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Generalized Algorithm for Parallel Sorting
on Product Networks

Antonio Fernández, Member, IEEE, and Kemal Efe, Member, IEEE

Abstract —We generalize the well-known odd-even merge sorting algorithm, originally due to Batcher [2], and show how this
generalized algorithm can be applied to sorting on product networks.

If G is an arbitrary factor graph with N nodes, its r-dimensional product contains N r
 nodes. Our algorithm sorts N r

 keys stored in

the r-dimensional product of G in O r F N( ( ))2
 time, where F(N) depends on G. We show that, for any factor graph G, F(N) is, at

most, O(N), establishing an upper bound of O r N( )2
 for the time complexity of sorting N r

 keys on any product network.

For product networks with bounded r (e.g., for grids), this leads to the asymptotic complexity of O(N) to sort N r
 keys, which is

optimal for several instances of product networks. There are factor graphs for which F N O N( ) (log )2
 , which leads to the

asymptotic running time of O N(log )2
 to sort N r

 keys. For networks with bounded N (e.g., in the hypercube N = 2, fixed), the

asymptotic complexity becomes O r( )2
.

We show how to apply the algorithm to several cases of well-known product networks, as well as others introduced recently. We
compare the performance of our algorithm to well-known algorithms developed specifically for these networks, as well as others.
The result of these comparisons led us to conjecture that the proposed algorithm is probably the best deterministic algorithm that
can be found in terms of the low asymptotic complexity with a small constant.

Index Terms —Sorting, interconnection networks, product networks, algorithms, odd-even merge.

——————————   ✦   ——————————

1 INTRODUCTION

ECENTLY, there has been an increasing interest in
product networks in literature. These networks have

interesting topological properties that make them espe-
cially suitable for parallel algorithms. Well-known exam-
ples of product networks include hypercubes, grids, and
tori. Many other product networks have been proposed
recently, such as products of de Bruijn networks [9], [29],
products of Petersen graphs [26], and mesh-connected
trees [8], [9] (which are products of complete binary
trees). As a general class, routing properties of product
networks have been studied in [4], [12]. Topological and
embedding properties of product networks have been
analyzed in [9], and VLSI complexity of product networks
has been analyzed in [10].

There is a large body of literature on algorithms devel-
oped specifically for some of the popular product networks
like hypercubes and grids. The problem with these algo-
rithms is that they are not portable between different ar-
chitectures. For example, a sorting algorithm developed for
a hypercube architecture will not run on a grid architecture,
even though both hypercubes and grids are product net-
works. The question we ask in this paper, and in [11], is the

following: Is it possible to develop algorithms for product
networks capitalizing on their common properties only, so
that the same algorithm can be made to run on all product
networks? We show in this paper that, at least for the sort-
ing problem, the answer is “yes.” In [11], we presented a
collection of similarly general algorithms for other prob-
lems, including matrix multiplication, pointer-jumping, FFT
computation, transitive closure of a matrix, etc. What is
most interesting about these algorithms is that, when
mapped to specific architectures, their running times turn
out to be either optimal, or as efficient as the best known
algorithms specifically developed for the corresponding
architectures. For example, running time of the sorting al-
gorithm presented in this paper is optimal for grids, while
at the same time, it meets the running time of the well-
known Batcher algorithm when mapped to hypercubes.

The sorting algorithm of this paper is based on a gen-
eralization of the classic Batcher algorithms. In [2],
Batcher presented two efficient sorting networks. Algo-
rithms derived from these networks have been presented
for a number of different parallel architectures, like the
shuffle-exchange network [31], the grid [23], [32], the
cube-connected cycles [28], and the mesh of trees [25].

One of Batcher’s sorting networks has, as main compo-
nents, subnetworks that sort bitonic sequences. A bitonic
sequence is the concatenation of a nondecreasing sequence
of keys with a nonincreasing sequence of keys, or the rota-
tion of such a sequence. Sorting algorithms based on this
method are generally called “bitonic sorters.” Several pa-
pers have been devoted to generalizing bitonic sorters [3],
[18], [22], [24].
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The main components of the other sorting network pro-
posed by Batcher in [2] are subnetworks that merge two
sorted sequences into a single sorted sequence. He called
these “odd-even merging” networks. Several papers gener-
alized this network to merging of k sorted sequences, where
k > 2. These are generally called k-way merging networks.
Examples are Green [14], who constructed a network based
on four-merge, and Drysdale and Young [7], van Voorhis
[34], Tseng and Lee [33], Parker and Parberry [27], Liszka
and Batcher [21], and Lee and Batcher [17], who con-
structed networks based on multiway merging.

Similarly, other algorithms based on a multiway-merge
concept have been presented, the most commonly known
being Leighton’s Columnsort algorithm [20]. Initially, the
objective of this algorithm was to show the existence of
bounded-degree O(n)-node networks that can sort n keys in
O(log n) time. In this network, the permutations at each
phase are hard-wired and the sortings are done with AKS
networks, which limits its applicability for practical pur-
poses. However, Aggarwal and Huang [1] showed that it is
possible to use Columnsort as a basis and apply it recur-
sively. Parker and Parberry’s network cited above is also
based on a modification of Columnsort. These algorithms
behave nicely when the number of keys is large compared
with the number of processors.

In this paper, we develop another multiway-merge algo-
rithm that merges several sorted sequences into a single
sorted sequence. From this multiway-merge operation, we
derive a sorting algorithm, and we show how to use this ap-
proach to obtain an efficient sorting algorithm for any homo-
geneous product network. In its basic spirit, our multiway-
merge algorithm has some similarities with a recent version
of Columnsort [19, p. 261], but ours outperforms Columnsort
due to some fundamental differences in the interpretation of
this basic concept. First, our algorithm is based on a series of
merge processes recursively applied, while Columnsort is
based on a series of sorting steps. The only time we use sort-
ing is for N2 keys. Columnsort, on the other hand, uses sev-
eral recursive calls to itself in order to merge. Second, by ob-
serving some fundamental relationships between the struc-
tural properties of product networks and the definition of
sorted order, we are able to avoid most of the routing steps
required in the Columnsort algorithm.

Among the main results of this paper, we also show that
the time complexity of sorting Nr keys for any Nr-node r-

dimensional product graph is bounded above as O(r2N).
We also illustrate special cases of product networks for
which the running time of our algorithm reduces to O(r2),

O(N), and O(log2 N) to sort Nr keys.
On the grid and the mesh-connected trees [8], [9] with

bounded number of dimensions, the proposed algorithm
runs in asymptotically-optimal O(N) time. On the r-
dimensional hypercube, the algorithm has asymptotic
complexity O(r2), which is the same as that of Batcher’s
odd-even merge sorting algorithm on the hypercube [2].
Although there are asymptotically faster sorting algorithms
for the hypercube [6], they are not practically useful for a
reasonable number (less than 220) of keys [19]. We note,

however, that there are randomized algorithms which per-
form better on hypercubic networks than the Batcher algo-
rithm in practice [5]. Adaptation of such approaches for
product networks appears to be an interesting problem for
future research.

For products of de Bruijn networks [9], [29], our ap-
proach yields the asymptotic complexity of O(r2 log2 N)

time to sort Nr keys, which reduces to O(log2 N) time when
the number of dimensions is fixed. The same running time
can be obtained for products of shuffle-exchange networks
also, because products of shuffle-exchange networks are
equivalent in computational power (i.e., in asymptotic
complexity of algorithms) to products of de Bruijn net-
works [9]. This running time is the same as the asymptotic
complexity of sorting Nr keys on the Nr-node de Bruijn or
shuffle-exchange network by Batcher algorithm.

Finally, we can summarize the main contributions of this
paper to

• Develop a new multiway merging algorithm as a ba-
sis for the sorting algorithm,

• Show how to effectively implement it for homogene-
ous product networks, regardless of the topology of
the factor network used to build it,

• Obtain generalized upper bounds on the running
time required for sorting on any homogeneous prod-
uct network,

• Show that, for several important instances of homo-
geneous product networks, the upper bound derived
matches the running time of the most-popular algo-
rithms developed specifically for these networks.

This paper is organized as follows. In Section 2, we pres-
ent the basic definitions and the notation used in this paper.
We also discuss some of the topological properties of prod-
uct networks needed for the proposed sorting algorithm. In
Section 3, we present our multiway-merge algorithm and
show how to use it for sorting. In Section 4, we show how
to implement the multiway-merge sorting algorithm on any
homogeneous product network and analyze its time com-
plexity. In Section 5, we apply the algorithm to several ho-
mogeneous product networks and obtain the correspond-
ing time complexities. The conclusions of this paper are
given in Section 6.

2 DEFINITIONS, NOTATION, AND RELEVANT
PROPERTIES OF PRODUCT NETWORKS

Let G be an N-node connected graph.

DEFINITION 1. Given a graph G with vertex set VG = {0, 1, �,

N � 1} and arbitrary edge set EG, the r-dimensional ho-

mogeneous product of G, denoted PGr, is the graph whose

vertex set is V NPG
r

r
 �{ , , , }0 1 1�  and whose edge set is

EPGr
, defined as follows: Two vertices x x x xr r 

�1 1�  and

y y y yr r 
�1 1�  are adjacent in PGr if and only if both of

the following conditions are true:

1) x and y differ in exactly one symbol position,
2) if i is the differing symbol index, then (xi, yi) ° EG.
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In this paper, we assume that the r-tuple label for a node
of PGr is indexed as 1 � r, with 1 referring to the rightmost
position index and r referring to the leftmost position index.

At a more intuitive level, the construction of PGr from

PGr�1, where PG1 = G, can be described by referring to Fig. 1.
Let x be a node of PGr�1, and let [ ]u PGr�1 be the graph ob-
tained by prefixing every vertex x in PGr�1 by u, so that a
vertex x becomes ux. First, place the vertices of PGr�1 along
a straight line, as shown in Fig. 1. Then, draw N copies of
PGr�1 such that the vertices with identical labels fall in the
same column. Next, extend the vertex labels to obtain
[ ]u PGr�1, for u = 0, 1, �, N � 1. Finally, connect the columns
in the interconnection pattern of the factor graph G, such
that ux is connected to u�x, if and only if (u, u�) ° EG. Fig. 1
illustrates this construction process for two and three di-
mensional products of the factor graph shown in Fig. 1a.

In this construction, we use [ ]u PGr�1 to refer to the uth
copy of PGr�1, whose labels are extended by the prefix u.
For example, in Fig. 1c, vertical edges are dimension-three

edges, connecting three copies of PG2 graphs denoted as

[0]PG2, [1]PG2, and [2]PG2. We can extend this notation to
allow us to add a new symbol at any position of the vertex
labels. For this purpose, we use [ ]u PGr

i
�1 to mean that the

vertex labels of PGr�1 are extended by inserting the value u
at position i. As a result, the symbol at position j moves to
position j + 1, for j = i, �, r � 1. Definition 1 allows us to
observe that the construction of the preceding paragraph
could be restated for [ ]u PGr

i
�1 for any position i, not just the

leftmost position.
Another way we can obtain the [ ]u PGr

i
�1 subgraphs, for u =

0, 1, �, N � 1, is by erasing all the dimension-i edges in PGr,
and keeping the nodes whose labels have u at position i. For
example, in Fig. 2, we illustrate the two-dimensional product
graphs obtained by erasing the dimension-one connections of
the three-dimensional product graph of Fig. 1c. This process
can be repeated recursively, and described by a simple exten-
sion of our notation: We use [ , ] ,u v PGr

i j
�2  to refer to subgraphs

isomorphic to PGr�2  obtained by erasing the connections at

Fig. 1. Recursive construction of multidimensional product networks: (a) the factor graph; (b) two-dimensional product; (c) three-dimensional
product.

Fig. 2. Two-dimensional product graphs obtained by erasing the dimension-one connections from the three-dimensional product graph of Fig. 1c.

The solid lines define the [0]
2

1
PG  graph as they connect the nodes that have “0” at position 1 of their labels. Similarly, dashed lines define the

[1]
2

1
PG  graph, and dotted lines define the [2]

2

1
PG  graph.
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dimensions i and j from PGr. A particular subgraph so ob-
tained can be distinguished by its unique combination of [u, v]
values at index positions i and j, respectively. The notation is
similarly extended for erasing arbitrary number of dimen-
sions, and the order of the values in square brackets corre-
sponds to the order of the superscripts.

The notation [ ]u PGr
i
�1 naturally defines an ordering be-

tween the PGr�1 subgraphs of PGr. In general, [ ]u PGr
i
�1 is

the uth copy of the PGr�1 subgraph at dimension i, since u is

at position i in the labels of every node in [ ]u PGr�1. This
notion of subgraph ordering is important for the purposes
of this paper. This subgraph ordering rule can be carried to
the general case of [ , , ] , ,u u PGk r k

i ik
1

1
�

�

�
 in a number of differ-

ent ways. We will define a particular subgraph ordering
method with certain useful properties that will ultimately
induce an ordering rule for the individual nodes of the
product graph, representing the order of sorted data. Before
doing so, we need a convention for labeling the nodes of
the factor graph comprising the product graph.

For an arbitrary factor graph G with N nodes, the vertex
labels 0, �, N � 1 define the ascending order of data when
sorted. As a matter of convention, if G contains a Hamilto-
nian path, then it is beneficial (although not required for the
correctness of the proposed sorting algorithm) to label the
nodes in the order they appear in the Hamiltonian path. If
G does not contain a Hamiltonian path, then it is always
possible to embed a linear array in G with dilation three
and congestion two, and then label the nodes in the order
they appear on the linear array [19]. Again, this is not re-
quired for the correctness of the proposed algorithm, but
such labeling of nodes would provide a speed improve-
ment over an arbitrary labeling, by a constant factor.

For the product graph, our algorithm uses the snake order,
defined as follows.

DEFINITION 2. Snake order for the r-dimensional product graph
PGr :

1) If r = 1, the snake order corresponds to the order used
for labeling the nodes of G.

2) If r > 1, suppose that the snake order has been already
defined for PGr�1. Then,

(a) [ ]u PGr
r
�1  has the same order as PGr�1 if u is even,

and reverse order if u is odd.
(b) if u < v then any value in [ ]u PGr

r
�1 precedes any

value in [ ]v PGr
r
�1.

The snake order for product graphs is closely related to
Gray-code sequences in that, when the data is sorted in the
snake order, tracing the data in the sorted order visits the
nodes of the product network in the same order that they
would appear if the node labels are written in a Gray-code
sequence. The binary Gray-code sequence is well-known,
and it has the fundamental property that any two consecu-
tive terms in the sequence differ in exactly one bit. Here we
are dealing with N-ary symbols instead of binary symbols.
Therefore, we need to use N-ary Gray-code sequences.

First, recall the definition of Hamming distance and Ham-
ming weight. Let s, z be r-tuples from {0, 1, �, N � 1}r, then the

Hamming distance between s and z is D s z s zi ii

r
( , )  �

 Ç 1
,

where |si � zi| is the absolute value of si � zi. The Hamming

weight of an r-tuple s is W s sii

r
( )  

 Ç 1
. Here, we allow one or

more of the elements of the r-tuples to be the special “all”
symbol “
.” If any of the symbols in the r-tuple is the “all”
symbol, then its index position is omitted whenever the r-tuple
is involved in the computation of Hamming distances and
Hamming weights.

We say that a sequence Qr is an N-ary Gray-code sequence
of order r if its elements are all the r-tuples in {0, 1, �, N � 1}r,
and any two consecutive elements in it have unit Hamming
distance. Consequently, the Hamming weights of two con-
secutive terms will have different parity. We use R(Qr) to
denote the sequence obtained by listing the elements of Qr
in reverse order.

The definition below shows one way to construct N-ary
Gray-code sequences of arbitrary order recursively. Let
[u]Qk denote the sequence obtained by prefixing each ele-
ment of Qk with the symbol u if u is even, or by prefixing
each element of R(Qk) with u, if u is odd.

DEFINITION 3. An N-ary Gray-code sequence of order r, de-
noted Qr, can be obtained as

1) Q1 = {0, 1, �, N � 1},
2) Q CON u Q u Nr r  �

�
{[ ] , , , }1 0 1 1� , where

“CON{}” indicates concatenation of the sequences in-
side the curly brackets.

EXAMPLE. If N = 3, the three-ary Gray-code sequences of
order r, for r = 1, 2 and 3, are:

• for r = 1, Q1 = {0, 1, 2},
• for r = 2, Q2 = {00, 01, 02, 12, 11, 10, 20, 21, 22},
• for r = 3, Q3 = {000, 001, 002, 012, 011, 010, 020, 021,

022, 122, 121, 120, 110, 111, 112, 102, 101, 100, 200, 201,
202, 212, 211, 210, 220, 221, 222},

In Fig. 3, this snake order is highlighted for the product
graph of Fig. 1c.

The reverse operation of recursively constructing a Gray-
code sequence Qr from N sequences of Qr�1  is splitting the

sequence Qr into N sequences of Qr�1 . One way to do this is

to take the first Nr�1 terms of the original sequence as the
first Qr�1  sequence, the next Nr�1 terms as the second Qr�1

sequence, and so on. In the first sequence, all the labels will
have 0 as their leftmost symbol, so we denote it as [0] 1Qr� .
Similarly, all the labels in the uth sequence will have u as
their leftmost symbol, so the corresponding sequence is
denoted as [ ]u Qr�1. Again, there is nothing special about the

leftmost symbol; we can split the Qr sequence into N se-
quences of Qr�1  based on the similarity of labels at any

symbol position. We use [ ]u Qr
i
�1 to denote the subsequences

obtained from Qr, such that each term in the uth subse-
quence contains the value u in position i. We are mainly
interested in the subsequences [ ]u Qr�1

1 , for u = 0, �, N � 1.

For given u, the elements of [ ]u Qr�1
1  come from positions u,
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2N � u � 1, 2N + u, 4N � u � 1, 4N + u, and so on, in Qr. For

example, if the solid lines of Fig. 3 show the Q3 sequence, Fig. 4

illustrates the three [ ]u Q2
1  subsequences obtained from it.

From the identity relationship between the Gray-code
sequence Qr, and the snake order for the nodes of PGr, it

follows that, if PGr contains a sequence of keys sorted in

snake order, the keys on the subgraph [ ]u PGr�1
1  are also

sorted in snake order, and are in the positions u, 2N � u � 1,
2N + u, 4N � u � 1, 4N + u, etc., of the whole sequence. This
observation is important for the proposed sorting algorithm.

We are now ready to define a similar ordering method
between subgraphs of a product graph. We define this or-
dering with the aid of Qr sequences. Consider dividing Qr
into Nr�1 groups of N consecutive terms each. We observe
from Definition 3 that any two elements in the same group
would differ in their rightmost symbols only. These groups
can also be obtained by replacing the rightmost symbol of
each label in Qr by the “
” symbol, and then grouping to-
gether all the labels with a Hamming distance of zero. Mem-
bers belonging to the same group can be identified by the
common values at positions 2, �, r of their labels, called the
“group labels.” In the product graph, the members of such a

group correspond to the labels of nodes in the same G sub-
graph along dimension one. Now, these G subgraphs of a
product graph can be ordered by simply following the Gray-
code order defined on their corresponding group labels.

More specifically, we use [ ]

�

Qr 1
1  to denote the group se-

quence obtained from Qr in this fashion, where 
 stands for

all of 0, 1, �, N � 1. For example, given Q3 as above, its
group sequence is

[ ] , , , , , , , ,
  
 
 
 
 
 
 
 
 
Q2
1 00 01 02 12 11 10 20 21 22< A

where 
 stands for the set of elements in a group, which, for
this example, consists of {0, 1, 2}. More explicitly, the above
sequence corresponds to

[ ] , , , , , , , , , , , , , , ,

, , , , , , , , , , , .


  Q2
1 00 0 1 2 01 2 1 0 02 0 1 2 12 2 1 0 11 0 1 2

10 2 1 0 20 0 1 2 21 2 1 0 22 0 1 2

< A < A < A < A < A=

< A < A < A < AB

Here, a group label q (i.e., an element q of [ ]

�

Qr 1
1 ) is of

the form q q q q Qr r 
�1 2 1� { } if the Hamming weight of q is

even, or of the form q q q q R Qr r 
�1 2 1� { ( )} if the Hamming

weight of q is odd. Moreover, two successive group labels
still have unit Hamming distance. As an example, Fig. 5

Fig. 3. Snake order for the example product graph.

Fig. 4. Subsequences obtained from a snake-ordered sequence. Solid lines connect the nodes with 0 as their rightmost term, yielding the [0]
2

1
G

sequence. The dashed and dotted lines yield the [1]
2

1
G  and [2]

2

1
G  sequences, respectively.
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shows the ordering of the G subgraphs of the three-
dimensional product graph of Fig. 1c. We say that a G-
subgraph is an even (resp. odd) subgraph, if the Hamming
weight for its group label is even (resp. odd).

In this paper, we will be mainly interested in ordering
the PG2 subgraphs of the r-dimensional product graph. To
define such an order, we can extend the above notation and
write [ , ]
 


�
Qr 2

1,2  to identify the set of PG2-subgraphs at di-

mensions {1, 2}. Two consecutive elements of [ , ]
 

�

Qr 2
1,2  will

again have unit Hamming distance and, thus, the elements
of [ , ]
 


�
Qr 2

1,2  will be ordered in Gray-code sequence, corre-

sponding to the snake order between PG2 subgraphs.

Again, a group label (i.e., an element q of [ , ]
 

�

Qr 2
1,2 ) can

have even or odd Hamming weight, and the corresponding
PG2 subgraph can be said to be even or odd.

3 MULTIWAY-MERGE SORTING ALGORITHM

This section develops the basic steps of the proposed sorting
algorithm without regard to any specific network. For this
discussion, it does not even matter whether the algorithm is
performed sequentially or in parallel. The subsequent sections
will give the implementation details for product networks.

A sorted sequence is defined as a sequence of keys
( , , , )a a am0 1 1�

�
 such that a a am0 1 1� � �

�
� . The multiway-

merge algorithm combines N sorted sequences

A a a au u u u m 
�

( , , , ), , ,0 1 1� ,

for u = 0, �, N � 1, into a single sorted sequence

S s s smN 
�

( , , , )0 1 1� .

We will assume m to be some power of N, m N k
 

�1, where
k > 2 and, hence, the resulting sorted sequence, S, will con-
tain Nk keys.

The heart of the proposed sorting algorithm is the multi-
way-merge operation. Thus, we will spend much of our time
discussing this merging process. In order to build an intuitive
understanding of the basic idea of the merge operation, we
assume that the keys are arranged in a two-dimensional block,
as shown in Fig. 6. Here, each row is a sorted sequence that is
going to be merged with the other rows. This is not to imply a
two-dimensional organization of the data in product net-
works. When implementing the algorithm in product net-
works, each row of data (containing m N k

 
�1 keys) in Fig. 6

will be initially stored on a (k � 1)-dimensional subgraph of the
product graph. The two-dimensional organization in Fig. 6 is
for the reader’s convenience in visualizing what happens to

Fig. 5. Snake order for the G subgraphs of a product graph.

Fig. 6. Initial situation before the merge process starts. Each sorted sequence is represented as a horizontal block.
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the data at various steps of the algorithm, so that we can use
the terms “row” and “column” in order to refer to groups of
keys that are subjected to the same step of algorithm. Other
than this, our use of the terms “row” and “column” should not
be interpreted to imply the physical organization of data in a
two dimensional array.

We also assume the existence of an algorithm which can
sort N2 keys. We make no assumption about the efficiency
of this algorithm as yet. In Section 5, we discuss several
possible ways to obtain efficient algorithms for this pur-
pose. The purpose of this assumption is to maintain the
generality of the discussions, independent of the factor
network used to build the product network.

To show the correctness of the algorithm, we will use the
zero-one principle due to Knuth [15]. The zero-one princi-
ple states that if an algorithm based on compare-exchange
operations is able to sort any sequence of zeros and ones,
then it sorts any sequence of arbitrary keys.

3.1 Multiway-Merge Algorithm
Here, we consider how to merge N sorted sequences,
A a a ai u u u m 

�
( , , , ), , ,0 1 1� , for u = 0, �, N � 1, into a single

large sorted sequence. The initial situation is pictured in
Fig. 6. The merge operation consists of the following steps:

Step 1. Distribute the keys of each sorted sequence Au among N

sorted subsequences Bu,v, for u = 0, �, N � 1 and v = 0,

�, N � 1. The subsequence Bu,v will have the form
( , , , , , ), , , , ,a a a a au v u N v u N v u N v u N v2 1 2 4 1 4� � � � � �

� , for u = 0, �,

N � 1 and v = 0, �, N � 1. This is equivalent to writing the
keys of each Au on a m

N N�  array in snake order (as shown
in Fig. 7) and then reading the keys column-wise, so that
column v of the array becomes Bu,v , for v = 0, �, N � 1. Note

that each subsequence Bu,v is sorted, since the keys in it are

in the same relative order as they appeared in Au.

Fig. 8 illustrates the situation after the completion of this
process. Each of the N rows contains N sorted subsequences
Bu,v , where each Bu,v box in Fig. 8 corresponds to a column
of keys in Fig. 7 written horizontally.
EXAMPLE. If for some u, Au = {1, 2, 3, 4, 5, 6, 7, 8, 9} and N = 3,

then Bu,0 = {1, 6, 7}; Bu,1 = {2, 5, 8}; Bu,2 = {3, 4, 9}.

Step 2. Merge the N subsequences Bu,v found in column v of

Fig. 8 into a single sorted sequence Cv, for v = 0, �, N � 1.
This is done in parallel for all columns by a recursive call to
the multiway-merge process if the total number of keys in
the column, m, is at least N3. If the number of keys in a col-

umn of Fig. 8 is N2, a sorting algorithm for sequences of

length N2 is used (we already assumed the existence of such
an algorithm above), because a recursive call to the merge
process would not make much progress when m = N2 (this
point will be cleared at the end of this section). At the end
of this step, we write the resulting subsequences vertically
in N columns of length m each. The situation after this step
is illustrated in Fig. 9.

Step 3. Interleave the sequences Cv into a single sequence

Fig. 7. Distribution of the keys of Au (i.e., the uth row in Fig. 6) among
the N subsequences Bu,v. The thick line represents the keys of Au in
snake order. Bu,v sequence is obtained by reading the vth column from
top to bottom.

Fig. 8. Situation after Step 1: Each sequence Au, has been distributed
into N subsequences Bu,v. Each of the subsequences contains m/N
elements and is still sorted.

Fig. 9. Situation after merging the subsequences in each column. The
keys are sorted from top to bottom.
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D d d dmN �( , , , )0 1 1� . The sequence D is formed simply
by reading the m � N array of Fig. 9 in row-major order
starting from the top row. The sequence D is redrawn in
Fig. 10 from the Cv sequences of Fig. 9, with no change in
the organization of data. Fig. 10 is identical to Fig. 9, ex-
cept that we regard it as one big sequence to be read in
row-major order.

Fig. 10. Sequence D obtained after interleaving. The order goes from
top to bottom by reading the data in row-major order. The shaded area
is filled with zeros and the white area is filled with ones. The boundary
area has at most N rows, as shown in Lemma 1.

We prove below that the sequence D is now “almost”
sorted. This situation is shown in Fig. 10. If the keys being
sorted can only take values of zero or one, the shaded area
represents the position of zeros and the white area repre-
sents the position of ones. As D is obtained by reading the
values in row-major order, the potential dirty area (window
of keys not sorted) has length no larger than N2. This fact
will be shown in Lemma 1.

Step 4. Clean the dirty area. To do so we start by dividing
the sequence D into m/N subsequences of N2 consecu-

tive keys each. We denote these subsequences as Ez, for
z m

N �0 1, ,� . The zth subsequence has the form
E d d dz zN zN zN N

 
� � �

( , , , )2 2 2 21 1
� . That is, the first N rows

in Fig. 10 (or, equivalently, in Fig. 9) are concatenated to
obtain E1, the next N rows are concatenated to obtain E2,
and so on (see Fig. 11a).

We then independently sort the subsequences (rows
in Fig. 11a) in alternate orders by using the algorithm
which we assumed available for sorting N2 keys. Ez is

transformed into a sequence Fz (see Fig. 11b), where Fz

contains the keys of Ez sorted in nondecreasing order if z
is even or in nonincreasing order if z is odd, for
z m

N �0 1, ,� .
Now, we apply two steps of odd-even transposition

between the sequences Fz, for z m
N �0 1, ,�  (i.e., in the

vertical direction of Fig. 11b). In the first step of odd-even
transposition, each pair of sequences Fz and Fz�1 , for z

even, are compared element by element. Let fz,t denote the

tth term in Fz, where t = 0 � N2 � 1. Two sequences Gz and
Gz�1  are formed (not shown in the figure) where
g f fz t z t z t, ,{ , } �min 1,  and g f fz t z t z t� � 1, 1,max{ , }, . In the

second step of the odd-even transposition, Gz and Gz�1  for
z odd are compared in a similar manner to form the se-
quences Hz and Hz�1. Fig. 11c shows the situation after the
two steps of odd-even transposition.

Finally, we independently sort each sequence Hz in
nondecreasing order if z is even, and nonincreasing or-
der if z is odd. This generates sequences Iz, for
z m

N �0 1, ,�  (see Fig. 7d). The final sorted sequence S

is the concatenation of the sequences Iz in snake order,
and this completes the merging algorithm.

We need to show that the process described actually
merges the sequences. To do so, we use the zero-one prin-
ciple mentioned earlier.

LEMMA 1. When sorting an input sequence of zeros and ones, the
sequence D obtained after the completion of Step 3 is sorted
except for a dirty area which is never larger than N2.

PROOF. Assume that we are merging sequences of zeros and
ones. Let xu be the number of zeros in sequence Au,
for u = 0, �, N � 1. The rest of keys in Au are ones.
Step 1 breaks each sequence Au into N subsequences
Bu,v, v = 0, �, N � 1. It is easy to observe, from the
way Step 1 is implemented, that the number of zeros
in a subsequence Bu,v is Íxu/NÝ + euv, where euv is ei-
ther zero or one. Therefore, for a given u, the se-
quences Bu,v can differ from one another in their
number of zeros by, at most, one.

At the start of Step 2, each column v is composed
of the subsequences Bu,v for u = 0, �, N � 1. At the
end of Step 2, all the zeros are at the beginning of each
sequence Cv. The number of zeros in each sequence Cv
is the sum of the number of zeros in Bu,v for fixed v
and u = 0, �, N � 1. Thus, two sequences Cv can differ
from each other by, at most, N zeros. In Step 3, we
interleave the N sorted sequences into the sequence D
by taking one key at a time from each sequence Cv.
Since any two sequences Cv can differ in their number
of zeros by, at most, N, and since there are N se-
quences being interleaved, the length of the window
of keys where there is a mixture of ones and zeros is,
at most, N2. �

Now we can show how the last step actually cleans the
dirty area in the sequence.

LEMMA 2. The sequence S obtained (by concatenation of se-
quences Iz in snake order) after the completion of Step 4 is
sorted.
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PROOF. We know that the dirty area of the sequence D, ob-
tained in Step 3, has, at most, length N2. If we divide
the sequence D into consecutive subsequences, Ez, of
N2 keys each, the dirty area can either fit in exactly
one of these subsequences or be distributed between
two adjacent subsequences.

If the dirty area fits in one subsequence Ez, then
after the initial sorting and the odd-even transposi-
tions, the sequences Hz contain exactly the same keys

as the sequences Ez, for z m
N �0 1, ,� . Then, the last

sorting in each sequence Hz and the final concatena-

tion of the Iz sequences yield a sorted sequence S.
However, if the dirty area is distributed between

two adjacent subsequences, Ez and Ez+1, we have two
subsequences containing both zeros and ones. Fig. 11a
presents an example of this initial situation. After the
first sorting, the zeros are located at one side of Fz and
at the other side of Fz�1  (see Fig. 11b).

One of the two odd-even transpositions will not af-
fect this distribution, while the other is going to move
zeros from the second sequence to the first and ones
from the first to the second. After these two steps, Hz

is filled with zeros or Hz�1 is filled with ones (see
Fig. 11c). Therefore, only one sequence contains zeros
and ones combined. The last step of sorting will sort
this sequence. Then, the entire sequence S will be
sorted (see Fig. 11d). �

3.2 The Need for a Special Algorithm for N2 Keys
The reader can observe that, at the end of Step 3, the dirty
area will still have length N2, even when we are merging N
sequences of length N each. Thus, we do not make any pro-
gress when we apply the multiway-merge process to this
case recursively. This difficulty can be overcome in a num-
ber of ways to keep the running time low, depending on the

application area of the basic idea of the merge algorithm.
For example, if we are interested in building a sorting net-
work, we can implement subnetworks based on recursively
updating N to a smaller value M and then merging M se-
quences of length M Nk�

 
1  for some k > 2, and repeat this

recursion until a single sequence is obtained.
In this paper, our focus is developing sorting algorithms

for product networks with r dimensions. Here, we assume
the availability of a special sorting algorithm designed for
the two-dimensional version of the product network under
consideration. We use this assumed algorithm to sort N2

keys when merging is no longer viable in the recursion. In
subsequent sections, we discuss several methods to obtain
such algorithms to sort N2 keys as we consider more spe-
cific product networks. The efficiency of that special algo-
rithm has an important effect on the overall complexity of
the final sorting algorithm by the proposed approach. For
all the product graphs considered in this paper, it will turn
out that the resulting running time is either asymptotically
optimal, or close to optimal, when the number of dimen-
sions is bounded.

3.3 Sorting Algorithm
Using the above algorithm, and an algorithm to sort se-
quences of length N2, it is easy to obtain a sorting algorithm

to sort a sequence of length Nr, for r � 2.
First, divide the sequence into subsequences of length N2

and sort each subsequence independently. Then, apply the
following process until only one sequence remains:

1) Group all the sorted sequences obtained into sets of N
sequences each as in Fig. 2. (If we are sorting Nr keys,
then, initially, there will be Nr�3  groups, each con-
taining N sorted sequences of length N2.)

2) Merge the sequences in each group into a single
sorted sequence using the algorithm shown in the
previous section. If now there is only one sorted se-
quence, then terminate. Otherwise, go to Step 1.

          (a)                (b)     (c)        (d)

Fig. 11. Cleaning of the dirty area.
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4 IMPLEMENTATION ON HOMOGENEOUS PRODUCT
NETWORKS

Here, we mainly focus on the implementation of the multi-
way-merge algorithm on a k-dimensional product network
PGk in detail, where PGk could be a subgraph of PGr, per-
forming some step of recursion in the overall sorting algo-
rithm above. The initial scenario is N sorted sequences, of
N k�1  keys each, stored on the N subgraphs [ ]u PGk

k
�1  of PGk

in snake order. Before the sorting algorithm starts, each proc-
essor holds one of the keys to be sorted. During the sorting
algorithm, each processor needs enough memory to hold at
most two values being compared. Throughout the discus-
sions, the steps of implementation are illustrated by a three-
dimensional product of some graph G of N = 3 nodes. The
interconnection pattern of G is irrelevant for this discussion.
Step 1. This step does not need any computation or routing.

Recall from Section 2 that each of the subgraphs
[ , ] ,u v PGk

k
�2
1  of [ ]u PGk

k
�1  contains a subsequence of keys

sorted in snake order, and that the positions of the keys
in that subsequence, with respect to the total sorted se-
quence, are v, 2N � v � 1, 2N + v, 4N � v � 1, 4N + v, etc.

Therefore, the sequence Bu,v is already stored on the sub-

graph [ , ] ,u v PGk
k
�2
1 , sorted in snake order.

This is illustrated in Fig. 12, where the three sequences
to be merged are available in snake order on the three
subgraphs formed by removing the edges of dimension-

three. The subgraph [0] 2
3PG  (leftmost subgraph in Fig. 12)

contains A0, the subgraph [ ]1 2
3PG  (center subgraph) con-

tains A1, and the subgraph [ ]2 2
3PG  (rightmost subgraph)

contains A2. In this example, each Bu,v contains only N

keys, which fit in just one G subgraph. In general, Bu,v will

be available in snake order on [ , ] ,u v PGk
k
�2
1 . In this example,

they are at [ , ] ,u v PG1
3 1, which really correspond to G-

subgraphs at dimension two (i.e., columns of Fig. 12).
Step 2. This step is implemented by merging together the

sequences on subgraphs [ , ] ,u v PGk
k
�2
1  with the same u

value into one sequence on [ ]v PGk�1
1 . If k � 1 = 2, the

merging is done by directly sorting with an algorithm
for PG2. If k � 1 > 2, this step is done by a recursive call to
the multiway-merge algorithm, where each subgraph
[ ]v PGk�1

1  merges the sorted sequences stored on their

[ , ] ,u v PGk
k
�2
1  subgraphs.

We illustrate this step in Fig. 13. For clarity, we first
show the initial situation in Fig. 13a. This is same as the
situation in Fig. 12, but dimensions one and three are ex-
changed to show the subsequences that will be merged
together more explicitly. The Bu,v sequences to be merged
together are the columns of Fig. 13a. The result of merg-
ing is shown in Fig. 13b. Each Cv is sorted in snake order

and is found in the subgraph [ ]v PG2
1.

Fig. 12. Before Step 1, each Au is stored in the [ ]
1

u PG
r

k

�

 subgraph (in this case in the corresponding arrays as shown) in snake order. Step 1 does

not require any data movement; we simply change our view of how the data is stored. In this example, reading the data stored in the j th column

of array Ai from top to bottom yields the Bi,j sequence.
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Step 3. This step is directly done by reintroducing the di-
mension-one connections of PGk and reading the keys in
snake order for the PGk graph. No movement of data is
involved in this step. We explicitly show the resulting
sequence for our example in Fig. 14 by switching dimen-
sions one and three in Fig. 13b. Recall from Figs. 10 and
11 that the keys now appear to be close to a fully sorted
order. In fact, we know from Lemma 1 that, in the case of
sorting zeros and ones, we are left with a small dirty
area. This implies that every key is within a distance of
N2 from its final position.

Step 4. This last step cleans the potential dirty area. Recall
from the last paragraph of Section 2 that the two-
dimensional subgraphs of PGk can be ordered in snake
order by their group labels in the form of group se-
quences [ , ]
 


�
Qk 2

1,2 . In this step, we first independently

sort the keys in each PG2 subgraph at dimensions {1, 2},
where the sorted order alternates for “consecutive” sub-
graphs. This sorting is done in snake order by using an
algorithm which we assumed available. The result of this
step is illustrated in Fig. 15a.

We now perform two steps of odd-even transposition
between the two dimensional subgraphs. In the first
step, the keys on the nodes of the “odd” PG2 subgraphs
are compared with the keys on the corresponding nodes
of their “predecessor” subgraphs. The keys are ex-
changed if the key in the predecessor subgraph is larger.
Fig. 15b shows the result of this first step in our example.
The keys 3 and 2 in nodes (1, 2, 1) and (1, 2, 2) have been
exchanged with two keys both with value four in nodes
(0, 2, 1) and (0, 2, 2).

In the second step of odd-even transposition, the keys
on the nodes of the “even” PG2 subgraphs are compared

(and possibly exchanged) with those of their predecessor
subgraphs. Fig. 15c shows the result of this second step.
In this figure, the key 5 in node (2, 0, 0) has been ex-
changed with the key 6 in node (1, 0, 0).

Finally, a sorting within each of the two-dimensional
subgraphs ends the merge process (Fig. 15d).

One point which needs to be examined in more detail
here is that, depending on the factor graph G, the nodes
holding the two keys that need to be compared and possi-
bly exchanged with each other may or may not be adja-
cent in PGk. If G has a Hamiltonian path, then the nodes of
G can be labeled in the order they appear on the Hamilto-
nian path to define the sorted order for G. Then, the two
steps of odd-even transposition are easy to implement,
since they involve communication between adjacent
nodes.

If, however, G is not Hamiltonian (e.g., a complete bi-
nary tree), the two nodes whose keys need to be com-
pared may not be adjacent, but they will always be in a
common G subgraph. In this case, permutation routing
within G may be used to perform the compare-exchange
step as follows: First, two nodes that need to compare
their keys send their keys to each other. Then, depending
on the result of comparison, each node can either keep its
original key, if the keys were already in correct order, or
they drop the original key and keep the new key if they
were out of order. To cover the most general case in the
computation of running time below, we will assume that
G is not Hamiltonian and, thus, we will implement these
compare-exchange steps by using permutation routing
algorithms. We will see that whether or not G is Hamilto-
nian only effects the constant terms in the running time
complexity function.

            (a)          (b)

Fig. 13. Step 2 of the multiway-merge algorithm.

Fig. 14. Step 3 of the multiway-merge algorithm.
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4.1 Analysis of Time Complexity
To analyze the time taken by the sorting algorithm, we will
initially study the time taken by the merge process on a k-
dimensional network. This time will be denoted as Mk(N).
Also, let S2(N) denote the time required for sorting on PG2
and R(N) denote the time required for a permutation rout-
ing on G.

LEMMA 3. Merging N sorted sequences of N k�1  keys on PGk
takes Mk(N) = 2(k � 2)(S2(N) + R(N)) + S2(N) time
steps.

PROOF. Step 1 does not take any computation time. Step 2 is
a recursive call to the merge procedure for k � 1 di-
mensions, and hence will take M Nk�1( )  time. Step 3
does not take any computation time. Finally, Step 4
takes the time of one sorting on PG2, two permutation
routings on G (for the steps of odd-even transposi-
tion), and one more sorting on PG2.

Therefore, the value of Mk(N) can be recursively
expressed as:

M N M N S N R Nk k0 5 0 5 0 5 0 52 7 � �
�1 22 ,

with initial condition

M2(N) = S2(N)

that yields

Mk(N) = 2(k � 2)(S2(N) + R(N)) + S2(N).

�

We can now derive the value of Sr(N).

THEOREM 1. For any factor graph G, the time complexity of

sorting Nr keys on PGr is Sr(N) = (r � 1)2S2(N) + (r �

1)(r � 2) R(N) = O(r2S2(N)).

PROOF. By the algorithm of Section 3.2, the time taken to
sort Nr keys on PGr is the time taken to sort in a two-

dimensional subgraph and then merge blocks of N
sorted sequences into increasing number of dimen-
sions. The expression of this time is as follows:

S N S N M N M N M N M N

r S N S N R N i

r S N r r R N

r r r

i

r

0 5 0 5 0 5 0 5 0 5 0 5

0 5 0 5 0 5 0 52 7 0 5

0 5 0 5 0 50 5 0 5

 � � � � �

 � � � �

 � � � �

�

 

Ç

2 3 4 1

2 2
3

2
2

1 2 2

1 1 2

�

.

Since S2(N) is never smaller than R(N), the time

obtained is Sr(N) < 2(r � 1)2S2(N) = O(r2S2(N)). �

The following corollary presents the asymptotic complex-
ity of the algorithm and one of the main results of this paper.

COROLLARY. If G is a connected graph, the time complexity of
sorting Nr keys on PGr is at most 18(r � 1)2 N + o(r2N) =
O(r2N).

PROOF. To prove the claim, we first compute the complexity
of sorting by our algorithm on the r-dimensional
torus. Then, we refer to a result in [8] that showed
that, if G is a connected graph, PGr can emulate any
computation on the Nr-node r-dimensional torus by
embedding the torus into PGr with dilation three and
congestion two. Since this embedding has constant
dilation and congestion, the emulation has constant
slowdown. (In fact, the slowdown is no more than six,
and needed only when G does not have a Hamilto-
nian cycle). Finally, we use these slowdown values to
compute the exact running time for PGr

Now, we compute the complexity of sorting on the
r-dimensional torus. We basically need a sorting algo-
rithm from the literature that sorts N2 keys in two-
dimensional torus in snake order. We also need an al-
gorithm for permutation routing on the N-node cycle.
For example, we can use the sorting algorithm proposed
by Kunde [16], which has complexity 2.5N + o(N). It is
also known that any permutation routing can be done

Fig. 15. Step 4 of the multiway-merge algorithm.
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on the N-node cycle in no more than N/2 steps.
Hence, we can sort on the Nr-node r-dimensional
torus in at most 3(r � 1)2 N + o(r2 N) steps.

Since the emulation of this algorithm by PGr re-
quires a slowdown factor of ,at most, six, any arbi-
trary Nr-node r-dimensional product network can sort
with complexity 18(r � 1)2N + o(r2N) = O(r2N). �

5 APPLICATION TO SPECIFIC NETWORKS

In this section, we obtain the time complexity of sorting
using the multiway-merge sorting algorithm presented for
several product networks in the literature. To do so, we
obtain upper bounds for the values of S2(N) and R(N) for
each network. Using these values in Theorem 1 will yield
the desired running time.

5.1 Grid
Schnorr and Shamir [30] have shown that it is possible to sort
N2 keys on an N2-node two-dimensional grid in 3N + o(N) time
steps. It is also trivial to show that the time to perform a per-
mutation on the N-node linear array is, at most, R(N) = N � 1.

These values of S2(N) and R(N) imply that our algorithm will

take, at most, 4(r � 1)2N + o(r2N) = O(r2N) time steps to sort Nr

keys on an Nr-node r-dimensional grid. If the number of di-
mensions, r, is bounded, this expression simplifies to O(N).

This algorithm is asymptotically optimal when r is fixed,
since the diameter of the grid with bounded number of di-
mensions is O(N), and a value may need to travel as far as
the diameter of the network. If r is not bounded, then the
diameter of the Nr-node grid is r(N � 1), which means that
the running time of our algorithm is off the optimal value
by at most a factor of r.

5.2 Mesh-Connected Trees (MCT)
This network was introduced in [9] and extensively stud-
ied in [8]. It is obtained as the product of complete binary
trees. Due to Corollary 1, we can sort on the Nr-node r-
dimensional mesh-connected trees in O(r2 N) time steps. If
r is bounded, we again have O(N) as the running time.

This running time is asymptotically optimal when r is
fixed, because the bisection width of the Nr-node r-

dimensional MCT is O r N( )2 , as shown in [8], and, in the

worst case, we may need to move :(Nr) values across the
bisection of the network. When r is not fixed, the algo-
rithm is off the bisection-based lower bound by a factor of
r2. The diameter-based lower bound used above for grids
does not help to tighten this lower bound any further,
because the diameter of the MCT is logarithmic in the
number of nodes [8]. It appears interesting to investigate
if it is possible to sort with lower running time than
O(r2N) when r is not bounded. If such an algorithm exists,
it must use a completely different approach than ours,
because the value of S2(N) in Theorem 1 cannot be less
than O(N) due to the O(N) bisection width of the two-
dimensional MCT network.

5.3 Hypercube
The hypercube has fixed N = 2. It is not hard to sort in snake
order on the two-dimensional hypercube in three steps. A
permutation routing on the one-dimensional hypercube takes
only one step. Therefore, the time to sort on the hypercube
with our algorithm is 3(r � 1)2 + (r � 1)(r � 2) = O(r2). This
running time is same as the running time of the well-known
Batcher odd-even merge algorithm for hypercubes. In fact,
Batcher algorithm is a special case of our algorithm.

5.4 Petersen Cube
The Petersen cube is the r-dimensional product of the Pe-
tersen graph, shown in Fig. 16. The Petersen graph contains
10 nodes and consists of an outer five-cycle and an inner
five-cycle, connected by five spokes. Product graphs ob-
tained from the Petersen graph are studied in [26]. Like the
hypercube, the product of Petersen graphs has fixed N, and
therefore, the only way the graph grows is by increasing the
number of dimensions. Since the Petersen graph is Hamil-
tonian, its two-dimensional product contains the 10 � 10
two-dimensional grid as a subgraph. Thus, we can use any
grid algorithm for sorting 100 keys on the two-dimensional
product of Petersen graphs in constant time. Consequently,
the r-dimensional product of Petersen graphs can sort 10r

keys in O(r2) time. The constant involved is not small, but it
is not going to be unreasonably large either. It may very
well be possible to improve this constant by developing a
special sorting algorithm for the two-dimensional product
of Petersen graphs. This is, however, outside the scope of
this paper.

Fig. 16. Petersen graph.

5.5 Product of de Bruijn and Shuffle-Exchange
Networks

To sort on their two-dimensional instances, we can use the
embeddings of their factor networks presented in [9], which
have small constant dilation and congestion. In particular, an
N2-node shuffle-exchange network can be embedded into the
N2-node two-dimensional product of shuffle-exchange net-
works with dilation four and congestion two. Also, an N2-
node de Bruijn network can be embedded into the Nr-node
two-dimensional product of de Bruijn networks with dilation
two and congestion two. Sorting N2 keys on the N2-node shuffle-
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exchange or de Bruijn networks can be done in O(log2 n) time by
using Batcher algorithm [31]. Thus, we can sort on the N2-node
two-dimensional product of shuffle-exchange or de Bruijn net-
work by emulation of the N2-node shuffle-exchange or de Bruijn
network in S2(N) = O(log2 N2) = O(log2 N) time steps. Using this
in Theorem 1, our algorithm will take O(r2log2 N) time steps to
sort Nr keys. Again, if r is bounded the expression simplifies to
O(log2 N). If r is not bounded, the running time of our algo-
rithm is asymptotically the same as the running time of sorting
Nr keys on the Nr-node de Bruijn, or shuffle-exchange graphs
by Batcher algorithm. Here again, we come across an interest-
ing open problem, to see if it is possible to sort on products of
these networks in asymptotically less time for unbounded
number of dimensions.

6 CONCLUSIONS

In this paper, we have presented a unified approach to
sorting on homogeneous product networks. To do so, we
present an algorithm based on a generalization of the odd-
even merge sorting algorithm [2]. We obtain O(r2N) as an
upper bound on the complexity of sorting on any product
network of r dimensions and Nr nodes.

The time taken by the sorting algorithm on the grid and the
mesh-connected trees with bounded number of dimensions is
O(N), which is optimal. On the hypercube, the algorithm takes
O(r2) time steps, reaching the asymptotic complexity of the
odd-even merge sorting algorithm on the hypercube.

On other product networks, our algorithm has the same
running time as those of other comparable networks. For
instance, on the product of de Bruijn or shuffle-exchange
graphs, the running time is O(r2 log2 N). This is asymptoti-
cally the same as the running time of Batcher algorithm on
the Nr-node shuffle-exchange or de Bruijn graphs. These
results show that the generality of the proposed algorithm
does not come at any additional expense of the running
time in comparison to sorting algorithms specifically devel-
oped for these networks.

From a theoretical point of view, it will be interesting to
investigate if there are better algorithms for product net-
works when r is not bounded. Several interesting alterna-
tives appear to be feasible, although we have not had the
time to investigate them. For instance, we could try to gen-
eralize the hypercube randomized algorithms for product
networks.
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