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{lrodero, llopez, anto}@gsyc.escet.urjc.es

2 Universitat Jaume I, 12071, Castellón, Spain
vcholvi@lsi.uji.es

Abstract. This paper introduces a novel unstructured P2P system able to adapt its
overlay network topology to the load conditions. The adaptation is performed by
means of a mechanism which is run by the nodes in the network in an autonomous
manner using only local information, so no global coordinator is needed. The
aim of this adaptation is to build an efficient topology for the resource discovery
mechanism performed via random walks. We present the basis of the adaptation
mechanism, along with some simulation results obtained under different condi-
tions. These results show that this system is efficient and robust, even in front of
directed attacks.

1 Introduction

The Peer-to-Peer (P2P) paradigm has brought new communication opportunities for
Internet users. P2P systems present advantages like flexibility, scalability and fault tol-
erance, thanks to the lack of central coordinators or controllers. But this same lack of
central entities has brought new technical challenges.

Maybe one of the key issues to be solved is how to locate resources efficiently. Sev-
eral solutions have been proposed, each with its advantages and drawbacks. It seems
that P2P systems with unstructured overlay networks are suitable for certain scenarios
like mass-market distributed resource sharing.

Unfortunately, it is not trivial to offer efficient search solutions in unstructured net-
works. Flooding based proposals (like the first versions of Gnutella) present scalability
issues. Because of this, the research community is making efforts to develop solutions
based on random walks. More specifically, to combine random walks with dynamic
overlay topologies (topologies that change during the system life) is an approach that
has lead to promising results [1, 2].

Here we introduce a solution based on the same idea of using random walks along
with a dynamic topology. Changes on the topology are performed by the nodes them-
selves to adapt it to the load on the network. In order to do this, each node runs a
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reconnection mechanism (the same for all nodes) that periodically computes to which
other peers the node must connect. This solution has been implemented in a system
called DANTE2

1.
This paper is organized as follows. In Sect. 2 we revise some current solutions for

resource location in P2P networks. Section 3 presents previous works which form the
conceptual basis of DANTE2. Section 4 describes the adaptation mechanism used by
DANTE2. Section 5 presents some results obtained by simulation. Those results mea-
sure the performance of DANTE2 under a variety of circumstances. Finally, Sect. 6
contains the conclusions of this paper and possible lines of future work.

2 Resource Discovery in P2P Systems

Traditionally, solutions for resource location in P2P systems are classified in two groups:
centralized and decentralized. In centralized solutions a central repository stores an
index of all resources in the network (like in Napster [3]). This approach makes the
system vulnerable to attacks or censorship and poses scalability issues.

In decentralized systems, on the other hand, the resource discovery service is pro-
vided by the peers themselves. Decentralized systems are usually classified by the kind
of search mechanism they implement to route search messages through the network:

1. Structured systems. These systems use specialized placement algorithms to assign
responsibility for each resource to specific peers, as “directed” search mechanisms
to efficiently locate resources. One example is Chord [4].

2. Unstructured systems. These systems do not have precise control over the resource
placement and, traditionally, use search mechanisms based on flooding, random
walks or supernodes. Examples are Gnutella and KaZaA.

Structured systems are very efficient: they usually require few communication steps
to find some resource, and do not produce false negatives (i.e., the search fails only if
the demanded resource is not in the system). On the other hand, unstructured systems
tend to be less efficient, and may yield false negatives.

Yet, unstructured systems have some advantages: they have little management over-
head, adapt well to the transient activity of P2P nodes, take advantage of the spon-
taneous replication of popular content and allow to perform queries by keyword in a
simpler way than with directed search protocols. These advantages seem to make un-
structured systems suitable for many real-world situations, like massive file sharing sys-
tems. Further discussion comparing structured and unstructured systems can be found
in [5].

2.1 Resource Location in Unstructured P2P Networks

Three search methods are typically used for resource location in unstructured networks.
The first one is flooding, where each peer broadcasts the queries to all its neighbors. It
is well known [6] that the flooding solution presents problems of scalability.

1 From Dynamic self-Adapting Network TopologiEs.
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Another solution is based on the idea of superpeers. These are special nodes that
store the index of resources shared by the rest of peers. The eDonkey [7] network, for
instance, uses this approach. Yet, these systems are dependant on the availability of
those powerful enough nodes.

Finally, the third search mechanism is based on random walks. Here, nodes forward
each query to only one peer, chosen randomly among its neighbors. There is little com-
munication overhead compared with flooding, but it can take longer to solve queries.
In [8] and [9] we can find some studies that state that random walks seem to be a
promising technique suitable to solve the scalability problems of flooding.

2.2 Dynamic Topologies Based Proposals

It is well known that the performance of random walks is highly dependant on the
topology of the overlay network [10, 11, 12]. Thus, some solutions have been proposed
that try to adapt the overlay topology to the network load, in order to improve the
efficiency of the search process.

First, Lv et al. [2] introduced a P2P system in which nodes avoid congestion by
means of a flow control mechanism that redirects the most active connections to neigh-
bors with spare capacity. Another work is Gia [1], proposed by Chawathe et al. In Gia,
queries are forwarded to high capacity nodes. An active flow control mechanism avoids
overloading hot spots: each node notifies its neighbors the number of queries they can
send to it, which depends on its spare capacity. Topology is adapted by a mechanism
based on nodes’ level of satisfaction, which measures the distance between a node’s
capacity to the sum of its neighbors capacities, normalized by their degrees. This pa-
rameter determines whether or not each node will adapt the topology, and the frequency
of these adaptations.

DANTE2 implements a different reconnection mechanism that we deem can lead
to even more efficient topologies. First of all, DANTE2 is inspired on the results of
Guimerà et al. [13] on the relationship between network topologies and search perfor-
mance (see Sect. 3). Another difference is that nodes in DANTE2 do not keep track of
their neighbors’ state, nor implement any explicit flow control technique. Thus DANTE2
avoids the communication overhead due to those activities. Some simulations compar-
ing DANTE2 and Gia are presented in Sect. 5.

3 Previous Work

The self-adaptation mechanism used in DANTE2 is inspired on the results of Guimerà
et al. [13] and on the algorithm proposed by Cholvi el al. [10]. Guimerà et al. were
able to characterize the topologies that, given a search mechanism based on random
walks, minimize the average time needed to perform a search. They found that when
the system is not congested, the optimal topology is a star-like structure. Furthermore,
they also found that when the system is congested, the optimal topology is a random-
like one. However, Guimerà et al. did not state how these topologies could be achieved
dynamically in a real system. In P2P networks, we face two problems: the lack of global
knowledge, and the absence of a coordinator that tells nodes to which other peers they
must connect to.
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Thus, applying Guimerà results to P2P networks is not straightforward. A topology
adaptation mechanism that fits P2P systems should be run locally at the nodes, and
should not need global knowledge. Cholvi et al., in [10], proposed a first mechanism
that, depending on the current system load, makes nodes to locally change their con-
nections so that the obtained topologies are random for high loads and star-like for low
loads. Yet, in that solution nodes need to now all other peers state.

Finally, both in [13] and in [10] it is assumed that all participants have the same
capacities, that is, the network is homogeneous. Nonetheless, nodes in real networks
are known to be heterogeneous [14].

A previous version of DANTE2 was introduced in [15]. Although the core idea of
that work was the same used here (using a self-adapting topology to improve searches
efficiency), this paper introduces key improvements: a better, more accurate reconnec-
tion mechanism that takes into account the nodes heterogeneity, and more complete
simulations in different and more realistic scenarios.

4 DANTE2 Self-adaptation Mechanism

In DANTE2 each peer knows its own resources as well as the resources held by its
neighbors. Based on this, it is easy to understand that nodes are more interested on be-
ing connected to peers with many neighbors. Therefore, DANTE2 encourages peers to
establish connections with high degree nodes. DANTE2, in fact, aims to form highly
clustered (even centralized) topologies. However, this holds only as long as highly con-
nected nodes can handle all the incoming traffic.

Taking into account this reasoning, DANTE2 uses an algorithm that, when the net-
work traffic is low, drives the network to a star-like overlay topology. Thus, searches
can be answered in only one hop, since the central nodes know all the resources in the
system. In turn, when the number of searches increases, well-connected nodes will be-
come congested and their neighbors will start to disconnect from them. Hence, this will
drive the network to a more random-like topology that, although it makes search mes-
sages to traverse longer paths to find some resource, will balance the load and perform
better than by using a highly congested central node.

More specifically, in DANTE2 each node can establish connections to other nodes.
We say that a connection is native for the establishing node and foreign for the ac-
cepting node. Nodes can change their native connections, but not their foreign ones.
Furthermore, each node periodically runs a reconnection mechanism with which native
connections are changed. This mechanism firstly obtains a list of potential candidates C
to which it can connect. Then, it assigns a probability pi to each candidate i, and chooses
candidates at random using their respective probabilities. Finally, the peer reconnects
its native connections to the chosen candidates.

The probability assigned to a candidate i ∈ C is based on its “attractiveness”,
denoted as Πi and defined as

Πi = kγi

i (1)

where ki is the degree (number of neighbors) of peer i, and γi is computed as

γi = 2 × cinorm × (1 − tinorm) (2)
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cinorm is the normalized processing capacity of node i, where the normalization is per-
formed as follows. Let ci be the capacity of node i, and cmax = maxi∈C{ci}. Then,

cinorm =
ci

cmax
(3)

it follows that 0 < cinorm ≤ 1, ∀ i, where a larger cinorm means that node i is more
attractive as it has more capacity to process searches.

tinorm represents the average time spent by a search at node i (time in queue plus
processing time), normalized. The normalization is computed as follows. Let ti be the
mean search processing time of node i, tmax = maxi∈C{ti} and tmin = mini∈C{ti}.
Then,

tinorm =
ti − tmin

tmax − tmin
(4)

It is straightforward to see that 0 ≤ tinorm ≤ 1 ∀ i, where a lesser tinorm means that
node i is more attractive as it takes less time for searches to be served.

Finally, once the Πi values are computed for all candidates in C, each candidate
i ∈ C is assigned a probability pi of being chosen that is computed as

pi =
Πi∑

j∈C Πj
(5)

By the definition of Πi (Eq. 1), the attractiveness of node i is strongly dependant on its
degree ki. The higher the degree, the more attractive the node becomes, and so more
peers will try to connect to it, increasing again ki (and therefore Πi). This process leads
quickly to centralized topologies. The form of γi, on the other hand, comes from the
fact that the reconnection function must favor high capacity nodes (capacity is repre-
sented by ci), and avoid loaded peers (load is given by ti). Thanks to this reconnection
mechanism, the system behaves in an adaptative manner, changing its topology to suit
the load conditions.

Candidates Sampling. The reconnection mechanism of DANTE2 depends on the set
of candidates C to which the node can connect. There are several mechanisms that
could be used to build this list of candidates. For example, a gossiping based service
like [16] could spread information about nodes in the network. Another solution is to
make nodes to keep a cache of other peers in the network.

DANTE2 implements a third solution. Whenever a node starts a new reconnection,
it launches a special Look For Node message, that traverses the network following a
random walk with a bounded TTL. When the TTL expires, another message is sent to
the source node with the list of traversed peers. This list becomes the set of candidates.
This technique has small incidence on the network load, and Newman’s results [17]
show that the set obtained is a good sample of the overall network.

5 Simulations

To study DANTE2’s performance we have developed a simulator that implements its re-
connection mechanism. Simulations use the microsecond as the minimum unit of time.
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The capacity of each node is set by two parameters: bandwidth and processing capac-
ity. Nodes perform tasks, like the processing of an incoming message or an internally
started process (e.g., the triggering of a new reconnection). When performing some task
the node is said to be busy. Any other pending task in the node is enqueued until the
present task is finished.

The processing time tproc depends on the tasks being performed. Tasks other than
searching for a resource in the lists of known resources are assumed to take one unit
of time. Searches for resources take a time proportional to the number of resources
checked m and the node’s processing capacity ci, tproc = m

ci
. Some tasks need to send

a message. The duration of sending a message , tsend, depends on the node’s bandwidth
bi and the packet size s, tsend = s

bi
. Finally, the time the node is busy, tbusy , for one

task is computed as tbusy = max{tproc, tsend}. This time is not tproc + tsend, be-
cause we assume that the sending of messages and the processing of searches run in a
pipeline. Nodes capacities and bandwidths are assigned following the distribution de-
picted in Table 1. This distribution is derived from the measured bandwidth distributions
of Gnutella nodes reported in [14].

Table 1. Capacities and upload bandwidths distribution for simulations

Capacity level Percentage
of nodes

Processing
capacity ci

Bandwidth bi

1x 20 % 0.1 0.01

10x 45 % 1 0.1

100x 30 % 10 1

1000x 4.9 % 100 10

10000x 0.1 % 1000 100

Each node starts a new search for a random resource periodically. The time between
searches, tbs, is a parameter of the simulation that allows to set the load on the system.
Each node holds 100 resources. All resources have the same popularity (no resource is
more likely to be looked for than other). The replication rate r is another simulation
parameter, that states the rate of nodes that hold each resource (in percentage).

Nodes manage 10 native connections each. Reconnections are triggered every 30
seconds of virtual time. Nodes change 5 native connections at each reconnection. We
assume there is an external service that provides peers, at start-up time, with a list of
some other nodes present in the system. When some peer is started it chooses its initial
neighbors randomly from the list provided by that service. Hence, all experiments start
with a random topology. Similarly, if a native connection points to some node that
leaves the network (is attacked or deactivated), that connection is redirected to another
peer chosen at random from a list again obtained from the external service.

The Look For Nodes messages have a TTL of 30 hops. Resource search messages
have a TTL of 1000 hops. Both values were chosen empirically. The first one proved to
be enough to get a good sampling of the network, the second one allowed to obtain a
high success rate, both for DANTE2 and Gia simulations.
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Topology Evolution in DANTE2. First, we study how in DANTE2 the system is able
to adapt itself, changing its topology as the (virtual) time passes. The results of two
simulations are shown, with two different replication rates: r = 0.01 and r = 0.05. Both
simulations are run with 10000 nodes (so r = 0.01 implies that each resource is held
by only one node) and a time between searches tbs = 1 second. Simulations were run
for 60 minutes of virtual time. All searches finished successfully in both simulations.

In Fig. 1.(a) we see how the mean number of hops changed as the virtual time passed.
In the X axis we represent the virtual time, in minutes. In the Y axis we represent the
average number of hops that took to solve searches started during the corresponding
minute of virtual time. The number of hops decreases readily as the time passed, until
it is stabilized to 1 after some minutes (tens of reconnections). This means that the net-
work has reached a centralized topology, starting from a random one, and all searches
are solved in just one hop.

On the other hand, we see in Fig. 1.(b) how the topology evolution makes the aver-
age search time to decrease. DANTE2 builds an efficient topology, where searches are
completed in very little time (about 30 milliseconds).
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Fig. 1. Average number of hops and searches duration

Robustness Against Peers Churn. It is well known that peers may enter and leave
the network at a high rate. This can, in some cases, compromise the efficiency of the
system. In this section we present some simulations results that show how DANTE2
performance is not strongly affected by the churn of peers.

The simulations of this section are run with 10000 nodes. The replication is r =
0.05 and the time between searches is tbs = 5 seconds. Only searches started between
minutes 31 and 60 (included) are taken into account for the results. Searches started
before minute 31 are discarded to avoid the initial transition state. The simulations were
run until all searches started before minute 61 were finished.

Initially, nodes are active with a probability of 0.5. At start time, active nodes form a
random topology. Each active node will run for a certain time that is independently cal-
culated using a exponential distribution. When the time expires, the node is deactivated:
it discards all searches in its queue, and closes its connections with all its neighbors.
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After 0.5 seconds of virtual time, the node changes to the active state again, pointing
its native connections to 10 nodes chosen at random, and the time to remain active is
recalculated. This is similar to simulate nodes leaving the system as other nodes simul-
taneously joining it (a similar approach is used in [1]).

To simulate different churns, we set different values for the mean of the exponential
distribution used to compute the time nodes will stay active: 1, 5, 10, 50 and 100 min-
utes. Finished searches are classified into three categories: successful, failed (the search
TTL expired before the resource was found) or discarded (search was at a node that
changed to the deactivated state). Figure 2 shows searches results for each experiment.
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Fig. 2. Search results under churn

For the higher churn, the number of discarded plus failed searches is about 10% of
the total. Yet, when the mean of the distribution increases, the number of discarded
and failed searches decreases sharply. When the mean is 10 minutes, the number of
unsuccessful searches (approximately 2600) represents only the 0.07% of the total.

In Figs. 3.(a) and 3.(b) it is shown how the churn of peers affects the search per-
formance (only for successful searches). Although the number of hops and the time to
complete queries increase, they are within what we deem are acceptable bounds even
when the churn of peers is high.

Robustness Against Attacks and Congestion Avoidance. In DANTE2, high capacity
nodes tend to have more connections, even forming a starlike topology. Thus, it can be
argued that DANTE2 is vulnerable to attacks targeted to well-connected nodes, or that
those nodes could become congested and so compromise the system performance. In
this section we discuss how attacks can affect DANTE2’s behavior, and how congestion
is avoided by the reconnection mechanism. The simulations presented here were run
with 10000 nodes, and replication r = 0.01. Two different loads were tested.

The results are shown in Figs. 4.(a) and 4.(b). Both of them show how the network
behavior evolves as the virtual time passes, from the first minute of simulation (remem-
ber that initially nodes form a random topology) to minute 90. At minute 30, when
the network has moved to a centralized topology, an attack is performed: the 10 best
connected nodes (central nodes) are forced to leave the network. Those are also the
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Fig. 4. Searches hops and duration under attack

10 most capable nodes in the network (see Table 1). 30 minutes later, those nodes are
reactivated. We will check how DANTE2 reacts to those events.

Figure 4.(a) shows how the average number of hops to find resources decreases
sharply in a few reconnections until it reaches a value close to 1. At that moment the
network has a centralized topology. When the attack is performed at minute 30, the
remaining nodes redirect their connections randomly, so a random topology appears
again. From that moment on, nodes will try to connect to the remaining peers with
higher capacity (in this case, nodes of the fourth Capacity Level at Table 1). The net-
work is never centralized again, as there are no nodes with enough capacity to become
central. Here we can see how DANTE2 actively avoids overloading nodes, not allowing
them to receive too many connections if they can not handle them. Yet, highly con-
nected nodes appear so the mean number of hops decreases sharply in a few minutes (to
lesser values with lesser load). Finally, when the attacked nodes are back, the network
changes again to a centralized topology.

In Fig. 4.(b) we see how the attack affects to the search times. As expected, those
times increase to values close to those obtained at the beginning of the experiment.
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Then, as nodes change their connections the topology is adapted again, lowering the
average search time to a fair value. It can also be observed that the network has reached
again a stable state, due in part to the fact that no node gets overloaded. If well connected
nodes had become congested, then their messages queues would grow indefinitely, and
so would the resulting average searches times. Finally, when the 10 nodes attacked are
back, the search times gradually return to the values previous to the attack. In both
experiments, the proportion of discarded searches is around 0.005%, and the proportion
of failed searches is less than 0.04%.

We can conclude that DANTE2 can be temporarily affected by well targeted attacks.
Yet, even in a scenario where nodes that have become central are all successfully at-
tacked at the same time, and no other nodes of the same capacity remain in the system,
the network adapts again to reach another efficient state. The system is never fully shut
down, because it is not dependant on any particular subset of nodes.

These experiments also show how the reconnection mechanism implemented by
DANTE2 avoids overloading peers, preventing the network from reaching an unstable
state. If there are not enough high capacity nodes that allow to form a centralized con-
figuration, the resulting topology becomes more ‘randomized’. In conclusion, DANTE2
maintains at all times the topology as clustered as possible, but at the same time prevents
nodes from becoming overloaded.

DANTE2 vs. GIA. As explained in Sect. 2.2, Gia is another proposal of a P2P system
that uses an adaptation mechanism to improve the efficiency of searches. In [1] Gia
authors carried on some simulations that show how self-adapting networks can offer a
better performance than other solutions (like flooding) in a variety of scenarios. Thus,
instead of repeating those same simulations with DANTE2, we have deemed more in-
teresting to compare Gia and DANTE2.

We have developed a Gia simulator that implements the mechanisms described in [1]:
a flow control system to avoid overloading nodes, a biased random walk search mecha-
nism, and a topology adaptation protocol. An important parameter of Gia is the maxi-
mum number of neighbors (max neigh). Nodes in Gia try to connect to as many nodes
as possible, and to those with the highest capacity. We have set that limit to 20 (twice
the number of native connections in DANTE2), so that the average degree is the same as
the one obtained in the DANTE2 simulations. Gia advocates could reason that setting a
higher maximum bound would improve performance, as searches would need less hops
to locate resources. But then, it would be enough in DANTE2 to increase the number of
nodes native connections to max neigh/2 again.

Simulations were run with 1000 nodes, with replication r = 0.1. As usual, nodes
capacities and bandwidths are set following the distribution of Table 1. Only searches
started between minutes 31 and 60 are taken into account.

In Fig. 5.(b) we plot the average search times for different loads on both systems.
DANTE2 seems to perform better than Gia for all loads. Additionally, beyond a certain
point, Gia search times start to grow quickly with the system load, while DANTE2 is
able to keep search times low for the same loads. Figure 5.(a) helps us to understand the
reason of DANTE2’s better behavior: searches in Gia need many more hops to find a
certain resource (about 160) than in DANTE2 (about 7). The reason is that, although the
topology in DANTE2 is not totally centralized (as there are not enough high capacity
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Fig. 5. DANTE and GIA searches number of hops and duration

nodes), it still keeps a clustered form where a few nodes are well connected and hence
allows queries to be completed in a few hops.

All searches were successful in DANTE2. Gia, on the other hand, presented a certain
proportion of failed searches (between 1.5% and 2%) in all experiments.

6 Conclusions and Future Work

P2P systems are a promising new paradigm, yet they demand innovative solutions to
new problems like resource location. DANTE2 proposes a self-adapting mechanism
that makes the network change its topology aiming always to an efficient configuration
that depends on the system load and the peers capacities. The results obtained with
DANTE2 seem promising. However, much work remains to be done in order to improve
the performance of these techniques. For example, new reconnection heuristics could
be studied and developed.
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