
Modeling and Performance
Analysis of BitTorrent-Like

Peer-to-Peer Networks
Dongyu Qiu and R. Srikant

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

CSL, UIUC – p.1/22

Introduction

Peer-to-peer networks:
Peers participate in an application level overlay
network and operate as both servers and clients.
Scalable: the service burden is distributed to all
participating peers.

Applications: File sharing, distributed directory service,
web cache, storage, and grid computation etc.

P2P file sharing: Kazza, Gnuttella, eDonkey/Overnet,
BitTorrent.
In some segments of the Internet, P2P traffic accounts
for 40% of the Internet traffic.

CSL, UIUC – p.2/22

Related Work

P2P system design and traffic measurement [Ripeanu
2001, Ripeanu et al 2002, Eugene et al 2003]

Stochastic fluid model for P2P web cache [Clevenot et
al 2003]

Simple Markovian model and service capacity for
BitTorrent-Like P2P file sharing [Yang and de Veciana
2004]

CSL, UIUC – p.3/22

Overview of BitTorrent

Process starts with a server called the seed which has
the file of interest

File stored in many pieces of 256 KB each

As peers arrive, they download "random" pieces of the
file from the seed
Each peer may have different parts of the file

Peers can act as servers even if they only have parts of
the file.
Key point: Peers download from each other, while in
traditional client/server system, clients only download
from a single server

CSL, UIUC – p.4/22

Overview of BitTorrent

Process starts with a server called the seed which has
the file of interest
File stored in many pieces of 256 KB each

As peers arrive, they download "random" pieces of the
file from the seed
Each peer may have different parts of the file

Peers can act as servers even if they only have parts of
the file.
Key point: Peers download from each other, while in
traditional client/server system, clients only download
from a single server

CSL, UIUC – p.4/22

Overview of BitTorrent

Process starts with a server called the seed which has
the file of interest
File stored in many pieces of 256 KB each

As peers arrive, they download "random" pieces of the
file from the seed

Each peer may have different parts of the file

Peers can act as servers even if they only have parts of
the file.
Key point: Peers download from each other, while in
traditional client/server system, clients only download
from a single server

CSL, UIUC – p.4/22

Overview of BitTorrent

Process starts with a server called the seed which has
the file of interest
File stored in many pieces of 256 KB each

As peers arrive, they download "random" pieces of the
file from the seed
Each peer may have different parts of the file

Peers can act as servers even if they only have parts of
the file.
Key point: Peers download from each other, while in
traditional client/server system, clients only download
from a single server

CSL, UIUC – p.4/22

Overview of BitTorrent

Process starts with a server called the seed which has
the file of interest
File stored in many pieces of 256 KB each

As peers arrive, they download "random" pieces of the
file from the seed
Each peer may have different parts of the file

Peers can act as servers even if they only have parts of
the file.

Key point: Peers download from each other, while in
traditional client/server system, clients only download
from a single server

CSL, UIUC – p.4/22

Overview of BitTorrent

Process starts with a server called the seed which has
the file of interest
File stored in many pieces of 256 KB each

As peers arrive, they download "random" pieces of the
file from the seed
Each peer may have different parts of the file

Peers can act as servers even if they only have parts of
the file.
Key point: Peers download from each other, while in
traditional client/server system, clients only download
from a single server

CSL, UIUC – p.4/22

Overview of BitTorrent

Peer 5 joins the
network

downloads a
.torrent file
connects to the
tracker
the tracker returns
peer information

connects to other
peers and begins
downloading

CSL, UIUC – p.5/22

Overview of BitTorrent

Peer 5 joins the
network
downloads a
.torrent file

connects to the
tracker
the tracker returns
peer information

connects to other
peers and begins
downloading

CSL, UIUC – p.5/22

Overview of BitTorrent

Peer 5 joins the
network
downloads a
.torrent file
connects to the
tracker

the tracker returns
peer information

connects to other
peers and begins
downloading

CSL, UIUC – p.5/22

Overview of BitTorrent

Peer 5 joins the
network
downloads a
.torrent file
connects to the
tracker
the tracker returns
peer information

connects to other
peers and begins
downloading

CSL, UIUC – p.5/22

Overview of BitTorrent

Peer 5 joins the
network
downloads a
.torrent file
connects to the
tracker
the tracker returns
peer information

connects to other
peers and begins
downloading

CSL, UIUC – p.5/22

Terminology

A peer which has the entire file is called a seed

A peer that is not a seed is called a downloader

A downloader becomes a seed once it has the entire file
Each peer uploads to five other peers

Every 30 seconds, each peer drops its upload to the
peer with the smallest download rate and picks a new
one at random (Optimistic Unchoking)

Free-riding: Selfish peers tend to download at maximum
rate while not uploading at all if they can get away with it

CSL, UIUC – p.6/22

Terminology

A peer which has the entire file is called a seed

A peer that is not a seed is called a downloader

A downloader becomes a seed once it has the entire file
Each peer uploads to five other peers

Every 30 seconds, each peer drops its upload to the
peer with the smallest download rate and picks a new
one at random (Optimistic Unchoking)

Free-riding: Selfish peers tend to download at maximum
rate while not uploading at all if they can get away with it

CSL, UIUC – p.6/22

Terminology

A peer which has the entire file is called a seed

A peer that is not a seed is called a downloader

A downloader becomes a seed once it has the entire file

Each peer uploads to five other peers

Every 30 seconds, each peer drops its upload to the
peer with the smallest download rate and picks a new
one at random (Optimistic Unchoking)

Free-riding: Selfish peers tend to download at maximum
rate while not uploading at all if they can get away with it

CSL, UIUC – p.6/22

Terminology

A peer which has the entire file is called a seed

A peer that is not a seed is called a downloader

A downloader becomes a seed once it has the entire file
Each peer uploads to five other peers

Every 30 seconds, each peer drops its upload to the
peer with the smallest download rate and picks a new
one at random (Optimistic Unchoking)

Free-riding: Selfish peers tend to download at maximum
rate while not uploading at all if they can get away with it

CSL, UIUC – p.6/22

Terminology

A peer which has the entire file is called a seed

A peer that is not a seed is called a downloader

A downloader becomes a seed once it has the entire file
Each peer uploads to five other peers

Every 30 seconds, each peer drops its upload to the
peer with the smallest download rate and picks a new
one at random (Optimistic Unchoking)

Free-riding: Selfish peers tend to download at maximum
rate while not uploading at all if they can get away with it

CSL, UIUC – p.6/22

Terminology

A peer which has the entire file is called a seed

A peer that is not a seed is called a downloader

A downloader becomes a seed once it has the entire file
Each peer uploads to five other peers

Every 30 seconds, each peer drops its upload to the
peer with the smallest download rate and picks a new
one at random (Optimistic Unchoking)

Free-riding: Selfish peers tend to download at maximum
rate while not uploading at all if they can get away with it

CSL, UIUC – p.6/22

Issues to Be Addressed

Peer evolution
Scalability

Performance of the built-in incentive mechanism
(Optimistic Unchoking) to combat free-riding

CSL, UIUC – p.7/22

Model

x(t) y(t)

x(t): number of downloaders, y(t): number of seeds

λ: arrival rate of new requests

θ: the rate at which a downloader aborts the download
µ: uploading bandwidth of a peer

η: effectiveness parameter (Yang and de Veciana)

c : downloading bandwidth of a peer

γ: seed departure rate

CSL, UIUC – p.8/22

Model

x(t) y(t)
λ

x(t): number of downloaders, y(t): number of seeds

λ: arrival rate of new requests

θ: the rate at which a downloader aborts the download
µ: uploading bandwidth of a peer

η: effectiveness parameter (Yang and de Veciana)

c : downloading bandwidth of a peer

γ: seed departure rate

CSL, UIUC – p.8/22

Model

x(t) y(t)
λ

θx(t)

x(t): number of downloaders, y(t): number of seeds

λ: arrival rate of new requests

θ: the rate at which a downloader aborts the download

µ: uploading bandwidth of a peer

η: effectiveness parameter (Yang and de Veciana)

c : downloading bandwidth of a peer

γ: seed departure rate

CSL, UIUC – p.8/22

Model

x(t) y(t)
λ

θx(t)

µy(t)

x(t): number of downloaders, y(t): number of seeds

λ: arrival rate of new requests

θ: the rate at which a downloader aborts the download
µ: uploading bandwidth of a peer

η: effectiveness parameter (Yang and de Veciana)

c : downloading bandwidth of a peer

γ: seed departure rate

CSL, UIUC – p.8/22

Model

x(t) y(t)
λ

θx(t)

µ(ηx(t) + y(t))

x(t): number of downloaders, y(t): number of seeds

λ: arrival rate of new requests

θ: the rate at which a downloader aborts the download
µ: uploading bandwidth of a peer

η: effectiveness parameter (Yang and de Veciana)

c : downloading bandwidth of a peer

γ: seed departure rate

CSL, UIUC – p.8/22

Model

x(t) y(t)
min{cx(t), µ(ηx(t) + y(t))}λ

θx(t)

x(t): number of downloaders, y(t): number of seeds

λ: arrival rate of new requests

θ: the rate at which a downloader aborts the download
µ: uploading bandwidth of a peer

η: effectiveness parameter (Yang and de Veciana)

c : downloading bandwidth of a peer

γ: seed departure rate

CSL, UIUC – p.8/22

Model

x(t) y(t)
min{cx(t), µ(ηx(t) + y(t))}λ

θx(t)

γy(t)

x(t): number of downloaders, y(t): number of seeds

λ: arrival rate of new requests

θ: the rate at which a downloader aborts the download
µ: uploading bandwidth of a peer

η: effectiveness parameter (Yang and de Veciana)

c : downloading bandwidth of a peer

γ: seed departure rate

CSL, UIUC – p.8/22

A Simple Fluid Model

dx

dt
= λ − θx(t) − min{cx(t), µ(ηx(t) + y(t))}

dy

dt
= min{cx(t), µ(ηx(t) + y(t))} − γy(t)

Comparison with download from a single server:

Single server: service rate is fixed at µ, need λ < µ for
stability

P2P: service rate increases when number of peers
increases
P2P is scalable, but single-server download is not

CSL, UIUC – p.9/22

Steady-State Performance

If 1

c
≥ 1

η
(1

µ
− 1

γ
), the downloading bandwidth is the

constraint:

x̄ =
λ

c(1 + θ
c
)
, ȳ =

λ

γ(1 + θ
c
)

If 1

c
≤ 1

η
(1

µ
− 1

γ
), the uploading bandwidth is the

constraint:

x̄ =
λ

ν(1 + θ
ν
)
, ȳ =

λ

γ(1 + θ
ν
)
,

where 1

ν
= 1

η
(1

µ
− 1

γ
).

CSL, UIUC – p.10/22

Steady-State Performance

If 1

c
≥ 1

η
(1

µ
− 1

γ
), the downloading bandwidth is the

constraint:

x̄ =
λ

c(1 + θ
c
)
, ȳ =

λ

γ(1 + θ
c
)

If 1

c
≤ 1

η
(1

µ
− 1

γ
), the uploading bandwidth is the

constraint:

x̄ =
λ

ν(1 + θ
ν
)
, ȳ =

λ

γ(1 + θ
ν
)
,

where 1

ν
= 1

η
(1

µ
− 1

γ
).

CSL, UIUC – p.10/22

Steady-State Performance

Little’s law: average downloading time

T =
1

θ + β
, where

1

β
= max

{

1

c
,
1

η

(

1

µ
− 1

γ

)}

Scalability: T is not a function of λ, the request arrival
rate
When the seed departure rate γ increases, T increases

Even if c � µ, the downloading bandwidth c may still be
the bottleneck (e.g. if γ < µ)

Prior work assumes c = ∞ (motivated by the asymmetry
in cable modem and DSL rates): doesn’t capture the
above effect

CSL, UIUC – p.11/22

Steady-State Performance

Little’s law: average downloading time

T =
1

θ + β
, where

1

β
= max

{

1

c
,
1

η

(

1

µ
− 1

γ

)}

Scalability: T is not a function of λ, the request arrival
rate

When the seed departure rate γ increases, T increases

Even if c � µ, the downloading bandwidth c may still be
the bottleneck (e.g. if γ < µ)

Prior work assumes c = ∞ (motivated by the asymmetry
in cable modem and DSL rates): doesn’t capture the
above effect

CSL, UIUC – p.11/22

Steady-State Performance

Little’s law: average downloading time

T =
1

θ + β
, where

1

β
= max

{

1

c
,
1

η

(

1

µ
− 1

γ

)}

Scalability: T is not a function of λ, the request arrival
rate
When the seed departure rate γ increases, T increases

Even if c � µ, the downloading bandwidth c may still be
the bottleneck (e.g. if γ < µ)

Prior work assumes c = ∞ (motivated by the asymmetry
in cable modem and DSL rates): doesn’t capture the
above effect

CSL, UIUC – p.11/22

Steady-State Performance

Little’s law: average downloading time

T =
1

θ + β
, where

1

β
= max

{

1

c
,
1

η

(

1

µ
− 1

γ

)}

Scalability: T is not a function of λ, the request arrival
rate
When the seed departure rate γ increases, T increases

Even if c � µ, the downloading bandwidth c may still be
the bottleneck (e.g. if γ < µ)

Prior work assumes c = ∞ (motivated by the asymmetry
in cable modem and DSL rates): doesn’t capture the
above effect

CSL, UIUC – p.11/22

Steady-State Performance

Little’s law: average downloading time

T =
1

θ + β
, where

1

β
= max

{

1

c
,
1

η

(

1

µ
− 1

γ

)}

Scalability: T is not a function of λ, the request arrival
rate
When the seed departure rate γ increases, T increases

Even if c � µ, the downloading bandwidth c may still be
the bottleneck (e.g. if γ < µ)

Prior work assumes c = ∞ (motivated by the asymmetry
in cable modem and DSL rates): doesn’t capture the
above effect

CSL, UIUC – p.11/22

Stability

A2

A1

x

0

y

y =
((c
−

µη
)/

µ)
x

A1 =

[

−(µη + θ) −µ

µη −(γ − µ)

]

A2 =

[

−(θ + c) 0
c −γ

]

A2 is a stable matrix, but A1

may not be a stable matrix

However, the system is
globally stable

CSL, UIUC – p.12/22

Characterizing Variability

How the number of seeds and downloaders vary around
the numbers predicted by the deterministic model?

Peers arrive according to a Poisson process.

Download times are exponentially distributed

x(t) +
√

λx̂(t), y(t) +
√

λŷ(t),

respectively, where X̂(t) = (x̂(t), ŷ(t))T are described by
an Ornstein-Uhlenbeck process:

dX̂(t) = AX̂(t)dt + BdW(t)

A = A1 or A2

CSL, UIUC – p.13/22

Characterizing Variability

B =

1 −√
ρ −

√

(1 − ρ) 0

0 0
√

(1 − ρ) −
√

(1 − ρ)

 ,

where ρ is a constant depending on θ, c, µ, γ, and η.

In steady-state, the number of seeds and downloaders
is Gaussian with covariance Σ :

AΣ + ΣA
T + BB

T = 0.

CSL, UIUC – p.14/22

Peer Selection Algorithm

Assumptions:
Each peer has the global information of uploading
rates of other peers.
No downloading bandwidth constraints, all peers are
fully connected and have demands from each other.

Peer i selects nu other peers to upload, which give peer
i the best download rates
With global information, the peer selection can be done
in a systematic way

CSL, UIUC – p.15/22

Peer Strategy

In BitTorrent, a peer i can choose its uploading
bandwidth up to a maximum of the physical uploading
bandwidth pi.

di(µi, µ−i) : the download rate of peer i when its
uploading bandwidth is µi and the uploading bandwidth
of other peers is µ

−i

Peer i try to choose µi such that

µi = min{µ̃i|di(µ̃i, µ−i) = di(pi, µ−i)}

CSL, UIUC – p.16/22

Nash Equilibrium Point

Given the peer selection algorithm (game rules), we can
now study the system as a non-cooperative game. A
Nash equilibrium for our problem is a set of uploading
rates {µ̄i} such that

µ̄i = min {µ̃i|di(µ̃i, µ̄−i) = di(pi, µ̄−i)}
For a general network setting, there may be no Nash
equilibrium point exists.

CSL, UIUC – p.17/22

Nash Equilibrium Point

We consider a network with a finite number of groups of
peers. In group j, all peers have the same physical
uploading bandwidth pj.

Let gj be the set of peers in group j and ||gj|| be the
number of peers in group j.

Proposition 1 If nu ≥ 2 and the number of peers in a
group ||gj|| > nu + 1 for all groups, there exists a Nash
equilibrium point for the system, in which µ̄i = pj if peer
i ∈ gj. Moreover, with any initial setting of {µ0

i }, the
system converges to the Nash equilibrium point {µ̄i}.

CSL, UIUC – p.18/22

Simulation Result

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

450

500

 time (min)

 N
or

m
al

iz
ed

 n
um

be
r

of
 d

ow
nl

oa
de

rs

 λ=0.04
 λ=0.4
 λ=4
 λ=40
 simple fluid model

Figure 1: The evolution of the number of downloaders as a function of
time (µ = 0.00125, c = 0.002, θ = 0.001, γ = 0.005)

CSL, UIUC – p.19/22

Simulation Result

−60 −40 −20 0 20 40 60
0

200

400

600

800

1000

1200

 x*

 H
is

to
gr

am
 o

f x
*

 λ=0.04
 λ=0.4
 λ=4
 λ=40

Figure 2: Histogram of the variation of the number of downloaders
around the fluid model (µ = 0.00125, c = 0.002, θ = 0.001, γ = 0.005)

CSL, UIUC – p.20/22

Experimental Result

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

18

20

 time (min)

 n
um

be
r

of
 s

ee
ds

 fluid model
 real trace

Figure 3: The evolution of the number of seeds as a function of time
(real trace)

CSL, UIUC – p.21/22

Conclusions

Presented a simple fluid model and a game-theoretic
model for BitTorrent-like networks
Studied the steady-state network performance and
stability

Obtained insight into the effect of different parameters
on network performance

Studied the effect of the built-in incentive mechanism of
BitTorrent on preventing free-riding

CSL, UIUC – p.22/22

	Introduction
	Related Work
	Overview of BitTorrent
	Overview of BitTorrent
	Terminology
	Issues to Be Addressed
	Model
	A Simple Fluid Model
	Steady-State Performance
	Steady-State Performance
	Stability
	Characterizing Variability
	Characterizing Variability
	Peer Selection Algorithm
	Peer Strategy
	Nash Equilibrium Point
	Nash Equilibrium Point
	Simulation Result
	Simulation Result
	Experimental Result
	Conclusions

