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Abstract

Exploring and mapping an unknown environment is a fun-
damental problem that is studied in a variety of contexts.
Many works have focused on finding efficient solutions to re-
ntricted versions of the problem. In this paper, we consider
a model that makes very limited assumptions about the en-
vironment and solve the mapping problem in this general
setting,

We model the environment by an unknown directed graph
G, and consider the problem of a robot exploring and map-
ping G, We do not assume that the vertices of G are la-
beled, and thus the robot has no hope of succeeding unless
it is given some means of distinguishing between vertices.
Tor this reason we provide the robot with a “pebble” — a
device that it can place on a vertex and use to identify the
vertex later,

In this paper we show: (1) If the robot knows an upper
bound on the number of vertices then it can learn the graph
efficiently with only one pebble. (2) If the robot does not
know an upper bound on the number of vertices n, then
O(loglog n) pebbles are both necessary and sufficient. In
both cases our algorithms are deterministic.

1 Introduction.

The problem of exploring and mapping an unknrown envi-
ronment, is a fundamental problem with applications ranging
from robot navigation to searching the World Wide Web. As
such, a large body of work has focused on finding efficient
solutions to variants of the problem, with restrictive assump-
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tions on the form of the environment (cf. {13, 12, 16, 23, 14,
217, 7, 4, 1].) In this paper, we consider a model that makes
very limited assumptions about the environment, and give
efficient algorithms to solve the mapping problem in this
general setting.

A natural way to model the problem is by a robot ex-
ploring a graph G = (V,E). The case in which the graph
has both undirected edges and labeled vertices can be solved
in time linear in the number of edges by depth first search.
Other search techniques [22] improve on this bound by a
constant factor. Unfortunately, many exploration and map-
ping problems do not satisfy these constraints. For instance,
if the graph represents a city (having one-way streets) or
the Internet, it contains directed edges. This alone does
not make the problem substantially more difficult, since the
problem with directed edges and labeled vertices can be
solved by a greedy search algorithm in time O(|V]- |E|).
More sophisticated techniques [16, 1] yield improved run-
ning times.

Regardless of whether there are directed edges, a more
daunting difficulty arises if vertices are not uniquely labeled.
This situation could arise from the limited sensory capabili-
ties of a robot or from the changing appearance of vertices.
If no assumptions are made on the labeling of the vertices (so
that all vertices may appear the same), then we need a way
to mark vertices in order to have any hope of mapping the
environment. In this paper, we model 2 marking device by
a pebble, which can be dropped at a vertex and later identi-
fied and retrieved. This notion of marking is basic and can
be simulated in many situations. It can be shown that a
robot provided with a pebble can map an undirected graph
with unlabeled vertices in time O(]V]- |E|), by repeatedly
marking nodes and backtracking.! However, without the as-
samptions that the edges are undirected and the vertices are
labeled, the existence of an efficient algorithm has remained
open.

The main contribution of this paper is a general mapping
algorithm. This algorithm efficiently solves the mapping
problem without assuming unique labelings of the vertices
and while allowing directed edges.

The problem. Let G be a strongly-connected directed graph
over n vertices, where the vertices have no labels. The out-
degree of each vertex is d,% and the outgoing edges at each
vertex are numbered from ‘1’ to ‘d>.®> The vertices’ indegrees

1In addition to undirected edges and labeled vertices, other simpli-
fying assumptions that can be made about the environment include
geometric structure (such as planarity) or random access (as on the
World Wide Web).

%In fact, identical outdegrees is the worst case, and with mi-
nor modifications, our algorithms work for graphs having arbitrary
degrees.

SWithout some way of distinguishing edges it is not clear how to
reach one vertex from another even given a map of the graph. The
assumption that the edges emanating from a vertex are numbered i3
a local (and weak) assumption, as opposed to a global assumption




are not assumed to be seen. The robot is placed at an arbi-
trary starting vertex in G, and at each step it traverses one
of the edges emanating from its current vertex. The robot’s
task is to explore and map G efficiently. That is, after walk-
ing a polynomial number of steps (in the size of the graph),
it should output a graph G isomorphic to G. Howevez, un-
less the robot has a tool to help it distinguish vertices, it
is condemned to failure as a cartographer. For exambple, a
robot traveling alone cannot decide whether G consists of a
single vertex or many vertices. A basic tool for the robot is
a pebble. Now, as the robot explores G, it can mark a vertex
by dropping the pebble, and it can identify the vertex if it
finds the pebble later. Upon finding the pebble, the robot
can pick it up. However, because the graph is directed, the
robot cannot retrace its steps to retrieve the pebble.

Bender and Slonim [7] show that a robot given a pebble
can explore and map any graph in ezponential time. How-
ever, they prove that a robot cannot map graphs in poly-
nomial time using a constant namber of pebbles, when it
does not. know a bound on n. This lower bound motivates
two questions: (1) How many pebbles are needed to learn
graphs efficiently if » is known? (2) How many pebbles are
in fact needed if » is unknown?

In this paper we demonstrate that surprisingly few pebbles
are needed in both cases. We show that

o If the robot knows n (or an upper bound # on =),
it can learn the graph with only one pebble in time
polynomial in n (respectively, #).

o If the robot does not know n {or #2), then O(loglogn)
pebbles are both necessary and sufficient.

In both cases our algorithms are deterministic. The lower
bound of Q(loglog n) for the case of unknown » holds even
for probabilistic algorithms.

Intuition. To understand the difficulties facing the explor-
ing robot, consider the problem of fraversing a graph (i.e.,
visiting all vertices and edges). Certainly, in order to map a
graph, the robot must traverse it. One standard technique
that comes to mind is random walks. Unfortunately, for di-
rected graphs, the expected time until 2 random walk visits
all vertices may be exponential in = and random walks are
therefore ineffective for traversing. (For undirected graphs
the expected time is polynomial in n.)

Consider, for example, the graph in Figure 1. This graph
is called a combination lock graph, because in order to reach
the rightmost node v,, the robot must discover the unique
sequence of edge labels (the combination) extending from
v1 to v,. Notice that in polynomial time, with very high
probability, a random walk only visits a logarithmic number
of vertices in the combination lock. More generally, for any
polynomial time (randomized) algorithm that does not mark
vertices, there exists a combination lock graph that (with
high probability) the algorithm will not fully explore.

We now return to the problem of learning with = peb-
ble. Although one (pebbleless) robot cannot traverse com-
bination locks (efficiently), a robot with a pebble can learn
them using random walks [7].* However, consider the graph
shown in Figure 2. This graph consists of two combination
locks, where the end of one combination lock leads into the
beginning of the other. If the robot ever drops its pebble

that the vertices are labeled,
*More generally, graphs having high conductance can be learned
ctficiently [7].
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in the top lock and travels into the bottom lock, then it is
doomed. The robot will be stuck in the bottom combina-
tion lock without its pebble, and cannot traverse this lock
to learn it. Notice that once the robot has lost its pebble,
knowing the size of the graph trapping it is not helpful.

This example illustrates the dilemma facing the robot as
it explores the unknown graph G. The robot must drop the
pebble in order to learn new terrain, but when the robot
drops the pebble, it runs the risk of losing it.

Closed paths. To avoid losing its pebble, the robot must
know how to return to it. Thus, before dropping the pebble
at a vertex, the robot should know a closed path containing
this vertex. However, such a path may be difficult to obtain.
When = is unknown, the robot can only identify o closed
path by dropping the pebble and finding it again, Thug,
we encounter a chicken-and-egg situation. In order to safely
drop the pebble, the robot must find a closed path. But in
order to find a closed path, the robot must drop its pebble,

Now we recognize the tangible benefit of knowing n. By
repeating the same pattern of edges n times, the robot can
enter a closed path without dropping its pebble. For exam-
ple, if the robot repeatedly follows edges labeled ‘1’, it enters
a cycle after at most » moves. Once the robot knows a closed
path, it can map the subgraph visited by the path using the
pebble. However, it is not clear how to harness this addi-
tional power. By repeating one pattern of edges, the robot
enters a closed path and can map one subgraph. Later, the
robot may repeat a different pattern of edges, enter another
closed path, and map a second subgraph, Thus, the robot
can map many subgraphs, but it is not obvious how to picce
these maps together. This is because the robot has little
information about how the subgraphs overlap and intercon-
nect. As a result, finding closed paths permits the robot
to drop the pebble, map a (small) portion of the graph and
retrieve the pebble, but does not solve the mapping problem.

In order to solve the mapping problem, we use an algo-
rithmic fool that we call an orienting procedurc. An ori-
enting procedure allows our algorithms to construct a lim-
ited number of maps. Instead of trying to piece these maps
together, the algorithm expands them separately until one
maps all of G. This expansion is possible because by exe-
cuting the orienting procedure, the robot can recognize par-
ticular vertices in the graph that are associated with the
maps.

Orienting procedures. Intuitively, an orienting procedure
for a graph G leads the robot around the graph and ulti-
mately leaves the robot at a vertex it “recognizes”. The
robot recognizes this vertex by observing the output pro-
duced by the procedure. More precisely, if the robot sces
the same output in two different executions of the proce-
dure, then both times it ends up at the same vertex.” The
notion of orienting procedures is analogous to the notion of
(adaptive) homing sequences in automata theory [20], and it
is closely related to the notion of two-robot homing sequencea
introduced by Bender and Slonim [7]. In the context of
learning, homing sequences were first applied by Rivest and
Schapire [27, 26]; they were used for learning environments
modeled by finite automata.

We show that given an orienting procedure, the robot
can build maps of subgraphs containing the ending vertices
of the procedure. Since the robot is not provided with

5 Actually, the robot may be at vertices equivalent under nutomor-
phism, but we avoid this issue in the intreduction.



Figure 1: A combination lock graph.

Figure 2: A Graph consisting of Two Combination Locks.

an orienting procedure, it builds maps using a partially-

constructed orienting procedure, which it gradually improves.

Each map is associated with a different output of the pro-
cedure, There is a difficulty, however, in using a partial ori-
enting procedure, Namely, the underlying graph may look
different from what the map associated with the procedure’s
output suggests, As a result, the robot could become dis-
oriented and lose the pebble.

A central idea in our algorithms is how to avoid losing the
pebble while using misleading information about the graph.
The algorithms employ a two-tiered structure of the cycling
technique mentioned above. At the lower level, the robot
uses the cycling technique to verify safely whether the un-
derlying graph is consistent with its map. If verification
fuils the robot is able to improve the partial orienting proce-
dure, At the higher level, the robot uses a generalization of
the cycling technique to arbitrary deterministic procedures
(instead of edge-label patterns). This generalized cycling
technique allows the robot to find closed paths that visit
increasingly large portions of G, until all of G is visited and
mapped,

Extensions, Our results generalize to the case in which the
obseryed labeling of the edges at the robot’s current vertex
fn a function of the robot’s previous vertex. This models
the situntion that arises when navigating in a city, where
the relative location of the streets exiting an intersection is
determined by the direction from which the intersection was
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entered. Some intuition is given in Section 5.

Related work. Our work is most directly related to the
work of Bender and Slonim [7]. Bender and Slonim show
that two cooperating robots can explore and map unknown
directed graphs with unlabeled vertices in polynomial time.
The robots do not require any prior knowledge of the size of
the graph. Bender and Slonim demonstrate that two robots
are strictly more powerful than one robot with O(1) peb-
bles. They prove that one robot with a constant number of
pebbles cannot (efficiently) learn arbitrary directed graphs
without knowing an upper bound on the number n of ver-
tices. They conjecture that the same holds when » is known;
our results disprove this conjecture. Our O(log log n)-pebble
algorithm (for unknown n) can be simulated by two robots.
This yields a deterministic alternative to Bender and Slonim’s
randomized two-robot algorithm.®

Most early work on graph exploration assumed that the
robot is a finite automaton. Rabin [24] first proposed the
idea of providing the automaton with pebbles to help it ex-
plore. This led to a body of work examining the number
of pebbles needed to explore various environments [29, 13,
12, 3, 25]. For a survey on antomata exploring labyrinths,
see [21). Deng and Papadimitrion [16] propose and study
the problem of exploring an unknown directed graph having
labeled vertices. Albers and Henzinger [1] give improved al-

®In light of our results and those of Bender and Slonim, we see
that a friend is only worth loglogn pebbles.




gorithms for this problem. These works study exploration
from the perspective of competitive analysis. The results
are stated in terms of the deficiency of the graph (i.e., the
minimum number of edges to be added to make the zraph
Eulerian). Betke, Rivest, and Singh [9] and together with
Awerbuch [4] study the problem of piecemeal learning undi-
rected labeled graphs. In the piecemeal learning problem
the robot is required to return to its starting position peri-
odically.

Rivest and Schapire [27, 26] study the problem of learn-
ing environments modeled by finite automata. Here, an
environment is represented by a directed graph, in <which
each vertex has one of two (or constant) possible labelings.
The robot has learned the environment (automaton) when
it can predict the label of any vertex (state) reached on
an arbitrary walk., Hence, if the automaton is irreducible,
then the robot actually learns the topology of the underly-
ing graph. Their algorithms (with the exception of one, for
permutation automata) rely on a teacher. The teacher sup-
plies counterexamples to the robot’s hypotheses. Variants
of this problem that do not rely on a teacher are studied
in the following works [14, 18, 28, 17]. We note that Dear
et. al, [14] apply a cycling technique related to ours, but for
different purposes.

Exploring and navigating in geometric environments is
studied extensively. A sample of papers includes [5, 23, 15,
11, 6, 10, 8, 19, 2].

2 Preliminaries

Let G = (V,E) be the unknown directed graph the robot
has to explore and map. Suppose that the graph is strongly
connected and that all the vertices of G are unlabeled and
have (the same) outdegree d. Let the edges emanating from
each vertex be labeled by distinct indices in {1,...,d} and
denote an edge from u to v with label o by (u,0,2). Let
% = |V} and let # be an upper bound on n.

The exploring robot starts at an arbitrary vertex of G.
The robot has a single pebble.” At each time step, the robot
may traverse any outgoing edge from the vertex it is at. In
addition, the robot may drop the pebble at the vertex, or pick
up the pebble that it has previously dropped at the vertex.

We say that a graph M = (Vn, En) is ésomorphic to G
(denoted, M = G) if there exists an isomorphism between
the two graphs that preserves edge labels. Namely, there
exists a one-to-one and onto mapping f : Vi — V, such
that the following holds: For every two vertices w and z
in Vi1, there is an edge labeled o from w to z in M, if
and only if there is an edge labeled ¢ from f(w) to f(2)
in G. Let wo and vo be distinguished vertices in M and
G, respectively. We use the notation (M, wo) 2 (G, w0) to
say that there exists an isomorphism f between M and G
such that f(wo) = vo. We say that (M, wo) is consistent
with (G, vp) if there exists a subgraph G’ of G containing
vg, such that (M, wo) 2 (G', vo).

We say that the robot at vertex v in G has learned the
graph G when it outputs a graph G together with a vertex
@ in G such that (G, ) £ (G, ). Since in each time step
the robot traverses a single edge, the running time of the
algorithm is the number of moves the robot makes. Though
computation time is ignored in this definition, we note that
the total computation time of our algorithms is polynomial
in the size of the graph.

“In Section 4 we consider a robot having a source of pebbles.
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3 Learning with a Single Pebble

In this section we present our algorithm for learning effi-
ciently any graph using a single pebble and knowledge of #.
We start (in Section 3.1) by describing an important subrou-
tine of our algorithm, which we call path compression. The
robot executes this subroutine (using the pebble) to map
subgraphs of G that are visited by closed paths known to
the robot. In Section 3.2 we show that the robot can learn
G if we assume the robot has access to a return-path oracle
for G. The robot can query this oracle from any vertex in
the graph and receive a sequence of edges that leads it back
to its start vertex. In the following sections we progressively
weaken this assumption. In Section 3.3 we formally define
an orienting procedure and describe how to devise such a
procedure based on procedures for distinguishing between
vertices. In Section 3.4 we replace the assumption that the
robot has access to a return-path oracle with the assump-
tion that it knows an orienting procedure for G. Finally, in
Section 3.5 we show how the robot can use knowledge of #
to explore and learn the graph while building an orienting
procedure on its own.

3.1 Compressing Closed Paths

Here we present an essential building block of our algo-
rithms. Let the robot be at vertex v in G, and assume the
robot knows a closed path in G that starts (and ends) at v
The path visits a subgraph Gpasn of G. Namely, Gpaen con-
sists of all vertices and edges traversed along the path. Since
the path may visit the same vertices several times, Gpagy 19
not necessarily a simple cycle. In the path compression pro-
cedure the robot uses the pebble to identify repeated vertices
on the path and construct a graph M isomorphic to Gpaen.

More precisely, let path = o1,...,6% be a sequence of
edge labels corresponding to a closed path starting (and end-
ing) at v. Let wo, 41,...,ur be the vertices in G visited along
the path, where 4o = 4 = ». The robot maintains a list of
length k - 1 where ultimately the i-th entry in the list will
identify the i-th vertex occurring on the path in G, Initially
the Bist is (wo, A,..., A,wo), where A means “unidentified.”
The goal of the robot is to replace all “unidentified” entrics
with vertex names,

The algorithm proceeds in at most n stages, each start-
ing and ending with the robot and the pebble at v. In the
first stage, the robot drops the pebble at vertex v and fol-
lows the entire closed path; for each i such that the robot
observes the pebble after i steps (i.e., at the vertex reached
by traversing 1,...,0;), the robot replaces the i-th entry
in the list with wo. In the j-th stage, let ¢ be the smallest
index such that the #-th entry in the list is A. The robot
traverses 61,...,0¢, and after the t-th step drops the peb-
ble at the vertex reached. Then it replaces the i-th entry
with wy—1 (i.e., a new vertex name). Asin the first stage, it
traverses the rest of the closed path (and returns to v). For
each ¢ such that the robot observes the pebble after i ateps
(counting steps from when it left v), the robot replaces the
i-th entry in the list (which must be a A) with wj.1. After
returning to v, the robot follows path once more to pick up
the pebble.

The algorithm maintains the property that the same la-
bel w; appears in places & and k' in the list if and only if
the k-th and k’-th vertices on the closed path in @ are the
same. When the list is completed, the robot constructs a
map M in accordance with the list and the edge labels in
path. Namely, the vertices of M are the vertices in the list,



and if wy and wj appear in places { and i + 1 in the list,
then there is an edge (wj, oi41, wjr) in M.

Lemma 1 Let v be a vertez in G and path be a sequence of
cdge labels that corresponds to a closed path in G starting and
onding at v, Let Gpawn be the subgraph of G visited by path.

The ‘nnﬂx rnm‘nrrmnnf; nrocedure runs in time Q(n - lpathl)

uwnRa n 1Pasay;

and outputs a graph M such that (M, wo) = (Gpazn, v).

3,2 Learning with a Return-Path Oracle
In this section, we assume that the robot is given access to

. .
a roturn.aath avnsle Namolv at anv time cten it can anerv
& Foularn=paui Oral:C, JHaMlly, &% aly ume Siep 16 <all query

the oracle and receive a sequence of edge labels that returns
the robot to a particular vertex vo. B S
We show how the robot can learn G by querying the

oracle and using repeated applications of the path compres-
The return-path algorithm proceeds in at

slon procedure,
most n-d = |E| stages, In each stage the robot learns at
least one new edge in G. In the i-th stage, the robot con-
structs o strongly connected map M; having a designated
vertex wo, The initial map, Mo, consists only of the ver-
tex wg (and no mlm:g\ The final map is the output, (" of

L3219 =C OULPRY

the ulgomhm. The algorithm maintains the invariant that
(Mi, wo) is consistent with (G,vo) (where consistency is de-
fined in Section z) The algorithm associates a closed path
path(M) with each map M;. This path starts and ends at
wo and passes through all vertices and edges in M;. Since
M‘ is Btrongly connected the robot can easﬂy compute such
a path of length O(n?d).

We say that a vertex w in a map M; is finished if it has
d ontgoing edges in M;, Otherwise it is unfinished. In the
(i 4 1)-th stage the algorithm augments the map M; with
o new edge emanating from an unfinished vertex in M; and
perlmps other vertices and edges. This is done as follows.
Tt w be an unfinished vertex in Pv{. and let o be the label
of & missing edge from w, Let explore(M;) be a sequence of
cdge labels connecting wo to w, concatenated with . The
robot performs the walk corresponding to explore(M;) in G

ptarting from vg, It then queries the return-path oracle. Let

tho votiirn noth that the nrnn]n nrnun‘na ],,a nn"nﬂ raf ’Flaa
vl ZCvET pauil that the oracl < PIC 408

robot returns to vy using the path ret;. Then it compresses
the closed path path;,, = path(M;) o explore(M;) o ret..
The algorithm lets M43 be the resulting map, By Lemma 1,
we know that (M;.H, wp) & (Gpath,y,, ). Since path;y,

rontaing moth{ M M. containg M. ne 2 subeoranhe by the
WA VIMIID yﬂull\lvl'}, l'L[-’-l WLV GLLLD A'l»; a9 A DuUblﬂyll, vy wvie

choice of w and ¢, Mi41 also contains at least one new edge
(the edge labeled o going out of w).

Note that the time complexity of this algorithm can be
improved, However, the above formulation serves as a basis
for subsequent algorithms (that do not rely on a return-path

oracle), From all the above, we obtain the following lemma.

Lomma 2 Let £ be the length of the longest return path pro-
uided bu the oracle. The return-path aIgorzthm runs in time

U‘ﬂ ﬂ ‘' \‘ﬂ a ’t‘ L}) ana outpuzs a map \.'l womorpmc io U

3.3 Orienting Procedur

Intuitively, an orienting procedure for a graph G guides the
robot around the graph and ultimately leaves the robot at a
vertex it “recognizes,” We note that an orienting procedure
does not lead the robot back to a particular vertex. Hence,
aspuming an orienting procedure is weaker than assuming
a return-path oracle, Before we define an orienting proce-
dure formally, we explain the notion of equivalence between

N
W

vertices. We say that two vertices u and v in G are equiva-
lent, denoted u = v, if (G, u) 2 (G, v), i.e., there exists an
automorphism of G mapping u to v.

Definition 1 An orienting procedure op for a graph G has
the following properties.

1. It determines the robot’s actions (i.e., what edge labels
it traverses and when it drops and picks up the pebble).
The robots starts and ends with its pebble, regardless of
the starting vertez.

Th o wnenandases &
+ XIIC proccauy

The procedure returns

!FI

-.bsto

Not:ce that because the procedure is deterministic, every
time the robot executes the orienting procedure starting
from any fized vertez v in G, it returns the same output
and finishes at the same final vertez. Thus, an orienting

nnnnnnnnnn o b otz Asskemarba
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5. Let output(op, v) be the output of the procedure op when
started at vertex v, and let final(op, v) be the final ver-
tezx reached. An orienting procedure guarantees that for
every ¢ and v in G output(op, 8) = output(op,v) ==
finai{op, u) = finai{op, v).

Note that the converse is not guaranteed. Namely, the
procedure may end at the same vertez with two different
outputs.

We show how to build an orienting procedure using distin-
guishing procedures for inequivalent, vertices in G.

Definition 2 Let u and v be two inequivalent vertices in
G. A distingnishing procedure dp, , for u and v has the

following properties.

1-4. As in Definition 1.

5. o1 utpu t{dp ) £ outout(d )

e "\ t'uu)"[T il S &’uv"['
Notice that a dlstmgmshmg procedure differentiates between
starting vertices whereas an orienting procedure differenti-
ates between ending vertices. In addition, a distinguishing
procedure differentiates between a single pair of starting ver-
tices whereas an orienting procedure differentiates among all
possible ending vertices.

Everv orientine 'r\rnrol‘“rn opn that we congider can be
SVely o P L3 vilao LONSACL Lan oo

viewed as a tree Top in the following sense: Each leaf in
Top corresponds to a different output of op. The internal
nodes of Top are distinguishing procedures. The branches
emitting from a node are labeled by the possible outputs
of the distinguishing procedure. Leaves are labeled by the
sequence of outputs on the branches leading from the root to
the leaf. Consider all vertices in G that the robot may end
at when op terminates with output A at a leaf {a; denote
this set of vertices by reach(A). Property 5 dictates that all
vertices in reach(A) are equivalent.

We can build an orienting procedure of the above type in
stages, extending the tree in each stage. Initially we let our

ecandidate ariantine nracedurae oaon be the amnty nracadnre
canaiaaie oricnuing proceaure Cop o wad empiy proceanrc,

ie. the robot makes no actions, and the tree Tcop has a
single leaf. Assume inductively that cop preserves proper-
ties 1-4 and has % possible ontputs (so that Tcop has k
leaves). If cop is not yet a complete orienting procedure,
then for some output A corresponding to leaf (s there exist
inequivalent vertices # and v in reach(A) Let dp,,, be a
distinguishing procedure for « and v. We replace the leaf ¢a




with dp, ,. Since output(dp, ,, ) # output(dp, ,,v), the
new tree has at least k + 1 leaves. Therefore, the medified
cop has at least k + 1 outputs. Since an orienting proce-
dure has at most n different cutputs, we obtain an orienting
procedure after at most n — 1 stages.® It can be shown
that for every pair of inequivalent vertices there exists a dis-
tinguishing procedure with running time O(n®d). Hence,
every graph has an orienting procedure with running time
O(n*d). In Section 3.5, we exhibit an algorithm in which
the robot devises distinguishing procedures and builds an
orienting procedure while exploring the graph.®

3.4 Learning with an Orienting Procedure

In this section we assume that the robot has a prespeci-
fied orienting procedure op for the graph G. For ease of
the presentation, we assume throughout this section that
the graph has no automorphisms (and hence no vertices are
equivalent). This assumption can easily be removed here
and is not used in later sections.

By the above assumption, for each possible output A,
the set reach(A) (defined in the Section 3.3) contains a sin-
gle vertex, which we denote »5. With each output A, the
algorithm associates a map M(A), which is constructed as
the algorithm proceeds. The map M(A) contains a desig-
nated vertex wo(A). The algorithm ensures that each M(A)
is strongly connected and maintains the following invariant:

INVARIANT 1 (orienting procedure): For every output A of
op, (M(A), wo(A)) is consistent with (G, va).

Learning proceeds in at most #>d phases. In each phase,
some map M(A) is augmented with at least one new edge.
We say that a map is finished if all its vertices are fin-
ished. The algorithm terminates when some map M({A) is
finished, in which case it outputs M(A). We use the short-
hand path(A) to represent path(M(A)) and explore(A) to
represent explore(M(A)), where path(:) and explore(-) were
defined in Section 3.2. Let Gpgupa) be the subgraph of G
visited by path(A) when starting from »z. In each phase
the algorithm uses the orienting procedure to find a closed
path satisfying the following:

1. For some output A, the path starts and ends at va.

2. The path visits all of Gyaep(a) 2nd 2t least one addi-
tional edge.

The robot compresses this closed path and replaces M(A)
with the resulting map.

To find a closed path satisfying the above propertizs the
robot does the following. Starting from its current vertex,
it executes the orienting procedure, observes its output A,
and follows path(A;) o explore(A;). It then executes the
orienting procedure again, observes its output Az, and fol-
lows path(A2) o explore(Az). The robot repeats the above
until it observes an output A, that it has previously seen
(i.e., A; = A, for ¢ < j). Note that some output must
reappear after at most » + 1 repetitions (though the robot
need not know ). At this point the robot has discovered a
closed path that starts and ends at va;. Furthermore, this
closed path starts with path(A;) o explore(A;), and hence

8For the purposes of this construction, it actually suffices to
relax the definition of a distinguishing procedure to allow ei-
ther output(dp, ,,u) # output(dp, ,,v) or final(dp,, ., )
final(dp,,,, v).

9However, our algorithm may terminate (correctly) before the ori-
cnting procedure is complete.
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visits all of Gpap(a,) and at least one additional edge. In-
formally, since the robot does not know to which vertex it
will return, it “prepares” all vertices va; for the possibility.
It does so by following path(A;) o explore(A;) from each
V4.
Let T(op) be the running time of op. Since for ev-
ery map M(A), [path(A)| = O(n?d), and

|explore(A)| < n —1, the length of the closed path found is
O(n - (T(op) + n’d)). By Lemma 1, the closed path can be
compressed in time O(n? « (T(op) + #%d)). We obtain the
following lemma.

Lemma 3 A robot with a single pebble can learn any strongly
connected graph G using an orienting procedure op for G in
time O(n*d . (T(op) + n?d)).

3.5 Learning the Graph while Building an Orienting Pro-
cedure

In this section we show that a robot having a single peb-
ble can efficiently explore and map any strongly-connected
directed graph if it knows an upper bound # on the size
of the graph. Recall that if the robot does not know #
then this task is impossible. The structure of the algorithm
presented here is similar to the structure of the algorithm
described in Section 3.4, Since the robot does not have a
real orienting procedure it uses a candidate orienting pro-
cedure cop. In each phase, for some output A of cop the
algorithm either (1) replaces M(A) with a new, larger M(A)
or (2) discovers a distinguishing procedure dp,, ,, for some
inequivalent vertices 4 and v in reach(A). In the latter case
it improves cop using dp,, ,, (as described in Section 3.3).
Since the improved cop will never again output A, the algo-
rithm discards M(A). The algorithm terminates when some
M(A) is finished, in which case it outputs M(A). We show
that the algorithm maintains the following invariant, which
is a relaxation of Invariant 1.

INVARIANT 2 (candidate orienting procedure): For every out-
put A of cop there erists a vertex v € reach(A) such that
(M(A), wo(A)) is consistent with (G, z).

In particular this invariant ensures that the finished map is
isomorphic to G.

In Section 3.4 we had the property that reach(A) con-
sisted of a single vertex va. This provided a method for the
robot to identify closed paths that start and end at some
va. Here, this method does not work since reach(A) may
contain several vertices (equivalent or inequivalent), There-
fore, the robot could observe output A twice without being
on a closed path. The robot’s knowledge of # combined with
the following observation suggests a remedy for this problem
— that is, how to find a closed path that starts and ends at
a vertex u in some reach(A).

Observation 1 Let f: V — V be any deterministic
function. Then for every vertezv € V, the sequence v, f(v),
F(f(v)), ... becomes cyclic within the first n applications of
f.

Suppose the robot repeats the following: it executes cop,
observes its output A, and follows path(A) o explore(A).
Then after at most @ repetitions it has entered a cycle. We
later show how after another 27 repetitions it can find a
closed path that starts and ends at a vertex u in reach(A),
for some output A.

Suppose the robot runs the algorithm from the previous
section with the enhancement above. The robot can now



find closed paths, but the algorithm still has a serious flaw.
Congider o map M(A) that results from compressing a closed
path that starts and ends at u € reach(A). Assume that in a
subsequent stage in the algorithm, the robot obtains a new
M(A) by compressing a closed path that starts and ends at
' € reach(A), If u’ = u then the argument that the new
M(A) is Jarger than the old M(A) holds as before. However,
if 4’ % u then we can claim nothing about the size or struc-
ture of the new M(A), This is because (old M(A), wo(A))
may not be consistent with (G,+'). Hence, the argument
that the new M(A) is bigger than the old M(A) is no longer
valid, This motivates the need for a map verification proce-
dure.

Map Verification, Suppose the robot is at a vertex v in
some reach(A). We would like a procedure to verify that
(M(A), wo(A)) is consistent with (G,v). This is not diffi-
cult if we allow the robot to lose its pebble. In particular
the robot hypothesizes that path(A) corresponds to a closed
path in G starting at v. Then the robot attempts to com-
press path(A), If path(A) is not a closed path starting from
v and the robot loses the pebble, then clearly (M(A), wo(A))
Js not consistent with (G, v), Otherwise, the robot compares
M(A) to the map resulting from compressing the closed
path,

Since we cannot allow the robot to lose the pebble (or
cloe it will not be able to learn the graph), we must modify
the above procedure, The new procedure, described below,
performs a weaker form of verification, We later show that
it nonetheless meets the needs of the algorithm.

1. The robot starts from v and follows path(A) i times.
Clearly, if (M(A), wo(A)) is consistent with (G, v), then
the robot ends at v, However, even if (M(A), wo(A))
is not consistent with (G, v) then by Observation 1 we
know that the robot has entered a cycle.

2. Next the robot drops the pebble at its current vertex v’
and follows path(A) once.

o If the pebble is not at the vertex reached, then veri-
fication fails, To retrieve the pebble, the robot con-
tinues repeating path(A) until it finds the pebble.

o Otherwise, the robot compresses path(A), which it
has now identified as a closed path, starting from v'.
If the resulting map differs from M(A) then verifi-
cation fails, Otherwise verification passes.

We refer to this procedure as ver(A).

Note 2 There are two situations in which ver(A) passes:
1, (M(A),wo(A)) is consistent with (G, v), or

% (M(A),wo(A)) is not consistent with (G,v), but
M(A),wo(A)) is consistent with (G, v').

If verification fails, then because of Invariant 2 ver(A)
s na distinguishing procedure.  This procedure distin-
guishes between v and the vertex u in reach(A) such that
(M(A), wo(A)) is consistent with (G, ). Since for every map
M(A), the length of path(M(A)) is O(n?d), the running time
of ver(A) is O(# - n®d). We are now ready to describe the
algorithm,

The Algorithm. The algorithm proceeds in at most 2n®d
phases, Initially, its candidate orienting procedure cop is
the empty procedure (as described in Section 3.3). In each
phase:
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1. To enter a closed path, the robot repeats the following

# times.

(*) The robot executes cop and obtains an output A.
If this is the first appearance of ontput A then the
algorithm creates a new map M(A) consisting of a
single vertex wo(A). Next the robot executes ver(A)
to verify the map M(A).

o If ver(A) fails, then ver(A) is a distingunishing
procedure between a pair of vertices in reach(A).
The robot uses this distinguishing procedure,
which outputs PAsS or FAIL, to improve cop (as
described in Section 3.3). Thus, the output of
cop is in {Pass,FAIL}*. Because of the exten-
sion to cop, cop will never again output A, so
the robot discards M(A). The robot stops re-
peating (%), skips Stages 2-4, and goes to the
next phase with the improved cop.

e Otherwise (ver(A) passes), the robot follows
explore(A). Note that by definition of ver(A),
the robot follows explore(A) starting from a
vertex u such that (M(A),wo(A)) is consistent
with (G, u).

The subroutine (+) can be viewed as a function taking

the vertex at which the robot starts to the vertex at

which it finishes. By Observation 1, we know that af-
ter i repetitions of (#), the robot enters a closed path
consisting of some number of executions of (*).

2. The aim of this stageis to determine the closed path the
robot has entered.’® To determine this closed path, the
robot repeats (*) another 27 times. Let the sequence
S of outputs observed be A;,...,A2s. The robot finds
the smallest p such that S is composed entirely of pe-
riodic repetitions of the last p outputs of S. More pre-
cisely, for all #, A2a—i = Aza—(imodp)- Let seq be the
sequence of edge labels traversed in copover(Azi—p+1)0
explore(A2n—p41) 0...0copover(Aza)oexplore(Azs).
By the minimality of p, the closed path consists of one or
more repetitions of seq. To determine the closed path,
the robot drops the pebble and repeatedly traverses seq
until it finds the pebble at the end of one of its traversals
of seq. It then retrieves the pebble for future use.

3. The robot proceeds along the closed path found above
until it reaches the end of any execution of cop, say with
output A. The robot then compresses the closed path
and replaces M(A) with the resulting map.

4. If the new M(A) is finished then the algorithm outputs
(the new) M(A) and terminates.

As noted above, if ver ever fails in Stage 1, the robot
can improve cop. If all verifications pass, by Lemma 1 we
know that in each phase (new M(A),wo(A)) is consistent
with (G, u) for some u € reach(A), and thus Invariant 2 is
preserved. Because ver(A) is part of the closed path and
by Note 2, the new M(A) contains the old M(A) as a sub-
graph. Because explore(A) is part of the closed path (and
is followed from u) the new M(A) also contains at least one
new edge.

The algorithm terminates after at most 2n®d phases be-
cause in each phase the algorithm can either improve the

1%Note that the robot cannot simply drop the pebble and repeat
(*) until it sees the pebble again because the robot needs the pebble
to execute (»).




candidate orienting procedure or enlarge a map. More pre-
cisely, since the candidate orienting procedure can bz im-
proved at most n—1 times, at most z—~1 maps are discarded.
At any time the algorithm maintains at most n maps, and
so the algorithm builds at most 2n — 1 maps. Since each
map contains at most n-d edges, the bound on the number
of phases follows. Note that the algorithm may terminate
before completing the orienting procedure.’!

The running time of each phase is the sum of (1) the
time to find a closed path, and (2) the running time of the
compression procedure. Item (1) is O(%) times the sum of
(a) the running time of the candidate orienting procedure,
(b) the running time of the verification procedure, and (c)
the length of the exploration sequence (which is at most ).
Recall that the running time of the verification procedures is
O(f-n%d). Also recall that verification procedures (that fail)
are distinguishing procedures for improving the candidate
orienting procedure. Therefore, we can bound the running
time of any candidate orienting procedure by O(# - n®d).
Thus, Item (1) amounts to O(#2r%d). By Lemma 1, Item
(2) is bounded by O(#%n*d). Since there are at most 2a2%d
phases, we obtain the following Theorem.

Theorem 1 A robot having a single pebble can learn any
strongly connected graph given an upper bound ¢ on the size
of the graph in time O(7“n°d®).

4 Learning without an Upper Bound on n

In this section we state our results concerning the number
of pebbles needed to learn graphs efficiently if the graph
size is unknown. We use the algorithm of Section 3.5 as a
subroutine to show that for any ¢ > 0, [cloglog n] pebbles
are sufficient. The resulting algorithm is deterministic. In
addition, we prove a matching lower bound demonstrating
that Q(loglog n) pebbles are necessary. The lower hound
applies to any randomized algorithm that uses an expected
polynomial number of moves. We note that in our upper
bound the total computation time to decide on moves is
polynomial, whereas the lower bound applies even when the
robot is computationally unbounded. Furthermore, our up-
per bound holds even when the pebbles used by the robot
are indistinguishable from each other, while the lower bound
holds for distinguishable pebbles.

We want to study how the number of pebbles needed
grows with the size of the unknown graph. We denote the
expected number of pebbles a (probabilistic) robot A uses on
graphs of size n, by pa(n). Namely,

pa(n) def max E[# of pebbles that A uses on G,

where Gy, is the set of all graphs on n vertices. The ezpected
running time of A is defined analogously. (Recall that in
each time step the robot makes a single move, and hence
the running time of the algorithm is the number of moves
the robot makes.)

Theorem 2 For ecvery constant ¢ > 0, there ezxists a
(deterministic) algorithm that learns graphs of size n in
polynomial-time using at most [cloglogn)| pebbles, without
knowledge of n.

pn fact, our algorithm as a whole can be viewed as an orienting
proccdure that outputs a completed map and a designated vertex.
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Theorem 3 Consider any algorithm A that, with prola-
bility greater than 1/2, learns any graph in expectcd poly-
nomial time without knowing the size of the graph. Then
pa(n) = Q(loglog n).*?

The algorithm for Theorem 2 uses the ore-pebble algo-
rithm of Section 3.5 combined with a variant of the standard
“guess and double” technique; namely, instead of doubling,
it takes the k'th power for a suitably chosen k. In particular,
setting & = [2'/¢], it runs the one-pebble algorithm trying
=2 5= 2’:2, o= 2':8, until one of these executions
succeeds. The algorithm succeeds after at most [clog log n]
iterations, and each iteration uses at most one pebble. The
details of the proof will appear in the full version of this
paper. We note that this algorithm can be deterministically
simulated by two robots, giving a deterministic alternative
to Bender and Slonrim’s randomized algorithm [7].

Proof (of Theorem 3): In order to prove the thcorem,
we analyze the behavior of any algorithm on two types of
graphs of outdegree 2: cycles and combination locks with
tails. Formally, the cycle of n nodes is the labeled, directcd
graph Cp, on vertex set {wo, - -+, wn—~1}, where there are two
directed edges labeled 0 and 1 going from u; to W(i41)modn.
A combination lock with tail has the following structure (zce
Figure 3). Let & = aja2---az € {0,1}¢ be any string
and let m > 0 be an integer. The combination lock with
combination « and tail m is the graph Lqa,m on vertex sot
{21, 42,00y 2myv1,...,v241} with the following cdges: For
each 1 <¢ < m—1, there are two edges labeled 0 and 1 from
2; to #iq1; there are two edges labeled 0 and 1 from up, to
vy; for each 1 < i < 4, there is an edge labeled a; from %
to vi41 and an edge labeled @&; from #; to vy; there are two
edges labeled 0 and 1 from vz41 to 3. It is important to
note that a robot starting at vertex vy (i.e., the start of the
combination lock) does not reach vertex vx41 unless it ex-
ecutes the consecutive sequence of moves ay - -+ a); at some
point. We start by giving the intuition behind the proof.

We analyze any algorithm based on the times it drops
pebbles in the case that it does not see previously-dropped
pebbles. We show that there must be huge gaps in these
pebble-dropping times or else the algorithm unses Q(log log 1)
pebbles on sufficiently large cycles of length n. The quan-
tity Q(loglogn) is exactly the threshold below which the
gaps between pebble drops become superpolynomial, That
is, for any polynomial f there are infinitely many time steps
t such that no pebble is dropped between time ¢ and time
f(#) with high probability. Then, for ore of theze big gaps,
we can construct & combination lock with tail for which the
following holds. With high probability, the algorithm drops
no pebble within the combination lock and fails to reach
the last few vertices of the lock in its allotted running time.
Thus the robot fails to learn the graph. The idea of us-
ing combination locks with tails to foil a robot comes from
Bender and Slonim’s argument that a constant number of
pebbles is insufficient [7). The novel aspect of our proof is
the analysis of pebble-dropping times to determine on which
sizes of combination locks the algorithm fails,

We now turn to the details of the proof. Suppose, in
contradiction to the claim in the theorem, that we have
an expected polynomial-time algorithm A which succeeds
in learning graphs with probability greater than 1/2, but
does not use Q(loglogn) pebbles. Let g(n) = O(n") be a

131t is easy to see from the proof that the success probability of 1/2
is arbitrary and can be replaced by any constant.



Figure 3: A Combination Lock with a Tail,

polynomial upper bound on the expected running time of
the algorithm, In this proof, we use the standard technique
of treating the randomized algorithm A as a distribution
on deterministic algorithms A, i.e. for every infinite string
r & {0,1}", A, is the deterministic algorithm given by A
using random coins r, All probabilities and expectations in
thio proof are taken over the choice of 1.

We wish to study how the robot behaves when it doesn’t
gee the pebbles it has dropped previously. To formalize this,
we look at the infinite graph I on vertex set {wj,ws,...}
wlere there are two edges labeled 0 and 1 from w; to wija
for every { > 1, Now consider the behavior of the robot
when it is placed at vertex w;. Notice that when the robot
drops o pebble at vertex w; and moves, it never sees its
pebble again, For t > s > 1, let P(s,t) be the probability
that the robot drops at least one pebble between vertices w,
and w;—1, inclusive, and let E(s,t) be the expected number
of pebbles dropped by the robot between vertices w, and
wi~1, no E(s,t) > P(s,t). Notice that E(1,2) is a lower
bound on the expected number of pebbles the robot uses on
a eycle C; of ¢ vertices, because for every r, Ar’s behavior
in ito fixrat ¢ — 1 moves is the same in C; as in I. We now
une this to show that that there are superpolynomial gaps
in the pebble-dropping times,

Clalm: For every fixed ¢ > 0, there are infinitely many ¢ such
that P(t,1°) < 1/8.
Proof of Claim: Suppose not, i.c. there is some #o such
that for all ¢ > i, PSt,t‘) > 1/8. Then for every £ > 0,
s o1 eve
E(to ) = Tiey E(E115)) 2 Ty PUS ™ ,86) 2 4/8.
For n > 1o, let £, be the smallest value of £ such

that n < t{i‘. Then loglogn < loglogiy + £nloge, so
£n = Q(loglog n), We also have

' e"; 1 Q(loglog n).

E(1,n) 2 E(fo,n) > E(to, 85" ') >

But E(1,7) is a lower bound on the expected number of
pebbles the robot uses on a cycle of length n, so we have a
contradiction, =>4 O

Recall that the expected running time of A is ¢(n) =
O(n"). Using the above claim with ¢ =k +1, we can find a
t with the following properties:

o P4, < L.,
R sggiriq <L,
o tF > 8g(2t +4).
Consider the random variable W which is a string con-
nisting of the robot’s first 8¢(2t + 4) moves in I. There are
lens than 8g(2¢+4) contiguous subsequences of length ¢in W,

no there is some string o € {0,1}* which occurs in W with
probability less than 8¢(2t + 4)/2° < 1/8. In other words
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there is 2 sequence of moves « of length ¢ which the robot
performs with probability less than 1/8 in its first 8¢(2¢-+4)
stepsin I.

Let 8 by any binary string of length 4, and consider
the behavior of the robot when placed at vertex u; in a
combination lock G? with tail ¢ — 1 and combination 8
(and vertex set {u1,...,%:—1,1,..., 745} as above). Since
A runs in expected time g(n) and G has 24 vertices, the
probability that A makes more than 8g(2¢-}4) moves in G*?
is at most 1/8.

Let Ry be the set of random coins r for which A, would
drop a pebble between vertex w; and w41, inI. Let Rz be
the set of random coins r for which A, executes the sequence
of moves o at some point during its first 2¢ 4 4 moves in I.
Let Rs be the set of random coins r for which A, makes
more than 8¢(2¢ + 4) moves in G°. Let R=R; UR2URa.
We have shown that Pr[r € R] < 3/8. Notice that for any
r ¢ R, the output of A, on GP? is the same as its output on
G? for any string « of length 4 because the robot never sees
a pebble that it has dropped and never reaches vertex v¢41.
Let S” be the set of r ¢ R on which A, outputs G” when
placed in G” (equivalently, G®). Then since A has overall
success probability at least 1/2, A must succeed on at least
1/8 of the r ¢ R. So Prr € S?] > 1/8. But there are 16
S7’s and they are disjoint. =< N

5 Extensions

We have generalized our result to the case when the local
labelling of the edges at a vertex is a function of the previous
vertex in the robot’s path. (We assume there is at most one
edge between two vertices.) We give only the intuition for
the proof here. First, suppose that the robot could drop
its pebbles on edges. In this case, one can simply execute
our algorithm on the edge-adjacency graph of the original
graph. In this new graph, edges of the old graph correspond
to vertices, and there is an edge between vertices e; and ez
if there exists vertices in the old graph vi,v2,vs such that
e1 = (v1,v2) and ez = (v2,v3). The edge (e1,e2) in the new
graph is given the label that e; has in the original graph
when arriving at v2 by way of e;. Thus, in this new graph,
edges will have unique local labellings. One can execute
any of our algorithms on this graph, and then reconstruct
the actual graph once the algorithm has terminated. With
some care, one can remove the need to allow dropping of
pebbles on edges without increasing the number of pebbles
needed.
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