IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995 963

Products of Networks with
Logarithmic Diameter and Fixed Degree

Kemal Efe, Member, IEEE, and Antonio Fernindez

Abstract—This paper first analyzes some general properties
of product networks pertinent to parallel architectures and then
focuses on three case studies. These are products of complete
binary trees, shuffle-exchange, and de Bruijn networks. It is
shown that all of these are powerful architectures for parallel
computation, as evidenced by their ability to efficiently emulate
numerous other architectures. In particular, r-dimensional
grids, and r-dimensional meshes of trees can be embedded effi-
ciently in products of these graphs, i.e. either as a subgraph or
with small constant dilation and congestion. In addition, the
shuffle-exchange network can be embedded in r-dimensional
product of shuffle exchange networks with dilation cost 2r and
congestion cost 2. Similarly, the de Bruijn network can be em-
bedded in r-dimensional product of de Bruijn networks with
dilation cost r and congestion cost 4. Moreover, it is well known
that shuffle-exchange and de Bruijn graphs can emulate the
hypercube with a small constant slowdown for “normal” algo-
rithms. This means that their product versions can also emulate
these hypercube algorithms with constant slowdown. Conclu-
sions include a discussion of many open research areas.

Index Terms—Product networks, interconnection networks,
parallel architectures, multiprocessors, graph embedding, applica-
tion specific array processors, emulation, embedded architectures.

I. INTRODUCTION

N ETWORKS! with small diameter, small vertex degrees,
and large bandwidth are well suited for massively
parallel computation. The hypercube is a well known exam-
ple of a network with small diameter and large bandwidth,
but the vertex degree of hypercube grows logarithmically
with the number of vertices, making it hard to build scalable
architectures. Grids have larger diameter than hypercubes,
but due to their fixed and small vertex degrees their popular-
ity has been increasing in recent years. A small vertex degree
implies that the system can be implemented with a small
hardware cost spent for the communication channels. A fixed
vertex degree implies that the system can be expanded with-
out having to modify the individual nodes. Although these
are important advantages offered by the grid network, be-
sides its ability to efficiently compute certain classes of al-
gorithms, it is not well suited for other classes of computa-
tions, including divide-and-conquer, ascend-descend, paral-
lel merge, etc.

1. We use the terms “graph” and “network” interchangeably.

Manuscript received Mar. 8, 1993; revised Dec. 10, 1993.

K. Efe is with the Center for Advanced Computer Studies, University of South-
western Louisiana, Lafayette, LA 70504; e-mail: efe@bayous21.cacs.usl.edu.

A. Ferndndez is with the Departamento de Arquitectura y Tecnologia de
Computadores at the Universidad Politécnica de Madrid, Spain.

IEEECS Log Number D95036.

We present product networks as generalizations from grids
and show that the presented networks preserve the fixed de-
gree property of grids while improving several of its proper-
ties, such as reducing the diameter to logarithmic values as
well as increasing the bandwidth. Moreover, we show that
every product network can emulate grids with small overhead
and also offer several other advantages depending on the fac-
tor graph used.

In simple terms, the r-dimensional product of N-node
graph G is obtained from the r-dimensional N'-node grid by
replacing the linear connections of the grid for the intercon-
nection pattern of G. As an example, Fig. 1 shows the 2-
dimensional product of 7-node complete binary trees. The
notion of “dimension” in product graphs will be made more
precise in the next section, but for now it suffices to think of
the r-dimensional product of graph G as a generalization
from the r-dimensional grid, where each dimension is con-
nected in the pattern of G.

0000000 0—0—0 U 0—0—0
600 00O0CO o—o0 o G—0—0
©0O0O0OOO0OO 0—0—0 U~ 0—b—0
00O0O0OOCO 0—C—0 v 0—0o—0
000 0O OO0 o0—0—0 U 0—0—0
OO0 00 O0O0OO 0—0—0 U 0—0—0
000 00 OO0 0—0—0 U 0—0o—0
o
o o)

Fig. 1. Two dimensional product of complete binary trees. The grid points
shown upper-left are connected in the binary tree pattern for each row and for
each column. The final product network is shown lower-right.

Interconnection networks with small, fixed vertex degrees,
and logarithmic diameters exist, including for instance binary
trees, meshes of trees, shuffle-exchange, and de Bruijn net-
works, and these networks are good for those computations
were the grid is not. However they are inefficient for other

1045-9219/95%$04.00 © 1995 IEEE

964 JEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

computations where the grid interconnection is efficient. The
power of hypercube is due to its ability to emulate all of
these and other architectures efficiently [4], [13], [5], [71. If
we exclude the hypercube from consideration due to its large
vertex degree, then we are faced with the challenge of de-
signing a network which performs as well as the hypercube
in these areas and which has a small and fixed vertex degree.
As shown in this paper, product networks built from fixed
degree networks can potentially serve as viable candidates
for this purpose.

Some special cases of product networks have been studied
by other researchers. For example, Rosenberg [17] showed
that two dimensional products of de Bruijn networks can
efficiently emulate grids, meshes of trees, de Bruijn networks
and others. Section VI of our paper reinspects some of these
resultsGanesan and Pradhan [12] studied the product graph
obtained from crossing hypercubes with de Bruijn networks.
The resulting network is analogous to the two dimensional
grid whose connections in the first dimension are replaced
for the hypercube connections, while the second dimension
connections are replaced for that of de Bruijn graph. They
showed that the resulting network has better embedding
properties than the hypercube. Other well known product
networks are grids where G is a linear array of N nodes, and
hypercubes where N = 2. The generalized hypercube [3] can
be also considered as the r-dimensional product of complete
graphs.

This paper focuses on “homogeneous” product networks of
r dimensions for r > 2; homogeneous in the sense that for
every dimension, the pattern of interconnection is defined by
the same graph G. The more general case of different inter-
connection patterns at different dimensions is certainly worthy
of investigation. The choice of homogeneous products in this
paper is not completely arbitrary however, since it allows the
investigation of certain relationships between a “factor” net-
work and its r-dimensional product versions more easily. That
is, it is relatively easier to state and prove statements of the
form “... if G has the property A, then the r-dimensional prod-
uct of G has the corresponding property B... .” Not only this
type of analyses give a clear picture of any improvement (or
lack of it as the case may be) attained by product networks, but
also certain facts of this type can be easily generalized for
“heterogeneous” products.

Three cases are analyzed in this paper, including products
of complete binary trees, shuffle-exchange, and de Bruijn net-
works. This selection is based on two reasons: First, these are
already known to be powerful networks for parallel computa-
tion, and second, they have small and fixed vertex degrees. As
shown in this paper, product networks based on these architec-
tures are even more powerful computationally. On the negative
side, the maximum vertex degree of product networks consid-
ered here grows faster (by a constant factor) than that of the
hypercube or grid, with the increasing number of dimensions.
However, these product networks can also grow without in-
creasing the vertex degree. This latter property gives them an
advantage over the hypercube which cannot grow without in-
creasing the vertex degree.

After presenting the basic definitions and notations in the
next section, the general properties of product networks are
analyzed in Section III. These discussions are focused on those
properties of product networks which are considered important
for parallel computation; including the vertex degrees, parti-
tionability, connectivity, diameter, bisection width, embedding
properties, and routing.

The products of complete binary trees are considered in Sec-
tion IV. Based on the results in Section IIL, it is shown that r-
dimensional N X N X --- x N product of complete binary trees
has diameter D = 2r(Log (N + 1) — 1), maximum vertex degree
3r. and bisection width at least Q(V ""). It can emulate the r-
dimensional N'-node torus with dilation 3 and congestion 2, and
contains the r-dimensional mesh of N-node trees as a subgraph.

The products of shuffle-exchange graphs are considered in
Section V. Again from the analyses of Section III, it is noted
that the r-dimensional N X N X --- X N product of shuffle-
exchange networks has diameter D = r(2Log N — 1), maximum
vertex degree 3r, and bisection width O(N'/LogN). It contains
the r-dimensional N'-node grid as a subgraph, and emulates the
r-dimensional mesh of (N — 1)-node trees with dilation cost 2
and congestion cost 2. It is also shown that N'-node pure shuf-
fle-exchange graph can be embedded in the r-dimensional
N x N X --- x N product of shuffle-exchange networks with
dilation cost 2r (for r > 1) and congestion cost 2. This dilation
can be considered as constant when r is fixed. Moreover, re-
verse embedding of the product of shuffle-exchange graphs on
the pure shuffle-exchange graph is shown to require a loga-
rithmic dilation cost, which suggests that the product version
of shuffle-exchange network is computationally more powerful
than the pure shuffle-exchange network itself.

Finally the products of de Bruijn networks are considered in
Section V1. The r-dimensional N X N x --- X N product of de
Bruijn networks has diameter D = r(LogN), the maximum
vertex degree 4r, and bisection width is O(N'/LogN). It con-
tains the r-dimensional N'-node torus as well as the r-dimensional
mesh of (N — 1)-node trees as a subgraph. These are significant
advantages over the other two product networks examined for
a small increase in the vertex degree. It is further shown that
N"-node de Bruijn graph can be embedded in the r-dimensional
N x N x --- X N product of de Bruijn networks with dilation
cost r and congestion cost 4. Again, this dilation can be con-
sidered as constant when r is fixed. Moreover, reverse em-
bedding of the product of de Bruijn graphs on the pure de
Bruijn graph is shown to require a logarithmic dilation cost,
which again suggests that the product version of de Bruijn
network is computationally more powerful than the pure de
Bruijn network itself.

The conclusion section discusses some of the open research
areas.

II. DEFINITIONS AND NOTATIONS

We mostly use undirected graphs to model interconnec-
tion networks, while occasionally taking advantage of di-
rected edges to shorten certain proofs when no loss of gen-
erality occurs. It will often be important to indicate the num-
ber of vertices, so we use G(N) to denote the N-node graph

EFE AND FERNANDEZ: PRODUCTS OF NETWORKS WITH LOGARITHMIC DIAMETER AND FIXED DEGREE 965

Product of G and G

G Product of G and H .
t
y
X c z
z
b y
b
H a X
a c
X y z 1 X y 4 1
Fig. 2. Definition of product graphs.
© —
2
j — e
o= I _«)] 3)
0
00 o1 10 i n 20 21 n

Fig. 3. Recursive construction of multi-dimensional product networks: (a) the factor graph, (b) two dimensional product, (c) three dimensional product.

G. The r-dimensional product of G(N) is denoted PG,(N),
with the subscript r representing the number of dimensions.
These notations will be maintained for consistency through-
out the paper, with a few exceptions when no confusion can
arize due to the context of discussion.

In this paper, we let u, v, w denote the vertices of G(N), and
x, y, z denote the vertices of product graphs obtained from
G(N). Since G(N) has N-vertices, the labels u, v, w take values
0, ---, (N = 1). For the r-dimensional product graph PG/(N),
the vertex labels x, y, z are strings of r symbols where each
symbol is drawn from {0, -+, (N — 1)}. For example, x is in the
form x = u,; -+~ u; -+ up where u; is an N-valued symbol.

Additional notation will be introduced as needed. As a
reminder to the reader, the definition of product graphs is
provided first, and illustrated in Fig. 2. (This particular
definition is frequently referred to as “cross product,” as op-
posed to other product operations in the literature. We just
use “product” to mean the cross product.)

DEFINITION 1. The cross product of two graphs G = (U, E) and
H = (V, F) is the graph G ® H whose vertex set is U X V,
and edge set is defined as follows: Assume {u, w'} € U and

{v, V'} € V, then (uv, u'V') is an edge in G @ H if and only
if either u = u’ and (v, V') € F, orv=""and (u, ') e E.

From the symmetry in this definition, note that the product
operator is commutative and associative. That is:

OBSERVATION 1. G; ® G, = G, ® Gy, and G1 ® (G ® G3) =
(G1@ Gy) © Ga.

The formal definition of r-dimensional product graphs is
given as follows:

DEFINITION 2. Given a graph G(N), the r-dimensional product,
denoted PGAN), is

1) a single vertex without any edges and no labels when r = 0,
2) PGAN) = G(N) ® PG,(N), when r> 0.

At a more intuitive level, the construction of PG,(N) from
PG,_;(N) can be described as follows: First, place the vertices
of PG,(N) along a straight line as shown in Fig. 3. Then,
draw N copies of PG,_1(N) such that the vertices with identical
labels fall in the same column. Next extend the vertex labels,
so that vertex label x becomes ux, for u € {0 --- (N — 1)}. Fi-
nally, connect the columns in the interconnection pattern of the

966 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

labeled graph G(N), such that ux is connected to u'x if and
only if (u, &) is an edge in G(N). From this, the edges of
PG.N) can be characterized as follows.

OBSERVATION 2. If x and y are in the form x = u,; --- 4o and
y =V, - Vo, Where u;, v; are drawn from {0, ---, (N-1},
then (x, y) is an edge in PG.(N) if and only if x and y differ
in exactly one symbol position ¢, and the differing symbols
(u,, v,) define an edge in G.

This can be easily verified. Suppose two labels x and y dif-
fer in just one symbol position. From Observation 1, we can
reorder the symbols in the labels so that the differing symbols
become the leftmost symbol. Then the claim can be verified
from Definition 2. If two or more symbols differ, one of them
can be made the leftmost symbol and the claim can again be
verified from Definition 2.

III. THE GENERAL PROPERTIES OF
PRODUCT NETWORKS

This section analyzes some computational properties which
are common for all product graphs.

Among the first questions we ask about a new interconnec-
tion network is the number of nodes and links in it. We can
easily observe that, if G(N) has N vertices and E edges, then
PGN) has N vertices and ErN 1 edges. The statement about
the number of vertices follows directly from Definition 2.2 To
compute the number of edges, observe from Fig. 3 that PG/(N)
contains all the edges of N copies of PG,(N) plus the edges
of N™ copies of G(N) (there are N 1 columns in Fig. 3). Thus
we can write i) =NAr—-1)+EN ™1 for the number of edges
in PG,N). The solution of this, with the initial condition
f(1) = E, gives the desired result.

The vertex degree of a graph determines its connectivity
and the number of parallel paths between an arbitrary pair of
vertices in it (especially if the graph is regular). We can easily
observe that if G(N) has minimum vertex degree d, and
maximum vertex degree d,., then PG,(N) has minimum vertex
degree rd,;, and maximum vertex degree rdm.. Note from
Fig. 3 that each time we add a new dimension to the product
network, we add at least d,;, and at most d,,. to the vertex
degrees. Then, there is a vertex x = u,_; --- u; - up Where each
u; corresponds to a vertex of G(N) with degree dyin- This
means x is a node with the minimum vertex degree of rd,.
Similarly, there is a vertex y = v,y -+ v;+-- Vo Where each v;
corresponds to a vertex of G(N) with degree dp,,. Then y must
have the maximum vertex degree rd,,,,-

From the construction of product networks, it can be easily
shown that if every pair of vertices in G(N) are connected by at
least K vertex-disjoint paths, then every pair of vertices in
PG,(N) are connected by at least rx vertex-disjoint paths. A
network with more parallel paths between arbitrary pairs of
nodes has higher communication bandwidth and better fault
tolerance capabilities.

2. Actually homogeneous product networks do not always have to contain N
nodes. If G(V) can be built with different N values, then we can build the product
version by combining different size networks at different dimensions and fine
tune the overall size to match the desired size. For simplicity in discussions, we
assume in this paper that the value of N is same for every dimension.

The ability to recursively partition a graph into distinct
copies of its smaller versions is another important property,
since it allows assigning the parts of a recursive computation
to different subnetworks, or shows a way to share the system
between many users. Product graphs contain a variety of sub-
graphs which are isomorphic copies of product graphs of lower
dimensions. Let PG, i{(N) denote the subgraph of PG(N) in-
duced by removing the symbol at position i. This corresponds
to erasing the connections at dimension i. Then, for r > 0,
PG, '(N) is isomorphic to N disjoint copies of PG, |(N) for

any i€ {0, - (r—1}. Fori=r—-1 (i.e., the leftmost symbol
index) the partionability is immediate from Definition 2 and
Fig. 3. For arbitrary i, we can use Observation 1 to reorder the
symbols in the address labels so that the ith symbol becomes
the leftmost symbol, and then refer to Definition 2. This can be
applied recursively and any number of symbols can be re-
moved from the vertex labels to obtain product graphs of
smaller dimensions.

The diameter of a network is another important property.
Several papers were devoted to developing networks with
small diameter and small vertex degree, and bounds have been
derived on diameter as a function of vertex degree [14]. In
general, computation of exact diameter for a given graph may
be difficult, but for homogeneous product graphs we are able
to state simple rules to calculate the diameter. The next two
results (or their restricted versions) have been discovered in
many papers independently [1], [81, [12], [17].

THEOREM 1. If G(N) has diameter D then PG/(N) has diame-
ter rD.

THEOREM 2. If G(N) is a self-routing network then PGAN) is
also a self-routing network.

We say that a network is “self-routing” if messages can be
delivered to their destinations through shortest paths without
an external controller. The basic idea in Theorem 2 is to apply
the routing algorithm of G(N) in each dimension of PG/N)
where the source and destination addresses differ. The basic
idea in Theorem 1 is to observe that there exist pairs of nodes
in PG,N) which differ in every symbol position. Moreover,
each differing symbol pair may correspond to a distance as
much as the diameter of G(N). Finding such a pair yields both
a lower bound and an upper bound for the diameter of the
product graph.

The embedding results of this research are among the most
important results since they show a way of emulating one net-
work by another. In the context of product networks, the utility
of embedding results is further emphasized by the fact that
many of the existing popular architectures can be modeled as
product networks. An embedding of a “guest” graph G in a
“host” graph H is a mapping of the vertices of G into the verti-
ces of H and the edges of G into paths in H. The main cost
measures used in embedding efficiency are:

e Load of the embedding is the maximum number of verti-
ces of G mapped to any vertex of H.

e Dilation of an embedding is the maximum path length in
H representing an edge of G.

EFE AND FERNANDEZ: PRODUCTS OF NETWORKS WITH LOGARITHMIC DIAMETER AND FIXED DEGREE

e Congestion of an embedding is the maximum number of
paths (that correspond to the edges of G) that share any
edge of H.

It was shown in [15] that if G can be embedded in A with
load /, dilation d, and congestion ¢, H can emulate # steps of a
computation running on G in O(l + d + c)t steps. If the values
1, d, and ¢ are constant, the slowdown introduced by this emu-
lation is also constant. We will make frequent use of the fol-
lowing result. Let G and H be labeled graphs. Then:

THEOREM 3. PG.(Ng) is a subgraph of PH{Ny) if and only if
G(Ng) is a subgraph of H(Np).

PROOF. The sufficient condition has been shown before
(Lemma 3.3 in [16]). Therefore, we only focus on the nec-
essary condition. If G(Ng) is not a subgraph of H(Ny), then
there must be at least one edge (1, v) in G(Ng) which cannot
be mapped to any edge in H(Ny). Since PG{N¢) = G(Ng) ©
PG, ;(Ng), we can write an edge of PG/(Ng) as (ux, vx)
where x is a vertex in PG, ;(Ng). Similarly, PH{(Ny) =
H(Ny) @ PH, (Ny), and the edge (ux, vx) cannot exist in
PH (Ny) since (u, v) is not an edge in H(Ny). O
This theorem and its extensions have many significant im-

plications. In particular, the next two results will be used fre-

quently in the following sections.

COROLLARY 1. If G(Ng) can be embedded in H(Ny) with dila-
tion d, then PG(Ng) can be embedded in PHNy) with di-
lation d.

PROOF. Modify G(N) to obtain G'(Ng), such that whenever
an edge e of G(Ng) is mapped to a path in H(Np), replace it
for the path it is mapped to (see Fig. 4). Since G’(NG,) ob-

tained this way is a subgraph of H(Ny), apply the above
theorem.

N
N

Fig. 4. Obtaining G’ from G.

COROLLARY 2. If G(Ng) can be embedded in H(Ny) with con-
gestion ¢, then PG(Ng) can be embedded in PH.(Ny) with
congestion c.

PROOF. An embedding of G(Ng) in H(Ny) with congestion cost
¢ directly induces the claimed embedding for G(Ng) in
H(Ny). 0O

An interesting result of these corollaries is that every prod-
uct graph of r dimensions can emulate the r-dimensional torus
with dilation cost 3 and congestion cost 2. This follows from a
theorem due to Leighton [16] which states that the N-node
cycle can be embedded in any N-node connected graph G with
dilation cost 3 and congestion cost 2. Using this fact in the
above corollaries leads to the claimed fact.

The following is useful when proving embedding results.

967

It has been used quite frequently, and often implicitly by
many researchers, and this makes it difficult to attribute it to
a single researcher.

PROPOSITION 1. Let G’ be a subgraph of G.

1) If G can be embedded in H with dilation cost d, then G’
can be embedded in H with dilation cost at most d.

2) If every embedding of G’ in H requires a dilation cost d,
then every embedding of G in H requires a dilation cost
at least d.

3) If every embedding of H in G requires a dilation cost d,
then every embedding of H in G’ requires a dilation cost
at least d.

PROOF. The first part of the proposition is easily seen since an
embedding of G in H induces an embedding for every sub-
graph of G in H. For the second part, assume for the sake of
argument that G’ requires a dilation d but G can be embed-
ded in H with dilation d,, where d, < d. If this were the case,
we could embed G’ in G with unit dilation and then embed
G in H. From part 1 of the proposition this induces an em-
bedding for G’ in H with dilation at most d;, which shows
that d could not have been the best dilation obtainable for
embedding G’ in H. The third item is easy to see since G’
only contains a subset of the edges of G. O

We note that these statements are equally true for the con-
gestion of embedding also. That is, we could replace the
word “dilation” for “congestion” and the statements would
continue to hold.

The bisection width of a network determines its bandwidth,
and has important implications about the VLSI layout com-
plexity bounds [19]. We first give a definition which will be
used in the statement and proof of the following theorem,

DEFINITION 3. We say that the “maximal congestion” of a con-
nected graph G(N) is C if after mapping the vertices of the
N-node directed complete graph onto the vertices of G(N)
in a one-to-one manner there is a mapping of the edges of
the complete graph into paths in G(N) such that no edge of
G(N) has congestion more than C.

Note that the maximal congestion is an intrinsic parameter
of a graph just like the chromatic number, crossing number,
etc. are intrinsic parameters of a graph.

THEOREM 4. If the maximal congestion of G(N) is C then
T+ .
PG/N) has bisection width at least 'A:;.T If N is even and

G(N) has bisection width B = Q’—é, this bisection width is

exact.

PROOF. First we show that when N is even and G(N) has bi-
section width B = ’2"—2 the claimed value is an upper bound.

Then we show that for all values of N the claimed value is
also a lower bound. O

Upper bound: Consider any partition of G(N) into two sub-
graphs each containing half the number of nodes. We obtain a
partition for PG,(N) by applying this partition to all of the G(N)
graphs in a given dimension. If N is even, each part of PG(N)
obtained this way contains N /2 nodes. Let (, v) be one of those

968 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

edges cut by the partition applied to G(N), and let B denote the

bisection width of G(N). Recall that PG(N) = G(N) @ PG, (N),
and if (u, v) is an edge in G(N), then (ux, vx) is an edge in
PG/N), where x = U, - g is a vertex in PG, (N). Since x can
take N possible values, and removal of B edges completely
disconnects G(N), the corresponding total number of edges re-
moved from PG,N) is BN, If B is the minimum bisection
width for G(N), then U = BN is a good upper bound for the

bisection width of PG,(N). If B=12 then U= is the
claimed upper bound when N is even. We give an example.

EXAMPLE 1. Consider the special case where the factor graph
is K(N), the directed complete graph of N nodes, where N is
even. Since K(N) has bisection width N %/2, the upper bound
Upx for the bisection width of r-dimensional product PK,(N)
is Upg= BN =N™12.

Lower bound: We use a proof technique extended from
Theorem 1.21 in [16]. First of all, we know that the bisection
width of N-node directed complete graph is N %/2. After map-
ping the edges of the directed complete graph on the available
paths in G(N), assume the maximal congestion for any edge of
G(N) is C. Then, if every edge cut in the bisection of G(N)
represents exactly C edges of the directed complete graph then

the bisection width of G(N) is L = % This is because a bi-

section for G(N) also induces a bisection for the directed
complete graph. Note however that, L is a lower bound be-
cause some edges cut in the bisection of G(V) may represent
less than C edges of the directed complete graph, depending
on how the edges of the complete graph are routed on G(N).
Thus, if we know C (as assumed in the statement of the

2
theorem), we can compute a lower bound as L > 4.

EXAMPLE 2. To compute a lower bound Lpg on the bisection
width of PK,(N) by this method, we first map the nodes of
N'-node directed complete graph, K(N"), onto the nodes of
PK,(N) one to one. We then map the edges of K(N') to
shortest paths in PK,(N). Consider an edge (x, z) of K(N"
mapped to a path in PK,(N). Let (x, y) be the first edge of
the path from x to z. If y differs from x in dimension ¢,
then z must also differ from x in dimension ¢, and the edge
(x, y) must be used for all possible values of z. Since z can
take at most N different values (including y itself), the
congestion of the edge (x, y) is at most Cpgx = N™'. Then

2r
the lower bound is Lpy = NcT[{Z, where N >/2 is the bisec-

tion width of K(N"). This yields Lpx = N2, which is
equal to Upg above.

These two examples establish that the exact bisection width
of PKN) is N™*'/2. We now use this to prove the theorem.
Above, we showed that each edge of PK,(N) represents exactly
N™' edges of K(N'). From the statement of the theorem, we
know that each edge of G(N) represents at most C edges of
K(N). Therefore each edge of PG,(N) represents at most CN" -1
edges of K(N"). Since the bisection width of K(N') is N*/2, a
lower bound on the bisection width of PG,(N) is

2r
ZN/_Z, = N™ [2C as claimed.

Now consider the case for odd values of N. As in Exam-
ple 2, we can compute the maximum congestion induced from
mapping the K(N") graph on PK,(N) as Cpx= N"'. Again the
theorem assumes that the congestion of mapping K(N) on G(N)
is at most C. Then, each edge of PG(N) represents at most
CN' edges of K(N'). Since the bisection width of K(N") is

-1%-1 when N is odd, the bisection width of PG/N) is at least

s L+ which
diminishes as N or r grows.

Both Theorems 3 and 4 are very significant since they
simplify the analyses of product networks. From Theorem 3, to
understand if the product of one graph is a subgraph of an-
other, we just need to focus on the corresponding factor graphs
which are much simpler than their products. From Theorem 4,
to compute a lower bound on bisection width of the r-dimensional
product network, we just need to compute the maximal con-
gestion for the factor graph. This can be simply done if the
factor graph has a routing algorithm: from each node, send one
packet to every other node, and count the maximum number of
packets that traces any edge. This gives the maximal conges-
tion. Alternatively, if we have an exact bisection width value
for the factor graph we can use it to obtain a lower bound for
the product graph.

. This differs from the case of even N by

IV. PRODUCTS OF COMPLETE BINARY TREES

A. Basic Properties

A complete binary tree of N = 2" — 1 nodes, denoted T(N),
has a minimum vertex degree of 1 and a maximum vertex de-
gree of 3. Any two nodes are connected by exactly one path,
the diameter is 2(Log(N + 1) — 1), and the bisection width is 1.

A two dimensional product of complete binary trees is
shown in Fig. 1. The r-dimensional product of binary trees is
obtained as T(N) ® PT,(N). The following properties of
PT(N) are immediately observed from the results in the previ-
ous section:

1) PT(N) has the minimum vertex degree 7, and the maxi-
mum vertex degree 3r.

2) PT(N) contains N vertices and r(N—1)N ! edges.

3) PT,(N) contains N copies of the PT,_,(N) subgraph.

4) Every pair of vertices in PT,(N) are connected by at least
r vertex-disjoint paths, and at most 3r vertex-disjoint
paths.

5) Diameter of PT,(N) is 2r(Log(N + 1) — 1) and bisection
width is at least Q(N™").

6) There exists a shortest path routing algorithm for the
PT(N) graph as a simple extension of the binary tree
shortest path routing algorithm.

B. Embedding Properties

Despite their simple structures, products of binary trees have
very interesting embedding properties. For instance, while tori
and meshes of trees are powerful architectures, they have differ-
ent strengths and weaknesses. It is shown in this section that the
product of binary trees can emulate both of these architectures
very efficiently. It is further shown that PT,(N) can emulate a

EFE AND FERNANDEZ: PRODUCTS OF NETWORKS WITH LOGARITHMIC DIAMETER AND FIXED DEGREE

Fig. 5. Embedding meshes of trees in products of complete binary trees.

comparable size complete binary tree efficiently, while the re-
verse emulation of the PT{N) architecture by a complete binary
tree requires logarithmic dilation cost.

THEOREM 5. r-dimensional N X --- X N torus can be embedded
in PT(N) with dilation cost 3 and congestion cost 2.

PROOF. Due to Corollaries 1 and 2, it suffices to show that
N-node cycle can be embedded in N-node complete binary
tree with dilation cost 3 and congestion cost 2. This follows
from a theorem due to Leighton [16] which states that the
N-node cycle can be embedded in any N-node connected
graph with dilation cost 3 and congestion cost 2. a

The PT/(N) graph contains not just the mesh of trees, but a
hierarchy of meshes of trees as shown next.

THEOREM 6. Foralli=1, ---, Log(N + 1) — 1, PT(N) contains
the mesh of (N + 1)/2"-leaf trees.

PROOF. Fig.5 shows the two dimensional meshes of trees
contained in PT,(7). Note that in this figure there are two
meshes of trees contained; one with (N + 1)/2 = 4 leaves for
each tree (shown in dark nodes), and one with (N + 1)/4 =2
leaves for each tree (shown in empty nodes). In general, the
largest mesh of trees contained in PT(N) is obtained as
follows: Start with the PT,(N) graph, and enumerate the row
trees 0, ---, (N — 1). For those trees with even numbers,
color the leaves in red, and internal nodes in blue. Do not
color the odd numbered trees. For the second dimension,
color the internal nodes of a tree in blue, if and only if it has
red leaves. Note that this coloring scheme is consistent with
the construction of two dimensional mesh of trees; that is,
all the colored nodes, red or blue, are contained in the two
dimensional mesh of trees. For induction, assume that
(r — 1)-dimensional mesh of trees has been already colored
in the PT,_(N) graph. The coloring rule for the r-dimensional
‘mesh of trees, is same. That is, when going from PT,_(N) to
PT.(N), color the internal nodes of a highest dimension tree
in blue, if and only if it has red leaves. The set of vertices
colored red or blue gives the largest r-dimensional mesh of
trees contained in PT,(N).

Once the largest mesh of trees is colored, successively
smaller meshes of trees are then obtained by removing all

969

Fig. 6. Embedding of the complete binary tree in the two dimensional product
of binary trees.

the colored vertices, and coloring the remaining vertices by

the same strategy. a

The next two results show that PT,(N) is strictly more pow-
erful than the corresponding size complete binary tree.

THEOREM 7. For r > 1, the complete binary tree of r(h — 1) + 1
levels is a subgraph of PT(N), where N = 2k 1.

PROOF. For r = 2, the embedding of 5-level complete binary tree
in PT(7) is shown in Fig. 6. Note in particular that the tree in
the middle row constitutes the highest three levels of the tree.
The leaves of this row tree correspond to the roots of column
trees. This pattern can be recursively repeated for larger val-
ues of N in two dimensions. Assuming that the claim is true
for PT,(N), the embedding proof for r dimensions follows
from the recursive construction of PT(N). (]
Note that for r = 2, the tree embedded by the above method

is the largest tree possible. The next result shows that complete

binary tree cannot emulate its comparable size product net-
work with less than logarithmic dilation.

THEOREM 8. Any embedding of PTN) in the large enough
complete binary tree requires dilation cost
Q(Log(rLogLogN)).

PROOF. Referring to Proposition 1, we show that PT,(N) con-
tains a subgraph Gy, and there exists a graph G, which con-
tains the complete binary tree as a subgraph, such that em-
bedding of G, in G, requires the claimed amount of dilation.

G, is the r-dimensional grid. Since N-node complete binary
tree contains a path of length L = 2(Log(N + 1) — 1), PT(N)
contains an M = L node grid. We can select G, as the de
Bruijn graph since it contains the complete binary tree as a
subgraph. It is shown in [2] that any embedding of r-dimensional
(for r > 1) M node grid in de Bruijn graph requires a dila-
tion of at least Q(LogLogM). Using M = L™ gives the
claimed result. O

V. PRODUCTS OF SHUFFLE-EXCHANGE GRAPHS

The N-node shuffle-exchange graph, denoted S(V), contains
N = 2* nodes, labeled 0, ---, 2 — 1 (in binary), and 3 x 2
edges connected as follows: (u, v) is a directed edge if and

970 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

010 o011
P C<I >0
100 101

Fig. 7. The 8-node shuffle-exchange graph with shuffle edges shown in solid
lines and exchange edges shown in dotted lines.

only if either a) u and v differ in the rightmost bit only, called
the “exchange” edges, or, b) v can be obtained from u by a
cyclic left shift, called the “shuffle” edges. An 8-node shuffle-
exchange graph is shown in Fig. 7. In the shuffle-exchange
graph, every vertex has a degree of 3. Any two nodes are con-
nected by at least one path, although many pairs of vertices are
connected by up to three vertex disjoint paths. The diameter is
2Log N — 1 and bisection width is ©(N/LogN).

The r-dimensional product of shuffle-exchange graph, de-
noted PS,(N), is obtained as PS(N) = S(N) ® PS,_;(N). The
following properties of PS,(N) are immediately observed from
the results in Section III:

1) Every node in PS(N) has vertex degree 3r (although
some edges are self loops).

2) PS(N) contains N” vertices and r(3N/2)N" - edges.

3) PS,(N) contains N copies of the PS,_;(N) subgraph.

4) Any pair of vertices in PS,(N) are connected by at least
r vertex-disjoint paths, and at most 37 vertex-disjoint paths.

5) Diameter of PS(N) is r(2LogN — 1) and bisection width
is O(N'/LogN).

6) There exists a routing algorithm for the PS,(N) graph as
a simple extension of the shuffle-exchange routing al-
gorithm.

A. Embedding Properties

It is first shown that products of binary trees can be embed-
ded in the products of shuffle-exchange graphs with dilation
cost 2 and congestion cost 2. While this result carries all the
embedding properties of PT,(N) to the PS,(N) graph, it may be
better to find direct embeddings for some cases. For instance,
r-dimensional grids are subgraphs of the PS/(N). Next, it is
shown that the N'-node shuffle-exchange graph can be embed-
ded in the PS,(N) graph with dilation cost 2r and congestion
cost 2. For an implementation with a fixed number of dimen-
sions, this embedding can be considered as constant dilation,
particularly because N can be independent of r. Moreover, it is
shown that PS,(N) cannot be embedded in the N"-node shuffle-
exchange graph with less than logarithmic dilation cost. This
makes the product network more powerful than the shuffle-
exchange network itself.

THEOREM 9. PTAN — 1) can be embedded in PS(N) with dila-
tion cost 2 and congestion cost 2.

PROOF. Due to Corollaries 1 and 2, it suffices to show that the
(N — 1)-node binary tree can be embedded in the N-node shuf-

001

011
010

100 101 110 i

Fig. 8. The level order labeling of complete binary tree.

fle-exchange graph with dilation cost 2 and congestion cost 2.
As it is well known, the level order labeling of the (N — 1)-node
complete binary tree as shown in Fig. 8 induces the desired
embedding. The root is assigned the label 1, and successively
lower levels are assigned the remaining labels left-to-right. I

The following results are now immediately observed:

COROLLARY 3. As in Theorem 6, a hierarchy of meshes of
trees can be embedded in PS(N) with dilation cost 2 and
congestion cost 2.

COROLLARY 4. The r-dimensional N'-node grid is a subgraph
of PS(N).

PROOF. It was shown in [9] that the shuffie-exchange network
contains a hamiltonian path. Hence the result follows from
Theorem 3. a

The next two results consider the embedding of shuffle-
exchange graph in its product version, and the reverse embed-
ding of product network in the pure shuffle-exchange graph.

THEOREM 10. For r > 1, the N "-node shuffle-exchange graph
can be embedded in PSN) with dilation cost 2r and con-
gestion cost 2.

PROOF. First consider the case for r = 2. Both S(N*) and
PS,(N) are labeled by 2LogN-bit strings. For the product
graph, the rightmost LogN bits determine the “row address,”
while the leftmost LogN bits determine the “column ad-
dress.” We show that whenever (i, v) is an exchange edge
in S(V®, it is also an exchange edge in PSy(N). Alterna-
tively, whenever (u, v) is a shuffle edge in S(N%), there is a
path of length at most 4 from u to v in PS,(N).

Consider the vertex:
U= Upp \Uzp2 """ Uniln | Up |Upp - Uilg

Here “|” separates the left hand half of the label from the
right hand half. It suffices to focus on the outgoing edges
only. If v is the exchange neighbor of u in S(N?), then

<

V= Uy, qUgpp Upply | UpUn—2 " il

In the PS,(N) graph, u has an exchange neighbor w in its
row, whose address is obtained by complementing the
rightmost bit of the address. That is w = v. In fact, it is true
for arbitrary r that whenever (4, v) is an exchange edge of
the N "-node shuffle-exchange graph, it is also an exchange
edge in the PS(N) graph. Therefore, the rest of this proof
only needs to consider the shuffle edges.

Now suppose (1, v) is a shuffle edge in S(N 3. If u is as
above, v must be:
V= Uyp gt UpngilUn Un-y I Upp -+ Urliplzn-y.

For the PS,(N) graph, the row neighbors of u are

er __ P ST
W = Uy Upp-2 "n+1“n|”n—1”n—2 Uty

and

7 _
w = Upp1Uzpp *** Unsilhn ‘ Up g Uplo Upy

where the superscripts “e,s,r” stand for “exchange,”
“shuffle,” and “row,” respectively. The column neighbors of

[Pl

u, indicated by the superscript “c,” are

e

wo = ”2n-1”2n—2"‘un+1ﬁn|“n—1”n—2 “rr g
and

wh= Uzpo *** Uneilhn Uzpy | Up_(Unp “* " Ulho
In the following discussion, subscripts € and r are used to
denote the left-hand half of a label and the right-hand half of
a label. For example, wy denotes the left-hand half of the
vertex w™° above. There are two cases to consider:
Case 1. u, | = u,,. In this case the reader can easily verify
that v = wy“ | w;" . This means that one can go from u to v
in PS,(N) in two steps; by moving to the shuffle neighbor of
u in the column and then the shuffle neighbor in the row.

Alternatively, one can move to the shuffle neighbor in the
row first, and then in the column.

Case 2. Uy, ; # U,,. Then, given u and v as above, the left-
hand half and the right-hand half of v can be computed as:
vp = wp +wpe
and
v, =wy +wp’
where the “+” sign denotes sequencing of the two moves.
That is, wi +w® denotes moving to the shuffle neighbor
in the column, followed by moving to the exchange neigh-

bor in the column. Since v = vclv,, a sequence of four
moves yields the desired vertex label.

To extend these arguments for r > 2, since PS(N) = S(N) ©
PS, |(N), a vertex of PS,(N) can be written as ¥ = Upn_1Um2 "
Uity ‘ §’, where §’ is a vertex in PS,_;(N). For the discussion
below, only the leftmost bit of §” is relevant, so we can write
S’ = s5S. That is;
U= Uy Urp2 " U—t)n | sS.
In the N"-node shuffle-exchange graph, the shuffle neighbor is
V=l o u(,_l),,s | Su,,,_l
For the product network, « has a shuffle neighbor x°, where
x'= U2~ Ur—1)nlhrn-1 I sS
which in turn has an exchange neighbor x°, where

€ = e 7
X = U ”(,_1),,”m—1|SS

Let x, denote the leftmost LogN-bit substring of x (i.e. the
part to the left of * | above). Then, observe that

EFE AND FERNANDEZ: PRODUCTS OF NETWORKS WITH LOGARITHMIC DIAMETER AND FIXED DEGREE 971

b = xp ifu,,=s,
e = ,
x; otherwise

That is, x° is at a distance of two from «, and going from u
to x° corrects just the leftmost LogN bits of the address to-
wards v. Since the next set of LogN bits can be corrected by
the same method as above, 2(r — 1) additional steps are
needed to reach v. This completes the proof that dilation of
embedding is 2r.

To study the congestion, consider two vertices 4, u’ of S(N").
For the discussion below, we focus on the leftmost LogN
bits and the rightmost LogN bits of these vertices and use
S’ = sS to denote a vertex in PS, ,(N). Let

U= Up 1 Up2 " Uin | sS | Up\Una " Uo
and

4 =1u . DN
U = Uy Uy Uipp)n SSI Up Uy Uy
whose respective shuffle neighbors are
V=1Umpmp U)nS | Suy,_y | Upp *-° Uplrn-)

and

4 el “ee .o m
V= Uy u(r—l)ns Sun—l I U, > Ul

For the edges (u, v) and (&', V'), the corresponding paths in
PS.(N) meet at the node

Upna ** U-1)nS | 5| thp1thnz -+ 10

after the leftmost LogN bits have been corrected (by travers-
ing one or two edges, depending on whether u,, ;= s). From
there, both paths share the same set of edges until the node

Urn = Ugr—1)nS | Sun—l | Up o o Uglhn_i

is reached. Since no other paths contain these edges the
congestion thus far is 2.

If 4, | = U1, then the vertex reached is v and the edge (i, v)
has been completely mapped. However, the path from u toV
still needs to traverse an exchange edge to invert its rightmost
bit. The path only shares this edge with the exchange edge
(v, V") in S(N'"), and the congestion of the edge is 2.

If u, , = #,,,, then the vertex reached is v’, and the path
from u to v still needs to traverse an exchange edge to invert
its rightmost bit as before. Thus the congestion is again 2
and the proof is complete. 0

THEOREM 11. Any embedding of PS{N) in S(N') requires di-
lation Q(Log(rLogN)).

Proof is deferred until after Theorem 15.

VI. PRODUCTS OF DE BRUIIN NETWORKS

The de Bruijn graph, denoted D(N), contains N = 2% nodes,
labeled O, ---, 2% -1 (in binary), and 2N edges connected as
follows: (&, v) and (u, w) are directed edges if and only if v can
be obtained from u by a cyclic left shift, and w differs from v
in the rightmost bit only. An 8-node de Bruijn graph is shown
in Fig. 9. Observe that whenever (4, v) is a shuffle-edge in
S(N), it is also an edge in D(N). Additionally, whenever (i, v, w)

972

is a path in S(NV) such that (u, v) is a shuffle edge and (v, w) is
an exchange edge, (4, w) is an edge in D(N). Every vertex has
degree 4. Every pair of nodes are connected by at least two
vertex disjoint paths (since de Bruijn graph contains a hamil-
tonian cycle), although most pairs of vertices are connected by
up to four vertex disjoint paths. The diameter is LogN and bi-
section width is @(N/LogN).

The r-dimensional product of de Bruijn network, denoted
PD,(N), is defined as PD,(N) = D(N) ® PD,_;(N). The follow-
ing properties of PD,(N) are immediately observed from the
results in Section III:

-1) PD(N) has the vertex degree 4r.

2) PD,(N) contains N” vertices and 2rN " edges.

3) PD(N) contains N copies of the PD,_;(N) subgraph.

4) Any pair of vertices in PD,(N) are connected by at least 2r
vertex-disjoint paths, and at most 4r vertex-disjoint paths.

5) Diameter of PD,N) is rLogN and bisection width is
O(N'/LogN).

6) There exists a routing algorithm for the PD.N) graph
based on the de Bruijn routing algorithm.

Comparing to the product networks in the previous subsec-
tions, the vertex degree increases by 25%, while PD(N) has
better properties in other respects. Diameter reduces by 50%,
and the minimum number of parallel paths between an arbi-
trary pair of vertices doubles. It also has better embedding
properties as will be shown below.

A. Embedding Properties

It is well known that shuffle-exchange and de Bruijn net-
works are computationally equivalent. That is, every computa-
tion which can be performed on one of them, can be also per-
formed on the other with constant slowdown. It is therefore
reasonable to expect that their product versions would also be
computationally equivalent. This result is formally stated by
the following lemma.

LEMMA 1. For every edge (x, y) in PS(N), there is a path of
length 2 or less in PDN). Conversely, for every edge (x, y)
in PDN), there is a path of length 2 or less in PS,(N).

PROOF. If (x, y) is an edge of PSN), where x = u,; --- up, and
Y=V, - Vo, by Observation 2, there must be just one dif-
fering symbol position i, where (u;, v;) is an edge in S(N).
Since this edge corresponds to a path of length not more
than 2 in D(N), it follows that (x, y) corresponds to a path of
length not more than 2 in PD,(N). The converse case can be
shown similarly. (|

001 o1

010 101

100 110

Fig. 9. The 8-node de Bruijn graph.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

THEOREM 12. For all k < N, r-dimensional k X --- X k torus is
a subgraph of PD(N).

PROOF. Due to Theorem 3, it suffices to note that the de Bruijn
network is pancyclic [18]; that is, for every value of k < N,
D(N) contains a cycle of length k.]

This is a straight extension of corollary 3.4 in [17]. The next
result, however, is more interesting:

COROLLARY 5. PD{N) contains k-dimensional 2/t X 22 x---x 2
grid, where j,+j,+ -+ ji=r, as a subgraph.

PROOF. Follows from the fact that PD,(N)= PD; (M@
PD; (N)®---®PD; (N),and each PD; (N), wherei=1"--k,
contains a Hamiltonian path, because each PD; (N) contains

a j-dimensional, N’ -node grid. |

THEOREM 13. PT(N — 1) is a subgraph of PD(N).

PROOF. Again using a level-order labeling of the (N — 1)-node
complete binary tree, it is well known that whenever (4, v)
is an edge of the binary tree, it is also an edge of D(N). The
claim then follows from Theorem 3. O

COROLLARY 6. r-dimensional mesh of (N — 1)-node trees is a
subgraph of PD,(N).
The next two results show that PD,(N) is more powerful
than the N"-node de Bruijn graph.

THEOREM 14. D(N") can be embedded in PD/(N) with dilation
cost r. The congestion cost is 2 whenr =2, or 4 whenr > 2.

PROOF. The case for r = 2 was shown in [17]. For higher di-
mensions, since PD{N) = D(N) © PD,_(N), a vertex of
PD,(N) can be Written as & = Uy, jlm 2 *** U1y | S', where S’
is a vertex in PD,_;(N). For the discussion below, we are
only interested in the leftmost bit in §’, so we can write it as
S’ = sS. That is:

U= U Urn2 " U-1)n I sS.
In the N'-node de Bruijn graph, the outgoing edges are to

V=Upy - Ue-1)nS | Sty
and
wW=u, 5 -~-u(r_])"s| Su,,_; -

For the r-dimensional product network, u has two neighbors
at the highest dimension x and y, where

X = Upnp ** Ugr-1)nlrn-1 | sS
and

Y= Upynr 'u(r—])nim—l ISS .
Let x, denote the leftmost LogN bit substring of x (i.e., the
part to the left of |). Then, observe that

Xe
Ve = Wp = ye

This means, by following one of the outgoing edges from u
at the highest dimension, we correct the leftmost LogN bits
of the address towards v. Since the next set of LogN bits can
be corrected by the same method as above, r — 1 additional

if u,; =s,

otherwise

EFE AND FERNANDEZ: PRODUCTS OF NETWORKS WITH LOGARITHMIC DIAMETER AND FIXED DEGREE

steps are needed to reach v. This completes the proof that
dilation of the mapping is r.

To study the congestion, first note that the first edge of the
path from u to v and the first edge of the path from u to w
are the same (depending on the value of s the correction of
the leftmost LogN bits of u takes both paths to either x or y.)
Furthermore, the paths from u to v and form u to w share all
the edges except for the last one, where the rightmost LogN
bits are corrected.

Similarly, there exist edges in D(N') from the node
u, = 'lzm_1um_2 et u(r_l)n I SS

to v and w. The paths in PD/N) from «’ to v and from u' to
w have a common first edge, that depending on s takes the
paths to either x or y. From there they share all the remain-
ing edges except for the last one. The paths from u to v and
from u’ to v share all the edges except for the first one, and
same is true with the paths from u to w and from 1’ to w.

Therefore, the first and last edges of the paths are traversed
by two of the four paths and the internal edges of the paths
are traversed by the four paths identified above. Since the
edges traversed by these four paths are not traversed by any
other path, we can conclude that the congestion of the em-
bedding is at most four.

When r = 2 the paths have length 2 and there are no internal
edges, the congestion in this case is only 2. a

Earlier, it was shown in [11] that D(2") can emulate D(2*)
with unit dilation cost (actually the authors of [11] called it the
“4-pin shuffle graph”). In the resultant emulation, each vertex
of D(2") is assigned exactly 2’ nodes. The proof is based on the
observation that, by erasing the rightmost j bits from vertex
labels of D(2**), we obtain a graph isomorphic to D(2Y. By
the same observation the following results can be stated.

COROLLARY 7. PDN) can emulate D(N ")) with dilation cost
r and congestion cost 4 (2 if r = 2), such that each node of
PD/N) is assigned N’ nodes.

And moreover, ,

COROLLARY 8. PDAN) can emulate PD/kN), where k is a
power of 2, with unit dilation cost and unit congestion cost
such that each node of PD/(N) is assigned k' nodes.

Therefore, for fixed r, a small size PD,(N) architecture can
easily emulate larger size machines with proportional slow-
down in the running time. These last two results are interesting
because a small hypercube cannot emulate a larger hypercube
with constant congestion. In the case of hypercube the conges-
tion increases by the same amount as the load [20]. For de
Bruijn graphs and their products, the emulation of larger
graphs of their kinds require no increase in the congestion.

Finally, the next result shows that products of de Bruijn
graphs are more powerful than the pure de Bruijn graphs.
(This is an extension of a similar result in [17] given for two
dimensions.)

THEOREM 15. Any embedding of PDN) in D(N ") requires
dilation Q(Log(rLogN)).

973

PROOF. From Proposition 1 it suffices to show that PD.N)
contains a subgraph which cannot be embedded in D(N")
with dilation cost less than Log(rLogN). From Theorem 12,
we know that r-dimensional N'-node array is a subgraph of
PD/(N). It is shown in [2] that any embedding of M node
k-dimensional array, for k = 2, requires dilation cost
Q(LogLogM). Since M = N”, the claim follows. O

PROOF OF THEOREM 10. We know from Lemma 1 that PS/(N)
and PD/(N) are computationally equivalent. If S(N") could
emulate PS,(N) with dilation less than Q(Log(rLogN)), it
would imply that S(N') could also emulate PD/(N) with di-
lation less than this amount, implying that shuffle-exchange
network is more powerful than de Bruijn network. This
contradicts with Lemma 1. O

VII. DISCUSSIONS AND CONCLUSIONS

Product networks inherently bridge the gap between many
useful topologies due to their dimension-oriented definitions.
It is interesting too that we are able to cite large classes of
computations as being in the domain of product networks,
built from a graph G, even without looking at the topology of
G. For instance, the r-dimensional product of any connected
graph G can emulate the r-dimensional torus with dilation
cost < 3 and congestion cost < 2. Products of all networks
which can emulate the complete binary tree with a given
level of efficiency can also emulate the mesh of trees with
the same level of efficiency. Additional advantages could be
offered if G has other features which can be exploited at
higher dimensions.

Three case studies were presented in this paper, and some of
the special advantages offered by each were analyzed in detail.
Fig. 10 compares different product networks with each other
as well as with their nonproduct versions.

Here the columns labeled as “product” denote the PG,(N)
graphs built from G(N), while the columns labeled “pure” de-
note the G(N") graph. The binary tree appears to benefit the
most from the product definition. Its bisection width increases
from 1 to Q(N™), and the number of parallel paths increases
from 1 to r. Its product version can efficiently emulate grids
and mesh of trees.

In all these cases the diameter of the r-dimensional prod-
uct graph is comparable with (or same as) the diameter of the
corresponding size pure graph. This is because the diameters
of the factor graphs studied here are logarithmic. From
Theorem 1, the reader can easily check that, if G(N') has
more than logarithmic diameter, the diameter of PG,(N) must
be less than that of G(N"). Conversely, if the diameter of
G(N") is less than logarithmic, the diameter of PG(N) will be
larger. There are similar relationships for the bisection
width. If the bisection width of G(N") is ©(N"), then this bi-
section width is preserved (within a constant factor) in
PG/(N). Larger bisection widths are reduced, whilé smaller
bisection widths are increased. Consideration of these factors
can help predict the expected performance improvement
from product definition of a given graph. On the other hand,
it was shown in [6] that by crossing certain edges of the hy-

974 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 9, SEPTEMBER 1995

Complete Binary Tree Shuffle-Exchange de Bruijn
product pure product pure product pure

No. of edges r(N —1)N"? NT -1 (3/2)rNT (3/2)NT 2rNT 2NT
Max. vertex
degree 3r 3 3r 3 4r 4
Min. No. of
parallel paths T 1 T 1 2r 4
Diameter 2r(Log(N +1)—1) | 2r[LogN] —1 | 2rLogN —r | 2rLogN —1 | rLogN rLogN
Bisection width QN 1 (L oAy | (&%) | 0w
Dilation/congestion
of grid embedding 3/2 n/a 1/1 n/a 1/1 n/a
Dilation/congestion
of MOT embedding 1/1 n/a 2/2 n/a 1/1 n/a
Notes NT-node binary tree is not a complete binary tree.

n/a means either not known or known to be not less than logarithmic dilation. See [16]

Fig. 10. The comparison of various properties of the three product graphs considered.

percube, the diameter can be reduced by half. A similar
crossing method for product networks may be applicable
also, and deserves further research.

While routing for product networks is briefly addressed (see
Theorem 2), other forms of communication are not considered
in this paper. A detailed investigation of various forms of data
communication in product networks is a rich area awaiting
investigation.

VLSI layout of product networks is briefly addressed in
[17], where it is shown that two dimensional products of de
Bruijn networks require a VLSI area which is more than the
corresponding size de Bruijn network by a modest factor.
However, there is no general result which predicts the VLSI
area of PG,(N), given that VLSI area is known for G(N). We
addressed the VLSI layouts for the class of homogeneous
product networks in a recent paper [10], but more research is
needed to address several cases of heterogeneous product
networks.

Finally, product networks do not have to be built with a
complete G(N) for each dimension. If G(N) is a partitionable
network, or it admits different values of N within its class
definition, then it may be possible to build product networks
with different sizes at different dimensions. All the investi-
gations of data communication, VLSI area, and other rele-
vant factors could be addressed for these networks also.

REFERENCES

[1] M. Baumslag and F. Annextein, “A unified framework for off-line per-
mutation routing in product petworks,” Math. Systems Theory, vol. 24,
no. 4, pp. 233-251, 1991.

[2] S. Bhatt, F. Chung, J.-W. Hong, T. Leighton, and A. Rosenberg,
“Optimal simulations by butterfly networks,” Proc. 20th Ann. ACM
Symp. Theory of Computing, pp. 192-204, May 1988.

[3]1 L.N. Bhuyan and D.P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” /EEE Trans. Computers, vol. 33,
no. 4, pp. 323-333, Apr. 1984.

[4] M.Y. Chan, “Embedding of grids into optimal hypercubes,” SIAM J.
Computing, vol. 20, pp. 834-864, Oct. 1991.

{5] K. Efe, “Embedding mesh of trees in the hypercube,” J. Parallel and
Distributed Computing, vol. 11, no. 3, pp. 222-230, Mar. 1991.

(6] K. Efe, “The crossed cube architecture for parallel computation,” /EEE
Trans. Parallel and Distributed Systems, vol. 3, no. 5, pp. 513-524, Sept.
1992.

[71 K. Efe, “Embedding large mesh of trees and related networks on smaller
hypercubes with load balancing,” Proc. Int’l Conf. Parallel Processing,
vol. 3, pp. 311-315, 1993.

[8] T. El-Ghazawi and A. Youssef, “A unified approach to fault tolerant
routing,” Proc. 12th Int’l Conf. Distributed Computing Systems,
pp- 210-217, Yokohama, Japan, June 1992.

[9]1 R. Feldmann and P. Mysliwietz, “The shuffle exchange network has a
Hamiltonian path,” Proc. Mathematical Foundations of Computer Sci-
ence, pp. 246-254, 1992.

[10] A. Fernandez and K. Efe, “Efficient VLSI layouts for homogeneous
product networks,” Technical Report 94-8-4, Center for Advanced
Computer Studies, Univ. of Southwestern Louisiana (submitted for
publication).

[11] J.P. Fishburn and R.A. Finkel, “Quotient networks,” IEEE Trans. Com-
puters, vol. 31 no. 4, pp. 288-295, Apr. 1982. :

[12] E. Ganesan and D.K. Pradhan, “The hyper-de Bruijn multiprocessor
networks: Scalable versatile architecture,” IEEE Trans. Parallel and
Distributed Systems, vol. 4, no. 9, pp. 962-978, Sept. 1993.

[13] L Havel and P. Kiebl, “Embedding the polytomic tree into the n-cube,”
Casopis pro Pestovan i Matematiky, vol. 98, pp. 307-314, 1973.

[14] M. Imase, T. Soneko, and K. Okada, “Connectivity of regular directed
graphs with small diameters,” IEEE Trans. Computers, vol. 34, no. 3,
pp- 267-273, Mar. 1985.

[15] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. L. Rosenberg,
“Work-preserving emulations for fixed-connection networks,” Proc.
21st Ann. ACM Symp. Theory of Computing, pp. 227-240, Seattle,
May 1989.

[16] F.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, and Hypercubes. San Mateo, Calif.: Morgan Kaufmann,
1992

EFE AND FERNANDEZ: PRODUCTS OF NETWORKS WITH LOGARITHMIC DIAMETER AND FIXED DEGREE 975

[17] A.L. Rosenberg, “Product-shuffle networks: Toward reconciling shuffles
and butterflies,” Discrete Applied Mathematics, vol. 37/38, pp. 465—
488, July 1992.

[18] M. Yoeli, “Binary ring sequences,” American Math. Monthly, vol. 69,
pp. 852-855, 1962.

{19] C.D. Thompson, “A complexity theory for VLSL” PhD thesis, Carnegie-
Mellon Univ., Aug. 1980.

[20] A.K. Gupta, A.J. Boals, N.A. Sherwani, and S.E. Hambrusch, “A lower
bound on embedding large hypercubes into small hypercubes,” Con-
gressus Numerantium, vol. 78, pp. 141-151, 1990.

Kemal Efe received the BSc degree in electronic
engineering from Istanbul Technical University, the
MS degree in computer science from UCLA, and the
PhD degree in computer science from the University
of Leeds.

He is cumrently an associate professor of com-
puter science in the Center for Advanced Computer
Studies, University of Southwestern Louisiana,
Lafayette. Previously, he was on the faculty of the
Computer Science Department, University of Mis-
souri-Columbia.

Dr. Efe’s research interests are in parallel and distributed computing, in
which he has authored more than 50 refereed papers. His expertise includes
parallel architectures and algorithms, interconnection networks, distributed
operating systems, performance evaluation, and algorithms for loosely cou-
pled workstation networks. Dr. Efe served on the technical committees of
several conferences and gave invited talks in the U.S. and Europe. He is a
member of the ACM and the IEEE.

Antonio Fernandez received the degree of Diplo-
mado en Informitica in March 1988 and the degree
of Licenciado en Informética in July 1991 from the
Universidad Politécnica de Madrid. He received the
MS degree in computer science in the fall of 1992
and the PhD degree in computer science in the fall
of 1994 from the University of Southwestern Louisi-
ana, supported by a Fulbright Scholarship.

He is an associate professor in the Departamento
de Arquitectura y Tecnologia de Computadores at
the Universidad Politécnica de Madrid, where he has
served on the faculty since 1988. He is currently on leave as a post-doctoral
researcher at the Laboratory for Computer Science at MIT.

Dr. Ferndndez’s research interests include paralle]l architectures and algo-
rithms, interconnection networks, distributed systems, and data communication.

