A Parametrized Algorithm that Implements
Sequential, Causal, and Cache Memory
Consistency*

Ernesto Jiménez! Antonio Ferndndez? Vicente Cholvi®

! Universidad Politécnica de Madrid, 28031 Madrid, Spain, ernes@eui.upm.es
2 Universidad Rey Juan Carlos, 28933 Méstoles, Spain, afernandez@acm.org
8 Universitat Jaume I, 12071 Castellén, Spain, vcholvi@inf.uji.es

Abstract. In this paper we present an algorithm that can be used to
implement sequential, causal, or cache consistency in distributed shared
memory (DSM) systems. For this purpose it has a parameter that allows
to choose the consistency model to be implemented. As far as we know,
this is the first algorithm proposed that implements the cache consistency
model.

In our algorithm, when implementing causal and cache consistency all
read and write operations are executed locally (i.e., are fast). It is known
that no sequential algorithm has only fast memory operations. However,
in our algorithm, when implementing sequential consistency all write
operations and some read operations are fast.

1 Introduction

Distributed shared memory (DSM) is a well-known mechanism for inter-process
communication in a distributed environment. One of the main properties of a
DSM system is the semantic of its read and write operations, which is commonly
denoted as its consistency model. Two of the most popular consistency models
proposed are the sequential [6] and causal consistency models. The former is
close to what programmers expect from a shared memory, while the later is
considered to be powerful enough to allow easy programming, but at the same
time allows for inexpensive implementations. As a consequence, a number of
algorithms have been proposed in the literature implementing sequential [1,3,
4] and causal consistency [2,7,8]. A third consistency model proposed in the
literature is the cache model [5], for which to our knowledge, no algorithm has
been proposed.

An interesting property of any algorithm implementing a consistency model
is the time a memory operation takes. If a memory operation does not need to
wait for any communication to finish, and can be completed based only on the
local state of the process that issued it, it is said to be fast, which is a very desir-
able feature. All the above mentioned algorithms for causal consistency are fast.

* This work is partially supported by the CICYT under grant TEL99-0582 and the
Comunidad Auténoma de Madrid under grant CAM-07T/00112/1998.

17

However, in [3], Attiya and Welch have shown that no sequential consistency al-
gorithm can guarantee the fast executions of all its operations. This impossibility
result restricts the efficiency of any implementation of sequential consistency.

In general, in order to increase concurrency, most DSM protocols support
replication of data. With replication, there are copies (replicas) of the same vari-
ables in the local memories of several processes of the system, which allows these
processes to use the variables simultaneously. However, in order to guarantee the
consistency of the shared memory, the system must control the replicas when the
variables are updated. That control can be done by either invalidating outdated
replicas or by propagating the new variable values to update the replicas. When
propagation is used, a replica of the whole shared memory is usually kept in each
process.

Our Results In this paper, we introduce a parametrized algorithm that imple-
ments sequential, causal, and cache consistencies. The algorithm has the con-
venience that we can change the model it implements with a single parameter.
Furthermore, as far as we know, this is the first algorithm proposed to implement
cache consistency.

Our algorithm uses propagation and replication. With this algorithm, each
process in the system has a copy of the complete set of variables that consti-
tute the shared memory. A write operation is propagated from the process that
issued it to the rest of processes so they can apply it locally. However, write
operations are not propagated immediately. The algorithm works on a cyclic
turn fashion, with each process broadcasting one message in its turn. The latest
write operation on each variable issued by the process since it sent the previous
message are included in this single message. This scheme allows a very simple
control of the number of messages in the network due to this algorithm, since
only one message is sent periodically by each process. Furthermore, it compares
very favorably with most algorithms that use propagation (e.g. [1, 3]), since they
send one message for each write operation issued, while ours does not propagate
some write operations, and the rest is grouped in single messages, with the cor-
responding savings in bandwidth (by avoiding the overhead of many messages).

When implementing causal and cache consistency, all the operations in our
algorithm are fast. When implementing sequential consistency, from the results
in [3] is derived the impossibility of having all the memory operations fast.
However, in our algorithm, all write operations are fast. Furthermore, all read
operations are fast unless a specific condition on the process issuing the read
operation occurs. This condition is the following: since the latest time it sent a
message, the process has not issued write operations on the variable being read
and has issued write operations on other variables. An example of these non
fast read operations is one on a variable z issued by a process that previously
(but after it sent the previous message) issued a write operation on a different
variable y and did not issue a write operation on z. A read operation in which
this condition happens has to block until the process that issued it has the turn.

It is very interesting to compare our sequential consistency algorithm with
the sequential cache coherence algorithm proposed by Afek et al. [1]. First, as we

18

said, we do not send each variable update in a single message as they do and we
are able to control the number of messages sent. However, both algorithms have
some features in common. In their algorithm, like in ours, all write operations
are fast. Also read operations are also fast unless a given condition occurs. In
their case, a read operation blocks if there are local write operations still not
applied in the shared memory. Compared with our condition, we also block a
read operation if there are local write operations still not propagated, but only
if the variable to be read was not written in one of these write operations, which
makes our condition slightly more interesting. However, the algorithm in [1]
could be simply modified to use the technique we present here and, hence, have
the same condition as ours. It is worth to mention here that the time a read
operation is blocked with our algorithm is bounded if the communication delay
is bounded (since it only depends on the number of processes and the maximum
communication delay). In the algorithm of Afek et al. a blocked read operation
may need to wait for an arbitrary number of write operations to be applied.

Another aspect in which both algorithms differ has to do with the model as-
sumed. In the model of [1] there is a communication medium among all processes
(and with the shared memory) that guarantees total order among concurrent
writes. In our case, we do not have such a device, and must enforce the order of
the operations with the cyclic turn technique described above.

2 Definitions

In this paper we assume a distributed system that consists of a set of n processes
(each uniquely identified by a value in the range 0...n — 1). Processes do not fail
and are connected by a reliable message passing subsystem. These processes use
their local memory and the message passing subsystem to implement a shared
memory abstraction. This abstraction is accessed through read and write oper-
ations on variables of the memory. The execution of these memory operations
must be consistent with the particular memory consistency model.

Each memory operation acts on a named variable and has an associated
value. A write operation by process p, denoted w,(z)v, stores the value v in the
variable z. Similarly, a read operation, denoted 7,(z)v, reports to the process p
that issued it that v is stored in the variable x.

In this paper we present an algorithm that uses replication and propagation.
We assume each process holds a copy of the whole set of variables in the shared
memory. We use z, to denote the local copy of variable z in process p. Different
copies of the same variable can hold different values at the same time.

A computation o is a sequence of read and write operations (usually observed
in some execution of the memory algorithm). We denote with = the order in
which the operations in & happen.

Definition 1 (Legal Computation). A computation « is legal if Vop = r(z)v €
a,3op' =w(x)v € a:op' > op and Fop" = w(zx)u : op’ > op" > op.

19

Definition 2 (Causal Order). Let op,op’ € a, op precedes op' in the causal
order (op <2, op') if

1. op and op' are operations from the same process and op > op',

2. op = wy(z)v and op' = ry(z)v, or

We denote by oy, the computation obtained by removing from « all read opera-
tions issued by processes other than p. We also denote by a(z) the computation
obtained by removing from « all the operations on variables other than x.

Definition 3 (Causal Computation). We say that a computation o is causal
if, for each process p, the computation oy, has a causal view (B, which is a per-
mutation of ap that preserves the causal order <., and such that each prefiz
of Bp 1is legal.

Definition 4 (Sequential Computation). We say that a computation « is
sequential if it has a sequential view B, which is a permutation of a such that
operations from the same process appear in the same order as in «, and each

prefiz of B is legal.

Definition 5 (Cache Computation). We say that computation « is cache
if, for each variable z, the computation a(x) has a cache view 5(x), which is a
permutation of a(z) such that operations from the same process appear in the
same order as in a(x), and each prefix of B(x) is legal.

From these definitions, we say that an algorithm implements causal, sequential,
or cache consistency if all the computations observed in its executions are causal,
sequential, or cache, respectively.

3 The Algorithm

In this section we present the parametrized algorithm A that implements causal,
cache and sequential consistency. Figure 1 presents the algorithm in detail. As
it can be noted, it is run with a parameter model, which defines the consistency
model that the algorithm must implement. Hence, the parameter must take one
of the values causal, sequential, or cache.

In Figure 1 it can be seen that all write operations are fast. When a process p
issues a write operation wp(z)v, the algorithm changes the local copy of variable
z (which we denote by z,) to the value v, includes the pair (z,v) in a local
set of variable updates (which we call updates,), and returns control. This set
updates, will later be asynchronously propagated to the rest of processes. Note
that, if a pair with the variable z was already in updates,, it is removed before
inserting the new pair, since it does not need to be propagated anymore.

Processes propagate their respective sets updates, in a cyclic turn fashion,
following the order of their identifiers. To maintain the turn, each process p uses
a variable turn, which contains the identifier of the process whose set must
be propagated next (from p’s view). When turn, = p, process p itself uses

20

Initialization :: wp(x)v :: atomic function

begin begin
turn, <0 Tp <V
updates, < 0 if ((z,-) € updatesp) then
end remove (z,-) from updates,
include (z,v) in updates,
rp(z) i atomic function end
begin
if (model = sequential) and apply-updates() : atomic task activated
(updates, # 0) and whenever turn, = ¢q, p # ¢, and the set
((z,-) ¢ updatesp) then updates, from process q is in the receiving
wait until turn, = p buffer of process p
return(z,) begin
end take updates, from the receiving buffer
while updates, # 0 do
send_updates() :: atomic task activated extract (z,v) from updatesq
whenever turn, = p if (model = causal) or
begin ((z,-) ¢ updates,) then
/* send to all processes, except itself */ Tp v
broadcast(updates,) turng < (turny, +1) mod n
updates, < end
turny < (turnp + 1) mod n
end

Fig. 1. The algorithm A(model) for process p. It is invoked with the parameter model,
which defines the consistency model that it must implement.

the communication channels among processes to send to the rest of processes
its local set of updates updates,. This is done in the algorithm with a generic
broadcast call, which could be simply implemented with n — 1 point-to-point
messages sends if the underlying message passing subsystem does not provide a
more appropriate communication primitive. All this is done by the atomic task
send_updates(), which also empties the set updates,. The message sent implicitly
passes the turn to the next process in order (turn, + 1) mod n.

The atomic task apply_updates() is the one in charge of applying the updates
received from another process g in updates,. This task is activated whenever
turn, = q and the set updates, is in the receiving buffer of process p. Note
that, when implementing sequential and cache consistency, after a local write
operation has been performed in some variable, this task will stop applying the
write operations on the same variable from other processes. That allows the
system to “view” those write operations as if they were overwritten with the
value written by the local process.

Read operations are always fast with causal and cache consistencies. When
implementing sequential consistency, a read operation rp,(z)u is fast unless updates,
does not contain a pair with variable xz but contains a pair with a variable differ-
ent from z. That is, the read operation is not fast only if, since the latest time it

21

held the turn, process p has not issued write operations on = and has issued write
operations on other variables. In this case, and only in this case, it is necessary
to delay such a read operation until turn, = p for the next time. Note that
this condition is the same as the activation condition of task send_updates(). We
enforce a blocked read operation to have priority over the task send_updates().
Hence, when turn, = p, a blocked read operation finishes before send_updates()
is executed.

We have labeled the code of the read operation as atomic because we do not
want it to be executed while the variable updates), is manipulated by some other
task. However, if the read operation blocks, other tasks are free to access the
algorithm variables. In particular, it is necessary that apply_updates() updates
the variable turn, for the operation to finish eventually.

We omit the proof that this algorithm implements causal, sequential, and
cache consistencies (depending on the value of the parameter model) due to
space limitation.

4 Future Work

We are currently studying how to extend this work so that the system can switch
on the fly from one consistency model to another. We are also evaluating the
efficiency of our algorithm in real applications, and comparing it with that of
other proposed algorithms.

References

1. Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching. ACM Transac-
tions on Programming Languages and Systems, 15(1):182-205, January 1993.

2. M. Ahamad, G. Neiger, J.E. Burns, P. Kohli, and P.W. Hutto. Causal memory:
Definitions, implementation and programming. Distributed Computing, 9(1):37-49,
August 1995.

3. H. Attiya and J.L. Welch. Sequential consistency versus linearizability. ACM Trans-
actions on Computer Systems, 12(2):91-122, 1994.

4. Alan Fekete, M. Frans Kaashoek, and Nancy Lynch. Implementing sequentially con-
sistent shared objects using broadcast and point-to-point communication. Journal
of the ACM, 45(1):35-69, January 1998.

5. J.R. Goodman. Cache consistency and sequential consistency. Technical Report 61,
IEEE Scalable Coherence Interface Working Group, March 1989.

6. L. Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers, 28(9):690-691, September
1979.

7. R. Prakash, M. Raynal, and M. Singhal. An adaptive causal ordering algorithm
suited to mobile computing environments. Journal of Parallel and Distributed Com-
puting, 41:190-204, 1997.

8. M. Raynal and M. Ahamad. Exploiting write semantics in implementing partially
replicated causal objects. In Proceedings of the 6th EUROMICRO Conference on
Parallel and Distributed Computing, pages 157-163, Feb 1998.

22

