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Exploring and mapping an unknown environment is a fundamental problem that is studied in a
variety of contexts. Many results have focused on finding efficient solutions to restricted versions
of the problem. In this paper, we consider a model that makes very limited assumptions about the
environment and solve the mapping problem in this general setting. We model the environment by an
unknown directed graph G, and consider the problem of a robot exploring and mapping G. The edges
emanating from each vertex are numbered from ‘1’ to ‘d’, but we do not assume that the vertices of G
are labeled. Since the robot has no way of distinguishing between vertices, it has no hope of succeeding
unless it is given some means of distinguishing between vertices. For this reason we provide the robot
with a “pebble”—a device that it can place on a vertex and use to identify the vertex later. In this
paper we show: (1) If the robot knows an upper bound on the number of vertices then it can learn the
graph efficiently with only one pebble. (2) If the robot does not know an upper bound on the number
of vertices n, then �(log log n) pebbles are both necessary and sufficient. In both cases our algorithms
are deterministic. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

The problem of exploring and mapping an unknown environment is a fundamental problem with
applications ranging from robot navigation to searching the World Wide Web. As such, a large body of
work has focused on finding efficient solutions to variants of the problem, with restrictive assumptions
on the form of the environment (cf. [2, 6, 10, 15–17, 22, 31, 35]). In this paper, we consider a model
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that makes very limited assumptions about the environment and give efficient algorithms to solve the
mapping problem in this general setting.

A natural way to model the problem is by a robot exploring a graph G = (V, E). The case in which
the graph has both undirected edges and labeled vertices can be solved in time linear in the number of
edges by depth first search. Other search techniques [30] improve on this bound by a constant factor.
Unfortunately, many exploration and mapping problems do not satisfy these constraints. For instance,
if the graph represents a city (having one-way streets) or the Internet, it contains directed edges. This
alone does not make the problem substantially more difficult, since the problem with directed edges
and labeled vertices can be solved by a greedy search algorithm in time O(|V| · |E|). More sophisticated
techniques [2, 22] yield improved running times.

Regardless of whether there are directed edges, a more daunting difficulty arises if vertices are not
uniquely labeled. This situation could arise in applications from the limited sensory capabilities of a
robot or from the changing appearance of vertices. If no assumptions are made on the labeling of the
vertices (so that all vertices may appear the same), then we need a way to mark vertices in order to
have any hope of mapping the environment [23]. In this paper, we model a marking device by a pebble,
which can be dropped at a vertex and later identified and retrieved. This notion of marking is basic and
can be simulated in many situations. Dudek et al. [23] show that a robot provided with a pebble can
map an undirected graph with unlabeled vertices in time O(|V| · |E|), by repeatedly marking nodes and
backtracking.7 However, without the assumption that either the edges are undirected or the vertices are
labeled, the question of the existence of an efficient algorithm has remained open.

The main contribution of this paper is a general mapping algorithm which efficiently solves the
mapping problem without assuming unique labelings of the vertices while allowing directed edges.

The Problem. Let G be a strongly connected directed graph over n vertices, where the vertices have
no labels. The outdegree of each vertex is d, where d is assumed to be known, and the outgoing edges
at each vertex are numbered from 1 to d. We first observe that identical outdegrees can be assumed
without loss of generality, because vertices v having outdegree smaller than d can be treated as if they
have d − deg(v) additional self-loops. In fact, differences in degrees can actually help our mapping
algorithms, as discussed in Section 3.5. It is a minimal assumption that the edges emanating from
each vertex have labels. This is a local (and weak) assumption, as opposed to a global assumption that
the vertices are labeled. Such a method for distinguishing edges is essential because otherwise it is
undefined how to choose or specify a path from one vertex to another, even when provided with a map
of the graph. The vertices’ indegrees are not assumed to be seen, since this too can only aid the robot
in distinguishing between vertices.

The robot is placed at an arbitrary starting vertex in G, and at each step it traverses one of the edges
emanating from its current vertex. The robot’s task is to explore and map G efficiently. That is, after
walking a polynomial number of steps (in the size of the graph), it should output a graph Ĝ isomorphic
to G. However, as noted in [23], unless the robot has a tool to help it distinguish vertices, it is condemned
to failure as a cartographer. For example, a robot traveling alone cannot decide whether G consists of a
single vertex or many vertices. A basic tool for the robot is a pebble. Now, as the robot explores G, it
can mark a vertex by dropping the pebble, and it can identify the vertex if it finds the pebble later. Upon
finding the pebble, the robot can pick it up. However, because the graph is directed, the robot cannot
retrace its steps to retrieve the pebble.

Bender and Slonim [10] show that a robot given a pebble can explore and map any graph in exponential
time. However, they prove that a robot cannot map graphs in polynomial time using a constant number
of pebbles, when it does not know a bound on n. This lower bound motivates two questions: (1) How
many pebbles are needed to learn graphs efficiently if n is known? (2) How many pebbles are in fact
needed if n is unknown?

In this paper we demonstrate that surprisingly few pebbles are needed in both cases. We show that

• If the robot knows n (or an upper bound n̂ on n), it can learn the graph with only one pebble
in time polynomial in n (respectively, n̂).

7In addition to undirected edges and labeled vertices, other simplifying assumptions that can be made about the environment
include geometric structure, such as planarity, having a small diameter, and more.
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FIG. 1. A combination lock graph.

• If the robot does not know n (or n̂), then �(log log n) pebbles are both necessary and sufficient.
Here we think of there being a source of pebbles that the robot has access to, and the bound is on the
total number of pebbles it takes from this source in the process of exploring and mapping the graph.

In both cases our algorithms are deterministic. The lower bound of �(log log n) for the case of unknown
n holds even for probabilistic algorithms.

Intuition. To understand the difficulties facing the exploring robot, consider the problem of travers-
ing a graph (i.e., visiting all vertices and edges). Certainly, in order to map a graph, the robot must
traverse it. One standard technique that comes to mind is random walks. Unfortunately, for directed
graphs, the expected time until a random walk visits all vertices may be exponential in n and random
walks are therefore ineffective for traversing. (For undirected graphs the expected time is polynomial
in n.)

Consider, for example, the graph in Fig. 1. This graph is called a combination lock graph, because
in order to reach the rightmost node vn starting from the leftmost node v1, the robot must discover the
unique sequence of edge labels (the combination) extending from v1 to vn . Notice that, with very high
probability, a polynomial-time random walk only visits a logarithmic number of vertices in the combina-
tion lock. More generally, for any polynomial-time (randomized) algorithm that does not mark vertices,
there exists a combination lock graph that (with high probability) the algorithm will not fully explore.

We now return to the problem of learning with a pebble. Although one (pebbleless) robot cannot
traverse combination locks efficiently, a robot with a pebble can learn them using random walks [10].8

However, consider the graph shown in Fig. 2. This graph consists of two combination locks, where the
end of one combination lock leads into the beginning of the other. If the robot ever drops its pebble in
the top lock and travels into the bottom lock, then it is doomed. The robot will be stuck in the bottom
combination lock without its pebble and cannot even traverse this lock, much less learn it.

This example illustrates the dilemma facing the robot as it explores the unknown graph G. The robot
must drop the pebble in order to learn new terrain, but when the robot drops the pebble, it runs the risk
of losing it.

Closed Paths. To avoid losing its pebble, the robot must know how to return to it. Thus, before
dropping the pebble at a vertex, the robot should know a closed path containing this vertex. However,
such a path may be difficult to obtain. When n is unknown, the robot can only identify a closed path
by dropping the pebble and finding it again. Thus, we encounter a chicken-and-egg situation. In order
to safely drop the pebble, the robot must find a closed path. But in order to find a closed path, the robot
must drop its pebble.

Now we recognize the tangible benefit of knowing n. By repeating the same pattern of edges n times,
the robot can enter a closed path without dropping its pebble. For example, if the robot repeatedly follows
edges labeled ‘1,’ it enters a cycle after at most n moves. We refer to this as the cycling technique. Once
the robot knows a closed path, it can map the subgraph visited by the path using the pebble. However,
it is not clear how to harness this additional power. By repeating one pattern of edges, the robot enters
a closed path and can map one subgraph. Later, the robot may repeat a different pattern of edges, enter
another closed path, and map a second subgraph. Thus, the robot can map many subgraphs, but it is
not obvious how to piece these maps together. This is because the robot has little information about
how the subgraphs overlap and interconnect. As a result, finding closed paths permits the robot to drop

8More generally, graphs having high conductance can be learned efficiently [10].
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FIG. 2. A graph consisting of two combination locks.

the pebble, map a (small) portion of the graph, and retrieve the pebble, but does not solve the mapping
problem.

In order to solve the mapping problem, we use an algorithmic tool that we call an orienting procedure.
An orienting procedure allows our algorithms to construct a limited number of maps. Instead of trying
to piece these maps together, the algorithm expands them separately until one maps all of G. This
expansion is possible because by executing the orienting procedure, the robot can recognize particular
vertices in the graph that are associated with the maps.

Orienting Procedures. Intuitively, an orienting procedure for a graph G leads the robot around the
graph and ultimately leaves the robot at a vertex it “recognizes.” The robot recognizes this vertex by
observing the output produced by the procedure. More precisely, if the robot sees the same output
when executing the procedure from two different initial vertices, then both times it ends up at the same
vertex.9 The notion of orienting procedures is analogous to the notion of (adaptive) homing sequences
in automata theory [28], and it is closely related to the notion of two-robot homing sequences introduced
by Bender and Slonim [10]. In the context of learning, homing sequences were first applied by Rivest
and Schapire [34, 35]; they were used for learning environments modeled by finite automata.

We argue that every graph has a polynomial-time 1-pebble orienting procedure. (Later, we deduce
from our mapping algorithm that there is actually a polynomial-time universal 1-pebble orienting
procedure that works for all graphs of a given size.) We show that given an orienting procedure, the
robot can build maps of subgraphs containing each of the possible ending vertices of the procedure.
Since the robot is not provided with an orienting procedure, it builds maps using a partially constructed
orienting procedure, which it gradually improves. Each map is associated with a different output of the
procedure. There is a difficulty, however, in using a partial orienting procedure. Namely, the underlying
graph may look different from what the map associated with the procedure’s output suggests. As a
result, the robot could become disoriented and lose the pebble.

A central idea in our algorithms is how to avoid losing the pebble while using misleading information
about the graph. The algorithms employ a two-tiered structure of the cycling technique mentioned above.
At the lower level, the robot uses the cycling technique to verify safely whether the underlying graph is
consistent with its map. If verification fails the robot is able to improve the partial orienting procedure.
At the higher level, the robot uses a generalization of the cycling technique to arbitrary deterministic
procedures (instead of edge-label patterns). This generalized cycling technique allows the robot to find
closed paths that visit increasingly large portions of G, until all of G is visited and mapped.

Related Work. The model we consider is essentially the directed-graph analogue of the one intro-
duced by Dudek et al. [23]. Their problem involves a robot with a single pebble mapping an undirected
graph with unlabeled vertices. Their modeling of edge labels differs slightly from ours in that the

9Actually, the robot may be at vertices equivalent under automorphism, but we avoid this issue in the Introduction.
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labeling of edges leaving a vertex can depend on the previous vertex visited (whereas our edge label-
ings are absolute). However, they impose an additional condition on the edge labelings which permits
backtracking. Hence they are able to solve the mapping problem by repeatedly marking vertices and
backtracking. Furthermore, we present an extension of our algorithm (in Section 3.6) that works in
directed graphs when the labels of edges emanating from a vertex may depend on the previous vertex
visited. Thus, we solve a problem that is strictly more general than the one treated by Dudek et al.

Subsequent work in the model of Dudek et al. includes mapping algorithms that perform well from
the perspective of competitive analysis [21] and efficient solutions to related problems such as “self-
location” [24] and “map verification” [20].

Our work is very closely related to the work of Bender and Slonim [10]. Bender and Slonim show
that two cooperating robots can explore and map unknown directed graphs with unlabeled vertices in
polynomial time. The robots do not require any prior knowledge of the size of the graph. Bender and
Slonim demonstrate that two robots are strictly more powerful than one robot with O(1) pebbles; they
prove that one robot with a constant number of pebbles cannot (efficiently) learn arbitrary directed
graphs without knowing an upper bound on the number n of vertices. They conjecture that the same
holds when n is known; our results disprove this conjecture. Our O(log log n)-pebble algorithm (for
unknown n) can be simulated by two robots. This yields a deterministic alternative to Bender and
Slonim’s randomized two-robot algorithm.10

Most early work on graph exploration assumed that the robot is a finite automaton. Rabin [32]
first proposed the idea of providing the automaton with pebbles to help it explore. This led to a
body of work examining the number of pebbles needed to explore various environments [5, 15,
16, 33, 38]. For a survey on automata exploring labyrinths, see [29]. Deng and Papadimitriou [22]
propose and study the problem of exploring an unknown directed graph having labeled vertices.
Albers and Henzinger [2] give improved algorithms for this problem. These works study exploration
from the perspective of competitive analysis. The results are stated in terms of the deficiency of the
graph (i.e., the minimum number of edges to be added to make the graph Eulerian). Betke et al. [12]
and together with Awerbuch [6] study the problem of piecemeal learning undirected labeled graphs. In
the piecemeal learning problem the robot is required to return to its starting position periodically.

Rivest and Schapire [34, 35] study the problem of learning environments modeled by finite automata.
Here, an environment is represented by a directed graph in which each vertex has one of two (or any
constant number of) possible labelings. The robot has learned the environment (automaton) when it
can predict the label of any vertex (state) reached on an arbitrary walk. Hence, if the automaton is
irreducible, then the robot actually learns the topology of the underlying graph. Their algorithms (with
the exception of one, for permutation automata) rely on a teacher and build on the work of Angluin [3].
The teacher supplies counterexamples to the robot’s hypotheses. Variants of this problem that do not
rely on a teacher are studied in [17, 25, 26, 36]. We note that Dean et al. [17] apply a cycling technique
related to ours, but for different purposes. For a survey covering some of the results mentioned above
among others, see [18].

Exploring and navigating in geometric environments is studied extensively. A sample of papers
includes [4, 7, 8, 11, 13, 14, 19, 27, 31].

Applications. As mentioned earlier, algorithms for exploring and mapping unknown environments
have a variety of applications. Examples are obtaining maps of existing networks (e.g., computer
networks, sewage systems, unexplored caves) for which there are no maps or the existing maps are
outdated (e.g., after some links have gone down on a computer network). Another type of application
is obtaining maps of changing environments, like the Internet or the World Wide Web. Due to the
dynamic and distributed nature of these systems, it is often infeasible to maintain a completely updated
map of them. However, obtaining accurate maps of small parts of the network is still useful. Another
example of a changing environment comes from ad hoc mobile wireless networks [37]. These are
networks in which the routers are mobile devices, and the topology depends on which devices are
within range of each other. If the network does not change too rapidly, a fast exploring algorithm could
be used to obtain occasional snapshots of the network. We emphasize that no exact implementation of our
algorithms will satisfy these applications. Even for a modest number of nodes, our algorithms are too time
consuming to be immediately practical. However, the underlying ideas of our algorithms could prove

10 In light of our results and those of Bender and Slonim, we see that a friend is only worth log log n pebbles.
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useful in these applications when the nodes are not perfectly distinguishable and some of the links are
unidirectional.

We also note that the problem solved in this paper is a generalization of the “twisty little passageways,
all alike” problem made famous in the 1970s computer game “Colossal Cave Adventure” by Crowthers
and Woods (cf. [1]).

2. PRELIMINARIES

Let G = (V, E) be the unknown directed graph the robot has to explore and map. Suppose that the
graph is strongly connected and that all the vertices of G are unlabeled and have (the same) outdegree
d. Let the edges emanating from each vertex be labeled by distinct indices in {1, . . . , d} and denote an
edge from u to v with label σ by 〈u, σ, v〉. (In Section 3.6, we treat a more general model in which the
edge labeling can depend on the previous vertex visited.) Let n = |V| and let n̂ be an upper bound on n.

The exploring robot starts at an arbitrary vertex of G. The robot has a single pebble.11 At each time
step, the robot may traverse any outgoing edge from the vertex it is at. In addition, the robot may drop
the pebble at the vertex or pick up the pebble that it has previously dropped at the vertex.

We often use the term map to refer to a graph M = (VM, EM) in which each vertex has outdegree
at most d and the edges leaving each vertex are labeled by distinct indices i1, . . . , ideg(v) ∈ {1, . . . , d}.
We say a map M = (VM, EM) is isomorphic to G (denoted, M ∼= G) if there exists an isomorphism
between the two graphs that preserves edge labels. Namely, there exists a one-to-one and onto mapping
f : VM → V, such that the following holds: For every two vertices w and z in VM, there is an edge
labeled σ from w to z in M, if and only if there is an edge labeled σ from f (w) to f (z) in G. Let w0

and v0 be distinguished vertices in M and G, respectively. We use the notation (M, w0) ∼= (G, v0) to say
that there exists an isomorphism f between M and G such that f (w0) = v0. We say that map (M, w0)
is consistent with (G, v0) if there exists a subgraph G′ of G containing v0, such that (M, w0) ∼= (G′, v0).

We say that the robot at vertex v in G has learned the graph G when it outputs a graph Ĝ together
with a vertex v̂ in Ĝ such that (Ĝ, v̂) ∼= (G, v). Since in each time step the robot traverses a single edge,
the running time of the algorithm is the number of moves the robot makes. Though computation time
is ignored in this definition, we note that the total computation time of our algorithms is polynomial in
the upper bound n̂ on the size of the graph.

3. LEARNING WITH A SINGLE PEBBLE

In this section we present our algorithm for efficiently learning any graph using a single pebble and
knowledge of n̂. We start (in Section 3.1) by describing an important subroutine of our algorithm, which
we call path compression. The robot executes this subroutine (using the pebble) to map subgraphs of G
that are visited by closed paths known to the robot. In Section 3.2 we show that the robot can learn G if
we assume the robot has access to a return-path oracle for G. The robot can query this oracle from any
vertex in the graph and receive a sequence of edges that leads it back to its start vertex. In the following
sections we progressively weaken this assumption. In Section 3.3 we formally define an orienting
procedure and describe how to devise such a procedure based on procedures for distinguishing between
vertices. In Section 3.4 we replace the assumption that the robot has access to a return-path oracle with
the assumption that it knows an orienting procedure for G. Finally, in Section 3.5 we show how the
robot can use knowledge of n̂ to explore and learn the graph while building an orienting procedure on
its own. Our algorithm and the subroutines it uses are described in pseudocode in Figs. 4–7 at the end
of this section.

3.1. Compressing Closed Paths

Here we present an essential building block of our algorithms. Let the robot be at vertex v in G, and
assume the robot knows a closed path in G that starts (and ends) at v. The path visits a subgraph Gpath
of G. Namely, Gpath consists of all vertices and edges traversed along the path. Since the path may
visit the same vertices several times, Gpath is not necessarily a simple cycle. In the path compression

11In Section 4 we consider a robot having a source of pebbles.
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procedure the robot uses the pebble to identify repeated vertices on the path and construct a graph M
isomorphic to Gpath.

More precisely, let path= σ1, . . . , σk be a sequence of edge labels corresponding to a closed path
starting (and ending) at v. Let u0, u1, . . . , uk be the vertices in G visited along the path, where u0 = uk =
v. The robot maintains a list of length k+1 where ultimately the ith entry in the list will identify the ith ver-
tex occurring on the path in G (where i ranges from 0 to k). Initially, the list is (w0, 	, . . . , 	, w0), where
	 means “unidentified.” The goal of the robot is to replace all unidentified entries with vertex names.

The algorithm proceeds in at most n stages, each starting and ending with the robot and the pebble at
v. In the 0th stage, the robot drops the pebble at vertex v and follows the entire closed path; for each i
such that the robot observes the pebble after i steps (i.e., at the vertex reached by traversing σ1, . . . , σi ),
the robot replaces the i th entry in the list with w0. In the j th stage (for j = 0, 1, . . .), let t be the smallest
index such that the t th entry in the list is 	. The robot traverses σ1, . . . , σt , and after the t th step drops
the pebble at the vertex reached. Then it replaces the t th entry with w j (i.e., a new vertex name). As in
the first stage, it traverses the rest of the closed path (and returns to v). For each i such that the robot
observes the pebble after i steps (counting steps from when it left v), the robot replaces the i th entry in
the list (which must be a 	) with w j . After returning to v, the robot follows path once more to pick
up the pebble.

The algorithm maintains the property that the same label w j appears in places k and k ′ in the list if
and only if the kth and k ′th vertices on the closed path in G are the same. When the list is completed, the
robot constructs a map M in accordance with the list and the edge labels in path. Namely, the vertices
of M are the vertices {w j } in the list, and if w j and w j ′ appear in places i and i + 1 in the list, then there
is an edge 〈w j , σi+1, w j ′ 〉 in M. Pseudocode for this path compression procedure is given in Fig. 4.

LEMMA 3.1. Let v be a vertex in G and path be a sequence of edge labels that corresponds to
a closed path in G starting and ending at v. Let Gpath be the subgraph of G visited by path. The
path compression procedure runs in time O(n · |path|) and outputs a graph M such that (M, w0) ∼=
(Gpath, v).

3.2. Learning with a Return-Path Oracle

In this section, we assume that the robot is given access to a return-path oracle. Namely, at any time
step it can query the oracle and receive a sequence of edge labels that returns the robot to a particular
vertex v0.

We show how the robot can learn G by querying the oracle and using repeated applications of the path
compression procedure. The return-path algorithm proceeds in at most n · d = |E| stages. In each stage
the robot learns at least one new edge in G. In the i th stage, the robot constructs a strongly connected
map Mi having a designated vertex w0. The initial map, M0, consists only of the vertex w0 (and no
edges). The final map is the output, Ĝ, of the algorithm. The algorithm maintains the invariant that
(Mi , w0) is consistent with (G, v0) (where consistency is defined in Section 2). The algorithm associates
a closed path path(Mi ) with each map Mi . This path starts and ends at w0 and passes through all
vertices and edges in Mi . Since Mi is strongly connected, the robot can easily compute such a path of
length O(n2d).

We say that a vertex w in a map Mi is finished if it has d outgoing edges in Mi . Otherwise it is
unfinished. In the (i + 1)th stage the algorithm augments the map Mi with a new edge emanating from
an unfinished vertex in Mi and perhaps other vertices and edges. This is done as follows. Let w be an
unfinished vertex in Mi and let σ be the label of a missing edge from w. Let explore(Mi ) be a sequence
of edge labels connecting w0 to w, concatenated with σ . The robot performs the walk corresponding
to explore(Mi ) in G starting from v0. It then queries the return-path oracle. Let the return path that the
oracle provides be called reti . The robot returns to v0 using the path reti . Then it compresses the
closed path pathi+1 =path(Mi )◦ explore(Mi )◦reti . The algorithm lets Mi+1 be the resulting map.
By Lemma 3.1, we know that (Mi+1, w0) ∼= (Gpathi+1

, v0). Since pathi+1 contains path(Mi ), Mi+1

contains Mi as a subgraph; by the choice of w and σ , Mi+1 also contains at least one new edge (the
edge labeled σ going out of w).

Note that the time complexity of this algorithm can be improved. However, the above formulation
serves as a basis for subsequent algorithms (that do not rely on a return-path oracle). From all the above,
we obtain the following lemma.
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LEMMA 3.2. Let 
 be the length of the longest return path provided by the oracle. The return-path
algorithm runs in time O(n2d · (n2d + 
)) and outputs a map Ĝ isomorphic to G.

3.3. Orienting Procedures

Intuitively, an orienting procedure for a graph G guides the robot around the graph and ultimately
leaves the robot at a vertex it “recognizes.” An orienting procedure need not lead the robot back to
a particular vertex, so assuming an orienting procedure is weaker than assuming a return-path oracle.
Before we define an orienting procedure formally, we explain the notion of equivalence between vertices.
We say that two vertices u and v in G are equivalent, denoted u ≡ v, if (G, u) ∼= (G, v); i.e., there exists
an automorphism of G mapping u to v.

DEFINITION 3.1. An orienting procedure op for a graph G has the following properties.

1. It determines the robot’s actions (i.e., what edge labels it traverses and when it drops and picks
up the pebble).

2. The robot starts and ends with the pebble, regardless of the starting vertex.

3. The procedure is deterministic.

4. The procedure returns an output. The output is determined by the steps at which the robot sees
the pebble.

(Notice that because the procedure is deterministic, every time the robot executes the orienting procedure
starting from any fixed vertex v in G, it returns the same output and finishes at the same final vertex.
Thus, an orienting procedure has at most n outputs.)

5. Let output(op, v) be the output of the procedure op when started at vertex v, and let
final(op, v) be the final vertex reached. An orienting procedure guarantees that for every u and
v in G output(op, u) = output(op, v) then final(op, u) ≡ final(op, v).

(Note that the converse is not guaranteed. Namely, the procedure may end at the same vertex with two
different outputs.)

We show how to build an orienting procedure using distinguishing procedures for inequivalent vertices
in G.

DEFINITION 3.2. Let u and v be two inequivalent vertices in G. A distinguishing procedure dpu,v for
u and v has the following properties.

1–4. As in Definition 3.1.

5. output(dpu,v, u) �= output(dpu,v, v).

Notice that a distinguishing procedure differentiates between starting vertices whereas an orienting
procedure differentiates between ending vertices. In addition, a distinguishing procedure differentiates
between a single pair of starting vertices whereas an orienting procedure differentiates among all possible
ending vertices.

Every orienting procedure op that we consider can be viewed as a tree Top in the following sense:
Each leaf in Top corresponds to a different output of op. The internal nodes of Top are distinguishing
procedures. The branches emitting from a node are labeled by the possible outputs of the distinguishing
procedure. Leaves are labeled by the sequence of outputs on the branches leading from the root to
the leaf. For an illustration, see Fig. 3. Consider all vertices in G that the robot may end at when op
terminates with output A at a leaf ζA; denote this set of vertices by reach(A). Property 5 dictates that
all vertices in reach(A) are equivalent.

We can build an orienting procedure of the above type in stages, extending the tree in each stage.
Initially we let our candidate orienting procedure cop be the empty procedure, i.e., the robot makes
no actions, and the tree Tcop has a single leaf. Assume inductively that cop preserves properties
1–4 and has k possible outputs (so that Tcop has k leaves). If cop is not yet a complete orienting
procedure, then for some output A corresponding to leaf ζA there exist inequivalent vertices u and v

in reach(A). Let dpu,v be a distinguishing procedure for u and v. We replace the leaf ζA with dpu,v .
Since output(dpu,v, u) �= output(dpu,v, v), the new tree has at least k + 1 leaves. Therefore, the
modified cop has at least k + 1 outputs. Since an orienting procedure has at most n different outputs,
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FIG. 3. An illustration of Top assuming distinguishing procedures have two possible outputs (which is not
necessarily true but is the case in our usage). Each dp denotes a distinguishing procedure, and out1 and out2 are
the two possible outputs. The orienting procedure begins with an execution of dp1. Depending on the output (out1
or out2) either dp2 or dp3 is next executed. Each leaf corresponds to the sequence of outputs labeling the edges
on the path from the root to the leaf. The leaf l1 for example corresponds to the output out1 . . . out1. Since op is
an orienting procedure, no matter where it is started, if the sequence of distinguishing procedures on the path from
the root to l1 is executed and the outputs out1 . . . out1 are observed, then the vertices reached are equivalent.

we obtain an orienting procedure after at most n − 1 stages.12 It can be shown that for every pair of
inequivalent vertices there exists a distinguishing procedure with running time O(n3d). Hence, every
graph has an orienting procedure with running time O(n4d). In Section 3.5, we exhibit an algorithm in
which the robot devises distinguishing procedures and builds an orienting procedure while exploring
the graph.13

3.4. Learning with an Orienting Procedure

In this section we assume that the robot is provided with an orienting procedure op for the graph G. For
ease of presentation, we assume throughout this section that the graph has no nontrivial automorphisms
(and hence no vertices are equivalent). This assumption can easily be removed here and is not used in
later sections.

By the above assumption, for each possible output A, the set reach(A) (defined in Section 3.3)
contains a single vertex, which we denote vA. With each output A, the algorithm associates a map M(A),
which is constructed as the algorithm proceeds. The map M(A) contains a designated vertex w0(A).
The algorithm ensures that each M(A) is strongly connected and maintains the following invariant:

Invariant 3.1 (Orienting Procedure). For every output A of op, (M(A), w0(A)) is consistent with
(G, vA).

Learning proceeds in at most n2d phases. In each phase, some map M(A) is augmented with at least
one new edge. We say that a map is finished if all its vertices are finished (as defined in Section 3.2).

12 For the purposes of this construction, it actually suffices to relax the definition of a distinguishing procedure to allow either
output(dpu,v, u) �= output(dpu,v, v) or final(dpu,v, u) ≡ final(dpu,v, v).

13 However, our algorithm may terminate (correctly) before the orienting procedure is complete.
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The algorithm terminates when some map M(A) is finished, in which case it outputs M(A). We use
the shorthand path(A) to represent path(M(A)) and explore(A) to represent explore(M(A)), where
path(·) and explore(·) were defined in Section 3.2. Let Gpath(A) be the subgraph of G visited by
path(A) when starting from vA. In each phase the algorithm uses the orienting procedure to find a
closed path satisfying the following:

1. For some output A, the path starts and ends at vA.

2. The path visits all of Gpath(A) and at least one additional edge.

The robot compresses this closed path and replaces M(A) with the resulting map.
To find a closed path satisfying the above properties the robot does the following. Starting from its

current vertex, it executes the orienting procedure, observes its output A1, and follows path(A1) ◦
explore(A1). It then executes the orienting procedure again, observes its output A2, and follows
path(A2)◦explore(A2). The robot repeats the above until it observes an output A j that it has previously
seen (i.e., A j = Ai for some i < j). Note that some output must reappear after at most n +1 repetitions
(though the robot need not know n). At this point the robot has discovered a closed path that starts and
ends at vA j . Furthermore, this closed path starts with path(Ai ) ◦ explore(Ai ) and hence visits all of
Gpath(Ai ) and at least one additional edge. Informally, since the robot does not know to which vertex it
will return, it prepares all vertices vAi for the possibility. It does so by following path(Ai )◦explore(Ai )
from each vAi .

Let T(op) be the running time of op. Since for every map M(A), |path(A)| = O(n2d), and
|explore(A)| ≤ n, the length of the closed path found is O(n · (T(op)+n2d)). By Lemma 3.1, the closed
path can be compressed in time O(n2 · (T(op) + n2d)). We obtain the following lemma.

LEMMA 3.3. A robot with a single pebble can learn any strongly connected graph G using an
orienting procedure op for G in time O(n4d · (T(op) + n2d)).

3.5. Learning the Graph while Building an Orienting Procedure

In this section we show that a robot having a single pebble can efficiently explore and map any strongly
connected directed graph if it knows an upper bound n̂ on the size of the graph. Recall that if the robot
does not know n̂ then this task is impossible. The structure of the algorithm presented here is similar to
the structure of the algorithm described in Section 3.4. Since the robot does not have a real orienting
procedure it uses a candidate orienting procedure cop. In each phase, for some output A of cop the
algorithm either (1) replaces M(A) with a new, larger M(A) or (2) discovers a distinguishing procedure
dpu,v for some inequivalent vertices u and v in reach(A). In the latter case it improves cop using
dpu,v (as described in Section 3.3). Since the improved cop will never again output A, the algorithm
discards M(A). The algorithm terminates when some M(A) is finished, in which case it outputs M(A).
We show that the algorithm maintains the following invariant, which is a relaxation of Invariant 3.1.

Invariant 3.2 (Candidate Orienting Procedure). For every output A of cop there exists a vertex
u ∈ reach(A) such that (M(A), w0(A)) is consistent with (G, u).

In particular this invariant ensures that the finished map is isomorphic to G.
In Section 3.4 we had the property that reach(A) consisted of a single vertex vA. This provided a

method for the robot to identify closed paths that start and end at some vA. Here, this method does not
work since reach(A) may contain several vertices (equivalent or inequivalent). Therefore, the robot
could observe output A twice without being on a closed path. The robot’s knowledge of n̂ combined
with the following observation suggests a remedy for this problem—that is, how to find a closed path
that starts and ends at a vertex u in some reach(A).

OBSERVATION 3.1. Let f : V → V be any deterministic function. Then for every vertex v ∈ V, the
sequence v, f (v), f ( f (v)), . . . becomes cyclic within the first n applications of f .

Suppose the robot repeats the following: it executes cop, observes its output A, and followspath(A)◦
explore(A). Then after at most n̂ repetitions it has entered a cycle. We later show how after another 2n̂
repetitions it can find a closed path that starts and ends at a vertex u in reach(A), for some output A.

Suppose the robot runs the algorithm from the previous section with the enhancement above. The
robot can now find closed paths, but the algorithm still has a serious flaw. Consider a map M(A)
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that results from compressing a closed path that starts and ends at u ∈ reach(A). Assume that in a
subsequent stage in the algorithm, the robot obtains a new M(A) by compressing a closed path that
starts and ends at u′ ∈ reach(A). If u′ ≡ u then the argument that the new M(A) is larger than the old
M(A) holds as before. However, if u′ �≡ u then we can claim nothing about the size or structure of the
new M(A). This is because (old M(A), w0(A)) may not be consistent with (G, u′). Hence, the argument
that the new M(A) is bigger than the old M(A) is no longer valid. This motivates the need for a map
verification procedure.

Map Verification. Suppose the robot is at a vertex v in some reach(A). We would like a procedure
to verify that (M(A), w0(A)) is consistent with (G, v). This is not difficult if we allow the robot to lose
its pebble. In particular the robot hypothesizes that path(A) corresponds to a closed path in G starting
at v. Then the robot attempts to compress path(A). If path(A) is not a closed path starting from v

and the robot loses the pebble, then clearly (M(A), w0(A)) is not consistent with (G, v). Otherwise, the
robot compares M(A) to the map resulting from compressing the closed path.

Since we cannot allow the robot to lose the pebble (or else it will not be able to learn the graph),
we must modify the above procedure. The new procedure, described below, performs a weaker form of
verification. We later show that it nonetheless meets the needs of the algorithm.

1. The robot starts from v and follows path(A) n̂ times.

Clearly, if (M(A), w0(A)) is consistent with (G, v), then the robot ends at v. However, even if
(M(A), w0(A)) is not consistent with (G, v) then by Observation 3.1 we know that the robot has entered
a cycle.

2. Next the robot drops the pebble at its current vertex v′ and follows path(A) once.

• If the pebble is not at the vertex reached, then verification fails. To retrieve the pebble, the
robot continues repeating path(A) until it finds the pebble.

• Otherwise, the robot compresses path(A), which it has now identified as a closed path,
starting from v′. If the resulting map differs from M(A) then verification fails. Otherwise verification
passes.

We refer to this procedure as ver(A). Pseudocode for ver(·) can be found in Fig. 6.

Note 3.2. There are two situations in which ver(A) passes:

1. (M(A), w0(A)) is consistent with (G, v), or

2. (M(A), w0(A)) is not consistent with (G, v), but (M(A), w0(A)) is consistent with (G, v′).

If verification fails, then because of Invariant 3.2 ver(A) is a distinguishing procedure. This procedure
distinguishes between v and the vertex u in reach(A) such that (M(A), w0(A)) is consistent with
(G, u). Since for every map M(A), the length of path(M(A)) is O(n2d), the running time of ver(A) is
O(n̂ · n2d).

We note that the map verification problem is also considered in [20, 24]. However, those works
involve undirected graphs, so the problem of losing the pebble does not arise. We are now ready to
describe the final mapping algorithm.

THE ALGORITHM. The algorithm proceeds in at most 2n2d phases. Initially, its candidate orienting
procedure cop is the empty procedure (as described in Section 3.3). Each phase consists of at most four
stages:

1. To enter a closed path, the robot repeats the following n̂ times.

(∗) The robot executes cop and obtains an output A. If this is the first appearance of output A
then the algorithm creates a new map M(A) consisting of a single vertex w0(A). Next the robot executes
ver(A) to verify the map M(A).

• If ver(A) fails, then ver(A) is a distinguishing procedure between a pair of vertices in
reach(A). The robot uses this distinguishing procedure, which outputs PASS or FAIL, to improve cop
(as described in Section 3.3). Thus, the output of cop is in {PASS, FAIL}∗. Because of the extension to cop,
cop will never again output A, so the robot discards M(A). The robot stops repeating (∗), skips Stages
2–4 (described below), and goes to the next phase with the improved cop.
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• Otherwise (i.e., if ver(A) passes), the robot follows explore(A). Note that by definition
of ver(A), the robot follows explore(A) starting from a vertex u such that (M(A), w0(A)) is consistent
with (G, u).

The subroutine (∗) can be viewed as a function taking the vertex at which the robot starts to the vertex at
which it finishes. By Observation 3.2, we know that after n̂ repetitions of (∗), the robot enters a closed
path consisting of some number of executions of (∗).

2. The aim of this stage is to determine the closed path the robot has entered.14 To determine
this closed path, the robot repeats (∗) another 2n̂ times. For i = 1, . . . , 2n̂, let Ai be the output
observed in the i th repetition of (∗) and let Li be the sequence of edge labels traversed. The robot finds
the smallest p such that the sequence of pairs (A1, L1), . . . , (A2n̂, L2n̂) consists entirely of periodic
repetitions of its last p entries. More precisely, for all i , (A2n̂−i , L2n̂−i ) = (A2n̂−(i mod p), L2n̂−(i mod p)).
Let seq = (L2n̂−p+1, . . . , L2n̂) be the sequence of edge labels in these last p entries. By the minimality
of p, the closed path consists of one or more repetitions of seq. To determine the closed path, the robot
drops the pebble and repeatedly traverses seq until it finds the pebble at the end of one of its traversals
of seq . It then retrieves the pebble for future use.

3. The robot proceeds along the closed path found above until it reaches the end of any execution
of cop, say with output A. The robot then compresses the closed path and replaces M(A) with the
resulting map.

4. If the new M(A) is finished then the algorithm outputs (the new) M(A) and terminates.

Pseudocode for this algorithm and subroutines used by the robot are provided in Figs. 4–7. We now
proceed to analyze the algorithm. As noted above, if ver ever fails in Stage 1, the robot can improve cop.
If all verifications pass, by Lemma 3.1 we know that in each phase (new M(A), w0(A)) is consistent
with (G, u) for some u ∈ reach(A), and thus Invariant 3.2 is preserved. Because ver(A) is part of the
closed path and by Note 3.2, the new M(A) contains the old M(A) as a subgraph. Because explore(A)
is part of the closed path (and is followed from u) the new M(A) also contains at least one new
edge.

The algorithm terminates after at most 2n2d phases because in each phase the algorithm can either
improve the candidate orienting procedure or enlarge a map. More precisely, since the candidate orienting
procedure can be improved at most n − 1 times, at most n − 1 maps are discarded. At any time the
algorithm maintains at most n maps, and so the algorithm builds at most 2n − 1 maps. Since each map
contains at most n · d edges, the bound on the number of phases follows. Note that the algorithm may
terminate before completing the orienting procedure.

The running time of each phase is the sum of (1) the time to find a closed path, and (2) the
running time of the compression procedure. Item (1) is O(n̂) times the sum of (a) the running time
of the candidate orienting procedure, (b) the running time of the verification procedure, and (c) the
length of the exploration sequence (which is at most n). Recall that the running time of the verification
procedure is O(n̂n2d). Also recall that verification procedures (that fail) are distinguishing procedures for
improving the candidate orienting procedure. Therefore, we can bound the running time of any candidate
orienting procedure by n · O(n̂n2d) = O(n̂n3d). Thus, Item (1) amounts to n̂ · O(n̂n3d) = O(n̂2n3d).
By Lemma 3.1, Item (2) is bounded by n · O(n̂2n3d) = O(n̂2n4d). Since there are at most 2n2d phases,
we obtain the following theorem.

THEOREM 3.1. A robot having a single pebble can learn any strongly connected graph given an
upper bound n̂ on the size of the graph in time O(n̂2n6d2).

Note that the fact that the running time is stated as a function of n (and not only n̂) does not contradict
the fact that the algorithm does not know n. The algorithm terminates when it has a complete map, and
only the analysis ensures the time bound as a function of n (as well as n̂ and d).

We observe that although our mapping algorithm may terminate before the orienting procedure it
devises is completed, the algorithm as a whole can be viewed as an orienting procedure that outputs a
completed map and a designated vertex. Thus, we have:

14 Note that the robot cannot simply drop the pebble and repeat (∗) until it sees the pebble again because the robot needs the
pebble to execute (∗).
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compress(σ1, . . . , σk)
/* σ1, . . . , σk corresponds to a closed path from the current vertex. This procedure
outputs a map of the subgraph corresponding to the edges traversed by this path. */

1. for i = 0, . . . , k do: List[i] ← 	.
2. j ← 0.
3. while ∃i s.t. List[i] = 	 do

(i) t ← min{0 ≤ i ≤ k : List[i] = 	}.
(ii) traverse σ1, . . . , σt .
(iii) drop pebble.
(iv) List[t] ← w j .
(v) for i = t + 1, . . . , k do

a. traverse σi ;
b. if pebble found then List[i] ← w j .

(vi) follow σ1, . . . , σk and pick up the pebble on the way.
(vii) j ← j + 1.

4. return map defined by List and σ1, . . . , σk (where w0 is distinguished).

FIG. 4. Subroutine compress.

explore(M,w0)
/* M is a (strongly connected) map, w0 a distinguished vertex in M. This procedure
(deterministically) traverses an edge that is unmapped in M. */

1. traverse a sequence of edge labels that induces a path in M from w0 to some
unfinished vertex w (i.e., w has outdegree smaller than d in M). (It is easy to determin-
istically find such a path of length ≤ n.)

2. traverse an edge label corresponding to an unmapped edge from w in M.

FIG. 5. Subroutine explore.

ver(M,w0)
/* M is a (strongly connected) map, w0 a distinguished vertex in M. This procedure
verifies if the robot eventually reaches (or is currently at) a subgraph isomorphic to
(M, w0). */

1. let path be a sequence of edge labels that induces a closed path starting and
ending at w0 traversing all edges in M. (This can be found using the straightforward
deterministic O(n2d) algorithm that simply concatenates paths to and from all edges
in M.)

2. follow path n̂ times.
3. drop pebble.
4. follow path once.
5. if pebble found at vertex reached then

(i) pick up pebble.
(ii) (M′, w′

0) ← compress(path).
(iii) if (M′, w′

0) is isomorphic to (M, w0) then return pass.
(iv) else return fail.

6. else

(i) repeatedly follow path until pebble is found, and pick up pebble.
(ii) return fail.

FIG. 6. Subroutine ver.
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Algorithm Explore-and-Map
/* Map graph given one pebble and an upper bound n̂ on number of nodes. */
• cop ← empty procedure.
• set of maps ← empty.
• while no map is completed do

1. update-cop ← false.

2. repeat n̂ times or until update-cop = true:

(i) execute cop and let A be the output observed.
(ii) if no map corresponds to output A then create new map M(A) with single

vertex w0(A).
(iii) if ver(M(A), w0(A)) = pass then explore(M(A), w0(A)).
(vi) else

a. use ver(M(A), w0(A)) to improve cop by replacing leaf of Tcop that
corresponds to A with internal node corresponding to ver(M(A), w0(A)).

b. remove M(A) from set of maps.
c. update-cop ← true.

3. if update-cop = false

(i) for j = 1, . . . , 2n̂ do /* since entered cycle in Step 2, will not need to
create new maps and the verifications below always pass */

(a.) execute cop and let A j be the output observed.
(b.) ver(M(A j ), w0(A j )).
(c.) explore(M(A j ), w0(A j )).
(d.) Let L j be the sequence of edge labels traversed in the above steps

A–C.
(ii) find smallest p such that for all i , (A2n̂−i , L2n̂−i ) =

(A2n̂−(i mod p), L2n̂−(i mod p)).
(iii) let seq = (L2n̂−p+1, . . . , L2n̂).
(iv) drop pebble and repeat traversing (all of) seq until pebble found and

retrieved. let path = σ1, . . . , σk be the closed path found.
(v) proceed along path until reach end of subsequence of edges corre-

sponding to an execution of cop. let the output corresponding to this execution be
A, and let the last edge taken be σi .

(vi) replace (M(A), w0(A)) with compress(σi+1 . . . σk, σ1 . . . σi ).

• output completed map.

FIG. 7. The algorithm.

COROLLARY 3.1. There is a universal one-pebble orienting procedure that works for all graphs of
outdegree d with at most n̂ vertices and runs in time poly(n̂, d).

Using Additional Knowledge. As noted in the Introduction, we have tried to make as few as-
sumptions on the graph as possible. In particular, we have not assumed that the vertices are labeled
in any way, while we have assumed the outdegrees of all vertices are the same and that the inde-
grees are not observed. In case any additional distinguishing information is provided, the robot can
use it to its benefit. For example, suppose the outdegrees of the vertices vary, where the outdegree
of each vertex can be obtained at the vertex. Then this information can be incorporated into the ori-
enting procedure. In particular, when there is no distinguishing information, then the output of the
procedure is determined only by the step(s) in the procedure in which the pebble (which was previ-
ously dropped) is observed. If some vertices have different outdegrees than others, then the output
of the orienting procedure can be determined also by the degrees of the vertices observed during its
execution.
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3.6. An Extension to Relative Edge Labels

The graph model treated in the previous sections captures a mapping problem for a very general class
of environments. However, it does assume that the labels on the edges incident to a vertex are fixed.
Although mapping would be impossible without some level of consistency in the labeling of edges,
we can consider a relaxed model in which the local labeling of edges leading out of a vertex can be a
function of the previous vertex in the robot’s path. In this section, we sketch how our algorithm can be
adapted to this setting as well.

The New Model. A map M consists of a set of vertices V, and for each vertex v, a set of at most dn
triples (u, σ, w). Such a triple indicates the existence of an edge leading from v to w, whose label is σ

when v is entered using an edge from u. (So w is determined by v, u, and σ .) For ease of presentation,
we assume that for every v, there are either 0 or d triples of the form (u, ·, ·) for each possible u, but, as
in the original model, allowing the outdegree to be a function of u and v only makes the problem easier.
This model is now a strict generalization of the model of Dudek et al. [23], who impose an additional
condition on the graph and edge labelings that enables backtracking.15

For example, in an environment modeling a city, the vertices might correspond to intersections and
the edge labels might be “turn left,” “turn right,” and “continue straight.” Clearly, the vertex to which
one of these labels leads depends on the direction from which the current vertex was entered.

The New Algorithm. We define a function f taking maps M in our new model to maps f (M) in our
previous model, where edge labels are unique. There is a vertex in f (M) corresponding to each pair
of vertices (u, v) connected by some edge in M. Then, for each triple of the form (u, σ, w) associated
with vertex v in M, there is an edge labeled σ from (u, v) to (v, w) in f (M). Clearly, f is efficiently
computable and injective. Let G denote the complete map of the unknown graph; then f (G) has exactly
dn nodes. Our objective now will be to use the algorithm presented in the previous section to learn f (G),
since f (G) is in our previous model. However, a direct application our mapping algorithm would require
dropping the pebble on vertices of f (G), whereas the robot is only allowed to drop the pebble on vertices
of G. Below, we sketch how, with slight modifications, our mapping algorithm can be implemented
even with this restriction.

We first observe that the compress procedure, if given a sequence of edge labels that induces a closed
path in f (G), can be implemented precisely as before. Referring to Fig. 4, we see that List and the
sequence of edge labels σ1, . . . , σk completely determine a map M such that f (M) is strongly connected.
We modify the procedure only slightly, so that instead of returning a single vertex w0, it returns the pair
(List[k − 1], w0) as the distinguished vertex of f (M).

Now, every path the robot takes in G induces a path in f (G). Since f (G) has at most dn nodes, we
obtain the following adaptation of Observation 3.2 to this setting:

Observation 3.3. Let p be any deterministic procedure for the robot. Let p(u, v) be the pair of vertices
(u′, v′) such that if the robot begins at nodev having entered from node u, then applying p leads it to vertex
v′, entering from u′. Then for every vertex (u, v) ∈ f (G), the sequence (u, v), p(u, v), p(p(u, v)), . . .
becomes cyclic within the first dn applications of p.

Thus, we redefine n̂ to be d multiplied by our upper bound on the number of vertices. Now, by
Observation 3.3, we can be sure that after n̂ applications of any deterministic procedure, the robot will
enter a cycle not only in G, but in f (G), as well.

The only difficulty that remains in using our original algorithm to map f (G) is that if the robot drops
its pebble, follows some path, and finds the pebble, we cannot conclude the robot has found a cycle in
f (G) (even though it has found a cycle in G). In order to do this, it must check that some pair (u, v)
occurs again after following the path. There are two places in the original algorithm where this might
be a problem: once in the ver procedure and once in the main algorithm. We discuss the remedy for
each case now.

In the ver procedure, given in Fig. 6, on input a map M and distinguished vertex (a, b) in f (M),
the robot follows a particular sequence of edge labels called path n̂ times. (With our new definition

15 Dudek et al. describe their model as allowing the labeling of edges leaving a vertex to depend on the edge from which
the vertex is entered. However, they allow at most one edge between every two vertices, and hence the dependence on the edge
entered translates to a dependence on the previous vertex visited. We allow multiple edges and hence make the dependence on
the previous vertex.
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of n̂, we know the robot is in a cycle in f (G) after this.) Now, the robot must first check to see if (a
single execution of) path indeed specifies a cycle in f (G) from its current location. We now describe
a procedure to do this. The procedure assumes that there exists some m ≤ n̂ such that pathm is a cycle
in f (G) from the current location of the robot (where pathm denotes path concatenated with itself
m times); this is indeed the because the robot has just executed path n̂ times.

check(path): The robot drops its pebble and does the following: For i = 1 to n̂, the robot traverses
path once and checks to see if the pebble is found. If so, it continues the for-loop. If not, then path
certainly does not define a cycle in f (G), and so the robot traverses path repeatedly until the pebble is
found (which is guaranteed since pathm was a cycle from the robot’s starting point in f (G)). It picks
up the pebble and returns FAIL. If this for-loop ends with the robot always finding the pebble after each
traversal of path, then, by Observation 3.3, we know that repeated traversals of path induce a cycle
(u1, v1), (u2, v2), . . . , (uk, vk) in f (G). However, since the robot always sees the pebble after each
traversal of path, this implies v1 = v2 = · · · = vk = v for some vertex v. To confirm that path
itself induces a cycle in f (G), we need only test that ui = ui+1 for some i . Note that if path takes
(ui , v) back to (ui , v) = (ui+1, v) for some i , by our definition of (u1, v1), . . . , (uk, vk), this implies
that ui = ui+1 = · · · = uk = u1 = u2 = · · · = ui , and hence path by itself induces a cycle in
f (G). In order to test that ui = ui+1, the robot picks up the pebble, takes all but one step of path, and
drops the pebble. The robot must now be at vertex ui for some i . It then takes the last step of path
and again traverses all but the last step of path. The robot must now be at vertex ui+1. If the pebble
is not there, then path does not define a cycle in f (G), so the robot takes the last step of path and
repeatedly traverses path until the pebble is found along the way. It picks up the pebble and completes
the traversal of path and then returns FAIL. If the pebble is found, then the robot has confirmed that
following path takes it from some vertex (u, v) back to (u, v) in f (G) and hence defines a closed path
in f (G). The robot retrieves the pebble, takes the last step of path, and returns PASS. Note that during
this check procedure, the robot’s path is always path j for some integer j .

We replace Steps 3–6 of ver with the following: The robot executes check(path). If the check fails,
the verification fails. If the check passes, then the robot calls compress using path, which returns M′

and (a′, b′). It then checks to see if ( f (M), (a, b)) is isomorphic to ( f (M′), (a′, b′)). If so, the verification
procedure returns PASS, otherwise FAIL. With these changes, the new verification procedure satisfies the
conditions of Note 3.2 (with M(A) replaced by f (M(A)) and G replaced by f (G)); these are precisely
the properties the mapping algorithm requires from the verification procedure.

In the main procedure, given in Fig. 7, the situation is a little more complicated. Here, ifupdate-cop
is false, we find a sequence seq of edge labels such that we know some number of repetitions of seq
induces a cycle in f (G), but we must figure out how many in order to have a valid input to supply to
compress later. Similar to the above, we must modify Step 3.c.iv in order to determine a closed path.
Now, we know that at this point the robot is in a cycle in f (G) defined by some number of repetitions
of seq between 1 and n̂. We simply check each of these possibilities one by one. For i = 1 to n̂, the
robot executes check(seqi ). Whenever the check first succeeds, the robot knows that seqi is a closed
path in f (G) starting at its current vertex. Thus, we let path = seqi , exit the for-loop, and continue
with the rest of the algorithm as before.

We can see by inspection that these are the only times in the algorithm where the pebble is employed
and that the above changes satisfy the requirements of the algorithm. Hence, this algorithm allows the
robot to learn a map of f (G) in polynomial time. This map of f (G) can be easily transformed into a
map of G (in the new model).

4. LEARNING WITHOUT AN UPPER BOUND ON THE NUMBER OF PEBBLES

In this section we prove our results concerning the number of pebbles needed to learn graphs efficiently
if the graph size is unknown. We use the algorithm of Section 3.5 as a subroutine to show that for any
c > 0, �c log log n� pebbles are sufficient. The resulting algorithm is deterministic. In addition, we
prove a matching lower bound demonstrating that �(log log n) pebbles are necessary. The lower bound
applies to any randomized algorithm that uses an expected polynomial number of moves. We note that
in our upper bound the total computation time to decide on moves is polynomial, whereas the lower
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bound applies even when the robot is computationally unbounded. Furthermore, our upper bound holds
even when the pebbles used by the robot are indistinguishable from each other, while the lower bound
holds for distinguishable pebbles. We want to study how the number of pebbles needed grows with the
size of the unknown graph. We denote the expected number of pebbles a (probabilistic) robot A uses on
graphs of size n, by pA(n). Namely,

pA(n)
def= max

G∈Gn

E[# of pebbles that A uses on G],

where Gn is the set of all graphs on n vertices. The expected running time of A is defined analogously.
(Recall that in each time step the robot makes a single move, and hence the running time of the algorithm
is the number of moves the robot makes.)

THEOREM 4.1. For every constant c > 0, there exists a (deterministic) algorithm that learns graphs
of size n in polynomial-time using at most �c log log n� pebbles, without knowledge of n.

THEOREM 4.2. Consider any algorithm A that, with probability greater than 1/2, learns any graph
in expected polynomial time without knowing the size of the graph. Then pA(n) = �(log log n).16

Throughout the following proofs, all logarithms have a base 2.

Proof (of Theorem 4.1). We use the algorithm of Section 3.5 combined with a variant of the standard
guess-and-double technique; instead of doubling, the algorithm takes the kth power for a suitably chosen
k. To be precise, let k = �21/c�, let onepeb(n̂) be the one-pebble learning algorithm of Section 3.5 which
takes a bound n̂ on the number of vertices as input, and suppose q(n̂) is a polynomial bound on its running
time. Assume first that the pebbles used by the robot are distinguishable. The new algorithm works as
follows on a graph of outdegree d: Guess that the number of vertices in the graph is upper bounded by
n1 = 2k , and run onepeb(n1) for q(n1) steps using the first pebble. If the algorithm outputs a finished
map, i.e., every vertex has d edges coming out of it, then output this graph and halt. On the other hand,
if the algorithm fails to produce a finished map or the robot loses the pebble during the execution of
the algorithm, then the entire process is repeated using n2 = nk

1 = 2k2
instead of n1 and using pebble

2. (If pebble 1 is seen during this execution, it is ignored.) If the execution with n2 fails, we continue
with n3 = nk

2 = 2k3
. We repeat like this, using n
 = nk


−1 = 2k


at the 
th stage until some execution is
successful.

It is easy to see that if the algorithm onepeb ever outputs a finished graph, the output is correct, even
if the number of vertices given to onepeb is incorrect. Alternatively, we can simply add an extra map
verification procedure as in Section 3.5 to the end of onepeb to guarantee that the output is always
either correct or FAIL. Moreover, by Theorem 3.1, the algorithm onepeb is guaranteed to give a correct
output within time q(n̂) as long as it is given a bound n̂ larger than the number of vertices in the graph.
Thus, given a graph of n vertices, the algorithm above will always succeed by stage 
, where 
 is the
first integer such that 2k
 ≥ n, i.e., 
 = �(log log n)/(log k)� ≤ �c log log n�. Since n
 = nk


−1 ≤ nk , the
running time of this algorithm is at most 
q(nk) ≤ nq(nk), which is polynomial in n. Last, the algorithm
uses at most 
 ≤ �c log log n� pebbles.

To deal with indistinguishable pebbles, we add the following modification. Whenever the algorithm
onepeb assumes the robot is in a cycle and is about to drop its pebble, we have the robot walk once
around the cycle, picking up all pebbles that are there before proceeding. Consider stage 
 of the (parent)
algorithm, where 
 is the first integer such that 2k
 ≥ n. Then we are guaranteed (by the properties of
algorithm onepeb) that the robot is in fact in a cycle whenever it is about to drop its pebble. Therefore, if
it always picks up all pebbles left on the cycle before dropping its current pebble, then it will not mistake
its pebble with previously dropped pebbles and will consequently succeed in learning the graph. To
ensure that the parent algorithm does not halt prematurely and output an incorrect graph (in a stage 


such that 2k


< n), we do the following. Before halting and outputting a graph, we have the robot walk
around its entire supposed view of the graph collecting all pebbles it sees. If the number of pebbles it
finds is the same as the number of pebbles it has ever dropped (and not picked up), then it runs the map
verification procedure and halts if it passes. Otherwise, it continues to the next stage. �

16 It is easy to see from the proof that the success probability of 1/2 is arbitrary and can be replaced by any constant.
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FIG. 8. A combination lock with a tail.

We note that the algorithm given in the above proof can be deterministically simulated by two
(synchronized or communicating) robots. The second robot can play the role of the pebble; whenever the
first robot does not find the second robot within the appropriate number of steps (due to an underestimate
for n), the second robot can catch up to the first robot by following the first robot’s (deterministic) steps
and then they can proceed with a larger guess for n. This gives a deterministic alternative to Bender and
Slonim’s randomized two-robot mapping algorithm [10].

Proof (of Theorem 4.2). In order to prove the theorem, we analyze the behavior of any algorithm
on two types of graphs of outdegree 2: cycles and combination locks with tails. Formally, the cycle of n
nodes is the labeled, directed graph Cn on vertex set {w0, · · · , wn−1}, where there are two directed edges
labeled 0 and 1 going from wi to w(i+1)mod n . A combination lock with tail has the following structure
(see Fig. 8). Let α = α1α2 · · · α
 ∈ {0, 1}
 be any string and let m ≥ 0 be an integer. The combination
lock with combination α and tail m is the graph Lα,m on vertex set {u1, u2, . . . , um ,v1, . . . , v
+1} with
the following edges: For each 1 ≤ i ≤ m − 1, there are two edges labeled 0 and 1 from ui to ui+1; there
are two edges labeled 0 and 1 from um to v1; for each 1 ≤ i ≤ 
, there is an edge labeled αi from vi

to vi+1 and an edge labeled ᾱi from vi to v1; there are two edges labeled 0 and 1 from v
+1 to u1. It is
important to note that a robot starting at vertex v1 (i.e., the start of the combination lock) does not reach
vertex vk+1 unless it executes the consecutive sequence of moves α1 · · · αk at some point. We start by
giving the intuition behind the proof.

We analyze any algorithm based on the times it drops pebbles in the case that it does not see previously
dropped pebbles. We show that there must be huge gaps in these pebble-dropping times or else the
algorithm uses �(log log n) pebbles on sufficiently large cycles of length n. The quantity �(log log n)
is exactly the threshold below which the gaps between pebble drops become superpolynomial. That is,
for any polynomial f there are infinitely many time steps t such that no pebble is dropped between time
t and time f (t) with high probability. Then, for one of these big gaps, we can construct a combination
lock with tail for which the following holds. With high probability, the algorithm drops no pebble within
the combination lock and fails to reach the last few vertices of the lock in its allotted running time. Thus
the robot fails to learn the graph. The idea of using combination locks with tails to foil a robot comes
from Bender and Slonim’s argument that a constant number of pebbles is insufficient [10]. The novel
aspect of our proof is the analysis of pebble-dropping times to determine on which sizes of combination
locks the algorithm fails.

We now turn to the details of the proof. Suppose, in contradiction to the claim in the theorem, that
we have an expected polynomial-time algorithm A which succeeds in learning graphs with probability
greater than 1/2, but does not use �(log log n) pebbles. Let q(n) = O(nk) be a polynomial upper bound
on the expected running time of the algorithm. In this proof, we use the standard technique of treating
the randomized algorithm A as a distribution on deterministic algorithms Ar ; i.e., for every infinite
string r ∈ {0, 1}N, Ar is the deterministic algorithm given by A using random coins r . All probabilities
and expectations in this proof are taken over the choice of r .

We wish to study how the robot behaves when it does not see the pebbles it has dropped previously.
To formalize this, we look at the infinite graph I on vertex set {w1, w2, . . .} where there are two edges
labeled 0 and 1 from wi to wi+1 for every i ≥ 1. Now consider the behavior of the robot when it is
placed at vertex w1. Notice that when the robot drops a pebble at vertex wi and moves, it never sees
the pebble again. For t ≥ s ≥ 1, let P(s, t) be the probability that the robot drops at least one pebble
between vertices ws and wt−1, inclusive, and let E(s, t) be the expected number of pebbles dropped by
the robot between vertices ws and wt−1, so E(s, t) ≥ P(s, t). Notice that E(1, t) is a lower bound on
the expected number of pebbles the robot uses on a cycle Ct of t vertices, because for every r , Ar ’s
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behavior in its first t − 1 moves is the same in Ct as in I. We now use this to show that that there are
superpolynomial gaps in the pebble-dropping times.

CLAIM. For every fixed c > 0, there are infinitely many t such that P(t, t c) < 1/8.

Proof of claim. Suppose not; i.e., there is some t0 such that for all t ≥ t0, P(t, t c) ≥ 1/8. Then for
every 
 ≥ 0,

E
(
t0, t c


0

) =

∑

j=1

E
(
t c j−1

0 , t c j

0

)

≥

∑

j=1

P
(
t c j−1

0 , t c j

0

)

≥ 
/8.

For n ≥ t0, let 
n
def= min{
 : n < t c


0 }. Then log log n < log log t0 + 
n log c, so 
n = �(log log n).
We also have

E(1, n) ≥ E(t0, n) ≥ E
(
t0, t c
n−1

0

) ≥ 
n − 1

8
= �(log log n).

But E(1, n) is a lower bound on the expected number of pebbles the robot uses on a cycle of length
n, so we have a contradiction. �

Recall that the expected running time of A is q(n) = O(nk). Using the above claim with c = k + 1,
we can find a t with the following properties:

• P(t, t k+1) < 1
8 .

• 8q(2t+4)
2t < 1

8 .
• t k+1 ≥ 8q(2t + 4).

Consider the random variable W which is a string consisting of the robot’s first 8q(2t + 4) moves
in I. There are less than |W| = 8q(2t + 4) contiguous subsequences of length t in W, so there is
some string α ∈ {0, 1}t which occurs as a continguous subsequence of W with probability less than
8q(2t +4)/2t < 1/8. In other words there is a sequence of moves α of length t which the robot performs
with probability less than 1/8 during its first 8q(2t + 4) steps in I.

Let β be any binary string of length 4, and consider the behavior of the robot when placed at
vertex u1 in the combination lock Gβ

def= Lαβ,t−1 with tail t − 1 and combination αβ (and vertex set
{u1, . . . , ut−1, v1, . . . , vt+5} as above). Since A runs in expected time q(n) and Gβ has 2t + 4 vertices,
the probability that A makes more than 8q(2t + 4) moves in Gβ is at most 1/8.

Let R1 be the set of random coins r for which Ar would drop a pebble between vertex wt and wt k+1−1

in I. Let R2 be the set of random coins r for which Ar executes the sequence of moves α at some point
during its first 8q(2t + 4) moves in I . Let R3 be the set of random coins r for which Ar makes more
than 8q(2t + 4) moves in Gβ . Let R = R1 ∪ R2 ∪ R3. We have shown that Pr [r ∈ R] < 3/8. Notice
that for any r /∈ R, the output of Ar on Gβ is the same as its output on Gγ for any string γ of length 4
because the robot never sees a pebble that it has dropped and never reaches vertex vt+1. Let Sγ be the
set of r /∈ R on which Ar outputs Gγ when placed in Gγ (equivalently, Gβ). Then since A has overall
success probability at least 1/2, A must succeed on at least 1/8 of the r /∈ R. So Pr [r ∈ Sγ ] > 1/8. But
there are 16 sets Sγ and they are disjoint. �

5. CONCLUSIONS AND FUTURE WORK

In this paper we studied the exploring capabilities of a robot that can drop and pick up pebbles in an
unknown environment, modeled as an unknown directed graph with unlabeled and undistinguishable
vertices. We showed that if the robot knows an upper bound n̂ on the number of vertices, n, it can
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deterministically learn the environment in polynomial time, while it needs �(log log n) pebbles to
do the same if if does not know such a bound. The first result disproves a conjecture of Bender and
Slonim [10] while the second presents a deterministic alternative to their randomized two-robot-based
algorithm.

Future Research. The running time of our algorithms, though polynomial in the given parameters,
leaves much to be desired. In particular, the algorithm for mapping an unknown graph given an upper
bound n̂ on the number of vertices and a single pebble, runs in time O(n̂2n6d2). Thus one natural
question is whether this running time can be significantly improved, either for the general case studied
here or for special cases of interest.

Another question is how to adapt the algorithm to deal with uncertainty. For instance, what if the
transitions taken by the robot are incorrect with some probability? (For example, upon taking an edge
labeled i the robot ends at the vertex to which the edge labeled j goes.)17 The correctness of our
algorithm clearly relies on correct transitions. The question is whether any of our techniques can be
adapted to such a scenario, perhaps while making some assumptions about the graph. See [18] for
further discussion on uncertainty in map learning. Even more generally, perhaps some of our ideas can
be used for learning partially observable Markov decision processes (using some form of a pebble), in
which for each action (edge label) there is a distribution on the next vertex.
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