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Abstract

Upper bounding the length of Delaunay edges in Random Geometric Graphs has been object
of recent study in the area of Wireless Networks. In this paper, the problem is generalized to
an arbitrary number of dimensions showing upper and lower bounds that hold with parametric
probability. The results obtained are asymptotically tight for all relevant values of such proba-
bility, and show that the overhead produced by boundary nodes in the plane holds also for more
dimensions. To our knowledge, this is the first comprehensive study on this topic.

1 Introduction

The topic of this work is the study of the length of the longest Delaunay edge in multidimensional
Euclidean spaces. In particular, the Delaunay graph considered is defined over a set of points
distributed uniformly at random in a multidimensional body of unitary volume. The motivation to
study such setting comes from the Random Geometric Graph (RGG) model Gn,r, where n nodes
are distributed uniformly at random in a unit disk or, more generally, according to some specified
density function on d-dimensional Euclidean space [9].

It is known [6] that the length of the longest Delaunay edge is strongly influenced by the
boundaries of the enclosing body. For instance, if the area enclosing the points is a disk, the
longest edge is asymptotically larger than if the area is the surface of a sphere. Therefore, we study
the problem for two cases that we call with boundary and without boundary.

Multidimensional Delaunay tessellations have been studied before with respect to construction
algorithmic techniques [5, 7]. Restricted to two dimensions, upper bounding the length of the
longest Delaunay edge has attracted interest recently [6] in the context of extensive algorithmic
work [1–3] aimed to reduce the energy consumption of geographically routing messages in Radio
Networks. The upper bounds presented in [6] are only asymptotical, restricted to d = 2, and for
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enclosing bodies with boundary (although without boundary is implicit because the distance to the
boundary is parametric).

The results presented here include upper and lower bounds for d-dimensional bodies with and
without boundaries, that hold for a parametric error probability ε. Lower bounds without boundary
and all upper bounds apply for any d > 1. Lower bounds with boundary are shown for d ∈ {2, 3}.
The results shown are asymptotically tight for e−cn ≤ ε ≤ n−c, for any constant c > 0. To the best
of our knowledge, this is the first comprehensive study of this problem.

In the following section, some necessary notation is introduced. Upper and lower bounds for
enclosing bodies without boundaries are enumerated in Section 3, and the case with boundaries
is covered in Section 4. We conclude with some open problems. Upper bounds are proved ex-
ploiting that, thanks to the uniform density, is very unlikely that a “large” area/volume is void of
points. Lower bounds, on the other hand, are proved showing that some configuration that yields
a Delaunay edge of certain length is not very unlikely.

2 Preliminaries

The following notation will be used throughout. A d-sphere, of radius r is the set of all points
in a d-dimensional L2-space that are located at distance r (called the radius) from a given point
(called the center). A d-ball, of radius r is the set of all points in a d-dimensional L2-space that
are located at distance at most r (called the radius) from a given point (called the center). The
area of a sphere is the area of its surface. The volume of a ball is the amount of space it occupies.
A unit sphere is a sphere of area 1. A unit ball is a ball of volume 1.

Let P be a set of points on a d-sphere. Given two points a, b ∈ P , let âb be the arc of a great
(d − 1)-ball intercepted between them. Let δ(a, b) be the orthodromic distance of such arc. Let
the orthodromic diameter be the longest orthodromic distance between any pair of points in the
surface area of an spherical cap. Let Ad(x, y) be the surface area of a spherical cap of orthodromic
diameter y, of a d-sphere of surface area x. Let Vd(x, y) be the volume of a spherical cap of base
diameter y, of a d-ball of volume x. Let D(P ) be the Delaunay graph of a set of points P .

The following definitions of a Delaunay graph of a set of points in d-dimensional bodies can be
derived as in Theorem 9.6.ii in [4].

Definition 1. Let P be a set of points in a d-sphere, two points a, b ∈ P form an arc of D(P ),
if and only if there is a d-dimensional spherical cap C such that, with respect to the surface of the
cap, it contains a and b on the boundary and does not contain any other point of P .

Definition 2. Let P be a set of points in a d-ball, two points a, b ∈ P form an edge of D(P ), if and
only if there is a d-ball B such that, a and b are located in the surface area of B, and the interior
of B does not contain any other point of P .

The following bound [8] is used throughout

e−x/(1−x) ≤ 1 − x ≤ e−x, for 0 < x < 1. (1)

3 Enclosing Body without Boundary

The following theorems show upper and lower bounds on the length of arcs in the Delaunay graph
on a d-sphere.
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3.1 Upper Bound

Theorem 3. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly and
independently at random in a unit d-sphere, with probability at least 1 − ε, for 0 < ε < 1, there is
no arc âb ∈ D(P ), a, b ∈ P , such that

Ad(1, δ(a, b)) ≥ ln
((n

2

)/
ε
)

n − 2
.

Proof. Let a, b ∈ P be any pair of points from P separated by an orthodromic distance δ(a, b). By
Definition 1, for the arc âb to be in D(P ), there must exist a d-dimensional spherical cap C such
that a and b are located on the boundary of the cap base and the cap surface of C is void of points
from P . In order to upper bound Pr(âb ∈ D(P )), we upper bound the probability that the surface
of C is empty. In order to do that, we lower bound the surface area of C. Consider an spherical
cap C ′ of the unit sphere with orthodromic diameter âb. The surface area of C is at least the
surface area of C ′. Therefore, given that the points are distributed uniformly and independently
at random, it is Pr(âb ∈ D(P )) ≤ (1 − Ad(1, δ(a, b)))n−2 .

Given that there are
(n
2

)
pairs of points, using the union bound, we find a Ad(1, δ(a, b)) that

yields a probability at most ε of having some arc âb ∈ D(P ), by making

(
n

2

)
(1 − Ad(1, δ(a, b)))n−2 ≤ ε.

Then, given that a 6= b, it holds that Ad(1, δ(a, b)) < 1. Then, using Inequality 1, it is enough

exp (−Ad(1, δ(a, b))(n − 2)) ≤ ε
/(n

2

)

Ad(1, δ(a, b)) ≥ ln
((n

2

)/
ε
)

n − 2
.

The following corollaries for d = 2 and d = 3 can be obtained from Theorem 3 using the
corresponding surface areas.

Corollary 4. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly
and independently at random in a unit circumference (2-sphere), with probability at least 1− ε, for
0 < ε < 1, there is no arc âb ∈ D(P ), a, b ∈ P , such that

δ(a, b) ≥ ln
((n

2

)/
ε
)

n − 2
.

Corollary 5. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly and
independently at random in a unit sphere (3-sphere), with probability at least 1 − ε, for 0 < ε < 1,
there is no arc âb ∈ D(P ), a, b ∈ P , such that

δ(a, b) ≥ 1√
π

arccos

(

1 − 2 ln
((n

2

)/
ε
)

n − 2

)

.
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Proof. The surface area of a spherical cap of a 3-sphere is 2πRh, where R is the radius of the sphere
and h is the height of the cap. For a unit 3-sphere is R = 1/(2

√
π). Then, the perimeter of a great

2-ball (the circumference of a great circle) is 2π/(2
√

π) =
√

π. Thus, the central angle of a cap
whose orthodromic diameter is ρ is 2πρ/

√
π = 2

√
πρ. Let the angle between the line segment ab

and the radius of the sphere be α. Then,

α =

{
π/2 −√

πρ if ρ ≤ √
π/2√

πρ − π/2 if ρ >
√

π/2

And the height of the cap is h = 1/(2
√

π)− 1/(2
√

π) sin(π/2 −√
πρ) = (1− cos(

√
πρ))/(2

√
π).

Therefore, the surface area of a spherical cap of a 3-sphere whose orthodromic diameter is ρ is
(1 − cos(

√
πρ))/2. Replacing in Theorem 3, the claim follows.

3.2 Lower Bound

Theorem 6. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly and
independently at random in a unit d-sphere, with probability at least ε, there is an arc âb ∈ D(P ),
a, b ∈ P , such that Ad(1, δ(a, b)) ≥ Ad(1, ρ1), where

Ad(1, ρ1) =
ln
(
(e − 1)/(e2ε)

)

n − 2 + ln ((e − 1)/(e2ε))
,

for any 0 < ε < 1 such that Ad(1, 2ρ1) ≤ 1 − 1/(n − 1).

Proof. For any pair of points a, b ∈ P , by Definition 1, for the arc âb to be in D(P ), there must
exist a d-dimensional spherical cap C such that a and b are located on the boundary of the cap
base and the cap surface of C is void of points from P . We compute the probability of such event
as follows.

Let ρ2 > ρ1 be such that Ad(1, 2ρ2) − Ad(1, 2ρ1) = 1/(n − 1). Consider any point a ∈ P . The
probability that some other point b is located so that ρ1 < δ(a, b) ≤ ρ2 is

1 −
(

1 − 1

n − 1

)n−1

≥ 1 − 1/e, by Inequality 1.

The spherical cap with orthodromic diameter δ(a, b) is empty with probability (1 − Ad(1, δ(a, b)))n−2.
To lower bound this probability we consider separately the spherical cap with orthodromic diameter
ρ1 and the remaining annulus of the spherical cap with orthodromic diameter δ(a, b). The probabil-
ity that the latter is empty is lower bounded by upper bounding the area Ad(1, δ(a, b))−Ad(1, ρ1) ≤
Ad(1, 2ρ2) − Ad(1, 2ρ1) = 1/(n − 1). Then,

(
1 − 1

n − 1

)n−2

≥ 1/e, by Inequality 1.

Finally, the probability that the spherical cap with orthodromic diameter ρ1 is empty is

(1 − Ad(1, ρ1))
n−2 ≥ exp

(
−Ad(1, ρ1)(n − 2)

1 − Ad(1, ρ1)

)
, by Inequality 1

= exp

(
− ln

(
e − 1

e2ε

))

=
e2ε

e − 1
.
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Therefore,

Pr
(
âb ∈ D(P )

)
≥
(

1 − 1

e

)
1

e

e2ε

e − 1
= ε.

The following corollaries for d = 2 and d = 3 can be obtained from Theorem 6 using the
corresponding surface areas.

Corollary 7. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly
and independently at random in a unit circumference (2-sphere), with probability at least ε, for any
e1−n−4/n ≤ ε < 1, there is an arc âb ∈ D(P ), a, b ∈ P , such that

δ(a, b) ≥ ln
(
(e − 1)/(e2ε)

)

n − 2 + ln ((e − 1)/(e2ε))
.

Corollary 8. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly
and independently at random in a unit sphere (3-sphere), with probability at least ε, for any

e−n+2
√

n−1−1 ≤ ε < 1, there is an arc âb ∈ D(P ), a, b ∈ P , such that

δ(a, b) ≥ 1√
π

arccos

(

1 − 2 ln
(
(e − 1)/(e2ε)

)

n − 2 + ln ((e − 1)/(e2ε))

)

.

Proof. As shown in the proof of Corollary 5, the surface area of a spherical cap of a 3-sphere whose
orthodromic diameter is ρ is (1 − cos(

√
πρ))/2. Replacing in Theorem 6, the claim follows.

4 Enclosing Body with Boundary

The following theorems show upper and lower bounds on the length of edges in the Delaunay graph
on a d-ball.

4.1 Upper Bound

Theorem 9. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly and
independently at random in a unit d-ball, with probability at least 1 − ε, for 0 < ε < 1, there is no
edge (a, b) ∈ D(P ), a, b ∈ P , such that

Vd(1, ||
−→
a, b||2) ≥

ln
((n

2

)/
ε
)

n − 2
.

Proof. Let a, b ∈ P be any pair of points from P . By Definition 2, for the edge (a, b) to be in D(P ),
there must exist a d-dimensional ball B such that a and b are located on the surface area of B and
the interior of B is void of points from P . Notice that B may be such that part of it is outside
the unit ball but, given that points are distributed in the unit ball, no point is located outside of
it. Then, in order to upper bound Pr((a, b) ∈ D(P )), we upper bound the probability that the
interior of the intersection of B with the unit ball is empty. In order to do that, we lower bound

the volume of such intersection. For a given distance ||−→a, b||2 such volume is minimized when a
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and b are located on the surface of the unit ball, B has infinite radius, and the maximum distance
between any pair of points in the intersection between the surface areas of B and the unit ball is

||−→a, b||2. In other words, when the intersection is an spherical cap of the unit ball with base diameter

||−→a, b||2. Therefore, given that the points are distributed uniformly and independently at random,

it is Pr((a, b) ∈ D(P )) ≤ (1 − Vd(1, ||
−→
a, b||2))n−2.

Given that there are
(n
2

)
pairs of points, using the union bound, we find a Vd(1, ||

−→
a, b||2) that

yields a probability at most ε of having some edge (a, b) ∈ D(P ), by making

(
n

2

)(
1 − Vd(1, ||

−→
a, b||2)

)n−2
≤ ε.

Then, given that a 6= b, it holds that Vd(1, ||
−→
a, b||2) < 1. Then, using Inequality 1, it is enough

exp
(
−Vd(1, ||

−→
a, b||2)(n − 2)

)
≤ ε
/(n

2

)

Vd(1, ||
−→
a, b||2) ≥

ln
((n

2

)/
ε
)

n − 2
.

The following corollaries for d = 2 and d = 3 can be obtained from Theorem 9 using the
corresponding surface areas.

Corollary 10. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly and

independently at random in a unit disk (2-ball), with probability at least 1−ε, for
(n
2

)
e−

√
2(n−2)/π <

ε < 1, there is no edge (a, b) ∈ D(P ), a, b ∈ P , such that

||−→a, b||2 ≥ 3

√
16√
π

ln
((n

2

)/
ε
)

n − 2
.

Proof. Consider the intersection of the radius of the unit disk perpendicular to (a, b) with the
circumference of the unit disk, call this point d. The area of the triangle △abd is a strict lower

bound on V2(1, ||
−→
a, b||2). From Theorem 9, we have the condition

V2(1, ||
−→
a, b||2) ≥

ln
((n

2

)/
ε
)

n − 2
.

Thus, it is enough

||−→a, b||2
2



 1√
π
−

√
1

π
− ||−→a, b||22

4



 ≥ ln
((

n
2

)/
ε
)

n − 2
.

Making ρ = ||−→a, b||2
√

π/2, we want

√
ρ2 − ρ4 ≤ ρ − π

ln
((

n
2

)/
ε
)

n − 2
. (2)
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If ||−→a, b||2 < 2
√

π ln
((n

2

)/
ε
) /

(n − 2), there is nothing to prove because

2
√

π ln
((n

2

)/
ε
)

n − 2
<

3

√
16 ln

((n
2

)/
ε
)

√
π(n − 2)

,

for any ε >
(n
2

)
exp

(
−
√

2(n − 2)/π
)
. Then, we can square both sides of Inequality 2 getting

ρ4 ≥ 2ρπ
ln
((n

2

)/
ε
)

n − 2
−
(

π
ln
((n

2

)/
ε
)

n − 2

)2

ρ3 ≥ 2π
ln
((n

2

)/
ε
)

n − 2
.

And replacing back ρ the claim follows.

Corollary 11. Given the Delaunay graph D(P ) of a set P of n > 2 points distributed uniformly and

independently at random in a unit ball (3-ball), with probability at least 1−ε, for
(
n
2

)
e−2(n−2)

/
(3
√

π) <
ε < 1, there is no edge (a, b) ∈ D(P ), a, b ∈ P , such that

||−→a, b||2 ≥ 4

√
96

π3/2

ln
((

n
2

)/
ε
)

n − 2
.

Proof. Consider the intersection of the radius of the unit ball perpendicular to (a, b) with the surface
of the unit ball, call this point d. The volume of the cone whose base is the disk whose diameter

is (a, b) and its vertex is d is a strict lower bound on V2(1, ||
−→
a, b||2). From Theorem 9, we have the

condition

V3(1, ||
−→
a, b||2) ≥

ln
((n

2

)/
ε
)

n − 2
.

Thus, it is enough

π

3

(
||−→a, b||2

2

)2


 1√
π
−

√
1

π
− ||−→a, b||22

4



 ≥ ln
((

n
2

)/
ε
)

n − 2
.

Making ρ = ||−→a, b||2
√

π/2, we want

√
ρ4 − ρ6 ≤ ρ2 − 3

√
π

ln
((

n
2

)/
ε
)

n − 2
. (3)

If ||−→a, b||2 <
√

12 ln
((

n
2

)/
ε
) /

(
√

π(n − 2)), there is nothing to prove because

√
12 ln

((n
2

)/
ε
)

√
π(n − 2)

<
4

√
96

π3/2

ln
((n

2

)/
ε
)

n − 2
,
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for any ε >
(n
2

)
exp

(
−2(n − 2)

/
(3
√

π)
)
. Then, we can square both sides of Inequality 3 getting

ρ6 ≥ 6ρ2√π
ln
((

n
2

)/
ε
)

n − 2
−
(

3
√

π
ln
((

n
2

)/
ε
)

n − 2

)2

ρ4 ≥ 6
√

π
ln
((n

2

)/
ε
)

n − 2
.

And replacing back ρ the claim follows.

4.2 Lower Bound

Theorem 12. For d = 2, given the Delaunay graph D(P ) of a set P of n > 2 points distributed
uniformly and independently at random in a unit d-ball, with probability at least ε, there is an edge

(a, b) ∈ D(P ), a, b ∈ P , such that ||−→ab||2 ≥ ρ1/2, where

Vd(1, ρ1) =
ln (α/ε)

(n − 2 + ln (α/ε))
,

where α = (1 − e−1/16)(1 − e−1/32)e−1, for any 0 < ε ≤ α/e2 such that Vd(1, ρ1) ≤ 1/2 − 1/n.

Proof. For any pair of points a, b ∈ P , by Definition 2, for the edge (a, b) to be in D(P ), there
must exist a d-ball such that a and b are located in the surface area of the ball and the interior is
void of points from P . We compute the probability of such event as follows. (Refer to Figure 1.)
Consider two spherical caps of the unit ball with concentric surface areas, call them Γ1 and Γ2, of
diameters ρ1 as defined and ρ2 such that Vd(1, ρ2) = Vd(1, ρ1)+1/n. Let Γ2−Γ1 be all space points
in Γ2 that are not in Γ1 (i.e. the body defined by the difference of both spherical caps). Inside
Γ2−Γ1 (see Figure 1(a)) consider two bodies Ba and Bb of identical volumes such that for any pair
of points a ∈ Ba and b ∈ Bb the following holds: (i) the points a and b are separated a distance at
least ρ1/2; (ii) there exists an spherical cap Γ containing the points a and b in its base of diameter
ρ such that Vd(1, ρ) ≤ Vd(1, ρ2). (See Figure 1(b).) Such event implies the existence of an empty
d-ball of infinite radius with a and b in its surface which proves the claim. In the following, we
show that such event occurs with big enough probability.

To bound the volume of Ba (hence, Bb), we first bound the ratio ρ2/ρ1. Consider the inscribed
polygons illustrated in Figure 1(c). It can be seen that the triangle x1x3x5 is located inside the
pentagon x1x2x3x4x5 which in turn is composed by the triangle x2x3x4 and the trapezoid x1x2x4x5.
Then,

(h1 + h)ρ2

2
≤ ρ1h1

2
+

(ρ1 + ρ2)h

2
h1ρ2 ≤ (h1 + h)ρ1. (4)

Given that ε ≤ α/e2, we know that Vd(1, ρ1) ≥ 2/n. Then, it holds that h ≤ h1. Replacing in
Equation 4 we obtain ρ2 ≤ 2ρ1.

Then, the volume of Ba is (see Figure 1(d))

1

2n
− ρ1

4
h −

(ρ2

2
− ρ1

4

) h

2
=

1

2n
− ρ1 + ρ2

2

h

2
+

ρ1

8
h.
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Ba Bb

ρ2

ρ1

ρ1/2

(a)

a b

(b)

ρ2

x1

x2

x3

x4

x5

ρ1

h

h1

(c)

Ba Bb

ρ1/4

ρ2/2

h

(d)

Figure 1: Illustration of Theorem 12.
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Using that the volume of the trapezoid x1x2x4x5 is (ρ2 + ρ1)h/2 ≤ 1/n, the right-hand side of
the latter equation is at least ρ1h/8 which, using that ρ1 ≥ ρ2/2, is at least ρ2h/16 ≥ 1/(16n).

Then, the probability that there is a point a ∈ P located in Ba is

> 1 −
(

1 − 1

16n

)n

≥ 1 − e−1/16, by Inequality 1.

And the probability that there is another point b ∈ P located in Bb is

1 −
(

1 − 1

16n

)n−1

≥ 1 − e−(n−1)/(16n), by Inequality 1,

≥ 1 − e−1/32, for any n > 1.

It remains to be shown that Γ is void of points. The probability that Γ is empty is lower bounded
by upper bounding the volume, i.e. taking Vd(1, ρ) ≤ Vd(1, ρ2) = Vd(1, ρ1) + (Vd(1, ρ2)− Vd(1, ρ1)).
For Vd(1, ρ2) − Vd(1, ρ1) = 1/n, we have

(
1 − 1

n

)n−2

≥ e−(n−2)/(n−1), by Inequality 1,

≥ 1/e.

And the probability that Γ1 is empty is

(1 − Vd(1, ρ1))
n−2 ≥ exp

(
−Vd(1, ρ1)(n − 2)

1 − Vd(1, ρ1)

)
, by Inequality 1.

Replacing, we get

Pr ((a, b) ∈ D(P )) ≥
(

1 − 1

e1/16

)(
1 − 1

e1/32

)
1

e
exp

(
−Vd(1, ρ1)(n − 2)

1 − Vd(1, ρ1)

)

= ε.

Theorem 13. For d = 3, given the Delaunay graph D(P ) of a set P of n > 4 points distributed
uniformly and independently at random in a unit d-ball, with probability at least ε, there is an edge

(a, b) ∈ D(P ), a, b ∈ P , such that ||−→ab||2 ≥ ρ1/2, where

Vd(1, ρ1) =
ln (α/ε)

(n − 2 + ln (α/ε))
,

where α = (1 − e−1/6)(1 − e−1/12)e−12, for any 0 < ε ≤ α/e such that Vd(1, ρ1) ≤ 1/2 − 1/n.

Proof. For any pair of points a, b ∈ P , by Definition 2, for the edge (a, b) to be in D(P ), there must
exist a d-ball such that a and b are located in the surface area of the ball and the interior is void of
points from P . We compute the probability of such event as follows. (Refer to the two-dimensional
projections of Figure 2.)

Consider two spherical caps of the unit ball with concentric surface areas, call them Γ1 and Γ2,
of base diameters ρ1 and ρ2, and heights h1 and h2 respectively. Let ρ1 be such that Vd(1, ρ1) is
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Ba

Ba

Bb

Bb

ρ1

ρ1/
√

2
ρ1/2

ρ2

h1

h2

(a)

a b

Γ

Γ1

Γ2 − Γ1

(b)

x1

x2

x3

x4

x5

ρ1

ρ2

h

h1

(c)

Figure 2: Illustration of Theorem 13.
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as defined and let h2 be such that π(ρ1/2)
2(h2 − h1) = 1/n. Let Γ2 − Γ1 be all space points in Γ2

that are not in Γ1 (i.e., the body defined by the difference of both spherical caps). Consider the
parallelepiped of sides ρ1/

√
2 × ρ1/

√
2 × h2 − h1 inscribed in Γ2 − Γ1 (see Figure 2(a)), call it Π.

Inside Π, consider two bodies Ba and Bb of identical volumes such that for any pair of points
a ∈ Ba and b ∈ Bb the following holds: (i) the points a and b are separated a distance at least ρ1/2;
(ii) there exists an empty spherical cap Γ that contains the points a and b in its base of diameter
ρ such that Vd(1, ρ) ≤ Vd(1, ρ2). (See Figure 2(b).) Such configuration implies the existence of an
empty d-ball of infinite radius with a and b in its surface which proves the claim. In the following,
we show that such configuration occurs with big enough probability.

To bound the volume of Ba (hence, Bb), we first bound the ratio ρ2/ρ1. Consider the inscribed
bodies whose projection is illustrated in Figure 2(c). It can be seen that the cone x1x3x5 is located
inside the body composed by the cone x2x3x4 and the frustum x1x2x4x5. Then,

h2π(ρ2/2)
2

d
≤ h1π(ρ1/2)

2

d
+

π(ρ2/2)
3 − π(ρ1/2)

3

d(ρ2/2 − ρ1/2)
(h2 − h1)

h1ρ2 ≤ h2ρ1. (5)

Given that ε ≤ α/e, we know that Vd(1, ρ1) ≥ 1/n. Then, given that π(ρ1/2)
2(h2 − h1) = 1/n,

it holds that h2 ≤ 2h1. Replacing in Equation 5 we obtain ρ2 ≤ 2ρ1. The base of the big triangle
is ρ2/2 + ρ1/4, and the height is h. The base of the triangle to compute is ρ1/(2

√
2) + ρ1/4, and

the height is h(ρ1/(2
√

2)+ρ1/4)/(ρ2/2+ρ1/4). The base of the small triangle to substract is ρ1/2,
and the height is hρ1/(2(ρ2/2 + ρ1/4)). Then, the trapezoid area is

3

8
ρ1h

ρ1/(2
√

2) + ρ1/4

ρ2/2 + ρ1/4
− ρ1

4
h

ρ1

2(ρ2/2 + ρ1/4)
=

ρ2
1

2ρ2 + ρ1
h

(
3

2

(
1

2
√

2
+

1

4

)
− 1

2

)

≥ ρ1h
1

4

(
3

2

(
1√
2

+
1

2

)
− 1

)
.

Then, the volume of Ba is at least

ρ2
1h

1

4
√

2

(
3

2

(
1√
2

+
1

2

)
− 1

)
=

1

π
√

2n

(
3

2

(
1√
2

+
1

2

)
− 1

)

≥ 1

6n
.

Then, the probability that there is a point a ∈ P located in Ba is

> 1 −
(

1 − 1

6n

)n

≥ 1 − e−1/6, by Inequality 1.

And the probability that there is another point b ∈ P located in Bb is

1 −
(

1 − 1

6n

)n−1

≥ 1 − e−(n−1)/(6n), by Inequality 1,

≥ 1 − e−1/12, for any n > 1.

It remains to be shown that Γ is void of points. The probability that Γ is empty is lower bounded
by upper bounding the volume, i.e. taking Vd(1, ρ) ≤ Vd(1, ρ2) ≤ Vd(1, 2ρ1)+(Vd(1, ρ2)−Vd(1, ρ1)).

12



We know that Vd(1, ρ2) − Vd(1, ρ1) ≤ π(ρ2/2)
2h ≤ π(ρ1)

2h = 4/n. Then, for Vd(1, ρ2) − Vd(1, ρ1),
we have

(
1 − 4

n

)n−2

≥ e−4(n−2)/(n−4), by Inequality 1,

≥ 1/e12, for any n > 4.

And the probability that Γ1 is empty is

(1 − Vd(1, ρ1))
n−2 ≥ exp

(
−Vd(1, ρ1)(n − 2)

1 − Vd(1, ρ1)

)
, by Inequality 1.

Replacing, we get

Pr ((a, b) ∈ D(P )) ≥
(

1 − 1

e1/6

)(
1 − 1

e1/12

)
1

e12
exp

(
−Vd(1, ρ1)(n − 2)

1 − Vd(1, ρ1)

)

= ε.

5 Open Problems

It would be interesting to extend this study to other norms, such as L1 or L∞. Also, Theorems 12
and 13 were proved showing that some configuration that yields a Delaunay edge of some length is
not unlikely. Different configurations were used for each, but a configuration that works for both
cases exists (although yielding worse constants). We conjecture that (modulo some constant) the
same bound can be obtained in general for any d > 1. Both questions are left for future work.
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