
Bluetooth Security & Hacks

Andreas Becker

August 16, 2007

Seminararbeit
Ruhr-Universität Bochum

Chair for Communication Security
Prof. Dr.-Ing. Christof Paar

Supervisor: Dipl.-Ing. Tim Güneysu

Contents

1 Introduction 1
1.1 Historical Overview . 1
1.2 Bluetooth Basics . 1
1.3 Bluetooth Services . 4

1.3.1 SDP - Service Discovery Protocol 4
1.3.2 LMP - Link Managing Protocol 4
1.3.3 L2CAP - Logical Link Control and Adaption Protocol . . 5
1.3.4 RFCOMM - Radio Frequency Communication 5
1.3.5 TCS - Telephony Control Protocol 5
1.3.6 OBEX - Object Exchange Protocol 5

1.4 Bluetooth Profiles . 6
1.4.1 OBEX Object Push Profile (OPP) 6
1.4.2 Synchronisation Profile (SYNCH) 6

1.5 Trusted Devices . 7

2 Bluetooth Security 8
2.1 Attacks against Bluetooth - Introduction 8
2.2 Attacker’s Tools . 8

2.2.1 Generic Tools . 8
2.2.2 Blooover . 9
2.2.3 BackTrack . 10
2.2.4 BTCrack . 10

2.3 BlueSnarf . 12
2.4 BlueSnarf++ . 12
2.5 BlueBug . 13
2.6 BlueJacking . 14
2.7 HeloMoto . 15
2.8 BlueSmack . 15
2.9 Cracking the Bluetooth PIN . 16

2.9.1 Creation of Kinit . 17
2.9.2 Creation of Kab . 18
2.9.3 Mutual authentication . 18
2.9.4 Attacking the pairing process 20

2.10 Conclusion on Bluetooth Security 22

Contents Contents

List of Figures 24

Bibliography 25

ii

1 Introduction

1.1 Historical Overview

Bluetooth is a technology for wireless connections of short range devices.
Originally invented by Ericsson, it has been called after Harald Blatand, a Danish
Viking who lived during the 10th Century and unified Skandinavia.
Bluetooth itself was intented to unify a users devices to her wireless personal
area network (WPAN). A Bluetooth WPAN is called piconet and may consist of
mobile phones, PDAs, printers or personal computers.

In September 1998, the Bluetooth Special Interest Group (SIG) was founded with
the objective of developing the Bluetooth wireless technology, as well as prop-
agating the Bluetooth brand worldwide. Today, the Bluetooth SIG consists of
more than 8000 members, which vary from music industry to telecommunication
companies.

1.2 Bluetooth Basics

Bluetooth operates in the license-free ISM band (Industrial, Scientific and Med-
ical Band) between 2.4 and 2.48 GHz.
For prevention of interferences with other devices working within ISM, such as
baby phones or microwave ovens, Bluetooth makes use of a technique called fre-
quency hopping. Therefore, the base band frequency is switched 1600 times per
second to one of 79 frequency steps of 1 MHz band width within the ISM band.

1.2 Bluetooth Basics Introduction

Bluetooth is a connection oriented service. In order to connect two Bluetooth
devices, one of them, normally the device initiating the connection, elevates to
the master, leaving the second device as a slave (1.1 a).

Figure 1.1: Piconet of two (a) or more (b) devices, scatternet (c)

In Bluetooth, connections with up to seven devices, which form a piconet are
possible, where communication is led by the master device. Finally, a device is
able to participate simultaneously in several piconets (in only one of them acting
as the master). The resulting topology is called scatternet (1.1 c).

The maximum data rate in Bluetooth connections is 1 MBit/s in Version 1.2,
while in the most recent version, 2.0+EDR (enhanced data rate) data rates of
up to 3 MBit/s are reached. A master may reserve SCO (synchronous connec-
tion oriented) connections to up to three slaves in his piconet, using certain time
slots. Those connections, granting symmetric data rates to both communication
partners are used for voice transmission primarily.
Unused timeslots may now be used for exchange of point-to-multipoint packets
between the master and all slaves in the piconet via ACL (asynchronous con-
nection less) packets. These connections grant higher data rates in only one
direction.
While three different device classes exist, with a rising power consumption from
class I to class III in exchange for a larger operating distance, one of Bluetooths
greatest advantages is a generally low power consumption.

Power Class Max. Power Consumption Max. Operating Range

1 100 mW (20 dBm) ca. 100 m
2 2,5 mW (4 dBm) ca. 20 m
3 1 mW (0 dBm) ca. 10 m

2

1.2 Bluetooth Basics Introduction

For a secure communication via Bluetooth, the following security targets are
defined:

• confidentiality

• (device) authentication

• (device) authorisation

• integrity

In order to accomplish those security targets, three possible modes of security
are defined:

• Security Mode 1: No security efforts

• Security Mode 2: Service level security, applications have to implement
needed cryptographic means

• Security Mode 3: Device level security (cryptographic means are imple-
mented in LMP, independent of applications)

Security mode 1 obviously has to be avoided whenever possible. In mode 3,
services make transparent use of a secure channel, which is normally established
via the Link Managing Protocol (LMP). Therefore, a pairing process between
two devices A and B has to be done, in order to establish a shared cryptographic
secret for subsequent encryption or authentication.

In this seminar work, several attacks on weak implementations of certain protocols
are presented. In contrast, one attack, Cracking the Bluetooth PIN, aims at the
Bluetooth Security architecture itself (see Chapter 2.9), while BlueJacking has
to be interpreted as an undesirable feature of the Bluetooth vCard service (see
Chapter 2.6).

Beforehand, a rough overview of the most important services and protocols of the
Bluetooth protocol stack is given, in order to establish the reader’s understanding
for the presented vulnerabilities.

3

1.3 Bluetooth Services Introduction

1.3 Bluetooth Services

Bluetooth makes use of a protocol stack, which makes it simple to seperate ap-
plication logic from physical data connections. In comparison to the ISO/OSI
reference model, the protocol architecture of Bluetooth allows for straightforward
implementation of existing network protocols like HTTP, FTP, etc.

Figure 1.2: Bluetooth protocol stack

1.3.1 SDP - Service Discovery Protocol

Bluetooth is a technology, which is deployed in a dynamical environment. Devices
may get out of range or even switched off, while new devices might become
activated.

In order to detect services, provided by other devices, a protocol, which detects
services makes sense. In Bluetooth, the Service Discovery Protocol is responsible
for keeping track of services, provided within a device’s operating range.

1.3.2 LMP - Link Managing Protocol

Especially interesting for further consideration is the Link Managing Protocol
(LMP), as one of three possible security modes in Bluetooth is implemented in
this layer.

Every Bluetooth device contains a Link Manager Unit, which keeps track of
connected devices. Those Link Managers communicate via protocol data units
(PDU), defined in LMP. New connections are established, using an inquiry routine
(detecting device address), followed by a page command (call for a device with
known device address), which have to be responded correctly by the opposite
device.

4

1.3 Bluetooth Services Introduction

Subsequently, devices may initiate the pairing process, where a link key, KAB

is established and the opposite device is stored in the ”trusted devices” history.
The pairing process is considered in detail in chapter 2.9 (Cracking the Bluetooth
PIN), where a passive attack during the pairing of two devices is presented, in
order to eavesdrop the used PIN.

1.3.3 L2CAP - Logical Link Control and Adaption Protocol

The Logical Link Control and Adaption Protocol (L2CAP) provides connection-
oriented and connectionless data services to protocols in upper layers, while mak-
ing use of ACL (asynchronous connectionless) packets for communication via the
Baseband.

1.3.4 RFCOMM - Radio Frequency Communication

The Radio Frequency Communication (RFCOMM) provides emulated serial ports
and makes use of the lower-level L2CAP protocol.

Up to 60 simultaneous connections to other Bluetooth devices are possible, called
RFCOMM channels.

1.3.5 TCS - Telephony Control Protocol

The Telephony Control Protocol provides functionality to control telephony ap-
plications and makes use of L2CAP connections.

1.3.6 OBEX - Object Exchange Protocol

The Object Exchange Protocol (OBEX) provides services for the exchange of
binary data objects. To initiate an OBEX session, an optional OBEX authenti-
cation is possible.

Therefore, a limited set of commands like PUT, GET or ABORT exist for easy
file transfers, comparable to HTTP. In Bluetooth, OBEX is mainly used within
the profiles OBEX Object Push Profile (OPP) and the Synchronisation Profile
(SYNCH), which are described below.

5

1.4 Bluetooth Profiles Introduction

1.4 Bluetooth Profiles

In Bluetooth, provided services are composed to a Bluetooth Profile. Bluetooth
devices communicate via the profiles, that act as ”interfaces”.

For example, a Bluetooth-enabled mobile phone might make use of a Bluetooth
headset, which implements the Headset Profile (HSP), which means that SCO
(synchronous connection-oriented)-based audio connections and a subset of AT
commands for accepting an incoming phone call, etc. are supported.

For further consideration, two Bluetooth profiles are especially interesting, con-
cerning BlueSnarfing and BlueBugging attacks:

1.4.1 OBEX Object Push Profile (OPP)

The Object Push Profile (OPP) provides basic functions for exchange of binary
objects, mainly used for vCards in Bluetooth.

vCard is a file format standard for electronic business cards. Since vCards are not
worth being especially protected, no authorisation procedure is performed before
OPP transactions. Supported OBEX commands are connect, disconnect, put,
get and abort.

1.4.2 Synchronisation Profile (SYNCH)

The Synchronisation Profile (SYNCH) provides functions for exchange of Per-
sonal Information Manager (PIM) data and was adopted from the IrDA infrared
specification.

In Bluetooth, especially private data, like the address book, calendar, etc. is
sent using the SYNCH profile, thus certain security measures have to be setup in
order to make use of SYNCH transactions, namely performing a pairing process
to authenticate the opposite device, based on a link key.

6

1.5 Trusted Devices Introduction

1.5 Trusted Devices

The Bluetooth specification defines several possible relations between Bluetooth
devices, mainly based on whether a link key has been established previously (cf.
section 2.9).

A paired device may get explicitely marked as a trusted device, which means that
e.g. no authentication based on the link key is required for that device, in order
to access certain services.

A weak implementation of the trusted devices feature leads to the HeloMoto
vulnerability, which ocurred on some Motorola mobile phones and is described in
section 2.7.

7

2 Bluetooth Security

2.1 Attacks against Bluetooth - Introduction

In the last few years, with growing popularity of the Bluetooth wireless technol-
ogy, also the interest in abusing (wireless) network connections has risen.
Often an adversary’s goal is to eavesdrop personal data, to use third parties’
devices for his own purpose, or just the drive of hacking into a computer system,
PDA or cell phone.

Whatever an adversary’s goal may be, at first it might be helpful, to gather some
information on his potential victim. Is it a cell phone? Is it perhaps vulnerable to
a known software vulnerability? Which services does the aimed device provide,
which might get exploited within any further stages of the attack?
Such questions might get answered via some portion of social engineering, but
the adversary has also access to a growing number of useful tools. The most
important tools are introduced below.

2.2 Attacker’s Tools

2.2.1 Generic Tools

Making use of services provided by the Bluetooth architecture itself might seem
the easiest way to collect information about the victim. The Service Discovery
Protocol (SDP) may grant some useful information to the adversary. Which
”ports” are open with programs listening to them, waiting for example for OBEX
requests, serving voice data and so on.
Therefore, the tools BTScanner and hcitool should be mentioned as frontends for
the bluez-utils Bluetooth stack on Linux platforms, providing basic information
about devices within operating range, such as device addresses, device classes
and names. The most direct way to detect provided services via SDP is sdptool,
another frontend for bluez-utils.

2.2 Attacker’s Tools Bluetooth Security

On Microsoft Windows platforms, the BlueScanner should be mentioned, col-
lecting information like device type and provided services of detected devices.
BlueScanner uses, in contrast to the console programs above, a graphical user
interface.

All those tools share a significant problem: The attacker normally depends on a
laptop, which might become noticed by a potential victim. One quite successful
attempt to turn an adversary’s mobile phone into a suitable auditing tool has
been done with Blooover, an application, which is presented as follows.

2.2.2 Blooover

Blooover, a Java application for mobile phones, is developed by the trifinite
group [tri07]. It is available for some mobile phones and requires J2ME (Java
2 Platform, Micro Edition). Blooover is able to do security audits on mobile
phones, checking known vulnerabilities. Additionally, it is capable of executing
a BlueSnarf and a limited BlueBug attack.

Those attacks are described within the next few chapters. Roughly, BlueSnarfing
enables an adversary, to retrieve private data from the targeted mobile phone,
such as pictures, the calendar or address book, while BlueBugging aims at taking
remote control over a mobile phone. The latter one would potentially cause
financial damage for the victim, thus it is not possible to write SMS or initiating
phone calls with Blooover.

9

2.2 Attacker’s Tools Bluetooth Security

2.2.3 BackTrack

BackTrack, a Slax-based Linux distribution [bac07], available as a live-cd goes
one step further, providing several more complex automated attacks on Bluetooth
devices.

Figure 2.1: BackTrack livecd with fluxbox interface

The BackTrack disc is packed with a large amount of security-related software,
ranging from network analysis tools like ettercap and wireshark to a series of
(partly) automated attacks, including attacks on Bluetooth devices, such as
BlueSnarf or BlueBug.

The most relevant of those attacks and/or vulnerabilities of Bluetooth or inse-
cure implementations will be presented, closing with a conclusion on Bluetooth
security.

2.2.4 BTCrack

BTCrack [nru07] has been published at 23C3, a German hacker congress. It serves
a graphical interface for a passive attack, which aims at eavesdropping messages
in a pairing process between two devices, in order to retreive the Bluetooth PIN
and generated link key.

10

2.2 Attacker’s Tools Bluetooth Security

Figure 2.2: BTCrack interface

An adversary is able to enter previously discovered Bluetooth device addresses,
in order to enforce re-pairing between the two target devices. Subsequently, the
whole pairing communication is eavesdropped, allowing the program to do an
exhaustive search on the Bluetooth PIN used within the pairing process. The
underlying attack is described in chapter 2.9: Cracking the Bluetooth PIN.

11

2.3 BlueSnarf Bluetooth Security

2.3 BlueSnarf

The BlueSnarf attack exploits a weak Bluetooth implementation on some mobile
phones, especially the implementation of OBEX (object exchange protocol) which
is generally used by the OBEX PUSH profile, as by the Synchronisation Profile.
Normally, no authentication or authorisation is required in OPP, as only vCards
are transferred through OPP, if implemented correctly.

The vulnerability in insecure implementations on certain mobile phones now pro-
vides an OPP and also a SYNCH profile, which both have access to the same
OBEX stack, which maps requests through the secured SYNCH profile and those
through the OPP profile to the same filesystem. A possible attack may be done
as follows.

At first, the adversary connects to an OBEX push profile, which he might have
detected within a previously done SDP scan. Now, in insecure OBEX imple-
mentations, he is able to execute a successful OBEX GET request for known
filenames, like telecom/pb.vcf or whatever the adversary might expect to find on
the target device. This results in a hidden download of private data.

As for the use of the OPP, no pairing process with the adversary’s device is
necessary, the user is not aware of being spied out via Bluetooth. Combined with
the advantages of a long distance attack, the adversary does not even have to
be within range of sight to his target. This physical extension of the effective
operating range of a Bluetooth device makes all of the attacks presented in this
seminar work, much more effective.

Instructions to modify a Bluetooth Dongle in such a way to reach operating
ranges around several hundred meters are available on the internet. The trifinite
group [tri07] has succesfully done a long distance snarf over a distance of 1.78
km.

A list of mobile phones vulnerable to BlueSnarf attacks is available in [the07].

2.4 BlueSnarf++

BlueSnarf++ is an enhancement of the previously presented BlueSnarf attack,
where the adversary had to deal with the OBEX push daemon in order to gain
private data from the target device. In the BlueSnarf++ attack, the adversary
instead connects to an OBEX FTP server, which is normally used for easier file
transfers and, to the adversary’s pleasure, is available on some of the vulnerable

12

2.5 BlueBug Bluetooth Security

mobile phones.

To fix the security vulnerabilities concerning BlueSnarf, respectively BlueSnarf++,
the user is normally dependent on the applicable firmware update from the man-
ufacturer (mainly affected were mobile phones by Nokia and Sony Ericsson who,
today, cooperate with the trifinite group in security concerns).

2.5 BlueBug

For a better understanding of how the BlueBug attack works, a short introduction
into the RFCOMM protocol will be given.

RFCOMM is a protocol on top of L2CAP within the Bluetooth protocol stack,
which emulates serial RS-232 interfaces via Bluetooth connections. Up to 60
connections via RFCOMM may get established simultaneously for one device,
called RFCOMM channels . While L2CAP and, on a lower level, the base band,
are responsible for establishing a synchronous or asynchronous data connection,
RFCOMM emulates a ”virtual” serial connection between two communication
endpoints.

Now, what the adversary needs to know of a vulnerable device [the07], is the
Bluetooth Device Address, BD ADDR. The adversary connects to RFCOMM–
channel 17, where vulnerable mobile phones provide an open backdoor, in the
form of an AT-parser which requires no authentication procedure. AT commands
are a powerful tool for remote control of communication devices, like analog or
ISDN modems, or, like in this case, mobile phones with a Bluetooth interface.

The adversary is able to execute most tasks a normal user of the mobile phone
were able to do, like initiating phone calls (especially numbers like 0190..., which
could be of economic interest for the adversary), reading or writing SMS or
gathering the victim’s private data.

On a linux computer, a session for reading a single address book entry from a
mobile phone might look like this (cf. [HW06]):

scan for bluetooth devices:

oscar@darkside $ hcitool scan
Scanning ...
00:0E:6D:10:1D:B6 Nokia 6310i
00:05:7A:01:A3:80 Airbus A380

13

2.6 BlueJacking Bluetooth Security

00:06:6E:21:69:C2 Bluespoon AX
00:0F:DE:6C:61:04 T610

bind channel 17 of target device to /dev/rfcomm42:

oscar@darkside $ rfcomm bind 42 00:0E:6D:10:1D:B6 17

connect to AT terminal via, for example, cu:

oscar@darkside $ cu -l /dev/rfcomm42
Connected.
AT+CPBS="ME"
OK
AT+CPBR=1
+CPBR: 1,"",,"Paris Hilton"
OK
~.
Disconnected.

This example was only presented to show, what simple set of commands on the
console answer an adversary’s purpose of retrieving private data or executing any
AT commands on a vulnerable mobile phone. The bounds of BlueBug are only
limited by the adversary’s creativity and the capability of the supported set of
AT commands on the target device.

An overview of AT commands for GSM devices can be found in [Tra07]. The
solution to RFCOMM-based attacks is, as in most cases, a firmware update fixing
the insecure RFCOMM-channel.

2.6 BlueJacking

BlueJacking is not an attack against Bluetooth or any implementation in terms of
breaking into another device, stealing private data or otherwise dealing damage to
the ”victim”. Instead, it uses the ability of Bluetooth mobile phones to send so-
called vCards, a file format, which is intended to exchange personal information
in the form of an electronic business card.

Now it has come quite into fashion to abuse this mechanic to send—free of
charge—messages via Bluetooth, such as ”You were BlueJacked!”. Users who

14

2.7 HeloMoto Bluetooth Security

are not familiar with BlueJacking might draw the conclusion, their mobile phone
were infested with a mobile phone virus, or they were followed by a stalker.

Users who feel disturbed by the way, primarily teenagers, abuse the vCard service
for BlueJacking, should turn off Bluetooth connectivity on their mobile phones,
only reactivating it, whenever needed.

2.7 HeloMoto

HeloMoto is a combination of BlueSnarf and BlueBug attacks, exploiting a flawed
implementation of ”trusted devices” in some Motorola mobile phones, which led
to the attack’s name.
At first, the adversary connects to an OBEX push profile, as it is done in
BlueSnarf. If there is no vulnerable implementation of OBEX that would al-
low a BlueSnarf attack, HeloMoto makes use of the ”trusted devices” feature,
defined in Bluetooth.

The adversary now attempts to send a vCard to the target device, as it is done
in BlueJacking and immediately cancels the request. In consequence of the Helo-
Moto vulnerability, his device remains within the ”trusted devices” history, while
the owner of the target device is not aware of being attacked. Finally he uses the
status of a ”trusted device” to execute AT commands, as it is done in BlueBug-
ging.

Again, owners of a vulnerable device depend on a firmware update by Motorola,
or otherwise should simply deactivate Bluetooth.

2.8 BlueSmack

BlueSmack is a Denial of Service (DoS) attack, hence it is directed at the avail-
ability of a Bluetooth device. The attack is done similarly to the ”Ping of Death”
against IP-based devices. The adversary sends an L2CAP echo request (ping) of
large size, approximately 600 bytes to a Bluetooth device with limited hardware
resources.

Those devices (especially known for such a behaviour is the iPaq) reserve an input
buffer of fixed length (around 600 bytes). When receiving such a malicious ping
request, the input buffer overflows, which normally leads to a seqmentation fault
and, by this, to the immediate knock-out of the target device.

15

2.9 Cracking the Bluetooth PIN Bluetooth Security

On a linux computer, this can be done simply using the bluez-utils’ l2ping
command with -s <num> option, defining the packet length.

2.9 Cracking the Bluetooth PIN

Without exception, the previous attacks were focused on certain insecure Blue-
tooth implementations which could usually been fixed by firmware update. The
following attack instead exploits the Bluetooth security architecture itself and
was presented by Yaniv Shaked and Avishai Wool in [SW05].

Roughly spoken, the attack aims at eavesdropping the whole communication
through the pairing process between two Bluetooth devices, in order to extract
the initialisation key, Kinit, using it for an exhaustive search on the Bluetooth
PIN.

Generally, Bluetooth aspires confidentiality and authenticity. We will take a
closer look at the cryptographic functions used to accomplish those security tar-
gets within the Link Managing Protocol, while discussing the attack. In order to
establish a secure Bluetooth connection between two devices, an inquiry routine
has to detect the opposite’s Bluetooth device address, BD ADDR.

Subsequently, in both devices have to be entered the same Bluetooth PIN, de-
pending on the device type. Some devices with limited memory or user interface
capability have a fixed PIN, which is in most cases 0000, which will be discussed
later on. Important for the establishment of a connection is, that at least one
device must have a variable PIN, that has eventually to be set to the second
device’s fixed PIN.

Now everything is set up correctly for the following steps within the pairing
process:

1. Creation of an initialization key, Kinit, which is used to confidentially ex-
change random values

2. Creation of a link key Kab, which is a function of the input of A and B;
discarding of Kinit

3. Mutual Authentication via simple challenge-response scheme, based on Kab

Note: All algorithms used during the pairing process, namely E22, E21 and E1

are based on the SAFER+ block cipher. SAFER+ operates with a block size of

16

2.9 Cracking the Bluetooth PIN Bluetooth Security

128 bits and three different key lengths: 128, 192 or 256 bits. Bluetooth uses the
SAFER+ with 128 bit key length.

As the inner design of SAFER+, respectively the derived Bluetooth algorithms
mentioned above, are not essentially important for the following attack, they are
used as ”black boxes” in this seminar work. For further information see [SW05].

2.9.1 Creation of Kinit

We assume, that the same PIN has been entered into both Bluetooth devices cor-
rectly. Now the Master device A (usually the device which initiated the session)
chooses a pseudorandom number of 128 bits length (IN RAND) and sends it to
the Slave B.
Subsequently the Kinit key is created on both devices, using the E22 algorithm:

Figure 2.3: Generation of Kinit using E22

The Kinit key generated by E22 is only used in the following to confidentially
exchange random values. Those values are used to agree on a link key, which
is a function of inputs from both devices, A and B. After the creation of Kab,
the link key, Kinit is discarded, leaving Kab as the shared secret for subsequent
communication.

17

2.9 Cracking the Bluetooth PIN Bluetooth Security

2.9.2 Creation of Kab

After exchanging the initialization key, Kinit, the devices agree on the link key
Kab. Both devices choose a 128 bit random number, LK RANDA, respectively
LK RANDB, xor it bitwise with Kinit and send it to their communication partner.

Figure 2.4: Generation of Kabusing E21

Using the self-inverse xor function again, the random values are decrypted and
used to generate the link key using the E21 algorithm. Now both devices share
a link key and Kinitis discarded. Finally a mutual (device) authentication, based
on Kab is done.

2.9.3 Mutual authentication

In order to authenticate the opposite device, a mutual authentication based on
a challenge-response scheme is performed. Therefore, one of the devices is the
verifier A, leaving the other device as the Claimant B. Now, B claims to know
the corresponding link key which A likes to verify.

The verifier A choses a 128 bit random number AU RANDA as a challenge and

18

2.9 Cracking the Bluetooth PIN Bluetooth Security

sends it to B, who responds with the 32 bit word SRES′A, using AU RANDA,
BD ADDRB and Kab as input values for the E1 algorithm. Then, A computes a
value SRESA, using the same input for E1, as B is expected to take.

If SRES′A and SRESA are different, A immediately halts the session, leaving B
the possibility to authenticate again, after a certain amount of time. After each
unsuccessful attempt, this amount of time is increased exponentially, which is
done to prevent brute force attacks. Otherwise, roles for verifier and claimant
are switched and the entire process is repeated.

Figure 2.5: Mutual authentication using E1

19

2.9 Cracking the Bluetooth PIN Bluetooth Security

2.9.4 Attacking the pairing process

In [SW05], the following passive attack against the pairing process between two
Bluetooth devices is documented. Let us assume the adversary was able to eaves-
drop the whole communication within the pairing process between two devices A
and B:

Figure 2.6: Eavesdropping of the pairing process

Now the adversary is able to do an exhaustive search within the space of possible
Bluetooth PINs. Knowing IN RAND and BD ADDR, the adversary feeds E22

with those values, together with the PIN ”candidates”, chosen by his brute force
algorithm, receiving a hypothesis for Kinit.

Subsequently, the adversary decrypts the first two messages within the mutual au-
thentication process, resulting in a hypothesis for LK RANDA and LK RANDB.
Due to LK RANDA and LK RANDB being the only secret information used in
E21 to calculate the link key, the adversary computes a hypothesis for Kab.

20

2.9 Cracking the Bluetooth PIN Bluetooth Security

Now the adversary is able to use the last few messages to prove, whether his
hypothesis for Kab is correct or not. He feeds E1 with the challenges AU RANDA,
respectively AU RANDB and compares his result with the corresponding SRESA

or SRESB message.

This process is repeatedly done until the correct Bluetooth PIN used by A and
B is found. The entire attack looks like this:

Figure 2.7: Cracking the Bluetooth PIN - algorithm

Note that this attack is more powerful than it might appear at a first glance.
While generally the pairing procedure for two devices is not frequently repeated,
Bluetooth grants the possibility to ”forget” a link key, due to limited memory.
By this, the adversary is able to enforce a repairing process, which still requires
to inject a specific message at a certain point in the protocol run, what needs a
custom device in general.

Additionally, the attack is rather efficient. Due to some algebraic optimisation of

21

2.10 Conclusion on Bluetooth Security Bluetooth Security

needed computations, cracking a 4-digit Bluetooth PIN with a Pentium IV 3GHz
takes approximately 63 milliseconds.

Since this attack is aiming directly at the Bluetooth security architecture itself,
instead of against a vulnerable implementation, it is not possible to fix this prob-
lem through a simple firmware update. Instead, the user should be aware of the
possible risks when being prompted to reenter the PIN for an existing connection
and, whenever possible, use a PIN of considerably more than 4 digits.

Finally it should be mentioned, that devices using a fixed PIN(which is generally
0000) are - due to obious reasons - an open door for any adversary. This holds
for devices like headsets, printers, etc. In this case, the user should be aware
of the fact that no effective method for providing confidentiality is applied to
such connections, because further authentication and encryption is based on the
insecure link key Kab, or even a fixed unit key.

2.10 Conclusion on Bluetooth Security

The most important practical attacks against Bluetooth have been presented in
this seminar work. Those attacks either exploit the Bluetooth architecture itself,
a short PIN, or a weak implementation. While insecure software on embedded
devices generally leads to compromised private data, gaining remote control over
a cell phone, or, at least, a simple knockout due to a DoS attack like BlueSmack,
the power of an attack grows with the complexity of the target.

When a buffer overflow or similar vulnerabilities occur in Bluetooth protocol
stacks or application software for a personal computer or MAC, the adversary
might even be able to execute arbitrary code (cf. [pen04]).

Concerning the Bluetooth specification [SIG04], some security-by-obscurity ele-
ments have been promoted, as things like frequency hopping or the limitation
to short operating ranges have been advertised as security features. When con-
sidering previous attacks like the long distance snarf or successful attempts of
mounting an embedded bluetooth device on a modified rifle, for large distance
attacks, those features seem to create a false awareness of security.

Additionally, the key management in Bluetooth seems to draw its security partly
from the big issues of perfoming practical attacks. The link key, which is used
to authenticate an opposite device and to compute encryption keys, is promoted
as a shared secret of 128 bits length, which is not true. Since it is based on a
Bluetooth PIN, the effective key space of Kab can generally be reduced to 104

22

2.10 Conclusion on Bluetooth Security Bluetooth Security

(approximately 13 to 14 bits), which essentially is, what Shaked and Wool did in
their attempt to attack the pairing process.

Finally, the weakest link within the system ”Bluetooth” often seems to be the
user, who is not always aware of potential security risks and chooses short PINs
or permanently leaves Bluetooth connectivity switched on.

Combined with the fact that auditing tools and tools for automated attacks on
Bluetooth devices get improved steadily, Bluetooth seems to be an interesting
issue in the future, especially, if Bluetooth will go on receiving an increasing
popularity.

23

List of Figures

1.1 Piconet of two (a) or more (b) devices, scatternet (c) 2
1.2 Bluetooth protocol stack . 4

2.1 BackTrack livecd with fluxbox interface 10
2.2 BTCrack interface . 11
2.3 Generation of Kinit using E22 . 17
2.4 Generation of Kabusing E21 . 18
2.5 Mutual authentication using E1 19
2.6 Eavesdropping of the pairing process 20
2.7 Cracking the Bluetooth PIN - algorithm 21

Bibliography

[bac07] BackTrack, Slax-based Linux Distribution for Security Audits, 2007.
http://www.remote-exploit.org/backtrack download.html.

[Ho04] Heise online. Sicherheitsluecke gefaehrdet Bluetooth–PCs, 2004.
http://www.heise.de/security/result.xhtml?url=/security/
news/meldung/50068.

[HW06] Marcel Holtmann and Christoph Wegener. Oft erlauben
Sicherheitsluecken einfachen Datenklau via Bluetooth, 2006.
http://www.linuxmagazin.de/heft abo/ausgaben/2006/02/
zahnstatus/(kategorie)/368.

[Mul01] Nathan J. Muller. Bluetooth. mitp, 2001. ISBN: 3826607384.

[nru07] n.runs AG - security tools and security advisories, 2007. http://www.
nruns.com/security\ tools.php.

[pen04] Widcomm bluetooth connectivity software buffer overflows, 2004. http:
//www.pentest.co.uk/documents/ptl-2004-03.html.

[SIG04] Bluetooth SIG. Specification of the Bluetooth System, 2004.
http://www.bluetooth.com/Bluetooth/Learn/Technology/
Specifications/.

[SW05] Yaniv Shaked and Avishai Wool. Cracking the Bluetooth PIN, 2005.
http://www.eng.tau.ac.il/∼yash/shaked-wool-mobisys05/.

[the07] The Bunker, 2007. http://thebunker.net/resources/bluetooth.

[Tra07] Alexander Traud. AT commands for GSM, 2007. http://www.traud.
de/gsm/index.html.

[tri07] The trifinite group, 2007. http://www.trifinite.org.

[wik07] Bluetooth — Wikipedia, the free Encyclopedia, 2007. http://en.
wikipedia.org/w/index.php?title=Bluetooth.

