
Using the Octopus

Francisco J. Ballesteros
nemo@lsub.org

5/7/2008

ABSTRACT

The Octopus is a distributed system built by centralizing everything
on a central computer. It can be used to turn any machine on the Internet
into a user�s terminal to access the Octopus, that is, the central com­
puter. Multiple machines may be used as terminals, simultaneously. The
system includes a novel distributed window system and is able to exploit
software and devices found at terminals, which may be running different
systems. This paper is an introduction and a tutorial description to get
users started with the system. It focuses on using Octopus with Plan 9
from Bell Labs as the central computer system, but most things said
apply to other systems.

1. Introduction

In the Octopus [1], there is a single dedicated computer per user. We refer to it as the
computer. If a user has more than one (which is the common case), one of them is des­
ignated as the computer. All user programs execute on the computer, irrespectively of
the user�s location and of the devices and resources required to run them. The central
computer (or PC) may run the user�s favorite operating system, Plan 9 from Bell Labs [4]
in our case. Octopus is implemented on Inferno [2] and runs hosted on top of most
operating systems without any problem.

All other machines are considered terminals for the PC. They are used to reach the
PC and to provide resources for it. In this system model, the PC is not considered to
have devices on its own. Devices, including mouse, keyboard, graphics, audio, and
voice, are provided by terminals. The scheme is depicted in figure 1.

The central computer is assumed to be highly available. For Plan 9, this means that
programs like aux/reboot should run on it to watch out for problems and reboot the
machine if necessary. Also, it is suggested to employ a Plan 9 CPU server kernel, able to
boot without requiring the user to type a password to bring the system into operation.
The PC may be kept at a safe location should it be an issue.

Terminals on the other hand are considered to be volatile stateless machines. They
may run any other operating system. The octopus software running on them provides a
way to reach the central computer and also provides devices and resources from the ter­
minal to the PC. Multiple terminals may be used at the same time by the same user to
reach the PC. Also, some terminals may be left running at all times (and perhaps be left
out unattended) while new ones from a different location might be employed.

From the user�s perspective, the Octopus is a new interface for accessing the sys­
tem running at the PC from any machine in the network, no matter its architecture or
operating system. But this is not to say that it is a remote desktop software. It lets the
user combine multiple machines and employ their devices at will.

­ 2 ­

The computer

Figure 1: System Model: The network is the bus to connect devices to the single computer

2. System organization

Before describing how to use the system it is useful to learn how is it organized. The
organization of the octopus is depicted in figure 2. It is important to recognize the four
environments involved to avoid confusion. The PC runs Plan 9 from Bell Labs, and hosts
an Inferno running the Octopus software for the PC. Two different terminals are
attached to the PC in the figure, one running Plan 9 and another running MacOS X. Both
terminals run a hosted Inferno running the Octopus software for a Terminal.

Octopus PC
(Inferno)

PC
(Plan 9)

Octopus Terminal
(Inferno)

Terminal
(Plan 9)

Octopus Terminal
(Inferno)

Terminal
(MacOS X)

Figure 2: Organization of the octopus

Although most of the time the user would think he is using just the (Plan 9) PC, and he
can forget about most of what we say here, it is important to know that there are four
distinct environments:

1 The PC (running Plan 9 in the figure). User commands are executed here. Files
browsed within the window system and used by commands come from the name
space provided by this environment. On Plan 9 machines, all the name spaces from

­ 3 ­

terminals are also available within this environment.

2 The Inferno running at the PC. This is where the Octopus window system runs.
This provides infrastructure to reach the underlying environment from terminals.
Name spaces exported from terminals, providing their resources, are available at
this environment.

3 The Inferno running at a terminal. This is where the window system viewer runs.
The name space from the PC is available within this environment, as well as the
local name space provided by the terminal native system.

4 The native system running at a terminal. (e.g., MacOS X in the down-right part of
the figure). This provides applications used by the octopus as devices to view docu­
ments, browse the web, reproduce audio and voice, etc.

The user interacts directly with the terminal�s Inferno environment, which executes the
user interface for the window system and applications, called Olive. The olive(1) manual
page documents this interface in detail.

By default, commands executed through Olive are executed at the PC (in the Plan 9
environment), but there are escapes to execute them at the Inferno hosted on the PC.
Executing commands at the terminal is easy by opening a shell window on the Inferno
running on it.

Files (and the name space) seen through Olive come also from the PC. However, it
is easy to access files from the Inferno hosted on the PC because they are found at
/usr/inferno on the PC environment. Regarding files from the terminal, they are
always available through the local Inferno environment provided by the terminal.

2.1. PC name space

The (PC) name space where commands follows certain conventions documented here.
Such conventions are the center of the Octopus and permit programs to add resources
from terminals to the central computer.

The name space is a typical Plan 9 name space. This means that most conventions
expected hold, like /bin for binaries, /usr for user files, etc. On installations using
another system at the PC, the conventions from that system would be used instead.

The following files and directories are also available when using the PC from the
Octopus:

" /dev/snarf is the clipboard. Usually it is an actual file at
$home/lib/snarf/snarf bound to /dev along with the next file.

" /dev/sel contains the path for the (user interface) panel where a selection was last
made. The file is kept at $home/lib/snarf/sel or a similar place and bound
to /dev like before.

" /mnt contains directories where different resources added to the PC can be found.

" /mnt/ui contains the file system interface for the Octopus window system, Omero.
See omero(4) for a description.

" /mnt/ports contains a directory providing the event delivery mechanism used by
the Octopus.

" /mnt/view is a file viewer device. To view a file (e.g., a PDF) it suffices to copy it to
this directory. A document viewer at a terminal near the user (probably one at the
terminal being used to request the copy) will be launched as a result of the copy.

" /mnt/view/ndb is a text file describing properties of the view device. Among
other things it describes the location of the device and the terminal providing it.

" /mnt/print is a printing device. To print a file, copy it to this directory. The file will
be printed at the default printer queue provided by a terminal near the user.

­ 4 ­

" /mnt/print/ndb describes the print device. All devices include an ndb file by con­
vention (although we will not mention it further).

" /mnt/print/voice is a voice synthesis device. To speak some text, copy it to the
speak file it provides. As all other devices mounted at /mnt the device used will
be one near the user.

" /mnt/terms/terminal is a directory where devices and resources from the machine
terminal can be found. There are multiple terminals mounted below /mnt/terms
in the same way. We mention some devices next, but not all of them would be pro­
vided by all terminals. The devices found directly at /mnt come indeed from the
ones we mention here.

" /mnt/terms/terminal/view is the view device provided by the terminal.

" /mnt/terms/terminal/print is the print device from that terminal.

" /mnt/terms/terminal/voice is its voice synthesis device.

" /mnt/terms/terminal/fs contains the file system from sysname (from its native
OS, not from the Inferno it runs). This can be used to transfer files back and forth
between the PC and the terminal.

" /n/pc contains the name space of the Inferno running at the PC. All resources
described before in this list come from this file tree.

" /what contains information about machines.

" /who contains information about users.

2.2. PC’s Inferno name space

The name space space at the Inferno running on the PC is similar to that of any other
Inferno installation, but includes the following files and directories. Unless said other­
wise, the directories mean the same the do in the name space of the PC.

" /dis/o contains the Dis binaries for the Octopus.

" /dis/o/$emuhost contains Dis binaries for the Octopus intended for the host sys­
tem represented by the $emuhost variable. This directory is bound also at /dis
to add platform dependent binaries to the portable ones.

" /mnt/registry is the mount point for the registry, describing resources known by
the Octopus.

" /mnt/ui

" /mnt/ports

" /mnt/snarf contains the snarf and sel files found at /dev in the PC.

" /mnt/view

" /mnt/print

" /mnt/voice

" /mnt/fs contains the PC name space, including the files described before for the
PC.

" /mnt/what is the PC /what directory, and contains information about machines.

" /mnt/who is the PC /who directory and contains information about users.

" /terms is similar to /mnt/terms in the PC.

2.3. Terminal’s Inferno name space

The name space at the Inferno running on a terminal has the file tree of the PC�s Inferno
at /pc (using the Octopus protocol as the file protocol) and also at /n/pc (using Styx
as the file protocol). The former works better on poor network connections but the later

­ 5 ­

is closer to expected semantics for file access. Also, /mnt/registry /mnt/snarf
and other devices from the PC are available for use by terminal software.

2.4. Terminal name space

The terminal name space is not modified by the Octopus. However, as an aid for cases
when it is desirable to execute native applications at the terminal that require Octopus
services, the name space is still available.

On Plan 9 systems, /srv/pc can be used at the terminal to mount the file tree
found at /pc at the terminal�s Inferno. This corresponds to the name space at the PC
containing most resources known to the Octopus.

On other systems, a WebDAV server executes at the terminal and mounting
http://localhost:9999/pc achieves the same effect.

2.5. Environment information

The directory /who/$user contains information known about $user including a file
named where with the last known location, a file named status with the user status,
and a file named last with the name of the last terminal used by this user. Locations
are strings without further structure, like 136 or home for example. By convention, the
status may be online or busy when the user is available and away when the user is
away from the computing environment. But note that a user connected from home is not
considered to be away.

The directory /what/$sysname contains information about the $sysname sys­
tem, including a file where with the system location.

When a terminal starts, it asks two things to the user: the address of the PC (where
the Octopus software is listening) and the location of the terminal. This information is
used to update /who and /what according to the activity of the user. It is important in
practice because devices found at /mnt come from terminals colocated with the user,
and location information is determined in this way.

3. Using the system

The first thing done to use the octopus is to start a terminal. How this is done depends
on the native system used by the terminal. On MacOSX machines, downloading the bun­
dle for a terminal and double clicking on the Octopus icon starts a terminal. On Plan 9
machines executing the octopus script suffices:

location? [home] press enter or type a location
PC? [nautilus.lsub.org] type enter or the address of the PC
welcome to your octopus terminal at home
PC is nautilus.lsub.org 192.147.71.68
importing PC
terminal with radius 209

...the window system starts...

To avoid typing, it is customary to keep the authentication ticket stored along with the
rest of the terminal software. However, when borrowing a machine as a terminal, we
might prefer to execute a different start script using getauthinfo to let us type our
secret and keep it in memory before dialing the PC:

use signer [$SIGNER]: type enter
remote user name [nemo]: type enter
password: type your secret
save in file [yes]: press enter or type no
location? [home] type enter or type new location
...same as before...

­ 6 ­

This can be achieved by editing /dis/o/termrc in the Inferno distribution used at
the terminal.

Figure 3: The window system shown at the terminal.

At this point the user may see a screen similar to the one shown in figure 3. The
window sytem, Omero, is executing at the PC. A viewer, Olive, executes at the terminal
and interfaces the window system to the user. Initially Omero contains a single screen
like the one shown and Olive would attach to it without asking the user.

The Inferno executing Olive may be killed at any time without hesitation. Starting a
new terminal would yield the same screen. Also, there is no need to exit a terminal
before starting a new one (or new ones). Editions made at a terminal synchronize with
the rest of the system upon mouse movement.

4. User interface

Each one of the rectangles shown in figure 3 is called a panel. The little brown box at
the top-left corner of most panels is called a tag, and can be used to perform opera­
tions on the panel. For example, dragging the tag with the left mouse button (button-1)
can be used to move a panel to another place.

The panel on the right is called a directory tree. Its first line shows that the pro­
gram Ox with pid 285 is running on the PC, to let the user browse /usr/nemo. The
second line shows that no commands have been started by the user. The third line con­
tains the name for the directory shown, /usr/nemo.

We may open one of the files shown by, first, clicking on it with the right mouse
button (button-3) to pop-up a menu and, second, moving the mouse quickly to the
right in the direction of Open. Figure 4 shows the text menu used in this example.
Options from the menu are selected by quick mouse movement toward the one desired.
If you change your mind after calling a menu, a single click with button-1 disarms the
menu without doing anything.

Files and directories open are shown in the same screen used to open them. Figure 5
shows the layout for the screen after opening the file guide and the directory bin.

­ 7 ­

Figure 4: The text menu. Use Open to open files and directories.

Figure 5: After opening several files.

All text panels show a little line marking the start and the end of the text. If the line is
not shown, there is more text above or below the one shown. To scroll you may use the
up and down arrow keys: ����� and �����. You may also raise the menu and then use but­
ton 1 to move up and down, and also use button 3 directly to scroll up or down by keep­
ing it held while you move.

To close the file guide we may use the Close option from the menu on its
panel. Along with each file shown there is a tag line shown for it (above it, in bold font).
Its purpose is to inform the user about what is the text shown below it, and it is also a
place to let you type some text (e.g., to execute commands).

We may also use the command language to control editions. For example, typing X
and Return on a tag line would list the files being edited. The output may be similar to
this, depending on the actual editions:

­ 8 ­

+ /usr/nemo
+ /usr/nemo/guide
+ /usr/nemo/bin
+ [/usr/nemo]

Each line corresponds to a file being shown. Panels with names between brackets corre­
spond to output from commands.

Another way to execute a command is to select it (when consisting on several
words) and use the menu option Exec on it.

Commands operate on the last panel selected by the user (where button 1 was
used last time). Only file and directory text panels are considered in this respect. Click­
ing on a tag line does not alter the selected panel. The file /dev/sel reports the path
for the panel, should you need it.

The command language is almost the same one used by the Sam editor [3], with a
few changes. Thus, we might get rid of all editions of C source code by executing

X/*.[ch]/D

at any panel. And we may replace foo with bar at the entire selected panel by execut­
ing

, x/foo/c/bar

All commands are considered edition commands, unless escaped by a ! sign. In that
case, they are executed in the PC system using the directory of the selected panel as the
current directory. For example, to view a document you may execute

!cp doc.pdf /mnt/view

to copy it to the view device near the user. To print the document at the default printer
queue from terminal nautilus may be achieved in the same way:

!cp doc.pdf /mnt/terms/nautilus/print

Copying to the fs directory instead of copying to the print one may be used to copy
the file to the terminal�s file system.

Another escape, %, permits the execution of commands on the Inferno executing at
the PC. This is most useful to recompile or update the Inferno software making up the
Octopus. For example, executing

%mk clean ; mk install

at /usr/octopus/port would recompile and reinstall the octopus software. Note
that execution of commands at the terminal�s Inferno is simply a matter of starting a
shell on that Inferno. Executing the command above in this way would update not the PC
software but the one used by the terminal.

We can execute native commands in the host that use devices from the Octopus as
you have seen. The screen shown in figure 6 corresponds to a system executing several
graphical programs, like clock, stats, and faces.

4.1. Pitfalls

It is not clear if it is a user�s pitfall or a design one, but it is important to notice that the
user interface is mostly point to type although commands still refer to the place where
the user made the last section. Once you get used to this, it is convenient because any
command shown anywhere can be used to work on the file you are working with (it is
very likely you selected something on it recently).

Olive owes much of its user interface to Acme [5], including sending characters

­ 9 ­

Figure 6: Native tools using Omero at the PC.

from the keyboard to the panel where the mouse is pointing to. But it is not Acme. It is
more similar to Sam [3] in that it is customary to keep a commands panel to keep the
text for several commands and use them at any file shown by the interface.

Another problem is that the user may execute Close on a panel containing most
applications (e.g., the top-level one) and cause the user interfaces to be removed. This
terminates most applications, unless they have interfaces shown at other screens as said
later. If you are not lucky and kill Ox in this way, you may need to restart the PC to
obtain a new file browsing and execution environment. This might be fixed in the
future, but as of today, it is not.

5. Multiple screens

There is no need to keep all the programs (or terminals) using the same screen. Execut­
ing

Dup other

creates an additional screen, named other that can be used with Olive. When more
than one screen exists, Olive asks the user which one should it attach to before doing
anything else.

In any case, all terminals share the clipboard no matter if the screen they show is
the same or not. Thus, cut and paste operations behave as expected. As an additional
help, mouse and keyboard redirectors are used when several machines share a desktop
so that a single mouse and keyboard suffices to use them (for Plan 9 they are available
along with other Plan 9 software for use with the octopus in the main distribution site.)

The command language helps to handle applications when there are multiple
screens. For example, the command P retrieves a list of the application interfaces
matching a pattern (all of them if no pattern is given). It is similar to the command X
used for files. Within P it is feasible to call an additional command to do something to
the panels selected. For example,

P /main.*stats/D

would delete all panels with names matching the pattern given. This pattern would

­ 10 ­

select all panels in the statistics row (the top row) of the main screen. In a similar way,

P /main.*stats/ e /other/row:stats

replicates the interfaces shown in the main statistics row to the statistics row of the
screen named other. This is most useful after creating a new screen, to copy the
interfaces from desired applications to it, instead of executing multiple copies of the
applications involved.

To terminate an application you may either kill it or close its user interface (using
the command language or the Close menu option at its interface). Applications with
replicated interfaces are not aware of the replication. When the last copy of the interface
is gone the application receives an notification and usually exits.

6. Further information

All the details about how to use Omero and Olive are provided in the following manual
pages:

olive(1) is an introduction to the window system and describes the mouse and key­
board commands available. If is a good reading after completing this tutorial.

ox(1) describes how the window system can be used to browse files and execute
commands.

omero(4) is the reference to the file interface provided by the window system. It is
useful to learn to use that interface and to discover control requests that may be
issued also from the user interface.

For the most part, that is all needed to use the system. However, there are other tools
documented in the Octopus user�s manual. Most of them are Inferno modules and com­
mands. In particular, section 4 of the manual describes file servers most of which are
drivers available for the Octopus. In general, drivers and communication software is
implemented on Inferno.

The Sam tutorial [6] is an excellent way to learn to use the command language.
Only a few commands provided in some other way are missing from it, and only a few
commands have been added as said in ox(1).

Finally, there are some applications and a few libraries for use on the native sys­
tem. They are new programs that exploit features introduced by the Octopus into the
native environment of the PC. They are documented in the appropriate section of the
Plan 9 manual used on the PC environment.

References

1. F. J. Ballesteros, P. Heras, E. Soriano and S. Lalis, The Octopus: Towards building
distributed smart spaces by centralizing everything., UCAMI, 2007.

2. S. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. Trickey and P. Winterbottom,
The Inferno Operating System, Bell Labs Technical Journal 2, 1 (1997), .

3. R. Pike, The Text Editor Sam, Software, Practice, & Experience 17, 11 (Nov. 1987),
813-845.

4. R. Pike, D. Presotto, K. Thompson and H. Trickey, Plan 9 from Bell Labs, EUUG
Newsletter 10, 3 (Autumn 1990), 2-11.

5. R. Pike, Acme: A User Interface for Programmers, Proceedings for the Winter
USENIX Conference, 1994, 223-234. San Francisco, CA..

6. R. Pike, A tutorial for the Sam command language.

