
Eventually Consistent Failure Detectors�

Mikel Larrea
Universidad del Paı́s Vasco

20018 Donostia, Spain
mikel.larrea@si.ehu.es

Antonio Fernández
Universidad Rey Juan Carlos

28933 Móstoles, Spain
afernandez@acm.org

Sergio Arévalo
Universidad Rey Juan Carlos

28933 Móstoles, Spain
s.arevalo@escet.urjc.es

Abstract

The concept of unreliable failure detector was intro-
duced by Chandra and Toueg [4] as a mechanism that
provides information about process failures. This mech-
anism has been used to solve different problems in asyn-
chronous systems, in particular the Consensus problem.

In this paper, we present a new class of unreliable
failure detectors, which we call Eventually Consistent
and denote by 3C. This class adds to the failure de-
tection capabilities of other classes an eventual leader
election capability. This capability allows all correct
processes to eventually choose the same correct process
as leader. We study the relationship between 3C and
other classes of failure detectors. We also propose an
efficient algorithm to transform 3C into 3P in models
of partial synchrony. Finally, to show the power of this
new class of failure detectors, we present a Consensus
algorithm based on3C. This algorithm successfully ex-
ploits the leader election capability of the failure detec-
tor, and performs better in number of rounds than all
the previously proposed algorithms for failure detectors
with eventual accuracy.

1. Introduction

1.1. Unreliable Failure Detectors

An unreliable failure detector is a mechanism that
provides (possibly incorrect) information about faulty
processes. When it is queried, the failure detector re-
turns a set of processes believed to have crashed (sus-
pected processes). The concept of unreliable failure
detector was introduced by Chandra and Toueg in [4],
where they proposed several classes of unreliable failure

�Research partially supported by the Spanish Research Coun-
cil, contracts TIC99-0280-C02-02, TEL99-0582, and TIC98-1032-
C03-01, and the Madrid Regional Research Council, contract CAM-
07T/00112/1998.

detectors. After this seminal work, a number of authors
have proposed other classes of unreliable failure detec-
tors [1, 2, 8, 16]. These failure detectors have been used
to solve several fundamental problems in asynchronous
distributed systems, e.g., Consensus [4].

In [4], failure detectors were characterized in terms of
two properties: completeness and accuracy. Complete-
ness characterizes the failure detector capability of sus-
pecting every incorrect process (processes that actually
crash), while accuracy characterizes the failure detec-
tor capability of not suspecting correct processes. Two
kinds of completeness and four kinds of accuracy were
defined in [4], which combined yield eight classes of
failure detectors.

In this paper, we focus on the following completeness
and accuracy properties, from those defined in [4]:

� Strong Completeness. Eventually every process
that crashes is permanently suspected by every cor-
rect process.

� Weak Completeness. Eventually every process that
crashes is permanently suspected by some correct
process.

� Eventual Strong Accuracy. There is a time after
which correct processes are not suspected by any
correct process.

� Eventual Weak Accuracy. There is a time after
which some correct process is never suspected by
any correct process.

Combining in pairs these completeness and accu-
racy properties, we obtain four different failure detector
classes, which are shown in Figure 1.

In [3], Chandra et al. defined a new class of failure
detectors, denoted
 , and used it to prove that 3W is
the weakest failure detector class for solving Consen-
sus1. The output of the failure detector module of
 at

1Actually, to prove their result Chandra et al. show first that
 is at
least as strong as3W , and then that any failure detector D that can be

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Eventual Strong Eventual Weak
Accuracy Accuracy

Strong Eventually Perfect Eventually Strong
Completeness 3P 3S

Weak Eventually Quasi-Perfect Eventually Weak
Completeness 3Q 3W

Figure 1. Four classes of failure detectors
defined in terms of completeness and ac-
curacy.

a process p is a single process q, that p currently con-
siders to be correct (we say that p trusts q). The failure
detector
 satisfies the following property:

Property 1 There is a time after which all the correct
processes always trust the same correct process.

As with 3W , the output of the failure detector mod-
ule of
 at a process p may change with time, i.e., p
may trust different processes at different times. Further-
more, at any given time t, two processes p and q may
trust different processes.

1.2. Consensus Algorithms

The Consensus problem [18] is a fundamental prob-
lem in distributed systems. Chandra and Toueg showed
in [4] that their unreliable failure detectors allow to solve
Consensus in asynchronous systems. This was shown to
be impossible in a pure asynchronous system by Fischer
et al. [7]. Since then, several distributed fault-tolerant al-
gorithms to solve Consensus based on unreliable failure
detectors have been proposed [9, 15, 19].

All the Consensus algorithms based on failure detec-
tors with eventual accuracy we know of require at least
a failure detector of class 3S. All of them proceed in
rounds, in each of which a different process acts as co-
ordinator. This approach is known as the rotating coor-
dinator paradigm. If the coordinator of a round crashes
or is suspected by several processes the round may fail
and the consensus is not reached in that round. With
a failure detector of class 3S it is guaranteed the exis-
tence of a correct process, namely leader process, that
is eventually not suspected by any correct process. If
eventually leader process becomes the coordinator af-
ter no process suspects it, the consensus is guaranteed to
be reached.

The inconvenience of the 3S-Consensus algorithms
based on the rotating coordinator paradigm is that if

used to solve Consensus is at least as strong as
 (and hence at least
as strong as 3W).

leader process is not coordinator until round i (where
i could be
(n), with n the number of processes),
they require i rounds to reach consensus. It would be
nice to have Consensus algorithms that quickly choose
leader process as the coordinator, hence reducing the
number of rounds required to reach consensus.

There have been other approaches to solve the Con-
sensus problem in non-synchronous systems. In [6], par-
tially synchronous models are assumed and Consensus
algorithms for these models have been proposed. Again,
these algorithms use the rotating coordinator paradigm
and can present the above problem.

To our knowledge, the first Consensus algorithm that
uses a kind of leader election algorithm to choose the co-
ordinator of a round instead of a rotating coordinator is
the Paxos Consensus algorithm [10]. In this algorithm a
system model different from the above is used, in which
periods of synchrony and asynchrony alternate. The
Paxos Consensus algorithm proceeds in asynchronous
rounds, with a coordinator, given by the leader election
algorithm, for each round.

Very recently, in [17] it is proposed a Consensus al-
gorithm based on a failure detector of class
 that does
not use the rotating coordinator paradigm.

1.3. Our Results

In this paper, we define a new accuracy property,
which combined with strong completeness defines a new
class of unreliable failure detectors, which we call Even-
tually Consistent and denote by3C. The main property
of all the failure detectors in this class is that, in each run,
all the correct processes eventually converge to the same
non-suspected correct process (by means of a determin-
istic leader function applied to the set of non-suspected
processes2 returned by the failure detector).

The interest of the failure detectors in this class
comes from the fact that, implicitly, they provide some-
thing like a leader election mechanism. (However, they
do not give knowledge of when the leader has been
elected and allow several leaders at the same time.) If
each process applies the same deterministic function
leader to the set of non-suspected processes to choose
one from it, eventually all correct processes will perma-
nently agree on the same correct process. If we call this
process leader process, eventually all processes iden-
tify leader process as their distinguished correct pro-
cess.

Considering the Consensus problem, this property of
the eventually consistent failure detectors allows every
correct process to eventually agree on a coordinator that

2If the failure detector returns a set of suspected processes, this is
just the complement of that set.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

can be used to reach consensus. Hence, with these fail-
ure detectors we do not need to rely on the rotating co-
ordinator paradigm to eventually choose an appropriate
coordinator.

We study the relationship between 3C and the four
classes of failure detectors satisfying eventual accuracy
presented in Figure 1. We first show that 3P is a sub-
class of 3C, i.e., any algorithm implementing 3P im-
plements also 3C. Similarly, we show that 3C is a sub-
class of 3S (and hence of 3W). Moreover, we show
that classes 3C and3S are equivalent. This means that
we can obtain a failure detector of class 3C from any
failure detector of class 3S.

We then show that 3C can be implemented as effi-
ciently as 3S. To show it, we present some algorithms
implementing 3S that directly implement 3C, i.e., we
do not need to execute any transformation algorithm. In
particular, the algorithms implementing 3S presented
in [12, 14] implement also a failure detector of class3C.
We also propose an efficient algorithm transforming3C
into3P in models of partial synchrony [4, 6].

Finally, to show the power of this class of failure de-
tectors, we present a Consensus algorithm based on3C.
This algorithm proceeds in asynchronous rounds and
each round is divided in several phases, like most pre-
vious 3S-Consensus algorithms [9, 15, 19]. The main
difference between our algorithm and the above ones is
the way the coordinator is selected. We do not use the
rotating coordinator paradigm as they do, but the leader
election capability of3C.

Compared with the Paxos Consensus algorithm men-
tioned above, our algorithm works in an asynchronous
system extended with a failure detector, while Paxos as-
sumes a system model in which there are periods of syn-
chrony. In fact, the leader election algorithms (which is
basically a failure detection algorithm) strongly relies on
the existence of periods of synchrony in the system. Be-
sides that, both algorithms use similar approaches. The
Consensus algorithm of [17] is based on the same ideas
as ours. In fact, they refer to preliminary versions of this
paper [11, 13].

The rest of the paper is organized as follows. In Sec-
tion 2, we establish the model of the system we use in
the rest of the paper and define the new class of failure
detectors (3C). In Section 3, we study its relationship
with other classes of failure detectors. In Section 4, we
present an efficient Consensus algorithm based on 3C.
Finally, Section 5 concludes the paper.

2. Definitions

2.1. System Model

We consider a distributed system consisting of a
finite totally ordered set � of n processes, � =
fp1; p2; : : : ; png. Processes communicate only by send-
ing and receiving messages. Every pair of processes is
assumed to be connected by a reliable communication
channel. The system is asynchronous, i.e., there are no
timing assumptions about neither the relative speeds of
the processes nor the delay of messages. Processes can
fail by crashing, that is, by prematurely halting. Crashes
are permanent, i.e., crashed processes do not recover.

A distributed failure detector can be viewed as a set
of n failure detection modules, each one attached to
a different process in the system. These modules co-
operate to satisfy the required properties of the failure
detector. Upon request, each module provides its at-
tached process with a set of processes it suspects to have
crashed. These sets can differ from one module to an-
other at a given time. Let us denote by Dp the set of
suspected processes returned by a failure detectorD to a
given process p. We also denote by Tp the set of trusted
(non-suspected) processes of the failure detection mod-
ule attached to process p, i.e., Tp = ��Dp. We assume
that a process interacts only with its local failure detec-
tion module in order to get the current set of suspected
processes.

2.2. Eventually Consistent Failure Detectors

We introduce now the class of eventually consistent
failure detectors. The main characteristic of these failure
detectors is the accuracy property they satisfy, which we
call Eventual Consistent Accuracy. Informally, the even-
tual consistent accuracy guarantees that there is a correct
process p that is eventually and permanently not sus-
pected by any correct process, and that there is a func-
tion that each correct process can apply to the output
of its local failure detection module that eventually and
permanently returns p.

More formally, the eventual consistent accuracy
property can be defined as follows. Let P(�) be the
power set of the set �.

Definition 1 A failure detector D satisfies Eventual
Consistent Accuracy if there is a deterministic function
leader : P(�) ! �, a time t and a correct process p
such that, after t, for every correct process q, p 62 Dq

and leader(Tq) = p.

Definition 2 We define the Eventually Consistent class
of failure detectors, denoted 3C, as those that satisfy

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

both the strong completeness and the eventual consistent
accuracy properties.

A failure detector of class 3C enhances the classical
failure detection properties of previously defined classes
with an eventual leader election mechanism. These fail-
ure detectors guarantee that after some point in time all
correct processes can behave as a consistent leader elec-
tion algorithm. (However, they do not give knowledge
of when the leader has been elected, and allow several
leaders at the same time.) This property can be used
by algorithms in which the safety properties are not af-
fected by the simultaneous existence of several leaders,
and that guarantee termination if a unique leader exists.
Furthermore, these failure detectors can be very useful
to algorithms that have early termination when there is a
unique leader. As it is well known, usually it is not nec-
essary for the failure detector to reach permanent stabil-
ity to be useful. Instead, many algorithms can success-
fully complete if the failure detector is stable (provides
a unique leader) for long enough periods of time.

3. Relation between 3C and other Failure
Detector Classes

With an eventually consistent failure detector, from
the eventual consistent accuracy, eventually there is a
correct process that will be never suspected by any cor-
rect process, and from the strong completeness, eventu-
ally all the crashed processes are permanently suspected
by every correct process. From this, it is simple to see
that every failure detector of class 3C belongs also to
the class 3S (and hence to3W).

Note also that any failure detector of class 3P be-
longs to the class 3C as well. With 3P , eventually the
set of suspected processes by every correct process be-
comes the same, containing only all the processes that
actually crash. A possible leader function could always
choose the first (with respect to the order p1; : : : ; pn as-
sumed in the system model) non-suspected process. Fig-
ure 2 summarizes the relation between failure detector
classes 3W ,3S,3C, and3P .

3.1. Equivalence of 3C and

It is straightforward to show that failure detector
classes 3C and
 are equivalent, i.e., one can be trans-
formed into the other and vice versa. In some sense, the
class 3C can be viewed as a redefinition of
 in terms
of lists of suspected processes instead of a single trusted
process. Nevertheless, the class 3C does not force each
failure detector module to systematically suspect all the

3W 3S 3C 3P

Figure 2. Relation between failure detector
classes 3W , 3S, 3C and 3P .

processes in the system except one, while this is implic-
itly done by
 . The following lemma shows the equiva-
lence of
 and3C.

Lemma 1 Failure detector classes
 and3C are equiv-
alent.

Proof: To transform
 into3C: every process p queries
its local failure detection module
p and suspects every
process except its trusted process. To transform3C into

 : every process p queries its local failure detection
module 3Cp and applies the leader function to the
complementary set ��3Cp. The resulting process is
output by p as its trusted process.

3.2. Equivalence of 3C and 3S

We now show that any failure detector of class 3S
can be transformed into a failure detector of class 3C.
Since, by definition, 3C is a subclass of 3S, i.e., every
failure detector in 3C is in 3S, this shows that failure
detector classes 3C and3S are actually equivalent.

Lemma 2 ([4]) Failure detector classes 3S and 3W
are equivalent.

Lemma 3 ([3]) Failure detector classes3W and
 are
equivalent.

Theorem 1 Failure detector classes 3C and 3S are
equivalent.

Proof: To transform3C into 3S: trivial, since 3C is a
subclass of 3S (both classes satisfy strong complete-
ness, and eventual consistent accuracy (3C) involves
eventual weak accuracy (3S)). To transform 3S into
3C: follows from Lemmas 1, 2, and 3.

Thus, having any failure detector of class 3S, it is
always possible to build a failure detector of class 3C.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

However, instead of starting from any failure detector
of class 3S and running a – maybe expensive3 – trans-
formation protocol on top of it in order to get a failure
detector of class 3C, we show in the next section that
there are extremely efficient implementations of3C.

3.3. Implementations of 3C

There are several algorithms implementing failure
detectors of the classes presented in Figure 1 that also
implement an eventually consistent failure detector. For
instance, since 3P is a subclass of 3C, the 3P algo-
rithms of Chandra and Toueg [4] and Larrea et al. [12],
implement also a failure detector of class 3C.

Concerning the ring-based algorithm implementing
3S proposed in [12], the set of non-suspected processes
can be different in different processes, but the algorithm
guarantees that eventually the first (starting from the ini-
tial candidate to leader and following the order defined
by the ring) non-suspected process is the same for ev-
ery correct process, and that it is correct. From this, it
is easy to derive a deterministic function leader that re-
turns the first non-suspected process. Hence, the ring-
based algorithm implementing 3S of [12] implements
also a failure detector of class 3C.

In [14], an even more efficient algorithm implement-
ing a failure detector of class 3S is proposed. In this
case, the set of non-suspected processes contains only
one process, that will eventually and permanently be the
same correct process for all correct processes, which
trivially gives us a possible leader function. Again, this
algorithm implements also a failure detector of class3C.
With this algorithm, in stability, the number of messages
periodically sent is n� 1.

3.4. Transforming 3C into 3P

In this section, we present an efficient algorithm
that transforms any failure detector of class 3C into a
failure detector of class 3P in models of partial syn-
chrony [4, 6]. The approach followed is to use the even-
tually agreed trusted process to build and propagate a
list of suspected processes that satisfies the properties of
3P .

Figure 3 presents the algorithm in detail, which
works as follows. Each leader process (i.e., each process
that considers itself as leader by consulting its failure
detection module) builds a local list of suspected pro-
cesses by using time-outs (Tasks 3 and 4), and sends its

3The transformation protocols of Chandra et al. [3] and Chu [5] are
quadratic, i.e., they require that every process sends messages period-
ically to all processes in the system.

Every process p executes the following:

suspectedp ; fsuspectedp provides the properties of 3Pg
for all q 2 � f�p(q) denotes the duration of p’s time-out for qg
�p(q) default time-out interval

cobegin

jj Task 1: repeat periodically
if leader(Tp) = p then

send suspectedp to the rest of processes

jj Task 2: repeat periodically
if leader(Tp) 6= p then

send “p-is-alive” to leader(Tp)

jj Task 3: repeat periodically
if leader(Tp) = p then

for all q 2 �; q 6= p:
if q =2 suspectedp and p did not receive “q-is-alive”

during the last �p(q) ticks of p’s clock then
suspectedp suspectedp [fqg

fp times-out on q: it suspects q has crashedg

jj Task 4: when receive “q-is-alive” for some q
if leader(Tp) = p and q 2 suspectedp then

fp knows that it prematurely timed-out on qg
suspectedp suspectedp � fqg f1. p repents on q, andg
�p(q) �p(q) + 1 f2. p increases its time-out for qg

jj Task 5: when receive suspectedq for some q
if leader(Tp) = q then

suspectedp suspectedq fp adopts suspectedqg

coend

Figure 3. Transforming3C into3P in mod-
els of partial synchrony.

list periodically to the rest of processes (Task 1). Con-
currently, each non-leader process periodically sends an
I-AM-ALIVE message to its leader process (Task 2). Fi-
nally, when a process receives a list of suspected pro-
cesses from its leader process, it adopts this list as its
own list (Task 5).

If we assume that most of the time the failure detector
provides a unique leader, then the cost of this transfor-
mation algorithm in terms of the number of messages
periodically sent is 2(n � 1), since the leader process
sends a message to the rest of processes, and every non-
leader process sends a message to the leader process.
Thus, the algorithm has a linear cost. Furthermore, this
cost can be reduced in practice. If we assume that the
algorithm implementing 3C requires the leader process
to periodically send a message to the rest of processes
(this is the case of the algorithm proposed in [14]), then
the list of suspected processes can be piggybacked on
this message, reducing the number of messages of the
transformation algorithm to the half.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Following the previous strategy, we get an extremely
efficient implementation of3P that has a cost of 2(n�
1) messages periodically sent (n� 1 of the implementa-
tion of 3C proposed in [14], and n � 1 of the transfor-
mation algorithm of Figure 3). This compares favorably
to the implementation of 3P proposed by Chandra and
Toueg in [4], which has a cost of n2. Also, this cost is
the same as that of the ring algorithm implementing3P
proposed by Larrea et al. in [12], but this approach has
the additional benefit of not suffering of the high latency
in crash detection of this algorithm (due to the propaga-
tion of the list of suspected processes over the ring).

4. Solving Consensus using 3C

In this section, we present an algorithm that solves
Uniform Consensus using an eventually consistent fail-
ure detector. We assume the system model defined in
Section 2. In addition, we assume that the system is aug-
mented with a failure detector D of class 3C, to which
processes have access. We also assume that all processes
know the function leader associated with the failure de-
tector, as specified in Definition 1. Finally, we assume
that a majority of processes are correct, i.e., do not crash.
Thus, if we denote by f the number of processes that can
fail, we assume f < n=2. This is a necessary require-
ment to solve Consensus using3C in asynchronous sys-
tems. This can be derived from the fact that 3P is a
subclass of3C, and Theorem 6.3.1 in [4], which claims
that to solve Consensus with3P there must be a major-
ity of correct processes.

Figures 4 and 5 present the algorithm in detail. Each
process runs an instance of this algorithm, which pro-
ceeds in asynchronous rounds. As the 3S-Consensus
algorithm of Chandra and Toueg [4], it goes through
three asynchronous epochs, each of which may span
several rounds. In the first epoch, several decision values
are possible. In the second epoch, a value gets locked:
no other decision value is possible. In the third epoch,
processes decide the locked value.

Each round of the algorithm is divided into five asyn-
chronous phases. In Phase 0, every process determines
its coordinator for the round. A process becomes its own
coordinator for the round if it is the process returned by
the function leader. A coordinator announces itself by
sending a message to the rest of processes. A process
becomes a non-coordinator, i.e., a participant, if it first
receives a message from a coordinator, which becomes
its coordinator for the round. In Phase 1, every process
sends its current estimate of the decision value time-
stamped with the round number in which it adopted this
estimate, to its coordinator. Also after phase 0 and con-
currently with the main algorithm, each process sends a

null estimate to the other coordinators of the round (first
task of Figure 5).

In Phase 2, each coordinator tries to gather a major-
ity of estimates. If it succeeds, then it selects an esti-
mate with the largest time-stamp and sends it to all the
processes as a proposition. On the other hand, if it does
not receive a majority of estimates then it sends a null
proposition to all processes. In Phase 3, each process
waits for a proposition from its coordinator. However, it
also stops waiting if it suspects its coordinator or if it re-
ceives a non-null proposition from some other coordina-
tor. If the process receives a non-null proposition from
some coordinator (including its own), then it adopts it
and sends an ack message to this coordinator. If the
process receives a null proposition from its coordinator,
it stops waiting and passes to the next phase. Finally,
if the process suspects its coordinator, it sends a nack
message to it. After this phase and concurrently with
the main algorithm, each process sends a nack message
to a coordinator from which it receives a non-null propo-
sition for this round (second task of Figure 5). Finally,
in Phase 4 the coordinator that succeeded in Phase 2 and
sent a non-null proposition (if any, and as we will see at
most one) waits for a majority of ack/nack messages.
If it gathers a majority of ack messages, then it knows
that a majority of processes adopted its proposition as
their new estimate. Consequently, this coordinator R-
broadcasts a request to decide its proposition. At any
time, if a process R-delivers such a request, it decides
accordingly.

Note that this Consensus algorithm does not use the
rotating coordinator paradigm. Instead, the eventual
leader election functionality provided by the failure de-
tector is exploited. As a result, in the case of stability
of the failure detector (i.e., the leader function returns
the same correct process to all processes), Consensus is
solved in only one round, providing early consensus. In
any 3S-Consensus algorithm based on the rotating co-
ordinator paradigm, the number of rounds can be
(n)
once the failure detector is stable (i.e., there is one cor-
rect process that is never suspected by any process), until
a correct and not-suspected process becomes coordina-
tor of a round.

5. Conclusions

In this paper, we have proposed a novel class of unre-
liable failure detectors, called Eventually Consistent and
denoted 3C. We have studied the relationship between
3C and other failure detector classes, showing that 3P
is a subclass of 3C, and that 3C is a subclass of 3S.
Moreover, we have shown that 3C and 3S are equiva-
lent classes. We have presented two algorithms imple-

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

Every process p executes the following:

procedure propose(vp)
estimatep vp festimatep is p’s estimate of the decision valueg
statep undecided
rp 0 frp is p’s current round numberg
tsp 0 ftsp is the last round in which p updated estimatep , initially 0g

while statep = undecided fRotate until decision is reachedg
chosenp false
repliedp false
rp rp + 1

Phase 0: fEach process determines its coordinator for the roundg
wait until [p = leader(Tp) or for a process q: received (q; rp; coordinator)] fQuery the failure detectorg
if [for a process q: received (q; rp; coordinator)] then

cp q
else

cp p
send (p; rp; coordinator) to all processes except p

chosenp true

Phase 1: fEach process p sends estimatep to its current coordinatorg
send (p; rp; estimatep; tsp) to cp

Phase 2: fEach coordinator tries to gather d(n+1)
2
e estimates to propose a new estimateg

if p = cp then

wait until [for d (n+1)
2
e processes q: received (q; rp; estimateq ; tsq) or (q; rp; null estimate; 0)]

msgsp[rp] f(q; rp; estimateq ; tsq) j p received (q; rp; estimateq ; tsq) from qg

if [for d (n+1)
2
e processes q: received (q; rp; estimateq ; tsq)] then

decidiblep true
t largest tsq such that (q; rp; estimateq ; tsq) 2 msgsp[rp]
estimatep select one estimateq such that (q; rp; estimateq ; t) 2 msgsp[rp]
send (p; rp; estimatep) to all

else fp received null estimate from some processg
decidiblep false
send (p; rp; null estimate) to all

Phase 3:
n

Each process waits for a new estimate proposed by a coordinator
or to receive null estimate from its coordinator or to suspect it

o
wait until [for a process q: received (q; rp; estimateq) or received (cp; rp; null estimate) from cp or cp 2 Dp]
if [for a process q: received (q; rp; estimateq)] then fp received estimateq from a process qg
estimatep estimateq
tsp rp
send (p; rp; ack) to q

else if [received (cp; rp; null estimate) from cp] then fp received null estimate from cpg
discard message

else fp suspects that cp crashedg
send (p; rp; nack) to cp

repliedp true

Phase 4:

�
The coordinator that can still decide (if any) waits for d(n+1)

2
e replies. If they indicate that

d (n+1)
2
e processes adopted its estimate, the coordinator R-broadcasts a decide message

�

if (p = cp) and (decidiblep) then

wait until [for d (n+1)
2
e processes q: received (q; rp; ack) or (q; rp; nack)]

if [for d (n+1)
2
e processes q: received (q; rp; ack)] then

R-broadcast(p; rp; estimatep; decide)

Figure 4. Solving Consensus using any D 2 3C.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

when received (q; rq; coordinator) from q such that (rq < rp) or
((rq = rp) and (chosenp))

send (p; rq; null estimate; 0) to q

when received (q; rq; estimateq) from q such that (rq < rp) or
((rq = rp) and (repliedp))

send (p; rq; nack) to q

fIf p R-delivers a decide message, p decides accordinglyg

when R-deliver(q; rq ; estimateq ; decide)

if statep = undecided then

decide(estimateq)

statep decided

Figure 5. Separate tasks for replying to late
coordinators and taking the decision.

menting a failure detector of class 3S that also imple-
ment a failure detector of class3C, showing that3C can
be implemented as efficiently as 3S. We have also pro-
posed an efficient algorithm transforming3C into3P in
models of partial synchrony.

On top of their failure detection capability, the fail-
ure detectors of class 3C have an eventual leader elec-
tion functionality. This property can be very useful. To
demonstrate it, we have presented an efficient algorithm
for solving Consensus based on an eventually consistent
failure detector. The class 3C allows the algorithm to
use a more selective approach to choose a coordinator.
This approach allows our algorithm to reach consensus
in one single round in stability, while 3S-Consensus
algorithms based on the rotating coordinator paradigm
may require
(n) rounds.

Acknowledgments. We are grateful to André
Schiper for his valuable comments.

References

[1] M. Aguilera, W. Chen, and S. Toueg. Heartbeat: A
timeout-free failure detector for quiescent reliable com-
munication. In Proceedings of the 11th International
Workshop on Distributed Algorithms (WDAG). LNCS,
Springer-Verlag, September 1997.

[2] M. Aguilera, S. Toueg, and B. Deianov. Revisiting the
weakest failure detector for uniform reliable broadcast.
In Proceedings of the 13th International Symposium on
DIstributed Computing (DISC, formerly WDAG), pages
19–33. LNCS, Springer-Verlag, September 1999.

[3] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the
ACM, 43(4):685–722, July 1996.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

[5] F. Chu. Reducing
 to 3W . Information Processing
Letters, 67:289–293, 1998.

[6] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, April 1988.

[7] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. Journal
of the ACM, 32(2):374–382, April 1985.

[8] R. Guerraoui and A. Schiper. �-accurate failure detec-
tors. In Proceedings of the 10th International Work-
shop on Distributed Algorithms (WDAG), pages 269–
286. LNCS, Springer-Verlag, October 1996.

[9] M. Hurfin and M. Raynal. A simple and fast asyn-
chronous consensus protocol based on a weak failure de-
tector. Distributed Computing, 12(4):209–223, 1999.

[10] L. Lamport. The part-time parliament. ACM Transac-
tions on Computer Systems, 16(2):133–169, May 1998.

[11] M. Larrea. Efficient Algorithms to Implement Failure
Detectors and Solve Consensus in Distributed Systems.
PhD thesis, University of the Basque Country, San Se-
bastián, October 2000.

[12] M. Larrea, S. Arévalo, and A. Fernández. Efficient
algorithms to implement unreliable failure detectors in
partially synchronous systems. In Proceedings of the
13th International Symposium on DIstributed Comput-
ing (DISC’99), pages 34–48. LNCS, Springer-Verlag,
September 1999.

[13] M. Larrea, A. Fernández, and S. Arévalo. Eventu-
ally consistent failure detectors. Technical Report, Uni-
versidad Pública de Navarra, April 2000. Brief An-
nouncement, 14th International Symposium on Dis-
tributed Computing (DISC’2000), Toledo, Spain, Octo-
ber 2000.

[14] M. Larrea, A. Fernández, and S. Arévalo. Optimal im-
plementation of the weakest failure detector for solv-
ing consensus. In Proceedings of the 19th IEEE Sym-
posium on Reliable Distributed Systems (SRDS’2000),
pages 52–59, Nurenberg, Germany, October 2000.

[15] A. Mostefaoui and M. Raynal. Solving consensus us-
ing Chandra-Toueg’s unreliable failure detectors: a gen-
eral quorum-based approach. In Proceedings of the
13th International Symposium on DIstributed Comput-
ing (DISC’99), pages 49–63. LNCS, Springer-Verlag,
September 1999.

[16] A. Mostefaoui and M. Raynal. Unreliable failure de-
tectors with limited scope accuracy and an application
to consensus. In Proceedings of the 19th International
Conference on Foundations of Software Technology and
Theoretical Computer Science, FST&TCS’99, pages
329–340. LNCS, Springer-Verlag, December 1999.

[17] A. Mostefaoui and M. Raynal. Leader-based consensus.
Technical Report 1372, IRISA, December 2000.

[18] M. Pease, R. Shostak, and L. Lamport. Reaching agree-
ment in the presence of faults. Journal of the ACM,
27(2):228–234, April 1980.

[19] A. Schiper. Early consensus in an asynchronous sys-
tem with a weak failure detector. Distributed Comput-
ing, 10(3):149–157, April 1997.

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP�02)
1066-6192/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

