
Eventual Leader Election with Weak Assumptions on
Initial Knowledge, Communication Reliability, and Synchrony∗

Antonio FERNÁNDEZ† Ernesto JIMÉNEZ‡ Michel RAYNAL!

† LADyR, GSyC, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
‡ EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain

! IRISA, Université de Rennes, Campus de Beaulieu 35 042 Rennes, France
anto@gsyc.escet.urjc.es ernes@eui.upm.es raynal@irisa.fr

Abstract

This paper considers the eventual leader election prob-
lem in asynchronous message-passing systems where an ar-
bitrary number t of processes can crash (t < n, where n
is the total number of processes). It considers weak as-
sumptions both on the initial knowledge of the processes
and on the network behavior. More precisely, initially, a
process knows only its identity and the fact that the process
identities are different and totally ordered (it knows neither
n nor t). Two eventual leader election protocols are pre-
sented. The first protocol assumes that a process also knows
the lower bound α on the number of processes that do not
crash. This protocol requires the following behavioral prop-
erties from the underlying network: the graph made up of
the correct processes and fair lossy links is strongly con-
nected, and there is a correct process connected to t − f
other correct processes (where f is the actual number of
crashes in the considered run) through eventually timely
paths (paths made up of correct processes and eventually
timely links). This protocol is not communication-efficient
in the sense that each correct process has to send messages
forever. The second protocol is communication-efficient: af-
ter some time, only the final common leader has to send
messages forever. This protocol does not require the pro-
cesses to know α, but requires stronger properties from the
underlying network: each pair of correct processes has to
be connected by fair lossy links (one in each direction), and
there is a correct process whose output links to the rest of
correct processes have to be eventually timely. This proto-
col enjoys also the property that each message is made up
of several fields, each of which taking values from a finite
domain.

∗Partially supported by the Spanish MEC under grants TIN2005-
09198-C02-01 and TIN2004-07474-C02-01, and the Comunidad de
Madrid under grant S-0505/TIC/0285.

1 Introduction
Leader oracle: motivation Failure detectors [4, 23] are
at the core of a lot of fault-tolerant protocols encountered in
asynchronous distributed systems. Among them, the class
of leader failure detectors is one of the most important.
This class, usually denoted Ω, is also called the class of
leader oracles. When clear from the context, the notation
Ω will be used to denote either the oracle/failure detector
class or an oracle of that class. An Ω oracle provides the
processes with a leader primitive that outputs a process id
each time it is called, and satisfies the following eventual
leadership property: eventually all its invocations return the
same id, that id being the identity of a correct process (a
process that does not commit failures). Such an oracle is
very weak. This means that a correct leader is eventually
elected, but there is no knowledge on when this common
leader is elected; moreover, several leaders (that can be
correct processes or not) can possibly co-exist before this
occurs.

The oracle class Ω has several noteworthy features. A
fundamental one lies in the fact that, despite its very weak
definition, it is powerful enough to allow solutions to funda-
mental problems such as the consensus problem [5]. More-
over, it has even been shown that it is the weakest class
of failure detectors that allows that problem to be solved
(assuming a majority of correct processes) [5]1. The live-
ness property of the well-known Paxos algorithm is based
on such a leader oracle [12]. Other leader-based consensus
protocols can be found in [10, 19].
Another major feature of Ω lies in the fact that it

allows the design of indulgent protocols [9]. Let P be an
oracle-based protocol that produces outputs, and PS be the

1Let us remind that, while consensus can be solved in synchronous
systems despite Byzantine failures of less than one third of the processes
[13], it cannot be solved in asynchronous distributed systems prone to even
a single process crash [8].

safety property satisfied by its outputs. P is indulgent with
respect to its underlying oracle if, whatever the behavior
of the oracle, its outputs never violate the safety property
PS . This means that each time P produces outputs, they
are correct. Moreover, P always produces outputs when
the underlying oracle meets its specification. The only case
where P can be prevented from producing outputs is when
the underlying oracle does not meet its specification. (Let
us notice that it is still possible that P produces outputs
despite the fact that its underlying oracle does not work
correctly.) Interestingly, Ω is a class of oracles that allows
designing indulgent protocols [9, 10].

Unfortunately, Ω cannot be implemented in pure asyn-
chronous distributed systems where processes can crash.
(Such an implementationwould contradict the impossibility
of solving consensus in such systems [8]. A direct proof of
the impossibility to implement Ω in pure crash-prone asyn-
chronous systems can be found in [20].) But thanks to in-
dulgence, this is not totally bad news. More precisely, as
Ω makes it possible the design of indulgent protocols, it is
interesting to design “approximate” protocols that do their
best to implement Ω on top of the asynchronous system it-
self. The periods during which their best effort succeeds
in producing a correct implementation of the oracle (i.e.,
there is a single leader and it is alive) are called “good”
periods (and then, the upper layer Ω-based protocol pro-
duces outputs and those are correct). During the other peri-
ods (sometimes called “bad” periods, e.g., there are several
leaders or the leader is a crashed process), the upper layer
Ω-based protocol never produces erroneous outputs. The
only bad thing that can then happen is that this protocol can
be prevented from producing outputs, but when a new long
enough good period appears, the upper layer Ω-based pro-
tocol can benefit from that period to produce an output.
The main challenge of asynchronous fault-tolerant dis-

tributed computing is consequently to identify properties
that are at the same time “weak enough” in order to be sat-
isfied “nearly always” by the underlying asynchronous sys-
tem, while being “strong enough” to allow Ω to be imple-
mented during the “long periods” when they are satisfied.

Related work The very first implementations of Ω in
crash-prone asynchronous distributed systems considered a
fully connected communication network where all links are
bidirectional, reliable and eventually timely (i.e., there is a
time τ0 after which there is a bound δ -possibly unknown-
such that, for any time τ ≥ τ0, a message sent at time τ is
received by time τ + δ) [14].
This “eventually timely links” approach has been refined

to obtain weaker constraints. It has been shown in [1] that it
is possible to implement Ω in a system where communica-
tion links are unidirectional, asynchronous and lossy, pro-

vided there is a correct process whose output links are all
eventually timely. The corresponding protocol implement-
ing Ω is not communication-efficient in the sense that it re-
quires that all the correct processes send messages forever.
It is also shown in [1] that, if additionally there is a correct
process whose input and output links are fair lossy, it is pos-
sible to design a communication-efficientΩ protocol (i.e., a
protocol that guarantees that, after some time, only one pro-
cess has to send messages forever). Let us observe that the
notion of communication-efficiency introduced in [1] is an
optimality notion, as, in order not to be falsely suspected to
have crashed, at least the leader -or a witness of it- has to
send messages forever.
The notion of “eventually timely t-source” has been in-

troduced in [2]. Such a source is a correct process that has t
eventually timely output links (where t is the maximal num-
ber of process crashes). It is shown that such a weak as-
sumption is strong enough for implementingΩ. If the other
links are fair lossy, the proposed protocol requires the cor-
rect processes to send messages forever. A second protocol
is presented that is communication-efficient when addition-
ally the links are reliable and t links are timely (only t links
have then to carry messages forever).
Another direction has been recently investigated in [15]

where the notion of “eventual t-accessibility” is introduced.
A process p is t-accessible at some time τ if there is a set
Q of t processes q such that a message broadcast by p at
τ receives a response from all the processes of Q by time
τ + δ (where δ is a bounded value known by the processes).
This notion requires a majority of correct processes. Its
interest lies in the fact that the set Q of processes whose re-
sponses have to be received in a timely manner is not fixed
and can be different at distinct times. A protocol building
Ω when there is a process that is eventually t-accessible
forever, and all other links are fair-lossy is described in [15].

A protocol based on a totally different approach to build
Ω is described in [20]. It uses the time-free assumption
proposed and investigated in [16]. That approach does not
rely on timing assumptions and timeouts. It uses explicitly
the values of n (the total number of processes) and t (the
maximal number of processes that can crash), and consists
in stating a property on the message exchange pattern that,
when satisfied, allows Ω to be implemented.
Assuming that each process can broadcast queries and

then, for each query, wait for the corresponding responses,
let us say that a response to a query is a winning response if
it arrives among the first (n− t) responses to that query (the
other responses to that query are called losing responses;
they can be slow, lost or never sent because their sender
has crashed). It is shown in [20] that Ω can be built as
soon as the following behavioral property is satisfied:
“There are a correct process p and a set Q of (t + 1)

processes such that eventually the response of p to each
query issued by any q ∈ Q is always a winning response
(until -possibly- the crash of q).” When t = 1, this property
becomes: “There is a link connecting two processes that
is never the slowest (in terms of transfer delay) among all
the links connecting these two processes to the rest of the
system.” A probabilistic analysis for the case t = 1 shows
that such a behavioral property on the message exchange
pattern is practically always satisfied [16]. This approach
has been extended to dynamic systems in [21] (systems
where processes can dynamically enter or leave the system).

Another approach to buildΩ is the “reduction” approach.
The aim of this approach is to buildΩ from other failure de-
tector classes. Let us consider the failure detector class!Sx

introduced in [3, 24]. This class includes all the failure de-
tectors that provide each process p with a set suspectedp

containing process ids and satisfying the following prop-
erties. Completeness: eventually the set suspectedp of
each correct process p permanently includes the ids of all
the crashed processes; Limited scope eventual weak accu-
racy: there is a time t and a a correct process q such that
after t process q never appears in the sets of x (correct or
faulty) processes. !Sn corresponds to the class !S in-
troduced in [4]. It is shown in [3] that, assuming reliable
communication, it is possible to build !S from !Sx if and
only if x > t. Moreover, there are protocols that build Ω
in crash-prone asynchronous distributed systems equipped
with a failure detector of the class !S [5, 6, 17]. A stack-
ing of the previous protocols provides a protocol buildingΩ
in an asynchronous system equipped with !S t+1 (this is a
“reduction” of Ω to !St+1).
The reduction approach can be used to investigate, com-

pare, and rank the computability power of failure detector
classes. One of its most important results is the fact that the
classes Ω and!S are equivalent: given a failure detector of
any of these classes, it is possible to build a failure detector
of the other class [5, 6, 17].

Content of the paper: Weak reliability and synchrony
assumptions All the previous protocols implicitly as-
sume that each process initially knows the identity of each
other process. It is shown in [11] that this assumption
is a necessary requirement for the classes Ω and !S to
be equivalent. Actually, !S (as defined in [4]) cannot
be built in a system where the initial knowledge of each
process is limited to its own identity (if a process crashes
before the protocol starts, there is no way for the other
processes to learn its id and suspect it). This observation
makesΩmore attractive than!S as its implementation can
require weaker assumptions. This paper investigates the
implementation of Ω in asynchronous systems that satisfy
rather weak assumptions on the initial knowledge of each

process, and the behavior of the underlying network. Two
protocols are presented.2.

The first protocol assumes the following initial knowl-
edge assumptions:

• (K1) A process knows initially neither n, nor t, nor the
id of the other processes. It only knows its own id,
and the fact that the ids are totally ordered and no two
processes have the same id.

• (K2) Each process initially knows the lower bound (de-
noted α) on the number of correct processes. This
means that all but α processes can crash in any run
R (α can be seen as the differential value n − t).

This protocol is designed for the runs R where the underly-
ing network satisfies the two following behavioral proper-
ties:

• (C1) Each ordered pair of processes that are correct in
R is connected by a directed path made up of correct
processes and fair lossy links.

• (C2) Given a process p correct in R, let reach(p) be
the set of the processes that are correct inR and acces-
sible from p through directed paths made up of correct
processes and eventually timely links.
There is at least one correct process p such that
|reach(p)| ≥ t − f , where f is the number of actual
crashes during the run R.

The design principles of the protocol based on the
previous assumptions are the following. As t is an upper
bound on the number of process crashes, it is relatively
simple to design a leader protocol for the runs in which
exactly t processes crash as, once t processes have crashed,
the system cannot experience more crashes (it is then
fault-free). The protocol is based on that simple principle:
the more processes have crashed, the simpler it is to elect a
leader, and the process that is eventually elected as the final
common leader is the process that is the least suspected
(this “technique” is used in many leader protocols). Inter-
estingly, this protocol tolerates message duplication.

The paper then considers the design of a communication-
efficient protocol when the process’ initial knowledge is re-
stricted to (K1). This protocol works in any run R that sat-
isfies the following network behavioral properties:

• (C1’): Each pair of processes that are correct in R is
connected by (typed) fair lossy links (one in each di-
rection).

2The assumptions or properties related to the initial knowledge of each
process are identified by the letter K, while the ones related to the network
behavior are identified by the letter C.

• (C2’): There is a process correct in R whose output
links to every correct process are eventually timely.

This protocol guarantees that after some time, only the
common leader sends messages forever. It also satisfies
the following noteworthy property: be the execution finite
or infinite, both the size of the local memories and the
size of the messages remain finite. Differently from the
first protocol, this protocol assumes that no link duplicates
messages. Its design combines new ideas with ideas used
in [1, 2, 11].

To our knowledge, [11] is the only paper that has pro-
posed a leader election protocol for processes that only
know their own identity (K1). The first leader election pro-
tocol presented in this paper is the first that combines this
weak assumption with knowledge of α, allowing weaker
network behavioral properties. The second protocol is the
first that achieves communication efficiency with assump-
tion (K1).
These protocols show interesting tradeoffs between

their requirements ((K1,K2,C1,C2) vs (K1,C1’,C2’)),
and the additional communication-efficient property they
provide or not. A problem that remains open consists
in designing (or showing the impossibility of designing)
a communication-efficient protocol relying on network
assumptions weaker than (K1,C1’,C2’).

Interestingly, it is possible to state a lower bound on what
can be done in an asynchronous system where the initial
knowledge of any process includes neither t nor α. This
lower bound states that, in such systems, there is no leader
protocol in the runs where less than n − 1 links eventu-
ally behave in a timely manner. Due to page limitation, the
reader will find the proof of this theorem in [7].

Roadmap The paper is made up of four sections. Section
2 presents the distributed system model. Section 3 presents
the first protocol and proves it is correct. Section 4 presents
the communication-efficient protocol. Due to page limita-
tion it has not been possible to include the proofs of these
protocols (although they are very important). The reader
can find them in [7].

2 Distributed System Model

2.1 Synchronous Processes with Crash Failures

The system is made up of a finite set Π of n processes.
Each process pi has an id. The process ids are totally or-
dered (e.g., they are integers), but need not be consecutive.
Sometimes we also use p or q to denote processes.

As indicated in the introduction, initially, a process p i

knows its own id (i) and the fact that no two processes have
the same id. A process can crash (stop executing). Once
crashed, a process remains crashed forever. A process ex-
ecutes correctly until it possibly crashes. A process that
crashes in a run is faulty in that run, otherwise it is correct.
The model parameter t denotes the maximum number of
processes that can crash in a run (1 ≤ t < n); f denotes
the number of actual crashes in a given run (0 ≤ f ≤ t).
A process knows neither n nor t. The first protocol (only)
requires that each process initially knows the lower bound
α = n − t on the number of correct processes.
Processes are synchronous in the sense that there are

lower and upper bounds on the number of processing steps
they can execute per time unit. Each process has also a lo-
cal clock that can accurately measure time intervals. The
clocks of the processes are not synchronized. To simplify
the presentation, and without loss of generality, we assume
in the following that local processing takes no time. Only
message transfers take time.

2.2 The Communication Network

The processes communicate by exchanging messages
over links. Each pair of processes is connected by two di-
rected links, one in each direction.

Communication primitive Since processes do not know
the id of the other processes, they cannot send point-to-point
message to them. Instead, processes are provided with a
broadcast primitive that allows each process p to simultane-
ously send the same message m to the rest of processes in
the system (e.g., like in Ethernet networks, radio networks,
or IP-multicast). It is nevertheless possible, depending on
the quality of the connectivity (link behavior) between p
and each process, that the messagem is received in a timely
manner by some processes, asynchronously by other pro-
cesses, and not at all by another set of processes.

Individual link behavior Each message sent by a process
is assumed to be unique. A link cannot create or alter mes-
sages, but does not guarantee that messages are delivered in
the order in which they are sent.
Concerning timeliness or loss properties, the communi-

cation system offers three types of links. Each type defines
a particular quality of service that the corresponding links
are assumed to provide.

• Eventual timely link. The link from p to q is eventual
timely if there is a time τ0 and a bound δ such that each
message sent by p to q at any time τ ≥ τ0 is received
by q by time τ + δ (τ and δ are not a priori known and
can never be known).

• Fair lossy link. Let us assume that each message has a
type. The link from p to q is (typed) fair lossy [2] if,
for each type µ, assuming that p sends to q infinitely
manymessages of the typeµ, q (if it is correct) receives
infinitely many messages of type µ from p.

• Lossy link. The link from p to q is lossy if it can lose
an arbitrary number of messages (possibly all the mes-
sages it has to carry).

As we can see, fair lossy links and lossy links are inherently
asynchronous, in the sense that they guarantee no bound on
message transfer delays. An eventual timely link can be
asynchronous for an arbitrary but finite period of time.

Global properties related to the communication system
R being a run, letGR

ET be the directed graph whose vertices
are the processes that are correct in R, and where there is a
directed edge from p to q if the link from p to q is eventually
timely inR. Similarly, letGR

FL be the directed graph whose
vertices are the correct processes, and where there is a di-
rected edge from p to q if the link from p to q is fair lossy.
(Notice that GR

ET is a subgraph of GR
FL.) Given a correct

process p, reach(p) (introduced in the first section) is the
subset of correct processes q (q &= p) that can be reached
from p in the graph GR

ET . (This means that there is a path
made up of eventually timely links and correct processes
from p to each q ∈ reach(p).)
As already indicated in the introduction, given an arbi-

trary runR, we consider the following behavioral properties
on the communication system:

• (C1): The graphGR
FL is strongly connected.

• (C1’): Each pair of correct processes is connected by
fair lossy links (one in each direction).

• (C2): There is (at least) one correct process p such that
|reach(p)| ≥ t − f .

• (C2’): There is a correct process whose output links to
every correct process are eventually timely.

Let us observe that the property (C2) is always satisfied in
the runs where f = t (the maximum number of processes
allowed to crash effectively crash). Moreover, (C1’) and
(C2’) are stronger than (C1) and (C2), respectively.

2.3 The Class Ω of Oracles

Ω has been defined informally in the introduction. A
leader oracle is a distributed entity that provides the pro-
cesses with a function leader() that returns a process id each
time it is invoked. A unique correct process is eventually
elected but there is no knowledge of when the leader is
elected. Several leaders can coexist during an arbitrarily

long period of time, and there is no way for the processes
to learn when this “anarchy” period is over. A leader oracle
satisfies the following property:

• Eventual Leadership: There is a time τ and a correct
process p such that any invocation of leader() issued
after τ returns p.

Ω-based consensus algorithms are described in [10, 12, 19]
for asynchronous systems where a majority of processes are
correct (t < n/2). Such consensus algorithms can then be
used as a subroutine to solve other problems such as atomic
broadcast (e.g., [4, 12, 18, 22]).

3 A Leader Election Protocol

Assuming that each process knows its identity (K1), the
lower bound α on the number of correct processes (K2),
and that all the processes have distinct and comparable
identities, the protocol that follows elects a leader in any run
where the underlying communication network satisfies the
properties (C1) and (C2). The proposed protocol tolerates
message duplication. Finally, as far as the definition of fair
lossy link is concerned, all the messages have the same type.

3.1 Description of the Protocol

As in other leader protocols, the aim is for a process
to elect as its current leader a process that is alive and is
perceived as the “least suspected”. The notion of “sus-
pected” is implemented with counters, and “less suspected”
means “smallest counter” (using process ids to tie-break
equal counters.) The protocol is described in Figure 1. It
is composed of two tasks. LetX be a set of pairs<counter,
process id>. The function lex min(X) returns the smallest
pair inX according to lexicographical order.

Local variables The local variables shared and managed
by the two tasks are the following ones.

• membersi : set containing all the process ids that pi is
aware of.

• timeri[j]: timer used by pi to check if the link from pj

is timely. The current value of timeouti[j] is used as
the corresponding timeout value; it is increased each
time timeri[j] expires.
silenti is a set containing the ids j of all the processes
pj such that timeri[j] has expired since its last reset-
ting; to reseti is a set containing the ids k of the pro-
cesses pk whose timer has to be reset.

• susp leveli[j] contains the integer that locally mea-
sures the current suspicion level of pj . It is the counter

used by pi to determine its current leader (see the in-
vocation of leader() in Task T 2).
The variable suspected byi[j]: set used by pi to man-
age the increases of susp leveli[j]. Each time pi

knows that a process pk suspects pj it includes k in
suspected byi[j]. Then, when the number of pro-
cesses in suspected byi[j] reaches the threshold α, pi

increases susp leveli[j] and resets suspected byi[j]
to ∅ for a new observation period.

• sni: local counter used to generate the increasing se-
quence numbers attached to each message sent by p i.

• statei: set containing an element for each process
pk that belongs to membersi , namely, the most re-
cent information issued by pk that pi has received so
far (directly from pk or indirectly from a path involv-
ing other processes). That information is a quadruple
(k, snk, candk, silentk) where the component candk

is the set {(susp levelk[$], $) | $ ∈ membersk} from
which pk elects its leader.

Process behavior The aim of the first task of the protocol
is to disseminate to all the processes the latest state known
by pi. That task is made up of an infinite loop (executed
every η time units) during which pi first updates its local
variables suspected byi[j] and susp leveli[j] according to
the current values of the sets silenti and membersi . Then
pi updates its own quadruple in statei to its most recent
value (which it has just computed) and broadcasts it (this
is the only place of the protocol where a process sends
messages). Finally, pi resets the timers that have to be reset
and updates accordingly to reseti to ∅.

The second task is devoted to the management of the
three events that can locally happen: local call to leader(),
timer expiration and message reception. The code associ-
ated with the two first events is self-explanatory.
When it receives a message (denoted state msg), a

process pi considers and processes only the quadruples
that provide it with new information, i.e., the quadruples
(k, sn k, cand k, silent k) such that it has not yet pro-
cessed a quadruple (k, sn′,−,−) with sn′ ≥ sn k. For
each such quadruple, pi updates statei (it also allocates new
local variables if k is the id of a process it has never heard of
before). Finally, pi updates its local variables susp leveli[$]
and suspected byi[$] according to the information it learns
from each new quadruple (k, sn k, cand k, silent k) it has
received in state msg.

3.2 Proof of the Protocol

Considering that each processing block (body of the
loop in Task T 1, local call to leader(), timer expiration and

message reception managed in Task T 2) is executed atomi-
cally, we have

(
j ∈ membersi

)
iff

(
(j,−,−,−) ∈ statei

)

iff
(
suspected byi[j] and suspected byi[j] are allocated

)
.

We also have
(
timeri[j] and timeouti[j] are allocated

)

iff
(
j ∈ membersi \ {i}

)
. It follows from these ob-

servations that all the local variables are well-defined:
they are associated exactly with the processes known by
pi. Moreover, a process pi never suspects itself, i.e., we
never have i ∈ silenti (this follows from the fact that,
as timeri[i] does not exist, that timer cannot expire - the
timer expiration in T 2 is the only place where a process id
is added to silenti, Line 08 of Figure 1-).

The proof considers an arbitrary run R. Let L be the set
that contains all the processes pi that are correct in R and
|reach(i)| ≥ t − f . By property (C2) and by assumption
L &= ∅.

Lemma 1 [7] Let (k, sn,−,−) be a quadruple received by
a correct process pi. All the correct processes eventually
receive a quadruple (k, sn′,−,−) such that sn′ ≥ sn.

Lemma 2 [7] Let pi be a process in L. There is a time after
which, for any process pj in reach(i), i ∈ silentj remains
permanently false.

Lemma 3 [7] Let pi be a process in L. There is a time af-
ter which the local variables susp levelk[i] of all the cor-
rect processes pk remain forever equal to the same bounded
value (denoted SLi).

Lemma 4 [7] Let B be the set of processes pi such that
susp levelk[i] remains bounded at some correct process
pk. (1) B &= ∅. (2) ∀i ∈ B, the local variables
susp levelk[i] of all the correct processes pk remain for-
ever equal to the same bounded value (denoted SL i).

Lemma 5 [7] Let pi be a faulty process. Either all the cor-
rect processes pj are such that i /∈ membersj forever, or
their local variables susp levelj[i] increase indefinitely.

Theorem 1 [7] The protocol described in Figure 1 ensures
that, after some finite time, all the correct processes have
forever the same correct leader.

4 A Communication-Efficient Protocol

As announced previously, this section presents an even-
tual leader protocol where, after some finite time, a single
process sends messages forever. Moreover, no message car-
ries values that increase indefinitely: the counters carried by
a message take a finite number of values. This means that,
be the execution finite or infinite, both the local memory of
each process and the message size are finite. The process

Init: allocate susp leveli[i] and suspected byi[i]; susp leveli[i] ← 0; suspected byi[i] ← ∅;
membersi ← {i}; to reseti ← ∅; silenti ← ∅; sni ← 0;
statei ← {(i, sni, {(susp leveli[i], i)}, silenti)} % initial knowledge (K1) %

———–
Task T1:
repeat forever every η time units

(01) sni ← sni + 1;
(02) for each j ∈ silenti do suspected byi[j] ← suspected byi[j] ∪ {i} end for;
(03) for each j ∈ membersi such that |suspected byi[j]| ≥ α do % initial knowledge (K2) %
(04) susp leveli[j] ← susp leveli[j] + 1; suspected byi[j] ← ∅ end for;
(05) replace (i,−,−,−) in statei by (i, sni, {(susp leveli[j], j) | j ∈ membersi}, silenti);
(06) broadcast (statei);
(07) for each j ∈ to reseti do set timeri[j] to timeouti[j] end for; to reseti ← ∅
end repeat

———–
Task T2:
when leader() is invoked by the upper layer:
return

`
$ such that (−, $) = lex min({(susp leveli[j], j)}j∈membersi)

´

when timeri[j] expires:
(08) timeouti[j] ← timeouti[j] + 1; silenti ← silenti ∪ {j}

when state msg is received:
(09) let K = { (k, sn k, cand k, silent k) |

(k, sn k, cand k, silent k) ∈ state msg ∧ (∃ (k, sn′,−,−) ∈ statei with sn′ ≥ sn k };
(10) for each (k, sn k, cand k, silent k) ∈ K do
(11) if k ∈ membersi then replace (k,−,−,−) in statei by (k, sn k, cand k, silent k);
(12) stop timeri[k]; to reseti ← to reseti ∪ {k}; silenti ← silenti \ {k}
(13) else add (k, sn k, cand k, silent k) to statei;
(14) allocate susp leveli[k], suspected byi[k], timeouti[k] and timeri[k];
(15) susp leveli[k] ← 0; suspected byi[k] ← ∅; timeouti[k] ← η;
(16) membersi ← membersi ∪ {k}; to reseti ← to reseti ∪ {k}

end if
end for;

(17) for each (k, sn k, cand k, silent k) ∈ K do
(18) for each (sl, $) ∈ cand k do susp leveli[$] ← max(susp leveli[$], sl) end for;
(19) for each $ ∈ silent k do suspected byi[$] ← suspected byi[$] ∪ {k} end for

end for

Figure 1. An eventual leader protocol (code for pi)

initial knowledge is limited to (K1), while the network be-
havior is assumed to satisfy (C1’) and (C2’). Moreover, it
is assumed that there is no message duplication.

4.1 Description of the Protocol

The protocol is described in Figure 2. As the protocol
described in Figure 1, this protocol is made up of two tasks,
but presents important differences with respect to the previ-
ous protocol.

Local variables A first difference is the Task T 1, where
a process pi sends messages only when it considers it is
a leader (Line 01). Moreover, if, after being a leader, p i

considers it is no longer a leader, it broadcasts a message to
indicate that it considers locally it is no longer leader (Line
04). A message sent with a tag field equal to heartbeat (Line

03) is called a heartbeat message; similarly, a message sent
with a tag field equal to stop leader (Line 04) is called a
stop leader message.
A second difference lies in the additional local variables

that each process has to manage. Each process p i main-
tains a set, denoted contendersi , plus local counters, de-
noted hbci and last stop leaderi[k] (for each process pk

that pi is aware of). More specifically, we have:

• The set contendersi contains the ids of the processes
that compete to become the final common leader, from
pi’s point of view. So, we always have contendersi ⊆
membersi . Moreover, we also always have i ∈
contendersi . This ensures that a leader election is not
missed since, from its point of view, pi is always com-
peting to become the leader.

• The local counter hbci registers the number of distinct
periods during which pi considered itself the leader. A

period starts when leader() = i becomes true, and fin-
ishes when thereafter it becomes false (Lines 01-04).

• The counter last stop leaderi[k] contains the greatest
hbck value ever received in a stop leader message sent
by pk. This counter is used by pi to take into account
a heartbeat message (Line 12) or a stop leader mes-
sage (Line 14) sent by pk, only if no “more recent”
stop leader message has been received (the notion of
“more recent” is with respect to the value of hbci asso-
ciated with and carried by each message).

Messages Another difference lies in the shape and the
content of the messages sent by a process. A message has
five fields (tag k, k, sl k, silent k, hbc k) whose meaning
is the following:

• The field tag k can take three values: heartbeat,
stop leader or suspicion that defines the type of the
message. (Similarly to the previous cases, a message
tagged suspicion is called a suspicion message. Such
a message is sent only at Line 05.)

• The second field contains the id k of the message
sender.

• sl k is the value of susp levelk[k] when pk sent
that message. Let us observe that the value of
susp levelk[k] can be disseminated only by pk.

• silent k = j means that pk suspects pj to be faulty.
Such a suspicion is due to a timer expiration that oc-
curs at Line 05. (Let us notice that the field silent k
of a message that is not a suspicion message is always
equal to ⊥.)

• hbc k: this field contains the value of the period
counter hbck of the sender pk when it sent the mes-
sage. (It is set to 0 in suspicion messages.)

The set of messages tagged heartbeat or stop leader de-
fines a single type of message. Differently, there are n
types of messages tagged suspicion: each pair (suspicion,
silentk) defines a type.

Process behavior When a timer timeri[j] expires, pi

broadcasts a message indicating it suspects pj (Line 05)3,
and accordingly suppresses j from contenders i . Together

3The suspicion message sent by pi concerns only pj . It is sent by
a broadcast primitive only because the model does not offer a point-
to-point send primitive. If a point-to-point send primitive was avail-
able the broadcast at Line 05 would be replaced by the statement “send
(suspicion, i, susp leveli[i],0) to pj”, and all the suspicion messages
would then define a single message type. In that case each tag would define
a message type. This shows an interesting tradeoff relating communication
primitives (one-to-one vs one-to-many) and the number of message types.

with Line 16, this allows all the crashed processes to even-
tually disappear from contendersi . When pi receives a
(tag k, k, sl k, silent k, hbc k) message, it allocates new
local variables if that message is the first it receives from
pk (Lines 07-10); pi also updates susp level i[k] (Line 11).
Then, the processing of the message depends on its tag.

• The message is a heartbeat message (Lines 12-13). If
it is not an old message (this is checked with the test
last stop leaderi[k] < hbc k), pi resets the corre-
sponding timer and adds k to contendersi .

• The message is a stop leader message (Lines 14-16).
If it is not an old message, pi updates its local counter
last stop leaderi[k], stops the corresponding timer
and suppresses k from contendersi .

• The message is a suspicion message (Lines 17). If
the suspicion concerns pi, it increases accordingly
susp level i[i].

4.2 Proof of the Protocol

This section proves that (1) the protocol described in Fig-
ure 2 eventually elects a common correct leader, and (2) no
message carries values that indefinitely grow. The proofs
assume only (K1) as far the process initial knowledge is
concerned. It assumes (C1’) and (C2’) as far as the network
behavioral assumptions are concerned.

Lemma 6 [7] Let pk be a faulty process. There is a finite
time after which the predicate k /∈ contenders i remains
permanently true at each correct process pi.

Proof Let pk and pi be a faulty process and a correct pro-
cess, respectively. The only line where a process is added to
contenders i is Line 13. If follows that, if pi never receives a
heartbeat message from pk, k is never added to contenders i

and the lemma follows for pk.
So, considering the case where pi receives at least one

heartbeat message from pk, let us examine the last heartbeat
or stop leader message m from pk received and processed
by pi. “Processed” means that the messagem carried a field
hbc k such that the predicate last stop leaderi[k] < hbc k
was true when the message was received. Let us notice that
there is necessarily such a message, because at least the first
heartbeat or stop leader message from pk received by pi sat-
isfies the predicate.
Due to the very definition of m, there is no other mes-

sage from pk such that pi executes Line 13 or Line 16 after
having processedm. There are two cases, according to the
tag ofm.

• If m is a stop leader message, pi executes Line
16 and consequently suppresses definitely k from
contenders i.

Init: allocate susp leveli[i]; susp leveli[i] ← 0;
hbci ← 0; contendersi ← {i};membersi ← {i}

———————————————————————————————————————
Task T1:

repeat forever
next periodi ← false;

(01) while leader() = i do every η time units
(02) if (¬next periodi) then next periodi ← true; hbci ← hbci + 1 endif;
(03) broadcast (heartbeat, i, susp leveli[i],⊥, hbci)

end while;
(04) if (next periodi) then broadcast (stop leader, i, susp leveli[i],⊥, hbci) end if

end repeat
———————————————————————————————————————
Task T2:
when leader() is invoked:

return
`
$ such that (−, $) =lex min({(susp leveli[j], j)}j∈contendersi)

´

when timeri[j] expires:
(05) timeouti[j] ← timeouti[j] + 1; broadcast (suspicion, i, susp leveli[i], j,0);
(06) contendersi ← contendersi \ {j}

when (tag k, k, sl k, silent k, hbc k) is received with k (= i :
(07) if (k /∈ membersi) thenmembersi ← membersi ∪ {k};
(08) allocate susp leveli[k] and last stop leaderi[k];
(09) susp leveli[k] ← 0; last stop leaderi[k] ← 0;
(10) allocate timeouti[k] and timeri[k]; timeouti[k] ← η end if;
(11) susp leveli [k] ← max(susp leveli [k], sl k);
(12) if

`
(tag k= heartbeat) ∧ last stop leaderi[k] < hbc k)

´

(13) then set timeri[k] to timeouti[k]; contendersi ← contendersi ∪ {k} endif;
(14) if

`
(tag k = stop leader) ∧ last stop leaderi[k] < hbc k)

´

(15) then last stop leaderi[k] ← hbc k;
(16) stop timeri[k]; contendersi ← contendersi \ {k} endif;
(17) if

`
(tag k = suspicion) ∧ (silent k = i)

´
then susp leveli[i] ← susp leveli[i] + 1 endif

Figure 2. A communication-efficient eventual leader protocol (code for pi)

• If m is a heartbeat message, pi executes Line 13.
This means that it resets timeri[k] and adds k to
contenders i. Then, as no more heartbeat mes-
sages from pk are processed by pi, timeri[k] even-
tually expires and consequently pi withdraws k from
contenders i (Line 06), and never adds it again (as m
is the last processed heartbeat message), which proves
the lemma.

"Lemma 6

Given a run, letB be the set of correct processes p i such that
the largest value ever taken by susp leveli[i] is bounded.
Moreover, letMi denote that value. LetH be the set of cor-
rect processes whose all output links with respect to each
other correct process are eventually timely. Due to the as-
sumption (C2’), we haveH &= ∅.

Lemma 7 [7] B &= ∅.

Let (M!, $) =lex min({(Mi, i) | i ∈ B}).

Lemma 8 [7] There is a single process p!. Moreover p! is
a correct process.

Lemma 9 [7] Let pi and pj be two correct processes.
There is a finite time after which (1) the predicate i /∈
contendersj is always satisfied or (2) (i ∈ B ⇒
susp levelj[i] = Mi) ∧ (i /∈ B ⇒ susp levelj[i] ≥ M!).

Lemma 10 [7] There is a time after which p! executes for-
ever the while loop of its Task T 1 (Lines 01-03).

Theorem 2 [7] The protocol described in Figure 2 ensures
that, after some finite time, all the correct processes have
forever the same correct process p! as common leader.

4.3 Protocol Optimality

Theorem 3 [7] There is a time after which a single process
sends messages forever.

Theorem 4 [7] In an infinite execution, both the local mem-
ory of each process and the size of each message remain
finite.

References

[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., On Implementing Omega with Weak Reliabil-
ity and Synchrony Assumptions. 22th ACM Symposium
on Principles of Distributed Computing (PODC’03), ACM
Press, pp. 306-314, 2003.

[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., Communication Efficient Leader Election and
Consensus with Limited Link Synchrony. 23th ACM Sym-
posium on Principles of Distributed Computing (PODC’04),
ACM Press, pp. 328-337, 2004.

[3] Anceaume E., Fernández A., Mostefaoui A., Neiger G. and
Raynal M., Necessary and Sufficient Condition for Trans-
forming Limited Accuracy Failure Detectors. Journal of
Computer and System Sciences, 68:123-133, 2004.

[4] Chandra T.D. and Toueg S., Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.

[5] Chandra T.D., Hadzilacos V. and Toueg S., The Weak-
est Failure Detector for Solving Consensus. Journal of the
ACM, 43(4):685-722, 1996.

[6] Chu F., Reducing Ω to!W . Information Processing Letters,
76(6):293-298, 1998.

[7] Fernández A., Jiménez E. and Raynal M., Eventual Leader
Election with Weak Assumptions on Initial Knowledge,
Communication Reliability, and Synchrony. Tech Report
#1770, IRISA, Université de Rennes (France), 19 pages
2005.
http://www.irisa.fr/bibli/publi/pi/2005/1770.0770.html

[8] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of
Distributed Consensus with One Faulty Process. Journal of
the ACM, 32(2):374-382, 1985.

[9] Guerraoui R., Indulgent Algorithms. 19th ACM Symposium
on Principles of Distributed Computing, (PODC’00), ACM
Press, pp. 289-298, 2000.

[10] Guerraoui R. and Raynal M., The Information Structure
of Indulgent Consensus. IEEE Transactions on Computers,
53(4):453-466, 2004.

[11] Jiménez E., Arévalo S. and Fernández A., Implementing Un-
reliable failure Detectors with Unknown Membership. Sub-
mitted to Information Processing Letters, 2005.

[12] Lamport L., The Part-Time Parliament. ACM Transactions
on Computer Systems, 16(2):133-169, 1998.

[13] Lamport L., Shostak R. and Pease L., The Byzantine Gen-
eral Problem. ACM Transactions on programming Lan-
guages and Systems, 4(3):382-401, 1982.

[14] Larrea M., Fernández A. and Arévalo S., Optimal Imple-
mentation of the Weakest Failure Detector for Solving Con-
sensus. Proc. 19th IEEE Int’l Symposium on Reliable Dis-
tributed Systems (SRDS’00), IEEE Computer Society Press,
pp. 52-60, 2000.

[15] Malkhi D., Oprea F. and Zhou L., Ω Meets Paxos: Leader
Election and Stability without Eventual Timely Links. Proc.
19th Int’l Symposium on DIStributed Computing (DISC’05),
Springer Verlag LNCS #3724, pp. 199-213, 2005.

[16] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous
Implementation of Failure Detectors. Proc. Int’l IEEE Con-
ference on Dependable Systems and Networks (DSN’03),
IEEE Computer Society Press, pp. 351-360, 2003.

[17] Mostefaoui A., Rajsbaum S., Raynal M. and Travers C.,
From !W to Ω: a Simple Bounded Quiescent Reli-
able Broadcast-based Transformation. Tech Report #1759,
7 pages, IRISA, University of Rennes 1 (France), 2005.

[18] Mostefaoui A. and Raynal M., Low-Cost Consensus-Based
Atomic Broadcast. 7th IEEE Pacific Rim Int. Symposium on
Dependable Computing (PRDC’2000), IEEE Computer So-
ciety Press, pp. 45-52, 2000.

[19] Mostefaoui A. and Raynal M., Leader-Based Consensus.
Parallel Processing Letters, 11(1):95-107, 20.0.

[20] Mostefaoui A., Raynal M. and Travers C., Crash-resilient
Time-free Eventual Leadership. Proc. 23th Int’l IEEE
Symposium on Reliable Distributed Systems (SRDS’04),
IEEE Computer Society Press, pp. 208-217, Florianopolis
(Brasil), 2004.

[21] Mostefaoui A., Raynal M., Travers C., Patterson S., Agrawal
A. and El Abbadi A., From Static Distributed Systems to
Dynamic Systems. Proc. 24th Int’l IEEE Symposium on Re-
liable Distributed Systems (SRDS’05), IEEE Computer So-
ciety Press, pp. 109-118, Orlando (Florida), 2005.

[22] Pedone F. and Schiper A., Handling Message Semantics
with Generic Broadcast Protocols. Distributed Computing,
15(2):97-107, 2002.

[23] Raynal M., A Short Introduction to Failure Detectors for
Asynchronous Distributed Systems. ACM SIGACT News,
Distributed Computing Column, 36(1):53-70, 2005.

[24] Yang J., Neiger G. and Gafni E., Structured Derivations
of Consensus Algorithms for Failure Detectors. Proc. 17th
Int. ACM Symposium on Principles of Distributed Comput-
ing (PODC’98), ACM Press, pp. 297-308, Puerto Vallarta
(Mexico), July 1998.

