ensuring smooth control flow.

4 G-Arm design

In this section, a comprehensive account of the development process is provided, detailing
each stage from the initial conceptualization of the idea to the final realization of a fully
functional robotic arm.

4.1 Manipulator geometry

Initially, it is essential to determine the number of degrees of freedom (DOF) required for
the manipulator. In the context of three-dimensional space, as illustrated in Fig. 8, the robot
requires 6 degrees of freedom: 3 for positioning (X, Y, Z) and 3 for orientation (RX, RY, RZ).
Consequently, a minimum of 3 degrees of freedom is necessary to enable the robot’s end
effector to be positioned at any arbitrary point within the three-dimensional space.

In light of these considerations, a six-degree-of-freedom design was chosen instead of a
more complex configuration to adhere to the constraints on cost and complexity as outlined in
requirements 1 and 6. Subsequently, the selection of joint types became critical. In robotics,
while multiple joint types are available, the two most commonly utilized are:

e Revolute Joints (Fig. 9a): Facilitate rotational movement around a fixed axis.
e Prismatic Joints (Fig. 9b): Enable linear sliding movement along a specific axis.

Revolute joints were implemented for their simplicity and reduced component count,
aligning with the goals of cost-effectiveness and ease of assembly.

<

(a) Revolute Joint (b) Prismatic Joint

Fig.9 Commonly used joint types in robotics

@ Springer

Multimedia Tools and Applications

Fig. 10 Parallel gripper with 1 degree of freedom

In designing the manipulator’s geometry, it is essential to consider the constraints imposed
by having only three degrees of freedom. While this configuration allows for reaching any
point within a three-dimensional space, it does not provide control over the orientation of
the end effector at that point. To address this limitation, existing robotic solutions with three
degrees of freedom were investigated, focusing on their approaches to handling orientation
control. Two notable solutions emerged: SCARA robots and parallel robots based on paral-
lelogram structures. Both types share the feature of maintaining the end effector parallel to
the ground, effectively fixing two of the three possible orientations at any given position.

To achieve control over the final orientation, specifically the rotation around the Z-axis, a
fourth degree of freedom is typically required. Although the design does not include this addi-
tional degree of freedom, tools such as electromagnets or suction cups will be used to facilitate
simple object manipulation tasks. The approach involves implementing a parallelogram-
based robot that operates on the same principle as those used in palletizing applications,
where objects are placed on a pallet in a systematic and efficient manner.

4.2 Wireframe model of the manipulator

The wireframe model serves as a method for analyzing the movement of mechanical systems
composed of axes and links. This model simplifies the visual representation of the system by
emphasizing the spatial relationships between different components using lines and symbolic
connections. An example of this approach is illustrated in Fig. 10.

For the development of the wireframe model used in this project, the MeArm robot model
was adopted, as illustrated in Fig. 6. Specifically, the wireframe model designed for the
Mechatronics® course at Rey Juan Carlos University was used.

The robot is characterized by several parameters: L1, L2, P1, P2, P3, and A, as shown in
Fig. 11. These parameters define the arm’s behavior and must be optimized through experi-
mentation. The following procedure was employed to determine their values:

1. Initially, the lengths of the primary links L1 and L2 were set. For a desktop-sized robot,
17 centimeters per link was selected as a starting value.

6 https://github.com/myTeachingURJC/Mecatronica/wiki/S3:-Estructuras-mec%C3%A I nicas- (II)

@ Springer

https://github.com/myTeachingURJC/Mecatronica/wiki/S3:-Estructuras-mec%C3%A1nicas-(II)

Multimedia Tools and Applications

PSS\

Fig. 11 Fundamental principle of the MeArm arm

2. The next step involved selecting P1, P2, and P3, which represent the shorter sides of
the parallelograms. These lengths were adjusted to maximize their size without causing
interference, ensuring that the parts do not collide during operation.

3. Finally, the angle A of the parallelogram, which keeps the end effector parallel to the
ground, was set. An initial angle of 120°was chosen, as this value is critical for the arm’s
range of motion and accessibility near its base.

Figure 12 illustrates the final wireframe model of the manipulator, named G-Arm’, with
the parameter values provided in Table 8.

4.3 Sketches

Before advancing to the Computer-Aided Design (CAD) phase, a miniature prototype was
developed as a proof of concept. This process began with creating a detailed sketch based
on the wireframe model described in the previous section. The sketch was then digitized and
3D printed. The evolution of this process is illustrated in Fig. 13.

The miniature prototype, which was entirely 3D printed, successfully demonstrated both
functionality and robustness, thus validating the initial concept. This prototype facilitated
a better understanding of the spatial arrangement of each component, which proved to be
highly beneficial for the CAD design process detailed in Section 4.4.

4.4 CAD design

The following describes the design considerations for the 3D-printed mechanical compo-
nents, with a focus on the robotic arm project. The design process utilized both Fusion
360 and FreeCAD, with the latter ensuring the project is open-source and parameterized,
facilitating community access and modification.

Main base The main base component (Fig. 14 left) serves as the foundation for the robot,
anchoring it to the ground and housing the base plate, drivers, and electronics, excluding the
power supply which can be powered from multiple sources. Designed for easy 3D printing,
it features two circular pieces with wide spacers for added robustness. The upper circular
piece includes holes and hexagonal recesses for M3 nuts to secure a 120-tooth pulley and a

7 Named after the programming language used for communication

@ Springer

Multimedia Tools and Applications

Fig. 12 Wireframe model of G-Arm

40mm recess for mounting a 4010 fan. The spacers are perforated cylinders for M5 screws,
while the lower circular piece has mounting holes for the base plate and additional holes for
securing the robot to the ground.

Motor base This assembly (Fig. 14 right) which houses the three motors and rotates on
the main base, consists of two side pieces, a bottom piece, and a reinforcing spacer. It is
designed for horizontal 3D printing to enhance resistance and accuracy. The assembly is
secured with threaded rods and nuts and features a belt tensioning system with adjustable
motor positioning. It also includes holes for limit switches and slots for organized cable
management.

Parallelograms The wireframe model components, designed in 3D, transfer movement from
the motor base to the robot’s end, featuring slots for cable guidance and an end stop that
activates at the travel’s end, along with an adjustable sliding block for precision. Each joint
is stabilized with press-fitted flange bearings. For the GT2 timing pulleys, a parametric tool
was used to generate the DXF outline, which was imported and extruded in FreeCAD, with
hexagonal holes and cutouts added for M3 nuts to secure the pulleys. Additionally, the robot’s
name is engraved on a visible link for personalization (Fig. 15 left).

Terminal element This component, illustrated in Fig. 15 right, is situated at the end of the
robot and serves as the connection point to the tool. Its design features a 45-degree groove
with a through-hole for a screw, ensuring a solid and definitive attachment. The angled walls
of the groove center the tool, preventing rotation and play, thus providing a robust and precise
connection.

Electromagnet Tool To equip the robot with functionality, a tool incorporating an electro-
magnet has been developed, as shown in Fig. 16. This tool is designed to fit into the robot’s

Table 8 Parameters of the

G-Arm Wireframe Model Parameters Values
L1 170mm
L2 170mm
P1 35mm
P2 35mm
P3 25mm
A 135°

@ Springer

Multimedia Tools and Applications

(a) Final Sketch (b) Design in FreeCAD (c) Post-printing (d) Prototype Size

Fig. 13 Evolution of the proof of concept

end using the previously described groove shape. Additionally, the corners have been rounded
to ensure a better visual fit with the robot’s end. The assembly utilizes the electromagnet’s
threaded hole for secure attachment.

4.5 Printing and assembly

The following outlines a step-by-step process for replicating the G-Arm project, focusing
on the 3D printing process. It includes detailed assembly instructions and specifications to
ensure the accurate replication and proper functionality of the robotic arm.

The G-Arm was printed using an Ender-3 Pro 3D printer and 1kg of Red PLA filament.
The 3D printed parts were designed with a layer height of 0.12mm and three wall lines for
durability and precision, with varying fill densities ranging from 15% to 100% depending on
the structural requirements. Key components include the lower base (15% fill), base spacer
(100% fill), upper base (15% fill), 120T pulley (20% fill), motor base (15% fill), and various
other parts such as limit adjusters and bearing spacers. The robot’s name is also engraved on
a visible link for personalization.

The project also requires the following screws: M3 screws in 12mm (8), 16mm (11), 20mm
(10), and 25mm (13) lengths; M4 screws in 30mm (3); and M5 screws in 25mm (1), 30mm
(3), 40mm (1), 50mm (5), 55mm (1), and 60mm (2) lengths. The necessary nuts include 6
M3 standard nuts, 29 M3 locknuts, 8 M4 locknuts, 5 M5 standard nuts, and 10 M5 locknuts.
For washers, 29 M3 washers and 16 M5 washers are required. Additionally, threaded rods
of 1 meter each are needed for M3, M4, and M5 sizes for assembly purposes.

Table 9 specifies the components that need to be purchased. The total estimated cost for
the required components is €171, comprising €156.3 for the parts and approximately €15
for additional hardware. The printing process for all parts is expected to take around 60 hours,
while assembly can be completed in about 2 hours, depending on the user’s expertise. For

Fig. 14 Main base and motor base

@ Springer

Multimedia Tools and Applications

Fig. 15 Parallelogram assembly and terminal element

detailed assembly instructions, including the position of each part and the necessary screws,
it is recommended to consult the complete assembly guide®.

The assembly of the electronics is straightforward. Each connector on the printed cir-
cuit board is clearly labeled for ease of assembly. The primary consideration is the current
adjustment of the three TMC2209 drivers, which involves using a small potentiometer and a
multimeter to measure the values. Figure 17 illustrates the completed robot, which matches
the CAD design in both appearance and functionality. The cable management was efficiently
handled due to the inclusion of designated slots in the design.

5 Software for G-Arm

This section explores the software development for the G-Arm robot, focusing on the inte-
gration of Grbl firmware and the ROS 2 framework. It also discusses the challenges and
solutions encountered during the development process.

5.1 Grbl for actuator control

The G-Arm’s actuator control is based on Grbl firmware, which is widely known for its
reliability in CNC machines and stepper motor control. Although initially designed for CNC
applications, Grbl was adapted to meet the specific needs of the G-Arm, including its require-
ment for more than three degrees of freedom. Key considerations included configuring Grbl
to handle rotational movements and achieving the necessary precision for robotic tasks.

Challenges and Limitations of Grbl Adapting Grbl, which is optimized for linear move-
ment along fixed axes, to the G-Arm’s multi-DOF design required significant adjustments.
Parameters such as steps per unit and maximum speed had to be calibrated for accurate
motion control. A custom interface was also developed to enable communication between
the G-Arm and Grbl, as there was no existing simulator available for pre-assembly test-
ing. This meant that adjustments had to be tested in real-time, complicating debugging and
performance prediction.

Communication with Grbl Grbl supports multiple communication interfaces, including
USB (via serial UART) and Wi-Fi (via Telnet). The USB interface was chosen for its faster
data transmission, facilitating responsive control. A Python class was developed to simplify
communication between the software and Grbl, abstracting technical details and offering a

8 https://github.com/RoboticsURJC/tfg- vperez/blob/280861172bce3b1cOctfbb155a434364ea68eeb30/src/
design/FreeCad/%230_ASSEMBLY.FCStd

@ Springer

https://github.com/RoboticsURJC/tfg-vperez/blob/280861172bce3b1c0cfbb155a434364ea68eeb30/src/design/FreeCad/%230_ASSEMBLY.FCStd
https://github.com/RoboticsURJC/tfg-vperez/blob/280861172bce3b1c0cfbb155a434364ea68eeb30/src/design/FreeCad/%230_ASSEMBLY.FCStd

Multimedia Tools and Applications

(a) Part (b) Assembly

Fig. 16 Electromagnet Tool

streamlined API for actuator control and position retrieval. Although the full code is available
in the project repository?, this class was pivotal for the G-Arm’s software integration.

Configuring Grbl for Robotics Adapting Grbl for the G-Arm required fine-tuning several
configuration parameters. For instance, parameters like steps per unit and maximum speed
were adjusted to accommodate the robotic arm’s specific motion requirements. Some impor-
tant settings included:

$1: Set to 255 ms to keep stepper motors energized and prevent mechanical collapse.

e $100, $101, and $102: Defined steps per unit for the X, Y, and Z axes, customized for
the arm’s rotational joints.

$110, $111, and $112: Set maximum speeds based on experimental safety and perfor-
mance tests.

$120, $121, and $122: Defined acceleration limits to ensure safe movement.

These settings were crucial for enabling precise motion control, and further details can be
found in the project repository'©.

5.2 Integration with ROS 2

Integrating the G-Arm with the ROS 2 ecosystem enables enhanced motion planning, control,
and simulation capabilities. This section describes the integration process, focusing on the
creation of the robot’s description, its simulation within ROS, and its connection with the
Movelt 2 framework.

Robot description InROS 2, the G-Arm’s design was represented using the URDF (Unified
Robot Description Format) and Xacro files, which describe the robot’s geometry, joints, and
properties. These files were generated from CAD models exported in the Collada (.dae)
format, ensuring accurate representation of the robot’s structure. Additionally, simplified
collision meshes were created for effective interaction with the simulation environment. The
robot description was visualized and interacted with using RViz, which allows for dynamic
motion planning and control within both simulated and real environments.

Integration with Movelt 2 Movelt 2, a powerful motion planning framework for ROS 2,
was used to handle the G-Arm’s motion planning and trajectory execution. The integration

9 https://github.com/RoboticsURJIC/tfg- vperez/blob/96fc1e44bef6a31c272fb0673b5a33a757 1c5ee7/src/
software/g_arm/g_arm/g_arm_lib/grblAPLpy

10 https://github.com/RoboticsURJC/tfg-vperez/blob/280861172bce3b1cOctfbb155a434364ea68eeb30/src/
software/grblTests/grblConfig.txt

@ Springer

https://github.com/RoboticsURJC/tfg-vperez/blob/96fc1e44bef6a31c272fb0673b5a33a7571c5ee7/src/software/g_arm/g_arm/g_arm_lib/grblAPI.py
https://github.com/RoboticsURJC/tfg-vperez/blob/96fc1e44bef6a31c272fb0673b5a33a7571c5ee7/src/software/g_arm/g_arm/g_arm_lib/grblAPI.py
https://github.com/RoboticsURJC/tfg-vperez/blob/280861172bce3b1c0cfbb155a434364ea68eeb30/src/software/grblTests/grblConfig.txt
https://github.com/RoboticsURJC/tfg-vperez/blob/280861172bce3b1c0cfbb155a434364ea68eeb30/src/software/grblTests/grblConfig.txt

Multimedia Tools and Applications

Table9 Required hardware components

Component Model Quantity Total Price
Nema 17 Motor 17HS24-2104S 3 56€
Controller T™MC2209 3 10€
Mainboard MKS DLC32 1 16€
Endstop MakerBot (red) 3 5€
Power Supply 24V 5A (optional) 1 15€
Bearing F695-2RS Fushi 22 15€
Bearing F623RS Fushi 6 5.5€
GT?2 Pulley Belt:6mm ID:5mm 3 1.5€
GT2 Belt Belt:6mm Length:252mm 2 3.5€
GT2 Belt Belt:6mm Length:280mm 1 1.8€
Fan 24V 4010 1 2€
Electromagnet D20H15mm 3KG 24V 1 3€
Plastic for Printing PLA/PETG 1Kg 1 22€

process involved generating a Movelt configuration package based on the robot description.
Using the Movelt setup assistant, various robot parameters such as self-collisions, planning
groups, and end-effectors were defined. This allowed the system to plan and execute complex
motions based on the robot’s kinematic model.

Fig. 17 Actual robot assembly

@ Springer

Multimedia Tools and Applications

Connect to
the arm

Yes

Find the [0,0]
of each joint

l

Create subscr.
to /joint states

l

ROS node

loop
callback

Save message
content

ROS timer
Interpret

message

Send each joint's
pos. to the robot

Fig. 18 Activity diagram of the driver

Once the Movelt configuration was set up, the G-Arm could perform tasks such as auto-
matic trajectory generation and collision avoidance. The integration also enables real-time
control and simulation, which are essential for both development and practical deployment.

Driver for ROS 2 The final integration step involved creating a ROS 2 driver node that could
execute motion commands on the G-Arm hardware. This node communicated with the robot’s
controllers and provided feedback on the arm’s state. The driver utilized the ros2_control
framework, which enabled precise joint control through trajectory interpolation. Additionally,

(a) Scenario 1 (b) Scenario 2 (¢) Scenario 3

Fig. 19 Images from the load test video

@ Springer

Multimedia Tools and Applications

Table 10 Results of the different

load test scenarios Scenario Maximum Load
Scenario 1 365 ¢g
Scenario 2 480 g
Scenario 3 305¢g

joint state information was broadcast in real-time, allowing for accurate monitoring of the
arm’s movements.

The ROS 2 driver, combined with Movelt 2, ensures smooth coordination between motion
planning, trajectory execution, and real-time control, providing the G-Arm with the capabil-
ities required for advanced robotic tasks.

The activity diagram of the driver is shown in Fig. 18, which outlines the process of
receiving trajectory commands, moving joints, and publishing state updates. Although the
provided demonstration launcher initiates these nodes, creating a custom launcher would be
beneficial for more refined control and flexibility in the system.

6 Experiments

The robot arm’s performance was thoroughly assessed through a series of tests under various
conditions, including load capacity, maximum speed, and power consumption. The tests,
documented with corresponding videos, are linked in the following footnotes: load capacity
11 maximum speed 12, and power consumption !3. The results are analyzed with respect to
the evaluation criteria outlined in the introduction.

6.1 Load capacity

Load capacity was evaluated to determine the robot arm’s ability to lift and manipulate weights
under various conditions. The tests were conducted in three distinct scenarios, considering
both static and dynamic loads.

e Scenario 1: The arm lifted weights with its arm fully extended, testing static capacity at
the most mechanically disadvantaged position.

e Scenario 2: The load was positioned closer to the base, evaluating the effect of reduced
lever arm length on lifting performance.

e Scenario 3: The electromagnet tool, rated for a 3 kg load, was tested for its ability to lift
ferromagnetic objects in static conditions.

In each scenario, the robot attempted to lift and hold the load statically before performing
dynamic tests, moving the load through a standard trajectory to assess its effect on trajectory
fidelity, precision, and motor performance. The tests identified the limits where excessive
weight adversely impacted movement.

The results, summarized in Fig. 19 and Table 10, show that the arm lifted up to 365 g in
Scenario 1 (fully extended) and 480 g in Scenario 2 (load near the base). The electromagnet,
however, only lifted 305 g, falling short of its rated capacity. Despite this, it successfully
manipulated small metallic objects during dynamic movements. While the arm handled

I hitps://youtu.be/McD7KLMKMo0
12 hitps://youtu.be/37KK_hJk_tI
13 https://youtu.be/2MfBabEWZNo

@ Springer

https://youtu.be/McD7kLMKMo0
https://youtu.be/37KK_hJk_tI
https://youtu.be/2MfBabEWZNo

Multimedia Tools and Applications

video time->5; 2008 Videotitime->7:

(a) Start of movement (b) End of movement

Fig.20 Images from the speed test video

loads up to 150 g (e.g., a 100 g TV remote) at high speeds, heavier loads negatively impacted
trajectory precision and introduced minor deviations in end-effector accuracy.

6.2 Maximum speed

Maximum speed was tested by evaluating the rotational velocity of each joint while carrying
a 100 g load, simulating a typical operational scenario. The robot was mounted on a table to
mitigate any base movement induced by inertia, and movements were recorded to measure
average speed over defined angular ranges.

The base joint achieved a peak speed of 225°/s, with an average operational speed of 90°/s,
considering acceleration and deceleration phases. Secondary joints, responsible for smaller
angular movements, reached 120°/s. These speeds were sufficient for smooth and precise
movements during manipulation tasks.

For comparison, the ABB IRB120 robot, priced around €20,000, achieves a base speed
of 250°/s, which is slightly higher but comes at a significantly higher cost.

6.3 Power consumption

Power consumption was assessed under different operational scenarios to evaluate the robot’s
energy efficiency, particularly in the context of battery-powered systems like the Turtlebot 2
platform (Figs. 20 and 21).

Three scenarios were tested:

1. Slow movements: Simulating low-speed, deliberate operations.

(a) Multimeter in series (b) Test scenario

Fig.21 Images from the power consumption test video

@ Springer

Multimedia Tools and Applications

Table 11 Power consumption

ACTOSS VATIOUS SCenarios Scenario Average Consumption
Slow Movements 14.4W
Fast Movements 17TW
Fixed Position 6.8W

2. Fast movements: Simulating rapid actions.
3. Fixed position: Representing standby power consumption to maintain motor positions.

The results, presented in Table 11, show that the power consumption for slow and fast
movements was nearly identical, averaging 14.4W and 17W, respectively. The stationary
consumption was significantly lower at 6.8 W. These findings indicate that the robot is energy-
efficient, making it suitable for mobile systems with power constraints.

7 Conclusions

This project successfully developed a cost-effective robotic arm for educational purposes,
achieving key milestones in design, functionality, and deployment. Deployed in two courses
at Rey Juan Carlos University-Industrial Robotics and Software Architectures for Robots-the
arm provided students with hands-on experience in robotic manipulation, trajectory planning,
and ROS 2 integration. The lightweight, 3D-printed arm demonstrated versatility, low power
consumption (under 20W), and a manufacturing cost of €171, well within the €200 budget.
Its integration with the ROS 2 ecosystem and Movelt 2 framework enabled effective teaching
and experimentation.

Feedback from both students and educators highlighted the arm’s ease of use, its practical
value in bridging theoretical concepts with hands-on learning, and its suitability for inte-
gration into course structures. Educators valued its role in enhancing student engagement
and understanding of robotics. The feedback also pointed to areas for improvement, such as
increasing robustness for long-term use and adding more advanced features.

Future work includes adding a fourth degree of freedom to the end effector, developing
specialized tools and attachments, incorporating a simulation environment for testing, and
creating custom firmware for improved low-level control. These improvements will further
enhance the arm’s capabilities and its value as an educational tool.

The success of this project demonstrates the potential of low-cost, hands-on robotics
systems to transform robotics education. By providing an accessible and scalable solution,
the robotic arm can be expanded for use in additional courses and fields, advancing the
development of modern robotics curricula.

Acronyms

DOF Degrees Of Freedom

STEM Science, Technology, Engineering and Mathematics
DIY Do It by Yourself

CAD Computer-Aided Design

FDM Fused Deposition Modeling

ROS Robot Operating System

CNC Control Numérico por Computadora
PWM Pulse Width Modulation
DDS Data Distribution Service

@ Springer

Multimedia Tools and Applications

SCARA Selective Compilant Assembly Robot Arm
URDF Unified Robot Description Format

XML eXtensible Markup Language

UART Universal Asynchronous Receiver/Transmitter
STL Standard Tessellation Language

Author Contributions Conceptualization, J.V.; methodology, J.V.; software, V.P.; validation, J.V. and V.P.;
formal analysis, J.V.; investigation, J.V.; resources, J.V.; data curation, J.V. and V.P.; writing—original draft
preparation, J.V. and V.P.; writing—review and editing, J.V.; visualization, V.P.; supervision, J.V.; project
administration, J.V.; funding acquisition, J.V. All authors have read and agreed to the published version of the
manuscript.

Funding The authors declare that no financial support was received for this work.

Data Availability The datasets generated and/or analyzed during the current study are publicly available and can
be accessed via the following link: https://github.com/RoboticsURJC/tfg-vperez/tree/280861172bce3b1cOctb
b155a434364ea68eeb30/src. No restrictions apply to the access or use of these data.

Declarations

Ethical Not applicable.

Competing interests The authors declare that there are no competing interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do
not have permission under this licence to share adapted material derived from this article or parts of it. The
images or other third party material in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Adediran EM, Fadare DA, Falana A, Kazeem RA, Ikumapayi OM, Adedayo AS, Adetunla AO, Ifebunandu
UJ, Fadare DA, Olarinde ES (2023) Uiarm i: Development of a low-cost and modular 4-dof robotic arm
for sorting plastic bottles from waste stream. J Eur des Syst Automatises 56(1):97

2. Almeida P et al (2021) Robotics in stem education: A systematic review of teaching methods and appli-
cations. IEEE Access 9:133604-133623

3. Anderson J et al (2022) Affordable robots for education: Reducing costs in stem classes. Int J Robot
Autom 20(3):102-115

4. Authors V (2023) A review of current techniques for robotic arm manipulation and mobile navigation.
In IEEE Conference Publication

5. Bano S, Atif K, Mehdi S (2024) Systematic review: Potential effectiveness of educational robotics for
21st century skills development in young learners. Educ Inf Technol 29:11135-11153

6. Chavdarov I, Yovchev K, Naydenov B, Hrosinkov V (2024) 3d printed delta robot for educational
purposes. In 2024 international conference on software, telecommunications and computer networks
(SoftCOM), pp 1-6

7. Eaton M, Tanveer MH (2024) The development and implementation of a cost-effective educational robotic
arm using ros-moveit. In 2024 IEEE integrated STEM education conference (ISEC), pp 1-4

8. Cehovin Zajc L, Rezelj A, SkoZaj D (2023) Low-cost open-source robotic platform for education. IEEE
Trans Learn Technol 16(1):18-25

@ Springer

https://github.com/RoboticsURJC/tfg-vperez/tree/280861172bce3b1c0cfbb155a434364ea68eeb30/src
https://github.com/RoboticsURJC/tfg-vperez/tree/280861172bce3b1c0cfbb155a434364ea68eeb30/src
http://creativecommons.org/licenses/by-nc-nd/4.0/

Multimedia Tools and Applications

Grubisi¢ V, Crnoki¢ B (2024) A systematic review of robotics’ transformative role in education. In: Volari¢
T, Crnokié¢ B, Vasi¢ D (eds) Digital transformation in education and artificial intelligence application.
Cham, Springer Nature Switzerland, pp 257-272

Krimpenis AA, Papapaschos V, Bontarenko E (2020) Hydrax, a 3d printed robotic arm for hybrid
manufacturing. part i: Custom design, manufacturing and assembly. Procedia Manuf 51:103-108. 30th
international conference on flexible automation and intelligent manufacturing (FAIM2021)

. LeeR, UsaquenJ, Martinez F (2024) Development of low-cost stereoscopic vision systems for educational

robotics: A state of the art. Global J Eng Technol Adv 20(01):001-009. Received on 16 May 2024; Revised
on 25 June 2024; Accepted on 28 June 2024

Martinez A et al (2023) Design and implementation of a robotic arm for a mocap system within extended
educational mechatronics framework. Mach 11(3):281

Papapaschos V, Bontarenko E, Krimpenis AA (2020) Hydrax, a 3d printed robotic arm for hybrid manu-
facturing. part ii: Control, calibration and programming. Procedia Manuf 51:109-115. 30th international
conference on flexible automation and intelligent manufacturing (FAIM2021)

Surynek P (2024) Real robot one (rr1): 3d printed robotic arm for teaching robotics engineering and robot
control. In 2024 9th international conference on control and robotics engineering (ICCRE), pp 33-38
Tselegkaridis S, Sapounidis T (2021) Aerobot: A low-cost educational robot for stem education. J Educ
Robot 9(2):56-68

Tselegkaridis S, Sapounidis T (2022) Exploring the features of educational robotics and stem research in
primary education: A systematic literature review. Educ Sci 12:305

Uslu A et al (2022) Trends and research foci of robotics-based stem education: A systematic review. Int
J STEM Educ

Weeraratne A, Subasinghage K (2024) Comparison of open-source robotics platforms for undergradu-
ate education. In 2024 international research conference on smart computing and systems engineering
(SCSE), vol7. pp 1-5

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

	G-ARM: An open-source and low-cost robotic arm integrated with ROS2 for educational purposes
	Abstract
	1 Introduction
	2 Related work
	3 Software and hardware tools
	3.1 Software tools
	3.2 Hardware tools
	3.3 System hardware and software relationships

	4 G-Arm design
	4.1 Manipulator geometry
	4.2 Wireframe model of the manipulator
	4.3 Sketches
	4.4 CAD design
	4.5 Printing and assembly

	5 Software for G-Arm
	5.1 Grbl for actuator control
	5.2 Integration with ROS 2

	6 Experiments
	6.1 Load capacity
	6.2 Maximum speed
	6.3 Power consumption

	7 Conclusions
	References

