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Abstract In this paper we initiate the generalization of the Adversarial Queueing
Theory (AQT) model to capture the dynamics of continuous scenarios in which the

This work was partially supported by EU IST-2004-15964 (AEOLUS), by the Spanish Ministry of
Education and Science under CICYT TIN2005-09198 (ASCE) and CICYT TIN2005-25859-E, by the
Regional Government of Madrid under contract No. 07T/0022/2003, and by the Universidad Rey
Juan Carlos under project No. PPR-2004-42. Also partially supported by the Universidad de Chile
(Mecesup fellowship and Anillo en Redes).

A preliminary version of this work was presented in the 30th International Symposium on
Mathematical Foundations of Computer Science (MFCS), Gdansk, Poland, LNCS, vol. 3618,
pp. 144–155, Springer.

M. Blesa (�) · M. Serna
ALBCOM, LSI, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
e-mail: mjblesa@lsi.upc.edu

M. Serna
e-mail: mjserna@lsi.upc.edu

D. Calzada
ATC, EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain
e-mail: dcalzada@eui.upm.es

A. Fernández · L. López · A.L. Martínez · A. Santos
LADyR, GSyC, ESCET, Universidad Rey Juan Carlos, 28933 Madrid, Spain

A. Fernández
e-mail: anto@gsyc.escet.urjc.es

L. López
e-mail: llopez@gsyc.escet.urjc.es

A.L. Martínez
e-mail: aleonar@gsyc.escet.urjc.es

A. Santos
e-mail: asantos@gsyc.escet.urjc.es

C. Thraves
DIM, Universidad de Chile, 837-0459 Santiago, Chile
e-mail: thraves@dim.uchile.cl

mailto:mjblesa@lsi.upc.edu
mailto:mjserna@lsi.upc.edu
mailto:dcalzada@eui.upm.es
mailto:anto@gsyc.escet.urjc.es
mailto:llopez@gsyc.escet.urjc.es
mailto:aleonar@gsyc.escet.urjc.es
mailto:asantos@gsyc.escet.urjc.es
mailto:thraves@dim.uchile.cl


Theory Comput Syst (2009) 44: 304–331 305

usually assumed synchronicity of the evolution is not required anymore. We propose
an asynchronous model, named continuous AQT (CAQT), in which packets can have
arbitrary lengths, and the network links may have different speeds (or bandwidths)
and propagation delays. With respect to the standard AQT model, these new features
turn out to be significant for the stability of packet scheduling policies that take them
into account, but not so much for the stability of networks.

From the network point of view, we show that networks with directed acyclic
topologies are universally stable, i.e., stable independently of the scheduling policies
and traffic patterns used in it. Interestingly enough, this even holds for traffic patterns
that make links to be fully loaded. Finally, it turns out that the set of universally
stable networks remains the same as in the AQT model and, therefore, the property of
universal stability of networks is decidable in polynomial time.

Concerning packet scheduling policies, we show that the well-known LIS, SIS,
FTGand NFSscheduling policies remain universally stable in the CAQT model. We
introduce other scheduling policies that, although being universally stable in the AQT

model, they are unstable under the CAQT model.

Keywords Adversarial queueing theory · Packet-switched networks · Stability of
networks · Stability of queueing policies

1 Introduction

The Adversarial Queueing Theory (AQT) model [4, 8] has been used in the latest years
to study the stability and performance of packet-switched networks. The AQT model,
(like other adversarial models) allows to analyze the system in a worst-case scenario,
since it replaces traditional stochastic arrival assumptions in the traffic pattern by
worst-case inputs. In this model, the arrival of packets to the network (i.e., the traffic
pattern) is controlled by an adversary that defines, for each packet, the place and
time in which the packet joins the system and, additionally it might decide the path
it has to follow. In order to study non-trivial overloaded situations, the adversary is
restricted so that it cannot overload any link (in an amortized sense). Under these
assumptions, the stability of network systems (G, P , A) is studied. A network system
(G, P , A) is represented by the network topology G , the policy (or protocol) P used
for scheduling the packets at every link, and the adversary A, which defines the traffic
pattern. Stability is the property that at any time the maximum number of packets
present in the system is bounded by a constant that may depend on system parameters.

The original AQT model assumes a synchronous behavior of the network, that
evolves in steps. In each step at most one packet crosses each link. Implicitly, this
assumption means that all the packets have the same size and all the links induce the
same delay in each packet transmission. To the best of our knowledge, this is the first
work that removes the restriction of synchronism.

In this paper we propose a generalization of the AQT model allowing arbitrary
packet lengths, link speeds (bandwidths), and link propagation delays. The network
traffic flow is considered to be continuous in time. Since we do not restrict a synchro-
nous system evolution anymore, we call this model continuous AQT (CAQT). Note
that all the results for the AQT model which are concerned with instability, also hold
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for our CAQT model, e.g., the instability of the FIFO policy at any constant rate [7].
The CAQT model is inspired in the traffic conditions of the session oriented model
proposed by Cruz [11], which is widely studied in the communication networks lit-
erature. The synchronous assumptions of the AQT model limit the capacity of the
adversary as well. In the CAQT model the adversary is more powerful, and any insta-
bility result shown in the AQT model can be reproduced in ours.

We show that several results from the AQT model still hold in the CAQT model.
First, we show that in the case of non-overloading traffic injection rates, having
bounded queue size implies having bounded packet end-to-end delays and vice versa.
Then, we show that networks with a directed acyclic graph (DAG) topology are al-
ways stable even if the links are fully loaded. Concerning packet scheduling policies,
we show that the well-known LIS, SIS, FTG and NFS scheduling policies remain uni-
versally stable in our model. Finally, we show that some scheduling policies which
are based on criteria concerning the length of the packets, the bandwidth of the links
or their propagation delay, can configure unstable systems.

There have been previous generalizations of the AQT model to other synchronous
models for networks with links with different (and possibly variable) capacities, or
links with delays [9, 13, 14]. These works consider packets of unitary length, while
the model we present allows packets of arbitrary lengths. Moreover, they still assume
a synchronous network evolution, to the point that, for instance in [9] all capacities
and slow-downs must have an integral positive value. Another significant difference
between those existing models and the model presented here, is the possibility of
the latter of considering systems with both link capacities (a.k.a. bandwidths) and
delays at the same time. Probably, among the existing cited models, the model pre-
sented in [9] is the closest one. However, there are important differences among that
model and the model we present here. First, as mentioned above, the model in [9]
does always consider capacities and delays as separate features. Second, most of the
results obtained in [9] allow to change dynamically those features; the situation of
static modifications (like the ones we tackle here) is not clear in [9]. In static sce-
narios, only results concerning scheduling policies are provided, namely, that “well
defined” universal stable scheduling policies maintain their universal stability under
static capacities, and that common universally stable policies maintain their univer-
sal stability under static speeds. Other generalizations of the AQT model are those
considering dynamic networks, like networks with failures [2, 3, 5, 6]. These models
that consider failures can be seen as models in which the capacities of the links can
change dynamically over time, between a fixed positive value (when there is no fail-
ure), and zero (when a failure occurs). However, since we consider static capacities,
failures are not considered in this work and remains open the general model with
variable (and possibly null) capacities.

Concerning the length of the packets, the work included in [12] is (to the best
of our knowledge) the only generalization of the AQT model considering packets of
arbitrary lengths (up to a maximum) or links of arbitrary (not integral) speeds and
propagation delays. In that model the adversary is more powerful than in the AQT

model, and a sufficient condition on the adversary injection rate for assuring network
stability is presented.
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2 System Model

Like AQT, the CAQT model represents a network as a finite directed graph G in which
the set of nodes V (G) represent the hosts, and the set of edges E(G) represent the
links between those hosts. Each link e ∈ E(G) in this graph has associated a posi-
tive but not infinite transmission speed (a bandwidth), denoted as Be , which does not
change over time. The bandwidth of a link establishes how many bits can be transmit-
ted in the link per time unit. Instead of considering the bandwidth as a synonym for
parallel transmission, we relate the bandwidth to the transmission velocity. We con-
sider that only one bit can be put in a link e ∈ E(G) at each time, and that conceptually
the sender puts the associated signal level to the corresponding bit for 1/Be seconds
for each bit. This means that a bit can be partially transmitted or partially received at
a given time. Let us denote as Bmin = mine∈E(G) Be and as Bmax = maxe∈E(G) Be the
minimum and maximum bandwidth, respectively, of the edges in G .

Each link e ∈ E(G) has also associated a propagation delay, denoted here as Pe,
being Pe ≥ 0. The propagation delay of an edge does not change over time. This
delay, measured in seconds, establishes how long it takes for a signal (the start of a bit,
for instance) to traverse the link. This parameter has to do with the propagation speed
of the changes in the signal that carry the bits along the physical medium used for the
transmission. We will denote as Pmin = mine∈E(G) Pe and Pmax = maxe∈E(G) Pe the
minimum and maximum propagation delay, respectively, of the edges in G .

Like in the AQT model, we assume the existence of an adversary that defines the
traffic pattern of the system by choosing when and where to inject packets into the
system, and the path to be followed by each of them. We assume that a packet path
is edge-simple, in the sense that it does not contain the same edge more than once (it
can visit the same vertex several times, though). Again, we restrict the adversary so
that it cannot trivially overload any link. To do so, we also define two system-wide
parameters: the injection rate r (with 0 < r ≤ 1), and the burstiness b (with b ≥ 1).
For every link e ∈ E(G), if we denote by Ne(I) the total size (in bits) of the packets
injected by the adversary in the interval I whose path contains link e, it must be
satisfied that

Ne(I) ≤ r|I |Be + b.

We call an adversary A that satisfies this restriction an (r, b)-adversary. The injection
rate r is sometimes expressed alternatively as (1 − ε), with ε ≥ 0.

Regarding packet injections, we assume that the adversary injects packets instan-
taneously. From the above restriction, this implies that packets have a maximum
size of b bits. In general, we will use Lp to denote the length (in bits) of a packet
p, and Lmax = maxp Lp ≤ b to denote the maximum packet length. Observe that,
once a packet p starts being transmitted through a link e ∈ E(G), it will only take
Pe + Lp/Be units of time more until it crosses it completely.

Let us now look at the packet switching process. We assume that each link has
associated an output queue, where the packets that have to be sent across the link
are held. The still unsent portion of a packet that is being transmitted is also held in
this queue. In fact, in order to simplify the analysis, if a bit has only been partially
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Fig. 1 Elements involved in the nodes and links of the network in the CAQT model

sent, we assume that the still unsent portion of the bit still resides in this queue.1 A
packet can arrive to a node either by direct injection of the adversary or by traversing
some incoming link. In the latter case we assume that only full packets are dispatched
(moved to an output queue). Hence, we assume that each link has a reception buffer
in the receiving node where the portion of a partially received packet is held. As soon
as the very last bit of a packet is completely received, the packet is dispatched instan-
taneously (by a packet dispatcher) to the corresponding output queue (or removed, if
this is the final node of the packet). Figure 1 shows these network elements.

The definition of stability in the CAQT model is analogous to the definitions stated
under other adversarial models.

Definition 1 Let G be a network with a bandwidth Be and a propagation delay Pe

associated to each link e, P be a scheduling policy (or protocol), and A an (r, b)-
adversary, with 0 < r ≤ 1 and b ≥ 1. The system (G, P , A) is stable if, at every
moment, the total number of packets (or, equivalently, the total number of bits) in the
system is bounded by a value C, that can depend on the system parameters.

We also use common definitions of universal stability. We say that a scheduling
policy P is universally stable if the system (G, P , A) is stable for each network G and
each (r, b)-adversary A, with 0 < r < 1 and b ≥ 1. Similarly, we say that a network
G is universally stable if the system (G, P , A) is stable for each greedy scheduling
policy2 P and each (r, b)-adversary A, with 0 < r < 1 and b ≥ 1.

1Clearly, a queue can only store “whole” bits. However, since the transmission of a bit over a link of
finite bandwidth is not done instantaneously, between the start and the end of the transmission it can be
considered that the bit has been partially sent. Then the assumption that the unsent portion is still held in
the output queue of the link allows to account for the whole bit at all times.
2Greedy (or work-conserving) protocols are those forwarding a packet across a link e whenever there is
at least one packet waiting to traverse e. Three types of packets may wait to traverse a link in a particular
instant of time: the incoming packets arriving from adjacent links, the packets injected directly into the
link, and the packets that could not be forwarded in previous steps. At each time step, only one packet
from those waiting is forwarded through the link; the rest are kept in the output queue.
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Some additional notation is needed to describe the state of the queues and the
packets at a specific time step. We will use Qt(e) to denote the queue size (in bits)
of edge e ∈ E(G) at time t , and define Qmax(e) = maxt Qt (e). Similarly, we will
use Rt(e) to denote the number of bits at time t that are crossing link e, or already
crossed it but are still in its reception buffer at the target node of e. Then, we define
Rmax(e) = maxt Rt (e). Observe that Rmax(e) < PeBe + Lmax and is hence bounded.
At(e) will denote the number of bits in the system that require to cross e and still
have to be transmitted across link e at time t . The bits in Qt(e) are included in At(e),
but those in Rt(e) are not.

3 General Results

We point out some general results that apply to every system (G, P , A) in the CAQT

model, independently of which is the network topology, the scheduling policy used
and the traffic pattern.

3.1 Relation between Maximum Queue Size and Maximum Delay

We show that for injection rate r < 1, having bounded queues is equivalent to having
bounded end-to-end packet delay. This generalizes a result from the AQT model to
the stronger CAQT model.

Theorem 1 Let G be a network, P a greedy scheduling policy, and A an (r, b)-
adversary with r ≤ 1 and b ≥ 1. If the maximum end-to-end delay is bounded by D

in the system (G, P , A), then the maximum queue size of an edge e is bounded by
(D − Pe)Be.

Proof We prove the claim by contradiction. Suppose there is some time t at which e

has Qt(e) > (D −Pe)Be bits in its queue. Then, the last packet p to completely cross
e (out of those with bits in the queue at time t) will do so at a time

t ′ ≥ t + Qt(e)

Be

+ Pe > t + (D − Pe)Be

Be

+ Pe = t + D.

Therefore, the end-to-end delay of p cannot be bounded by D. �

Theorem 2 Let G be a network with m = |E(G)| links, P a greedy scheduling policy,
and A an (r, b)-adversary, with r = 1 − ε < 1 and b ≥ 1. If the maximum queue size
is bounded by Q in the system (G, P , A), then the end-to-end delay of a packet p

with path e1, . . . , ed is bounded by

d∑

i=1

mQ + ∑
e∈E(G) Rmax(e) + b

εBei

+ Pei
.
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Proof We bound the time p takes to cross every edge ei . Let us assume that p arrives
at the queue of ei at time t . Note that all the bits in the system are either in the
output queues, crossing links, or in the reception buffers. Then, there are at most
mQ + ∑

e Rmax(e) bits in the whole system at time t . Hence, the queue of ei will be
empty after at most an interval of time of length �, such that

�Be = mQ +
∑

e

Rmax(e) + r�Be + b.

Hence, p will completely cross e by time

t ′ ≤ t + mQ + ∑
e Rmax(e) + b

(1 − r)Be

+ Pe. �

Then, the following corollary follows from the above two lemmas.

Corollary 3 Let G be a network, P a greedy scheduling policy, and A an (r, b)-
adversary, with r < 1 and b ≥ 1. In the system (G, P , A) the maximum end-to-end
delay experienced by any packet is bounded if and only if the maximum queue size is
bounded.

3.2 Initial Configurations

The moment in which a system (G, P , A) starts its dynamics is usually denoted as
t0. Moreover, the system can start either with no packet placed at any element of
the network or with some kind of initial configuration. Usually, an initial configu-
ration C0 consists of a set S of packets located in the output queues of the network
links. The following theorem formalizes the fact that starting with or without initial
configuration is not a very relevant matter for the stability of the system.

Theorem 4 A system (G, P , A), where G is a network, P a greedy scheduling policy,
and A an (r, b)-adversary with r ≤ 1 and b ≥ 1, that starts with an initial configu-
ration C0 (consisting of a set S of packets in the network output queues) can be
simulated by a system (G, P , A′) starting from an empty configuration, where A′ is
an (r,AS + b)-adversary and AS = maxe A0(e) is the maximum number of bits that
have to be transmitted across any given edge in the paths of the set S of packets.

Proof Trivially, any initial configuration C0 for a system (G, P , A) can be built from
an empty initial configuration at time t0 if we allow a burstiness which is large enough
to inject all the packets in the initial configuration at the first step. Thus, any system
(G, P , A) that starts with a non-empty initial configuration as described can be sim-
ulated by another system (G, P , A′) that starts with an empty one. �

Corollary 5 A policy or network that is universally stable for systems with empty ini-
tial configurations is also universally stable for initial configurations in which there
are initially packets in the network output queues.
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4 Stability of Networks

We focus now on the study of stability of networks. In Sect. 4.1, we show that net-
works with a directed acyclic graph topology are universally stable, even when the
traffic pattern can fully load the links, i.e., even for the injection rate r = 1. Moreover,
as it turned out to be in the AQT model, the systems with topologies in the shape of a
directed ring are also universally stable in the CAQT model for injection rates smaller
than the unity. Sect. 4.2 covers this latter result. Both results, together with some re-
sult concerning the stability maintenance of acyclically connected digraphs, leads us
towards the characterization of the property of universal stability of networks, which
we fully study in Sect. 4.3.

4.1 Directed Acyclic Graphs

We study first the stability of networks whose topology define a directed acyclic
graphs. Observe that as it happens for the AQT model, the absence of cycles together
with the restrictions to which the adversary is subjected, makes the emergence of
bottlenecks and the accumulation of packets not possible. Although inspired on the
technique used in [8] under the AQT model for proving an analogous result, the tech-
nique used here is not a direct adaptation of it.

Theorem 6 Let G be a directed acyclic graph, P any greedy scheduling policy, and
A any (r, b)-adversary with r ≤ 1 and b ≥ 1. The system (G, P , A) is stable.

Proof Let us first denote with Te the node at the tail of link e (i.e., the node that
contains the output queue of e), for every edge e ∈ E(G). Let us also denote with
in(v) the set of incoming links to node v, for all v ∈ V (G). Let us define the function
� on the edges of G as

�(e) = Q0(e) + b + Rmax(e) +
∑

e′∈in(Te)

�(e′).

If we call nodes without incoming links sources, we will show that At(e) + Rt(e) is
bounded by �(e), for all e and all t ≥ 0, by induction on the maximum distance of Te

to a source (i.e., the length of the longest directed path from any source to Te). Then,
stability follows.

The base case of the induction is when Te is a source. In this case, At(e) = Qt(e)

and �(e) = Q0(e)+b+Rmax(e). Let us fix a time t and consider two cases, depend-
ing on whether in the interval [0, t] the output queue of e was empty at any time. If it
was never empty, then by the restriction on the adversary and the fact that P is greedy
we have that

Qt(e) ≤ Q0(e) + rtBe + b − tBe ≤ Q0(e) + b.

Otherwise, if time t ′ was the last time in interval [0, t] that the queue of e was empty
(i.e., Qt ′(e) = 0), by the same facts,

Qt(e) ≤ Qt ′(e) + r(t − t ′)Be + b − (t − t ′)Be ≤ b.
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Clearly, in either case,

At(e) + Rt(e) ≤ Qt(e) + Rmax(e) ≤ Q0(e) + b + Rmax(e) = �(e).

Now, let us assume that the maximum distance of Te to any source is k > 0. Note
that for any edge e′ ∈ in(Te), the maximum distance of Te′ to a source is at most k−1.
Then, by induction hypothesis, we assume that (At (e

′)+Rt(e
′)) ≤ �(e′) for all t ≥ 0

and all e′ ∈ in(Te). Note that At(e) ≤ Qt(e)+∑
e′∈in(Te)

(At (e
′)+Rt(e

′)). Again, we
fix t and consider separately the case when the output queue of e was never empty in
the interval [0, t] and the case when it was. In the first case we have that

At(e) ≤ Q0(e) + rtBe + b − tBe +
∑

e′∈in(Te)

(A0(e
′) + R0(e

′))

≤ Q0(e) + b +
∑

e′∈in(Te)

�(e′).

In the second case, if time t ′ was the last time in interval [0, t] that the queue of e

was empty (i.e., Qt ′(e) = 0), we have that

At(e) ≤ Qt ′(e) + r(t − t ′)Be + b − (t − t ′)Be +
∑

e′∈in(Te)

(At ′(e
′) + Rt ′(e

′))

≤ b +
∑

e′∈in(Te)

�(e′).

In either case, we have that

At(e) + Rt(e) ≤ Q0(e) + b + Rmax(e) +
∑

e′∈in(Te)

�(e′) = �(e).
�

4.2 Rings

We study now the simplest networks which include some cyclicity: the directed
rings. Let G denote the n-node ring with V (G) = {0,1, . . . , n − 1}, E(G) =
{(i, ((i + 1) mod n) : i ∈ V (G)} and A any (r, b)-adversary with r = 1 − ε < 1 and
b ≥ 1. We show that the rings are universally stable in the CAQT model, i.e., that any
system (G, A, P ) is stable whatever adversary A and greedy scheduling policy P is
considered. The proof follows the lines of that for the AQT model presented in [4].

Previously, we need to state some partial results in the form of lemmas. Let us
consider some packet p in the system (G, A, P ). We suppose that it was injected in
instant T0 at the node 0 with some node d as destination. Let T ′ > T0 be some time at
which it was not yet absorbed. Let 0,1, . . . , s be the nodes visited by p in the interval
[T0, T

′]. The edge (i, i + 1) will be named edge i for simplicity. For l = 0, . . . , s, let
Tl denote the time at which p arrives at the output buffer of the edge l; by abuse of
notation, we will also write Ts+1 = T ′.

For j an edge of G , and t ∈ [T0, T
′], we define At(j) as in Sect. 2, i.e., as the

number of bits in the system that require to cross j and still have to be transmitted
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across link j at time t (recall that the bits in Qt(j) are included in At(j) but those
in Rt(j) are not). Based on the maximum amount of packet’s bits requiring any edge
j that are injected by the adversary in an interval a time, and based on the amount
bits consumed by j in that interval of time, we have the following basic property of
At(j), which follows from the definition:

Lemma 7 Let t and t ′ be such that t ′ ≤ t . Then

At(j) ≤ At ′(j) + (1 − ε)(t − t ′)Bj + b − z,

where z is the number of bits sent across edge j in the interval [t ′, t].

We define

Q = max
j∈G, t∈[T0,T

′)
At (j). (1)

For j and t as before, we now define the function f as follows:

f (j, t) =
{

Q + bj, for t = T0,

Q − ε(t − T0)Bmin + (b + 2PmaxBmax + Lmax)(j + 1), for t > T0.

This function f is just a technicality that, taking time T0 as reference, tries to
quantify the maximum amount of packets in the system that require edge j at any
certain time t ≥ T0. We note the following properties that follow from the definition
of this function f .

Lemma 8

(i) f (j, t) = f (j,T0) − ε(t − T0)Bmin + b + (1 + j)(2PmaxBmax + Lmax),

∀t > T0.

(ii) f (j, t) = f (j, t ′) − ε(t − t ′)Bmin, ∀t > t ′ > T0.

(iii) f (j, t) = f (j − 1, t) + b + 2PmaxBmax + Lmax, ∀t > T0.

Proof Property (i) is obtained from the following reasoning: if t > T0, then

f (j, t) = Q − ε(t − T0)Bmin + (b + 2PmaxBmax + Lmax)(j + 1)

= Q − ε(t − T0)Bmin + b(j + 1) + (2PmaxBmax + Lmax)(j + 1)

= Q + bj − ε(t − T0)Bmin + b + (2PmaxBmax + Lmax)(j + 1)

= f (j,T0) − ε(t − T0)Bmin + b + (2PmaxBmax + Lmax)(j + 1),

where the first equality states the definition of f , the second equality and the third
equality apply distributiveness relative to b and (j +1), and the forth equality applies



314 Theory Comput Syst (2009) 44: 304–331

the definition of f (j,T0). Property (ii) is obtained from the following reasoning: if
t > T0, then

f (j, t) = Q − ε(t − T0)Bmin + (b + 2PmaxBmax + Lmax)(j + 1)

= Q − (ε(t − t ′) + ε(t ′ − T0))Bmin + (b + 2PmaxBmax + Lmax)(j + 1)

= f (j, t ′) − ε(t − t ′)Bmin,

by applying the definition of f (j, t) in the first equality, replacing (t − T0) by
((t − t ′) + (t ′ − T0)) and applying distributiveness in the second equality, and by
the definition of f (j, t ′) in the third equality. Property (iii) is obtained from the fol-
lowing reasoning: if t > T0, then

f (j, t) = Q − ε(t − T0)Bmin + (b + 2PmaxBmax + Lmax)(j + 1)

= Q − ε(t − T0)Bmin + (b + 2PmaxBmax + Lmax)((j − 1 + 1) + 1)

= (Q − ε(t − T0)Bmin + (b + 2PmaxBmax + Lmax)(j − 1 + 1))

+ (b + 2PmaxBmax + Lmax)

= f (j − 1, t) + (b + 2PmaxBmax + Lmax),

where the first equality states the definition of f , the second equality replaces (j + 1)

by (j − 1 + 1 + 1), and the third equality applies distributiveness over (j − 1 +
1 + 1). �

Definition 2 If j is an edge of G and t is a time step, we say that the pair (j, t) is
applicable if either

(j ∈ {0,1, . . . , s} and t ∈ [T0, Tj+1])
or

(j > s and t ∈ [T0, T
′]).

Note the following basic property of applicability.

Lemma 9 If j ’s output buffer is empty at a time t ′ ∈ [T0, Tj+1 −Pj ), then (j − 1, t ′)
is applicable.

Proof First we can notice that t ′ cannot be in [Tj , Tj+1 − Pj ), because the packet
p arrived to j ’s output buffer at time Tj and the last bit of p fully leaves it at time
Tj+1 − Pj , then it cannot be empty during this interval. Now, if t ′ ∈ [T0, Tj ] then the
pair (j − 1, t ′) is applicable by Definition 2. �

The crux of our analysis is the following lemma.

Lemma 10 For all applicable pairs (j, t), we have At(j) ≤ f (j, t).
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Proof We prove the lemma by induction on j ≥ 0, and for fixed j for all t .
First, we prove for j = 0 and for all t , which is the first step of the induction.

In this case you cannotice that (0, t) is applicable if and only if t ∈ [T0, T1]. In the
case (0, T0) we have f (0, T0) = Q ≥ AT0(0). Note that there is a continuous flow
of bits sent across j = 0 during the interval [T0, T1 − P0], because the packet p

arrives to j = 0 at time T0 and the last bit of p completely leaves it at time T1 − P0.
Then,

At(0) ≤ AT0(0) + (1 − ε)(t − T0)B0 + b − (t − P0 − T0)B0

= AT0(0) − ε(t − T0)B0 + b + P0B0

≤ f (0, T0) − ε(t − T0)Bmin + b + PmaxBmax

= f (0, t) − PmaxBmax − Lmax ≤ f (0, t).

The first inequality follows from Lemma 7, while the next equality is just a manip-
ulation of the expression right above. The second inequality follows from the defini-
tion of Bmin, Pmax and Bmax and the induction hypothesis. The next equality follows
from Lemma 8, and the last inequality is a trivial deduction.

Now we want to prove the claim for all j > 0, for this we use induction on j .
We assume, by induction hypothesis, that At(j − 1) ≤ f (j − 1, t) for all applicable
(j − 1, t), and we will prove it for j . For T0 we have that (j, T0) is applicable, and
we have f (j,T0) = Q + bj ≥ Q ≥ AT0(j).

Now, consider any applicable pair (j, t), with t > T0. If for all t ′ ∈ [T0, t −Pj ) j ’s
output buffer is not empty at time t ′, then

At(j) ≤ AT0(j) + (1 − ε)(t − T0)Bj + b − (t − Pj − T0)Bj

= AT0(j) − ε(t − T0)Bj + b + PjBj

≤ f (j,T0) − ε(t − T0)Bmin + b + PmaxBmax

= f (j, t) − (2PmaxBmax + Lmax)j − (PmaxBmax + Lmax) ≤ f (j, t).

As before, the first inequality follows from Lemma 7, while the next equality is
just a manipulation of the expression right above. The second inequality follows from
the definition of Bmin, Pmax and Bmax and the induction hypothesis. The next equality
follows from Lemma 8, and the last inequality is a trivial deduction.

Otherwise, there is some step t ′ ∈ [T0, t − Pj ) in which the j ’s output buffer is
empty. Let us take the longest such t ′ < t − Pj . Notice that; by definition, (j, t)

is applicable when t ∈ [T0, Tj+1]. Then, in this case t ′ ∈ [T0, Tj+1 − Pj ). Now by
Lemma 9 we have that the pair (j − 1, t ′) is also applicable. Therefore,

At(j) ≤ At ′(j) + (1 − ε)(t − t ′)Bj + b − (t − Pj − t ′)Bj

≤ At ′(j − 1) + Pj−1Bj−1 + Lmax + b + PjBj − ε(t − t ′)Bj

≤ f (j − 1, t ′) + b + 2PmaxBmax + Lmax − ε(t − t ′)Bmin

= f (j, t ′) − ε(t − t ′)Bmin = f (j, t).



316 Theory Comput Syst (2009) 44: 304–331

The first inequality follows from Lemma 7. The second inequality follows from skip-
ping some terms of the expression right above and from the fact that, since the output
buffer of j is empty at time t ′, then At ′(j) ≤ At ′(j − 1) + Pj−1Bj−1 + Lmax. The
induction hypothesis is applied in the third inequality, as well as the definition of
Bmin, Pmax and Bmax. The next two equalities are obtained from Lemma 8 and by
manipulation of the previous expressions. �

Using this lemma, we now prove the following results:

Theorem 11 (G, A, P ) is stable, and there are never more than

(1 − ε)
(b + 2PmaxBmax + Lmax)n

εBmin
Bmax + b

bits in the system that require any given edge.

Proof The second statement implies the first, so we will concentrate on proving the
second statement. Set

Q′ = ((1 − ε)(b + 2PmaxBmax + Lmax)nBmax/εBmin) + b,

and suppose that the theorem is not true. Let T ′ be the first time at which Q′ + 1 bits
in the system require any edge. Let T0 < T ′ denote the time at which the oldest of
these bits, which belongs to a packet p, was injected. Relabel the nodes to make 0
the node at which p was injected. The link of interest will become k ≤ n − 1. Then,
at time T ′ packet p has not crossed edge k yet, and hence (k, T ′) is applicable. Note
that for Q as defined in (1) we have Q ≤ Q′. In interval [T0, T

′] at most

(T ′ − T0)(1 − ε)Bmax + b

bits can be injected requiring any edge. Therefore,

Q′ ≤ (T ′ − T0)(1 − ε)Bmax + b,

and hence

ε(T ′ − T0)Bmin ≥ ε
Q′ − b

(1 − ε)Bmax
Bmin

= ε
(b + 2PmaxBmax + Lmax)n

εBmin
Bmin

= (b + 2PmaxBmax + Lmax)n. (2)

By our assumption we have Q′ < AT ′(k) and, by Lemma 10, we have AT ′(k) ≤
f (k,T ′). Then, by transitivity, we have that Q′ < f (k,T ′). Thus,

Q′ < f (k,T ′)

= Q − ε(T ′ − T0)Bmin + (b + 2PmaxBmax + Lmax)(1 + k)
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≤ Q′ − ε(T ′ − T0)Bmin + (b + 2PmaxBmax + Lmax)n

≤ Q′ − (b + 2PmaxBmax + Lmax)n + (b + 2PmaxBmax + Lmax)n = Q′

is a contradiction. In this latter reasoning, the first equality follows from the definition
of f (k,T ′). The second inequality follows from the fact that k ≤ n − 1, and thus
k+1 ≤ n; while the third inequality follows from the previously stated Inequality (2).
Finally, the last equality is trivially correct. �

Theorem 12 The maximum number of steps a packet spends in the system is

Bmax((b + 2PmaxBmax + Lmax)n)

ε2B2
min

+ b

εBmin
+ Pmax.

Proof Suppose that a packet p is injected at time T0, with origin 0 (w.l.o.g.) and
destination k + 1 (mod n). Then k is the last edge it has to traverse. Suppose that p

did not completely leave the output buffer of edge k at time T ′, where

T ′ = T0 + Bmax((b + 2PmaxBmax + Lmax)n)

ε2B2
min

+ b

εBmin
.

We can manipulate this expression and obtain the following equality,

T ′ − T0 = 1

εBmin

(
Bmax((b + 2PmaxBmax + Lmax)n)

εBmin
+ b

)
,

and thus also the following one,

ε(T ′ − T0)Bmin = Bmax((b + 2PmaxBmax + Lmax)n)

εBmin
+ b, (3)

which will be useful later. By Theorem 11 we can apply Lemma 10 with

Q = (1 − ε)
(b + 2PmaxBmax + Lmax)n

εBmin
Bmax + b,

and we have

AT ′(k) ≤ f (k,T ′)

= Q − ε(T ′ − T0)Bmin + (b + 2PmaxBmax + Lmax)(1 + k)

≤ Q − Bmax((b + 2PmaxBmax + Lmax)n)

εBmin
− b + (b + 2PmaxBmax + Lmax)n

= (1 − ε)
(b + 2PmaxBmax + Lmax)n

εBmin
Bmax + b

− Bmax((b + 2PmaxBmax + Lmax)n)

εBmin
− b + (b + 2PmaxBmax + Lmax)n

= − (b + 2PmaxBmax + Lmax)n

Bmin
Bmax + (b + 2PmaxBmax + Lmax)n
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= ((b + 2PmaxBmax + Lmax)n)

(
1 − Bmax

Bmin

)
≤ 0.

which is a contradiction. In this latter reasoning, the first inequality follows from
Lemma 10, and the next equality follows from the definition of f . The second in-
equality follows from the fact that k ≤ n − 1, and thus k + 1 ≤ n, and from (3). The
equalities coming afterwards result from the manipulation of the expressions and,
finally, the last inequality is a triviality since Bmax/Bmin ≥ 1. �

4.3 Characterization of Universal Stability

In this section we give a characterization for the property of universally stability
of networks, thus identifying which networks are universally stable under CAQT

model. Recall that a network G is universally stable if the system (G, P , A) is
stable for every greedy scheduling policy P and every (r, b)-adversary A (see
Sect. 2). To characterize the property, we proceed in a similar way as done in [1],
where a full characterization of the same property was provided under the AQT

model.
In the following we will consider bounded (r, b)-adversaries with r = 1 − ε < 1.

Lemma 13 If digraphs G1 and G2 are universally stable in the CAQT model, then so
is any graph formed by joining them with edges that go only from G1 to G2.

Proof Assume that we are working against an (1 − ε, b) adversary. Since G1 is uni-
versally stable, any bit which is injected in G1 gets out of G1 within T1 times steps,
where T1 is some constant that depend on 1 − ε and b. Some of these bits may
then enter to G2. Now consider a time window T2 units long. Any new bits that en-
ter to G2 during this window must have been introduced during T1 + T2 continuous
units. The number of bits introduced during this interval for an edge can be at most
(T1 + T2)(1 − ε)Bmax + b = T2Bmax(1 − ε) + T1Bmax(1 − ε) + b.

Then we can say that these bits could have been introduced by an (1 − ε, b′)
adversary, where b′ = b + T1Bmax(1 − ε). By definition of universal stability, G2 is
then stable against such adversary and therefore the traversal time for bits is bounded.
Due to the finite upper bound on the length of the packets, this bound applies to
packets and therefore also to the queue lengths in G . �

As a consequence of the previous result we have the following theorem.

Theorem 14 A digraph G is universally stable in the CAQT model if and only if all
its strongly connected components are universally stable.

Observe that this theorem, together with the previous lemma, assure the universal
stability of unicyclic digraphs, i.e., those digraphs with only one cycle and possibly,
directed subdigraphs rooted in the nodes of that unique cycle.

Once all these types of graphs (namely directed acyclic digraphs, rings and uni-
cyclic digraphs, see Sects. 4.1 and 4.2) have been identified as universally stable,
the next step towards the characterization of the property is to detect the simplest
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Fig. 2 Minimum forbidden subdigraphs characterizing the property of universal stability of networks [1]

digraphs that are not universally stable in the CAQT model. Then, we must consider
the smallest non-unicyclic digraphs whose cycles are bilaterally connected, i.e., with
edges that go from one cycle to another and vice versa. Those graphs are U 1 and U 2

as depicted in Fig. 2. Observe that U 1 is the smallest non-unicyclic digraph whose
cycles share an edge, and U 2 is the smallest non-unicyclic digraph whose cycles share
a vertex.

After these two digraphs U 1 and U 2, we want to consider the whole family of
digraphs that contain the essence of their structure, i.e., those digraphs which are
defined by iteratively extending their topologies. Given a digraph G , we use the sub-
division operations defined in [1] to build that family. We will denote as E (G) the
family of digraphs formed by G and all the digraphs obtained from G by successive
subdivision of any of the following two types to it:

Definition 3 (Subdivision operations [1])

– The subdivision of an arc (u, v) in a digraph G consists in the addition of a new
vertex w and the replacement of (u, v) by (u,w) and (w,v).

– The subdivision of a 2-cycle (u, v), (v,u) in a digraph G consists in the addition
of a new vertex w and the replacement of (u, v), (v,u) by the arcs (u,w), (w,u),
(v,w) and (w,v).

In the AQT model, we know that neither the digraphs U 1, U 2 nor the families that
they define by subdivision operations are universally stable. Even more, we know that
these digraphs characterize the property of universal stability of networks. These two
results are stated in the following lemmas from [1]:

Theorem 15 ([1]) All digraphs in E (U 1) ∪ E (U 2) are not stable under the NTG-LIS

protocol (in the AQT model).

Theorem 16 ([1]) A digraph is universally stable (in the AQT model) if and only if it
does not contain as a subdigraphs any of the digraphs in E (U 1) ∪ E (U 2).

Since the instability results from the AQT model can be extended to the CAQT

model, we have that all digraphs in E (U 1) ∪ E (U 2) are not stable under the same
scheduling policy in the CAQT model. Moreover, since the previously considered
digraphs (namely acyclic ones, rings and unicyclic ones) are universally stable under
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the CAQT model, we can state that the property of universal stability of networks is
characterized by the same family of digraphs as stated in Theorem 16.

Corollary 17 A digraph is universally stable in the CAQT model if and only if it does
not contain as a subdigraphs any of the digraphs in E (U 1) ∪ E (U 2).

Corollary 18 The property of universal stability of networks in the CAQT model can
be decided in polynomial time.

5 Stability of Queueing Policies

Stability can also be studied from the point of view of the protocols. Unstable
scheduling policies in the AQT model are also unstable in the CAQT model. In the
following, we show that the so-called LIS, SIS, FTG and NFS protocols are universally
stable in the CAQT model, as they were in the AQT model. The techniques used here to
show their universal stability under CAQT are inspired on those used in [4], however
some of them introduce significant variations.

5.1 Universal Stability of LIS

The LIS (longest-in-system) scheduling policy gives priority to the packet which was
earliest injected in the system. Independently of the network topology and the (r, b)-
adversary, any system (G, LIS, A) is stable.

We first show a bound on the time that a packet needs to cross his path. Consider
some packet p, injected at time T0, and whose path crosses edges e1, e2, . . . , ed , in
this order. We use Ti to denote the time instant in which p finishes crossing edge ei ,
for i = 1, . . . , d . Let t denote some time in [T0, Td ]. Let us denote by gt the injection
time of the oldest packet in the system at time t . We define c = maxt∈[T0,Td ] t − gt .

Lemma 19 Td − T0 ≤ (1 − εd)c + (1−εd )( b
Bmin

+Pmax)

1−ε
.

Proof Packet p reaches the tail of edge ei at time Ti−1. Thus, from the definition of c,
only packets injected in the interval [Ti−1 − c,T0] can block p in the queue of ei . The
packets injected in that interval include p and have at most r(T0 − Ti−1 + c)Bei

+ b

bits. Hence,

Ti ≤ Ti−1 + r(T0 − Ti−1 + c)Bei
+ b − Lp

Bei

+ Lp

Bei

+ Pei

= εTi−1 + (1 − ε)(c + T0) + b

Bei

+ Pei

≤ εTi−1 + (1 − ε)(c + T0) + b

Bmin
+ Pmax.
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Thus, solving the recurrence, we obtain

Td ≤
(

(1 − ε)(c + T0) + b

Bmin
+ Pmax

) d−1∑

i=0

εi + εd T0

=
(

(1 − ε)(c + T0) + b

Bmin
+ Pmax

)
1 − εd

1 − ε
+ εd T0

= (1 − εd) c + (1 − εd)( b
Bmin

+ Pmax)

1 − ε
+ T0

and the claim follows. �

Theorem 20 Let G be a network, A an (r, b)-adversary with r = 1 − ε < 1, and d

the length of the longest simple directed path in G . Then all packets spend less than
( b
Bmin

+ Pmax)/(rε
d) time in the system (G, LIS, A).

Proof Let c′ = ( b
Bmin

+ Pmax)/((1 − ε)εd) and assume that at time t is the first time
that a packet p satisfies t − gt = c′, i.e., the first time that a packet p has been in
the system for c′ time. We apply the previous Lemma 19 to this packet p. From that
lemma, p should have been absorbed in at most

(1 − εd) c′ + (1 − εd)( b
Bmin

+ Pmax)

1 − ε

= c′ − ( b
Bmin

+ Pmax) − (1 − εd)( b
Bmin

+ Pmax)

1 − ε
< c′

time, and a contradiction is reached. �

Corollary 21 Let G be a network, A an (r, b)-adversary with r = 1 − ε < 1, and d

the length of the longest edge-simple directed path in G . Then, the system (G, LIS, A)

is stable, and there are always less than ( b
Bmin

+ Pmax) ε−dBmax + b bits trying to
cross any edge e.

5.2 Universal Stability of SIS

The SIS (shortest-in-system) scheduling policy gives priority to the packet which was
injected the latest in the system. In the case of the SIS protocol, bounding the size of
the packets recently injected is related to bounding the time that a packet p requires
to cross the edge e. The following lemma provides us with such a bound:

Lemma 22 Let p be a packet that, at time t , is waiting in the queue of edge e ∈ E(G).
At that instant, let k − 1 be the total size in bits of the packets in the system that
also require e and that may have priority over p (i.e., that were injected later in the
system). Then p will start crossing e in at most (k + b)/(εBe) units of time.
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Proof The lemma can be proved by contradiction. Suppose that the packet p is not
transmitted across the edge e in the claimed units of time. Then, other packets dif-
ferent from p must have crossed the edge meanwhile. Those packets, must have also
had priority over p; however, during that time, the only packets in the system that
have priority over p are, either those comprising the k − 1 bits existing at time t , or
those that have been injected meanwhile. During that time, a total size of at most

(k − 1) +
(

(1 − ε)
k + b

εBe

Be + b

)

bits belong to packets that have priority over p. The packet p would be transmitted
right after these bits are transmitted; since these bits would require at most

(k − 1) + ((1 − ε) k+b
εBe

Be + b)

Be

<
k + b

εBe

units of time to be sent across e, this leads to a contradiction. �

Observe that, once the packet p starts being transmitted through the link e, it will
only take Pe + Lp/Be units of time more until it crosses it completely. Using the
bound obtained in Lemma 22 in a recursive way, we can derive more general bounds,
thus proving the universal stability of the SIS scheduling policy.

Theorem 23 Let G be a network, A an (r, b)-adversary with r = 1 − ε < 1 and
b ≥ 1, and d the length of the longest edge-simple directed path in G . The system
(G , SIS, A) is stable and, moreover:

– No queue ever contains kd + Lmax bits, and
– No packet spends more than (d(b + εLmax) + ∑d

i=1 ki)/(εBmin) + dPmax time in
the system,

where ki is defined according to the following recurrence:

ki =
⎧
⎨

⎩

b for i = 1,

ki−1 + (1 − ε)

(
ki−1 + b

εBmin
+ Lmax

Bmin
+ Pmax

)
Bmax + b for 1 < i ≤ d .

Proof We first show that, when a given packet p, with path �p = {e1, . . . , e|�p |},
|�p| ≤ d , arrives at the queue of ei , the total size of the packets with priority over p

that also require some edge ej ∈ �p is at most ki − 1.
This can be proved by induction on the position i of the edge ei in the path �p . The

claim holds for i = 1, since the only packets requiring any ej ∈ �p that at the time
of p’s injection could have priority over p are those injected at the same time; whose
total size is at most b − 1 bits (since Lp ≥ 1). Let us now assume that the claim holds
for some i ≥ 1 (inductive hypothesis). Then, using the bound in Lemma 22, p will
completely arrive at the queue of ei+1 in at most

ki + b

εBei

+ Lp

Bei

+ Pei
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units of time more. During that time, at most another

(1 − ε)

(
ki + b

εBei

+ Lp

Bei

+ Pei

)
Bej

+ b ≤ (1 − ε)

(
ki + b

εBmin
+ Lmax

Bmin
+ Pmax

)
Bmax + b

bits of packets requiring an edge ej could be injected. According to the SIS policy,
those packets have priority over p. Thus, when p has completely arrived to ei+1,
there is a total amount of at most

(ki − 1) + (1 − ε)

(
ki + b

εBmin
+ Lmax

Bmin
+ Pmax

)
Bmax + b = ki+1 − 1

bits (belonging to packets in the system) which require an edge e and have priority
over p. This validates the induction and proves the claim.

Suppose now that, at some point, there are kd + Lmax bits in the queue of some
edge e. Then, the latest packet arrived into the queue found at least kd bits there,
which contradicts the above inductive proof. This proves the first claim of the theo-
rem.

Also, by combining the initial claim with the bound in Lemma 22, we get that
a packet p takes at most ki+b

εBei
+ Lp

Bei
+ Pei

units of time to cross the ith edge in its

path �p . Since every path defined over the graph G has length at most d , then no
packet spends more than

d∑

i=1

(
ki + b

εBei

+ Lp

Bei

+ Pei

)
≤ d(b + εLmax) + ∑d

i=1 ki

εBmin
+ dPmax

units of time in the system. This proves the second claim of the theorem. �

5.3 Universal Stability of FTG

The FTG (farthest-to-go) scheduling policy gives priority to the packet which still
has to traverse the longest path until reaching its destination. We show that FTG is
universally stable by using the fact that all the packets have to traverse at least one
edge, and that all the packet go at most d edges further.

Theorem 24 Let G be a network with m = |E(G)| links, A an (r, b)-adversary with
r < 1 and b ≥ 1, and d the length of the longest edge-simple directed path in G . The
system (G , FTG, A) is stable and:

– There are never more than k1 bits in the system,
– No queue ever contains more than k2 + b bits, and
– No packet spends more than dPmax + (d(b + εLmax) + ∑d

i=2 ki)/(εBmin) time in
the system,

where ki is defined according to the following recurrence:

ki =
{0 for i > d,

mki+1 + mb + ∑
e∈E(G) Rmax(e) fo 1 ≤ i ≤ d .
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Proof We claim that, for all i, the size of packets in the system that still have to cross
at least i edges (they could be crossing one of these edges) is at most ki . The proof is
done by a backward induction on i.

The claim is trivial for i > d , since each packet has to cross at most d edges. By
induction hypothesis we consider the claim true for i + 1. Consider now a particular
edge e. We use Qi

t (e) to denote the number of bits in the queue of edge e that belong
to packets that still have to cross at least i edges at time t . Let t ′ be the latest time
no later than t such that Qi

t ′(e) = 0.3 Then any packet p, part of whose bits are
accounted in Qi

t (e), either was in some other edge at time t ′ (its bits could be in the
output queue, in the reception buffer, or crossing the edge itself), and hence had at
least i + 1 edges to cross, or else it has been injected after t ′. Since the policy is FTG,
the packets that have to cross at least i edges continuously cross edge e in the time
frame (t ′, t]. Hence,

Qi
t (e) ≤ ki+1 + ((1 − ε)(t − t ′)Be + b) − (t − t ′)Be

(ind.hyp.)= ki+1 + b − ε(t − t ′)Be.

With this result, we can calculate the following:

(i) An upper bound on the total size of the packets in the system that still have to
cross at least i edges:

Knowing that for a concrete edge e, Qi
t (e) ≤ ki+1 + b − εBe(t − t ′), and

that Rt(e) bits are either crossing e or in its reception buffer at time t , we can
conclude that the size of the packets in the system that still have to cross i or
more edges at any time t is at most

∑

e∈E(G)

(Qi
t (e) + Rt(e)) ≤ mki+1 + mb +

∑

e∈E(G)

(Rt (e) − ε(t − t ′)Be)

≤ mki+1 + mb +
∑

e∈E(G)

Rmax(e) = ki,

and hence the inductive step holds.
This trivially shows the first claim of the theorem, since no more than k1 bits

belong to packets that need to traverse at least one edge, which are all the packets
in the system.

(ii) An upper bound on the size of the queue of any edge e:
The maximum queue size of any edge e can be calculated when considering

i = 1, since all packets in the queue need to cross at least one edge (e itself).
Then, independently of the time instant, Qmax(e) = maxt Q

1
t (e) ≤ k2 + b.

(iii) An upper bound on t − t ′:

3Observe that, w.l.o.g. we can assume that the system had empty initial configuration (see Corollary 5),
and thus such a time t ′ always exists.
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Since for any concrete edge e, Qi
t (e) ≥ 0, we obtain that

t − t ′ ≤ ki+1 + b

εBe

≤ ki+1 + b

εBmin
,

and so the maximum amount of time that a packet p with path e1, e2, . . . , ed

spends in the system is bounded by

d∑

i=1

(
ki+1 + b

εBei

+ Lp

Bei

+ Pei

)
≤ d(b + εLmax) + ∑d

i=2 ki

εBmin
+ dPmax.

�

5.4 Universal Stability of NFS

The NFS (nearest-to-source) scheduling policy gives priority to the packet which is
closest to its origin, i.e., which has traversed the less portion of its whole path. We
show that NFS is universally stable by using a similar argument as the one used for
FTG; however the bounds will be provided now taking the length of the longest path
as a reference point.

Theorem 25 Let G be a network with m = |E(G)| links, A an (r, b)-adversary with
r < 1 and b ≥ 1, and d the length of the longest edge-simple directed path in G . The
system (G , NFS, A) is stable and:

– There are never more than kd bits in the system,
– No queue ever contains more than kd−1 + b bits, and
– No packet spends more than dPmax + (d(b + εLmax) + ∑d−1

i=1 ki)/(εBmin) time in
the system,

where ki is defined according to the following recurrence:

ki =
{0 for i = 0,

mki−1 + mb + ∑
e∈E(G) Rmax(e) for 1 ≤ i ≤ d.

Proof We claim that, for all i, the total size of the packets in the system that have
(completely) crossed less than i edges is at most ki . The proof is done by induction
on i.

The claim is trivial for i = 0, since it is not possible to cross less than 0 edges. By
induction hypothesis we consider the claim true for i − 1. Consider now a particular
edge e. We use Qi

t (e) to denote the bits in the queue of edge e that belong to packets
that have crossed less than i edges at time t . Let t ′ be the latest time no later than t

such that Qi
t ′(e) = 0.4 Then, any packet p whose bits are accounted in Qi

t (e) either
was at some other edge at time t ′ (its bits could be in the output queue, in the reception
buffer, or crossing the edge itself), and hence had crossed less than i − 1 edges, or

4Observe that, w.l.o.g. we can assume that the system had empty initial configuration (see Corollary 5),
and thus such a time t ′ always exists.
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else it has been injected after t ′. Since we consider a greedy protocol, packets have
been continuously sent across edge e in the interval (t ′, t]. Hence,

Qi
t (e) ≤ ki−1 + ((1 − ε)(t − t ′)Be + b) − (t − t ′)Be

(ind.hyp.)= ki−1 + b − ε(t − t ′)Be.

With this result, we can calculate the following:

(i) An upper bound on the total size of the packets in the system that have crossed
less than i edges:

Knowing that for a concrete edge e, Qi
t (e) ≤ ki−1 + b − εBe(t − t ′), and

that Rt(e) bits are either crossing e or in its reception buffer at time t , we can
conclude that the size of the packets in the system that have crossed less than i

edges at any time t is at most
∑

e∈E(G)

(Qi
t (e) + Rt(e)) ≤ mki−1 + mb +

∑

e∈E(G)

(Rt (e) − ε(t − t ′)Be)

≤ mki−1 + mb +
∑

e∈E(G)

Rmax(e)

= ki,

and hence the inductive step holds.
This trivially shows the first claim of the theorem, since no more than kd bits

belong to packets that have traversed less than d edges, which are all the packets
in the system.

(ii) An upper bound on the size of the queue of any edge e:
The maximum queue size of any edge e can be calculated when considering

i = d , since no packet in the queue has crossed d edges. Then, independently of
the time instant, Qmax(e) = maxt Q

d
t (e) ≤ kd−1 + b.

(iii) An upper bound on t − t ′:
Since for any concrete edge e, Qi

t (e) ≥ 0, we obtain that

t − t ′ ≤ ki−1 + b

εBe

≤ ki−1 + b

εBmin
,

and so the maximum amount of time that a packet p with path e1, e2, . . . , ed

spends in the system is bounded by

d∑

i=1

(
ki−1 + b

εBei

+ Lp

Bei

+ Pei

)
≤ d(b + εLmax) + ∑d−1

i=1 ki

εBmin
+ dPmax.

�

6 Instability of Queueing Policies

In this section we introduce some new scheduling policies, namely LPL-LIS, SPL-
NFS, and SPP-NFS, that base their policies in the main features of the CAQT model,
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namely, the length of the packets, the edge bandwidths and the edge propagation
delays, respectively. We show that the CAQT model differs from the AQT model in
some aspects concerning the stability of these scheduling policies. More precisely,
we will see that these policies are unstable under the CAQT model, while they are
universally stable under the AQT model. Thus it turns out that, apart from allowing
more scenarios for instability, the consideration of the CAQT model transforms into
instability scenarios which were universally stable in the AQT model. Additionally,
these scheduling policies do not only represent a distinction between the AQT and
the CAQT models, but also inside the CAQT model itself: the LPL-LIS, SPL-NFS, and
SPP-NFS are universally stable scheduling policies when uniform values are given
to the packet lengths, bandwidths, and propagation delays, respectively; but result in
unstable systems when the values considered for those features differ.

6.1 Instability by Difference in Packet Length

Consider the LPL (longest-packet-length) scheduling policy, which gives priority to
the packet with longest length. Let us denote as LPL-LIS the same policy when ties
are broken according to the LIS policy. Note that LPL-LIS is universally stable under
the AQT model, since in this model all packets have the same length and hence the
policy simply becomes LIS [4]. However, we show here that LPL-LIS is unstable in
an extension of AQT with multiple packet lengths just by considering two different
packet lengths (1 and 2). For simplicity we will assume that time advances in syn-
chronous steps (as in AQT). Packets of length 2 take 2 steps to cross each link. In the
LPL-LIS policy, these double packets will have priority over the single packets. Note
that this model is trivially included in CAQT. To show the instability of the LPL-LIS

policy, we use the baseball network presented in [4] (see Fig. 3).

Theorem 26 Let GB be the graph with nodes V (GB) = {v0, v1,w0,w1}, and edges
E(GB) = {(v0,w0), (v1,w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. All the edges in
E(GB) have bandwidth 1 and null propagation delay. For r > 1/

√
2 there is an (r, b)-

adversary A that makes the system (GB, LPL-LIS, A) to be unstable only with packets
of length 1 and 2.

Proof We assume an initial configuration in which there are s0 packets of length 1,
distributed roughly evenly among w1 and v1, and all of them trying to cross e0, for

Fig. 3 Baseball network GB

presented in [4]
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a large enough s0. This is the base case of the induction. Then, we show that at the
end of phase j there are at least s0 + j packets of length 1 distributed evenly among
w1−i and v1−i that want to cross edge ei , where i = j mod 2. This clearly holds for
phase 0.

Then, we consider phase j . Without loss of generality we assume j to be odd.
By induction hypothesis at the beginning of phase j there is a set S of s packets of
length 1 that want to cross e0 in w1 and v1. The sequence of injections is divided into
subphases as follows.

(i) We let one step go to allow the first packet in S to reach the queue of e0 (note
that after then all the packets will follow without interruption). Then, for the
next s steps, we inject a set S1 of rs packets of length 1 that want to traverse
edges e0f

′
0e1. These are blocked by the packets in S, since they all have the same

length, but those in S are older.
(ii) Then, for the next rs steps we inject a set of r2s packets of length 1 that want to

traverse edges e0f0e1. These are blocked by the packets in S1.
We also delay the flow of packets in S1 through f ′

0 using single–edge injec-
tions of packets of length 2. The new packets block the packets in S1, since they
are longer. Roughly r2s/2 packets of length 2 can be injected, and hence roughly
rs −2r2s/2 packets of S1 get to cross f ′

0. Then, at the end of this sub-phase there
are still r2s packets of S1 in w0.

This completes phase j . Clearly, at the end of it there are r2s packets in w0 and
r2s packets in v0, all of length 1 and trying to traverse e1. Since 2r2s > s for large
enough s, the induction hypothesis holds. �

A deeper understanding of the LPL-LIS scheduling policy, together with the previ-
ous theorem, leads us to the following observation:

Observation 1 The LPL-LIS scheduling policy is universally stable when all the
packet lengths are given the same value because, in that case, it behaves like LIS.
However, with different packet length values, it can become unstable.

6.2 Instability by Difference in Bandwidth

Consider the SPL (slowest-previous-link) scheduling policy, which gives priority to
the packet whose last crossed link was the slowest, i.e., had the smallest bandwidth.
This policy aims to equilibrate the lost in transmission velocity suffered in previous
links. Let us denote as SPL-NFS this policy, when ties are broken according to the
NFS policy. Observe that the SPL-NFS scheduling policy is equivalent to NFS in the
AQT model and thus universally stable [4]. However, we show that in a similar way as
shown for the LPL-LIS policy, the SPL-NFS policy can be made unstable in the CAQT

model.

Theorem 27 Let GB be the graph with nodes V (GB) = {v0, v1,w0,w1} and edges
E(GB) = {(v0,w0), (v1,w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. Let G be the
graph obtained from GB whose set of nodes is V (G) = V (GB) ∪ {v′

0, v
′
1,w

′
0,w

′
1},



Theory Comput Syst (2009) 44: 304–331 329

and whose set of edges is E(G) = E(GB) ∪ {(v′
0, v0), (v

′
1, v1), (w

′
0,w0), (w

′
1,w1)}.

Those edges inciding to v0 and v1 have bandwidth 2, while the rest have bandwidth 1.
All the edges have null propagation delays. For r > 1/

√
2 there is an (r, b)-adversary

A that makes the system (G, SPL-NFS, A) to be unstable.

Proof The proof is similar to the proof of Theorem 26 above but the injections are
done only at the queues of the new 4 edges. Using the same induction hypothesis and
sequence of injections we have that in the first sub-phase the packets in S still block
those in S1 because the latest edge crossed by the latter is faster, while in the second
sub-phase the single injections (now injections of path length 2) block the packets in
S1 by NFS. �

A deeper understanding of the SPL-NFS scheduling policy, together with the pre-
vious theorem, leads us to the following observation:

Observation 2 The SPL-NFS scheduling policy is universally stable when all the
edge bandwidths are given the same value because, in that case, it behaves like NFS.
However, with different edge bandwidth values, it can become unstable.

6.3 Instability by Difference in Propagation Delays

Consider the SPP (smallest-previous-propagation) scheduling policy, which gives pri-
ority to the packet whose previously traversed edge had smallest propagation delay,
and combine it with NFS to break ties. Let us denote this policy as SPP-NFS. Observe
that the SPP-NFS policy is equivalent to NFS in the AQT model and thus universally
stable [4]. However, we show with the SPP-NFS policy as example, that just the fact
of considering propagation delays can make a policy unstable in CAQT.

Theorem 28 Let GB be the graph with nodes V (GB) = {v0, v1,w0,w1} and edges
E(GB) = {(v0,w0), (v1,w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. Let G be the
graph obtained from GB whose set of nodes is V (G) = V (GB) ∪ {v′

0, v
′
1,w

′
0,w

′
1},

and whose set of edges is E(G) = E(GB) ∪ {(v′
0, v0), (v

′
1, v1), (w

′
0,w0), (w

′
1,w1)}.

Those edges inciding to v0 and v1 have propagation delay 1, while the rest have null
propagation delay. All the edges have unary bandwidth. For r > 1/

√
2 there is an

(r, b)-adversary A that makes the system (G, SPP-NFS, A) to be unstable.

Proof The proof is similar to the proof of Theorem 26 above but the injections are
done only at the queues of the new 4 edges. Packets in S block those in S1 because
the latter crossed an edge with larger propagation delay. Then, the single (two-edge
in this case) injections block the packets in S1 by NFS. �

A deeper understanding of the SPP-NFS scheduling policy, together with the pre-
vious theorem, leads us to the following observation:

Observation 3 The SPP-NFS scheduling policy is universally stable when all the edge
propagation delays are given the same value because, in that case, it behaves like
NFS. However, with different edge propagation delay values, it can become unstable.
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7 Conclusions and Open Questions

We consider a networking scenario in which packets can have arbitrary lengths, and
the network links may have different speeds and propagation delays. Taking into
account these features, we have presented a generalization of the well-known Adver-
sarial Queueing Theory (AQT) model which does not assume anymore synchronicity
in the evolution of the system, and makes it more appropriate for more realistic con-
tinuous scenarios. We called it the CAQT model, which states for continuous AQT

model.
We have shown that, in the CAQT model having bounded queues is equivalent to

having bounded packet end-to-end delays. From the network point of view, we show
that networks with a directed acyclic topologies are universally stable even when the
traffic pattern fully loads the links. Networks with a ring topology are also universally
stable in the CAQT model for injection rates smaller than the unity. In fact, we have
provided a characterization of the property of universal stability of networks under
the CAQT model, which turns out to coincide with the characterization under the AQT

model and, thus, of polynomial decidability.
From the protocol point of view, we have also shown that the well-known LIS,

SIS, FTG and NFS scheduling policies remain universally stable in the CAQT model.
New scheduling policies have also been proposed which are universally stable in the
AQT model but unstable in the CAQT model. It would be of interest to find other
scheduling policies that do not use specific properties of the AQT model and which
might be stable in that model, but unstable in the CAQT model. For those policies
that turn out to be stable, lower and upper bounds on their stability (w.r.t. the in-
jection ratio) could be studied. Also from the protocol point of view, it would be
of interest to establish a relation between systems with and without propagation de-
lays. This would provide us with more intuitions on the power of the different fea-
tures, i.e., packet lengths, bandwidths and propagation delays, involved in the CAQT

model.
Finally, it would also be of interest to know something about the queue sizes to be

expected (as it was studied in [4, 16] for the AQT model), as well as which conditions
guarantee that all the packets are actually delivered to destination (as it was studied
in [15] for AQT).
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