A Timing Assumption and a ¢-Resilient Protocol
for Implementing an Eventual Leader Service
in Asynchronous Shared Memory Systems

Antonio FERNANDEZ! Ernesto JIMENEZ?

Michel RAYNAL* Gilles TREDAN*

f LADyR, GSyC, Universidad Rey Juan Carlos, 28933 Méstoles, Spain
! EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain
* IRISA, Université de Rennes, Campus de Beaulieu 35 042 Rennes, France

anto@gsyc.escet.urjc.es

Abstract

While electing an eventual common leader, despite
process crashes, in a shared memory system where the
processes communicate only by reading and writing
shared registers is possible when the processes progress
synchronously, this problem becomes impossible to solve
as soon as the processes can progress in a fully asyn-
chronous way. So, an important problem consists in finding
additional behavioral assumptions that are, at the same
time, “as weak as possible” (in order they are practically
always satisfied), and “strong enough” in order to allow
implementing an eventual leader service despite the net
effect of asynchrony and failures. This paper focuses on
this dilemma. More explicitly, it investigates a timing
assumption that allows implementing an eventual leader in
presence of partial asynchrony and process crashes. The
proposed timing assumptions are particularly weak. They
are the following: after some time (i) there is a process that
behaves synchronously, and (ii) (t — f) other processes
have timers that work correctly (t is the maximal number
of processes that may crash, and f the actual number of
process crashes; a timer works incorrectly when it expires
too early with respect to the value it has been set). Then,
the paper proposes a t-resilient protocol that elects an
eventual common leader in any shared memory system
that satisfies the previous assumption. Interestingly, this
protocol is based on simple design principles.

Keywords: Asynchronous system, Atomic register, Even-
tual leader, Fault-tolerance, Omega, Process crash, Shared
memory, System model, Timer property, Timing assump-
tions.

ernes@eui.upm.es

raynal@irisa.fr gtredan@irisa.fr

1 Introduction

Context and motivation In order to be able to cope with
process failures, many upper layer services (such as atomic
broadcast, atomic commitment, group membership, etc.)
rely in one form or another on an underlying basic ser-
vice called eventual leader facility. Such a service provides
the processes with a single operation, denoted leader(),
such that each invocation of that operation returns a pro-
cess name, and, after some unknown but finite time, all the
invocations returns the same name, and this is the name of
an alive process [2].

Building an eventual leader service requires the pro-
cesses to cooperate in order to elect one of them. It has been
shown that such an election is impossible when the progress
of each process is totally independent of the progress of the
other processes, namely when the processes are fully asyn-
chronous (direct proofs of this impossibility can be found
in [1, 16]). So, a fundamental issue consists on finding “as
weak as possible” timing assumptions that the underlying
system has to satisfy so that an eventual leader service can
be built. Answering this question is important from both a
practical and theoretical points of view. Seen from a the-
ory point of view, the answer would establish the boundary
assumptions beyond which the problem cannot be solved.
Seen from a practical point of view, the answer would de-
fine the necessary requirements a system has to satisfy in
order to solve the problem, and would consequently permit
to provide engineers with requirements their systems have
to meet.

The message-passing case The previous question has re-
ceived a lot of attention in the message-passing context,
i.e., when the processes cooperate by exchanging messages
through an underlying network. Two main approaches have
been investigated. One is based on the notion of timely

channels, the other is based on the notion of message pat-
tern. The timely channel approach (e.g., [1, 3]) requires
that, after some time, an appropriate subset of the commu-
nication channels behave timely, i.e., they guarantee an up-
per bound on message transfer delays. The message pattern
approach (introduced in [14]) requires that some messages
are received before other messages. Interestingly, these two
approaches can be combined [17] to take the best of “both
worlds” and provide eventual leader protocols with an as-
sumption coverage greater than the one provided by any
protocol based on a single assumption [18].

The shared memory case The situation is different in
the shared memory context. In this case, the only base
objects that the processes can use to communicate are
atomic read/write registers (also called shared registers).
As these registers are intrinsically time-free, the previous
question translates as follows: which are the weakest
timing assumptions the processes have to satisfy so that an
eventual leader service can be built?

To our knowledge, only three eventual leader protocols
suited to the shared memory context has been proposed so
far [4, 8]. The first protocol (presented in [8]) assumes that
there is a finite time after which the processes behave syn-
chronously. So, this timing assumption is pretty strong.

The second paper [4] investigates a much weaker as-
sumption. Basically, it requires that there is eventually a
process that behaves synchronously while the other pro-
cesses can be fully asynchronous provided their timers be-
have correctly. Two protocols are presented in that paper.
In the first protocol, be the execution finite or infinite, all
but one shared variables are bounded, and after some time
a single process writes forever the shared memory. In the
second protocol, all the variables are bounded, but this is
obtained at the price of having all the processes to write
forever the shared memory. These three previous protocols
consider that all the processes (but one) can crash.

Content of the paper Let n denote the total number of
processes, and ¢ the maximal number of processes than may
crash. Using this notation, the previous protocols implicitly
consider t = n — 1 (these protocol are said to be wait-free
[10], and consequently their code does not use t).

More generally, a protocol is ¢-resilient if it can cope
with up to ¢ faulty processes. (This means that the protocol
is guaranteed to work correctly when no more than ¢ pro-
cess crash. If more processes crash, there is no guarantee
and the protocol can behave arbitrarily.) Usually, the sys-
tem parameter ¢ is explicitly used in the code of a ¢-resilient
protocol. In practice, as the number of processes that crash
in a given run is usually very small, it is interesting to design
t-resilient protocols.

This paper presents a t-resilient eventual leader protocol
(1 £t < n). When compared to the protocols described
in [4], the proposed protocol benefits from the assumption
that there are at least n — ¢ correct processes. This addi-
tional assumption allows weakening the timing assumption
used in [4]. More explicitly, let f be the number of pro-
cesses that crash in a given run, 0 < f < ¢. While (as the
protocols presented in [4]) the proposed protocol requires
that the accesses (with respect to a predetermined shared
variable) of only one correct process (say p) be eventually
synchronous, it requires that the timers of only ¢ — f cor-
rect processes (different from p) behave correctly. This is a
pretty weak timing assumptions (the protocols presented in
[4] require that the timers of all the correct processes behave
correctly). A timer behaves incorrectly when it expires ar-
bitrarily, whatever the timeout value it has previously been
set to.

This shows that very weak additional assumptions allow
implementing an eventual leader facility in a shared mem-
ory system. The real-time constraints that have to be satis-
fied require the synchronous behavior of only one process,
and the correct behavior of only ¢ — f timers. As an ex-
ample, when all the processes allowed to crash do actually
crashed (we have then f = t), no timer is required to be-
have correctly (let us notice that, in a very interesting way,
this is independent of the value of t).

The protocol enjoys another first class property, namely,
it is particularly simple. Moreover, its proof shows very
clearly all its possible behaviors, and allows a better under-
standing of its noteworthy properties.

Roadmap The paper is made up of 6 sections. Section
2 presents the system model and the additional assumption
that allows implementing an eventual leader protocol. The
protocol is described in Section 3 and proved in Section 4.
Section 5 discusses the protocol. Finally, Section 6 con-
cludes the paper.

2 System model, leader election, and addi-
tional assumption

2.1 Base asynchronous shared memory model

The system consists of n (n > 1) processes denoted
P1, ... ,Pn. The integer ¢ denotes the identity of p;. A pro-
cess can fail by crashing, i.e., prematurely halting. Until it
possibly crashes, a process behaves according to its speci-
fication, namely, it executes a sequence of steps as defined
by its algorithm. After it has crashed, a process executes no
more steps. By definition, a process is faulty during a run if
it crashes during that run; otherwise it is correct in that run.
In the following, ¢ denotes the maximum number of pro-

cesses that are allowed to crashinanyrun (1 <t <n-— !,
while f denotes the actual number of processes that crash
inarun (0 < f <1t).

The processes communicate by reading and writing
a memory made up of atomic registers (also called
shared variables). Each register is one-writer/multi-reader
(I1WnR). “1WnR” means that a single process can write
into it, but all the processes can read it. (Let us observe
that using 1WnR atomic registers is particularly suited for
cached-based distributed shared memory.)> The only pro-
cess allowed to write an atomic register is called its owner.
Atomic means that, although read and write operations on
the same register may overlap, each (read or write) oper-
ation appears to take effect instantaneously at some point
of the time line between its invocation and return events
(this is called the /inearization point of the operation) [11].
Uppercase letters are used for the identifiers of the shared
registers. These registers are structured into arrays. As an
example, PROGRESS|[i] denotes a shared register that can
be written only by p;, and read by any process. A process
can have local variables. Those are denoted with lowercase
letters, with the process identity appearing as a subscript.
As an example, progress; denotes a local variable of p;.

Some shared registers are critical, while other shared
registers are not. A critical register is an atomic register on
which some constraint can be imposed by the additional as-
sumptions that allow implementing an eventual leader. This
attribute allows restricting the set of registers involved in
these assumptions.

This base model is characterized by the fact that there is
no assumption on the execution speed of one process with
respect to another. This is the classical asynchronous crash
prone shared memory model. It is denoted AS, +[0] in the
following.

2.2 Eventual leader service

The notion of eventual leader service has been infor-
mally presented in the introduction. It is an entity that pro-
vides each process with a primitive leader() that returns a
process identity each time it is invoked. A unique correct
leader is eventually elected but there is no knowledge of
when the leader is elected. Several leaders can coexist dur-
ing an arbitrarily long period of time, and there is no way for
the processes to learn when this “anarchy” period is over.

'This means that, if more than ¢ processes crash in a run, we are outside
the system model, and a protocol can then behave arbitrarily. If we want
the protocol to cope with any number of process crashes we have to take
t=n-1

2The atomic registers can also be seen as a high level abstraction of
a communication system made up of commodity disks. Such disks can
be accessed only by read and write operations. Such “shared memory”
systems are described in [6, 13]. Protocols based of commodity disks are
described in [5, 9].

The leader service, denoted (), satisfies the following prop-
erties [2]. (The second property refers to a notion of global
time. It is important to notice that this global time is only
for a specification purpose. It is not accessible to the pro-
cesses.)

e Validity: The value returned by a leader() invocation
is a process identity.

e Eventual Leadership: There is a finite time and a cor-
rect process p; such that, after that time, every leader()
invocation returns .

e Termination: Any leader() invocation issued by a cor-
rect process terminates.

The (2 leader abstraction has been introduced and for-
mally developed in [2] where it is shown to be the weakest,
in terms of information about failures, to solve consensus
in asynchronous systems prone to process crashes. Several
consensus protocols based on eventual leader service have
been proposed (e.g., [7, 12, 15] for message-passing sys-
tems, and [5, 9] for shared memory systems).

2.3 Additional behavioral assumption

Underlying intuition As already indicated, {2 cannot
be implemented in pure asynchronous systems such as
AS,,.[0]. So, we consider the system is no longer fully
asynchronous: its runs satisfy the following assumption de-
noted EWB (for eventually well-behaved). The resulting
system is consequently denoted AS,, :[EWB].?

Each process p; is equipped with a timer denoted timer;.
The intuition that underlies EWDB is that, on one side, the
system has to be “synchronous” enough in order at least one
process has a chance to be elected, and, on the complemen-
tary side, the others processes must be able to recognize it.
The EWB assumption is made up of two parts EWB; and
EWB,. EWB; is on the existence of a process whose be-
havior has to satisfy a synchrony property. EWB> is on the
timers of other processes. EWB; and EWB, are “match-
ing” properties.

The assumption EWDB; That assumption restricts the
asynchronous behavior of one process. It is defined as fol-
lows.

EWB;: There are a time Tgwa,, a bound A, and
a correct process py (Tgws,, A and p, may be
never explicitly known) such that, after 7gwa,,
any two consecutive write accesses issued by py
to (its own) critical registers, are completed in at
most A time units.

3Thanks to the knowledge of the system parameter , this assumption
is much weaker than the assumption used in [4].

This property means that, after some arbitrary (but finite)
time, the speed of p, is lower-bounded, i.e., its behavior is
partially synchronous (let us notice that, while there is a
lower bound, no upper bound is required on the speed of py,
except the fact that it is not +-00). In the following we say
“p¢ satisfies EWB;” to say that p, is a process that makes
satisfied that assumption.

The assumption EWB, That assumption, that is on
timers, is based on the following timing property. Let a
timer be eventually well-behaved if there is a time Tgwp,
after which, whatever the duration § and the time 7/ >
TEWB, at which it is set to J, that timer expires at some
finite time 7' such that 7"’ > 7/ + 6.

This definition allows a timer to expire at arbitrary times
(i.e., times that are unrelated to the duration it has been set
to) during an arbitrary but finite time, after which it be-
haves correctly. We are now in order to state the assumption
EWB 2.

EWBj: The timers of (t — f) correct processes,
different from the process py that satisfies EWB1,
are eventually well-behaved.

It is important to see that a well-behaved timer does not
impose an upper bound on the duration before which a timer
expires (except that it is finite).

When we consider EWB, it is important to notice that
any process (but one, that is constrained by a lower bound
on its speed) can behave in a fully asynchronous way. More-
over, the local clocks used to implement the timers are not
required to be synchronized. Finally, the timers of up to
(n —t) + f correct processes can behave arbitrarily. It fol-
lows that the timing assumption EWB is particularly weak.

In the following we say “p, is involved in EWB,” to
say that p, is a correct process that has an eventually well-
behaved timer.

3 A t-resilient eventual leader protocol
3.1 Principle of the protocol

The protocol that implements an eventual leader facil-
ity in AS,, :[EWB] is based on a simple idea: a process p;
elects the process that is the least suspected to have crashed
(that idea is used in a lot of eventual leader election pro-
tocols in message-passing systems). So, each time a pro-
cess p; suspects p; because it has not observed a progress
from p; during some duration (defined by the latest timeout
value used to set its timer), it increases a suspicion counter
(denoted SUSPICIONSi, j]).

It is possible that, because its timer does not be-
have correctly, a process p; suspects erroneously a pro-
cess py, despite the fact that p;, did some progress (this

progress being made visible thanks to assumption EWB;
if py satisfies that assumption). So, when it has to
compute its current leader, p; does not consider all the
suspicions. For each process py, it takes into account
only the (¢ + 1) smallest values among the n coun-
ters SUSPICIONS[1,k],...,SUSPICIONS|[n,k]. As
we will see, due EWB>, this allows it to eliminate the erro-
neous suspicions.

As several processes can be equally suspected, p; uses
the function lexmin(X) that outputs the lexicographically
smallest pair in the set parameter X, where X is a set of
(number of suspicions, process identity) pairs and (a,i) <
(b,7)iff (a<d) V (a=b A i<j).

3.2 Shared and local variables

Shared variables The shared memory is made up of two
arrays of IWnR shared variables.

e PROGRESS[1..n] is an array of shared variables that
contain positive integers. That array is initialized to
[1,...,1]. Only p; can writt PROGRESS]i]. It does
it regularly to indicates to the other processes that it is
still alive. Each PROGRESS]i] shared variable is a
critical variable (see the definition of EWB1).

e SUSPICIONS|1..n,1..n] is an array of (non-critical)
shared variables that contain positive integers (each
entry is initialized to 1). The entries of the vec-
tor SUSPICIONS]i, 1..n] can be written only by p;.
SUSPICIONS]i, j| = x means that, up to now, the
process p; has suspected © — 1 times the process p; to
have crashed.

Local variables Each process p; manages the following
local variables.

e progress; is used by p; to measure its progress, and
consequently update PROGRESS]i].

e last;[1..n] is an array such that last;[k] contains the
latest value of PROGRESS|k] read by p;.

e suspicions;[1..n] is an array such that suspicions;[k]
contains the number of times p; suspected py.

e progress_k;, timeout; and susp;[1..n] are auxiliary
local variables used by p; to locally memorize relevant
global values.

3.3 Process behavior
The behavior of a process is described in Figure 1. It

is decomposed in three tasks. The first task (7'1) defines
the way the current leader is determined. For each process

task 7'1:

(1) when leader() is invoked:
(2) for.eachk € {1,...,n} do
3) let susp;[k]
“4) end_for;

&)

task 7°2:

(6) repeat_forever
(N
(8) end_repeat

task 7°3:

(9) when timer; expires:

(10) for_each k € {1,...,n} \ {i} do
(11)
(12)
(13)
(14)
(15)
(16)
17)
(18)
19
(20)
(21
(22)

if (progress_k; # last;[k])
then last; k]
else suspicions;[k]
SUSPICIONS]i, k]
end_if
end_for;
for_each k € {1,...,n} do
let susp;[k]
end_for;

set temer; to timeout;

Y (¢ + 1) smallest values in the vector SUSPICIONS|1..n, k]

return(¢) where ¢ is such that (—

progress; < progress; + 1; PROGRESS[i] < progress;

progress_k; < PROGRESS|[k];

Y (t + 1) smallest values in the vector SUSPICIONS|1..n, k]

let timeout; = min({susp;[k]}1<r<n)s

,€) = lex-min({(susp;[k], k) 1<k <n)

<— progress_k;
<« suspicions;[k] + 1;
<« suspicions; k]

Figure 1. A t-resilient eventual leader election algorithm (code for p;)

Dk, p; first computes the number of relevant suspicions that
concerns py. As already mentioned, those are the (¢ + 1)
smallest values in the vector SUSPICIONS]1..n, k] (line
3). The current leader is then defined as the process cur-
rently the least suspected, when considering only the rele-
vant suspicions (line 5).

The second task (7'2) is a simple repetitive task whose
aim is to increase PROGRESS]i] in order to inform the
other processes that p; has not crashed (line 7). The third
task (1'3) is associated with p;’s timer expiration. It is where
p; possibly suspects the other processes and where it sets its
timer (temer;).

1. Suspicion management part (lines 10-17). For each
process py (k # i), p; first reads PROGRESS[k] to
see py,’s current progress. If there is no progress since
the last reading of PROGRESS|k], p; suspects once
more py, to have crashed, and increases consequently
SUSPICIONS]i, k].

Timer setting part (lines 18-22). Then, p; resets its
timer to an appropriate timeout value. That value is
computed from the current relevant suspicions. Let us
observe that this timeout value increases when these
suspicions increase. Let us also remark that, if af-
ter some time the number of relevant suspicions does
no longer increase, timeout; keeps forever the same

value.

As we can see, the protocol is relatively simple. It uses
n? + n shared variables. (As, for any i, SUSPICIONS]i, i]
is always equal to 1, it is possible to use the diagonal of that
matrix to store the array PROGRESS|[1..n].)

4 Proof of the protocol

Let us consider a run of the protocol described in Figure
1 in which the assumptions EWB; and EWB, defined in
Section 2.3 are satisfied. This section shows that an eventual
leader is elected in that run. The proof is decomposed into
several lemmas.

Lemmal Let p; be a faulty process. For any pj,
SUSPICIONS]i, j] is bounded.
Proof Let us first observe that the vector

SUSPICIONS]Ji,1..n] is updated only by p;. The
proof follows immediately from the fact that, after it has
crashed, a process does no longer increase shared variables.

ULemma 1

Lemma 2 Let p; and pj be a correct and a faulty process,
respectively. SUSPICIONS]|i, j] grows unboundedly.

Proof After a process p; has crashed, it does no longer in-
crease the value of PROGRESS[j], and consequently, due
to the update of line 13, there is a finite time after which
the test of line 12 remains forever false at any correct pro-
cess p;. It follows that SUSPICIONS][i, j] is increased un-

boundedly at line 15. ULemma 2

Lemma 3 Let p; be a correct process involved in the as-
sumption EWB, (i.e., its timer is eventually well-behaved)
and let us assume that after some point in time timer; is al-
ways set to avalue A' > A. Let p; be a correct process that
satisfies the assumption EWB,. Then, SUSPICIONS]i, j]
is bounded.

Proof As p; is involved in EWB5, there is a time Tgwp,
such that timer; never expires before 7 + 4 if it has been
set to 0 at time 7, with 7 > Tgwp,. Similarly, as p; sat-
isfles EWB1, there are a bound A and a time Tgwp, af-
ter which two consecutive write operations issued by p; on
PROGRESS|j] are separated by at most A time units (let
us recall that PROGRESS([j] is the only critical variable
written by p;).

Let 7a, the time after which t¢meout; takes only val-
ues A" > A, and let 7 = max(7a, TEwB,, TEWB,)- AS
after time 7o any two consecutive write operations into
PROGRESS[j] issued by p; are separated by at most A
time units, while any two reading of PROGRESS[j] by
p; are separated by at least A’ time units, it follows that
there is a finite a time 7/ > 7 after which we always have
PROGRESS|j] # last;[j] when evaluated by p; (line 12).
Hence, after 7', the shared variable SUSPICIONS|i, j]
is no longer increased, which completes the proof of the

lemma. IjLemma 3

Notation 1 Given a process py, let ski(7) < ska(1) <
+++ < sky1(7) denote the (¢ + 1) smallest values among
the n values in the vector SUSPICIONS|[1..n, k] at time 7.
Let My, (1) denote sk (7) + sko(7) + - - - + skip1(7).

Notation 2 Let S denote the set containing the f faulty
processes plus the (¢ — f) processes involved in the assump-
tion EWB, (their timers are eventually well-behaved).
Then, for each process pr, ¢ S, let S; denote the set
S U {pr}. (Letus notice that |Si| = ¢+ 1.)

Lemma 4 At any time T, there is a process p; € Sy such
that the predicate SUSPICIONS|i, k] > skiy1(7) is satis-

fied.

Proof Let K (1) be the set of the (¢ + 1) processes p, such
that, at time 7, SUSPICIONS|[z, k] < ski+1(7). We con-
sider two cases.

1. Sy = K (7). Then, taking p; as the “last” process of
St such that SUSPICIONS]i, k] = sk¢11(T) proves
the lemma.

2. S; # K(7). in that case, let us take p; as a process
in Si \ K(7). As p; ¢ K(r), it follows from the def-
inition of K (7) that SUSPICIONS|i, k] > ski11(7),
and the lemma follows. ULemma 4

Notation 3 Let M, = max({M,(7)r>0}). If there is no
such value (M, (1) grows forever according to 7), let M, =
+00. Let B be the set of processes p, such that M, is
bounded.

Lemma 5 If the assumption EWB; is satisfied, then B #
0.

Proof Let p; be a process that satisfies EWB;. We
show that M}, is bounded. Due to Lemma 4, at any
time 7, there is a process pj;) € Sj such that we
have SUSPICIONS[j(7),k])(t) > skiy1(7). (where
SUSPICIONS|j(7), k](T) denotes the value of the corre-
sponding variable at time 7). It follows that M} (7) is upper
bounded by (t + 1) x SUSPICIONS[j(7), k](T). So, the
proof amounts to show that, after some time, for any j € Sk,
SUSPICIONS]|j, k] remains bounded. Let us consider any
process p; € Sy, after the time at which the f faulty pro-
cesses have crashed. There are three cases.

1. p; = pg. In this case SUSPICIONS[j, k] = 1 perma-
nently.

2. pj is a faulty process of Si. In that case, the fact that
SUSPICIONS|j, k] is bounded follows directly from
Lemma 1.

3. pj is a process of Sy, that is one of the (¢ — f) correct
processes involved in the assumption EWB,. The fact
that SUSPICIONS|j, k] is bounded is then an imme-
diate consequence of Lemma 3.

ULemma 5

Lemma 6 B does not contain faulty processes.

Proof Let p; be a faulty process. Observe that, for
each 7, the set of processes whose values in the vector
SUSPICIONS|1..n, j] are added to compute M;(T) con-
tains at least one correct process. Due to Lemma 2, for
each correct process p;, SUSPICIONS]i, j] increases for-
ever, and hence so does Mj, which proves the lemma.

ULemma 6

Lemma 7 There is a time after which any invocation of the
primitive leader() issued by a correct process, returns the
identity of a (correct) process of B.

Proof The lemma follows from the lines 2-5 and the fact
that B is not empty (Lemma 5) and contains only correct

processes (Lemma 6). Uremma 7

Notation 4 Let (M,,a) = lex-min({(M,,z) | p, € B}.

Lemma 8 There is a single process p, and it is a correct
process.

Proof The lemma follows directly from the following ob-
servations: B does not contain faulty processes (Lemma 6),
it is not empty (Lemma 5), and no two processes have the

same identity. ULemma 8

Theorem 1 There is a time after which all the processes
elect forever the same correct process as their common
leader.

Proof The theorem follows from Lemma 7 and Lemma 8.
DTheorem 1

5 Discussion

On the process that is elected The proof of the protocol
relies on the assumption EWB; to guarantee that at least
one correct process can be elected (i.e., the set B is not
empty, -Lemma 5-, and does not contain faulty processes
-Lemma 6-). This does not mean that the elected process
is a process that satisfies the assumption EWB;. There are
cases where it can be another process.

To see when this can happen, let us consider two correct
processes p; and p; such that p; does not satisfy EWB»
(its timer is never well-behaved) and p; does not satisfy
EWB; (it never behaves synchronously). (A re-reading of
the statement of Lemma 3 will make the following descrip-
tion easier to understand.) Despite the fact that (1) p; is not
synchronous with respect to a process that satisfies EWDB1,
and can consequently suspects these processes infinitely of-
ten, and (2) p; is not synchronous with respect to a process
that satisfy EWB; (and can consequently be suspected in-
finitely often by such processes), it is still possible that p;
and p; behave synchronously one with respect to the other
in such a way that p; never suspects p;. If this happens
SUSPICIONS]i, j] remains bounded, and it is possible that
the value M not only remains bounded, but becomes the
smallest value in the set B. It this occurs, p; is elected as
the common leader.

Of course, there are runs in which the previous scenario
does not occur. That is why the protocol has to rely on
EWB; in order to guarantee that the set B be never empty.

On the timeout values It is important to notice that the
timeout values are determined from the least suspected pro-
cesses. Moreover, after the common leader (say p,) has
been elected, any timeout value is set to M,,. It follows that,
be the run finite or infinite, the timeout values are always
bounded.

6 Conclusion

This paper was on the election of an eventual leader in
asynchronous systems in which the processes communicate
by reading and writing atomic registers only, and where up
to ¢ processes can crash (1 < ¢t < n, n being the total
number of processes). As this problem cannot be solved
in pure (message-passing or shared memory) asynchronous
systems, the paper has proposed and investigated an addi-
tional timing assumption that allows electing an eventual
leader at least in the asynchronous runs that satisfy it. The
assumption requires that after some time (i) there is process
that behaves synchronously, and (ii) (¢ — f) other processes
have timers that work correctly (where f is the actual num-
ber of process crashes in a run). A timer works incorrectly
when it expires too with respect to the value it has been set.
A t-resilient protocol that benefits from this assumption has
been proposed and proved correct. A noteworthy property
of this protocol lies in its design simplicity.

Among problems that remain open, we list two. One
concerns the values taken by the suspicion-related shared
variables (SUSPICIONS|i, j]): itis possible to bound their
domain? If the answer is “yes”, how can it be done? An-
other problem would consist in finding a common frame-
work that would unify the protocol presented in this paper
and the protocols introduced in [4].

References

[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., Communication-Efficient Leader Election and
Consensus with Limited Link Synchrony. Proc. 23th
ACM Symposium on Principles of Distributed Computing
(PODC’04), ACM Press, pp. 328-337, 2004.

[2] Chandra T., Hadzilacos V. and Toueg S., The Weakest Fail-
ure Detector for Solving Consensus. Journal of the ACM,
43(4):685-722, 1996.

[3] Dwork C., Lynch N. and Stockmeyer L., Consensus in
the Presence of Partial Synchrony. Journal of the ACM,
35(2):288-323, 1988.

[4] Fernidndez A., Jiménez E. and Raynal M., Electing an Even-
tual Leader in an Asynchronous Shared Memory System.
Tech Report #1821, 19 pages, IRISA, University of Rennes
1, October 2006.

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Gafni E. and Lamport L., Disk Paxos. Distributed Comput-
ing, 16(1):1-20, 2003.

Gibson G.A. et al., A Cost-effective High-bandwidth Stor-
age Architecture. Proc. 8th Int’l Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS’98), ACM Press, pp. 92-103, 1998.

Guerraoui R. and Raynal M., The Information Structure
of Indulgent Consensus. IEEE Transactions on Computers,
53(4):453-466, 2004.

Guerraoui R. and Raynal M., A Leader Election Protocol
for Eventually Synchronous Shared Memory Systems. 4th
Int’l IEEE Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS’06), IEEE Com-
puter Society Press, pp. 75-80, 2006.

Guerraoui R. and Raynal M., The Alpha of Asynchronous
Consensus. The Computer Journal, To appear, 2007.

Herlihy M.P., Wait-Free Synchronization. ACM Transac-
tions on programming Languages and Systems, 11(1):124-
149, 1991.

Herlihy M.P. and Wing J.M, Linearizability: a Correct-
ness Condition for Concurrent Objects. ACM Transactions
on Programming Languages and Systems, 12(3):463-492,
1990.

Lamport L., The Part-Time Parliament. ACM Transactions
on Computer Systems, 16(2):133-169, 1998. (The first ver-
sion of Paxos appeared a a DEC Tech Report in 1989.)

Lee E.K. and Thekkath C., Petal: Distributed Virtual Disks.
Proc. 7th Int’l Conference on Architectural Support for Pro-
graming Languages and Operating Systems (ASPLOS’96),
ACM Press, pp. 84-92, 1996.

Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous
Implementation of Failure Detectors. Proc. Int’l IEEE Con-

ference on Dependable Systems and Networks (DSN’03),

IEEE Computer Society Press, pp. 351-360, 2003.

Mostefaoui A. and Raynal M., Leader-Based Consensus.
Parallel Processing Letters, 11(1):95-107, 2001.

Mostéfaoui A., Raynal M. and Travers C., Crash Resilient
Time-Free Eventual Leadership. Proc. 23th Symposium on
Resilient Distributed Systems (SRDS’04), IEEE Computer
Society Press, pp. 208-218, 2004.

Mostéfaoui A., Raynal M. and Travers C., Time-free and
Timeliness Assumptions can be Combined to Get Eventual
Leadership. IEEE Transactions on Parallel and Distributed
Systems, 17(7):656-666, 2006.

Powell D., Failure Mode Assumptions and Assumption
Coverage. Proc. of the 22nd Int’l Symposium on Fault-
Tolerant Computing (FTCS-22), Boston, MA, pp.386-395,
1992.

