
Communications for cooperation: the RoboCup
4-legged passing challenge

Carlos E. Agüero Durán
Robotics Lab - GSyC

DITTE - ESCET - URJC
caguero@gsyc.escet.urjc.es

Vicente Matellán Olivera∗
Robotics Lab - GSyC

DITTE - ESCET - URJC
vmo@gsyc.escet.urjc.es

José M. Cañas Plaza
Robotics Lab - GSyC

DITTE - ESCET - URJC
jmplaza@gsyc.escet.urjc.es

Miguel Ortuño Pérez
GSyC

DITTE - ESCET - URJC
mortuno@gsyc.escet.urjc.es

Abstract— Communications are the basis for the collaborative
activities in the TeamChaos 4-legged team. In this paper we
present the communications architecture developed both to let
teammates communicate, and to easy the debugging of robot
behaviors from external computers. Details of its implementation
on the aiBo robots are also given. Using this infrastructure we
describe a protocol for role exchange named Switch! that we have
created. We also describe the use of both the communication
architecture, and the Switch! protocol in the passing challenge
of the 2006 edition of the RoboCup.

I. INTRODUCTION

RoboCup [1] is an international joint project to promote
AI, robotics, and related field. It is an attempt to foster
AI and intelligent robotics research by providing a standard
problem where wide range of technologies can be integrated
and examined. RoboCup chose to use soccer game as a central
topic of research, aiming at innovations to be applied for
socially significant problems and industries.

In order for a robot team to actually perform a soccer game,
various technologies must be incorporated including: design
principles of autonomous agents, multi-agent collaboration,
strategy acquisition, real-time reasoning, robotics, and sensor-
fusion. RoboCup is a task for a team of multiple fast-moving
robots under a dynamic environment.

The competition is organized in various leagues according
to the type of robots used, their size, etc. The results showed in
this paper have been used in the 4-legged category [2], where
only aiBo robots are allowed.

Fig. 1. aiBo robot with its main sensors detailed

RoboCup 4-legged league is organized around two main
competitions: soccer matches and technical challenges. Soccer

teams are composed by four robots and they must play football
without the help of any external aid (human or computer).
Only communication among the members of the team is
allowed.

Technical challenges include one open and two specific
challenges. Technical challenges are specifically designed
problems to focus research in particular issues for the league
evolution. One of the specific challenges created for the last
edition of RoboCup is the passing challenge, where teams
must develop passing and catching skills. We will use this
challenge to test our coordination issues.

We have developed a coordinated behavior for this challenge
based in two main pillars: communications and roles exchange.
Communications can be defined as an explicit method
for cooperating. Other methods mentioned in [3] use the
environment or make interactions among the robots via sensing
as a result of agents sensing one another, but without explicit
coordination. Dynamic roles exchange is based in the divide
and conquer idea. A global task is subdivided in a more simple
set of sub-tasks. Using some kind of scheduler, the sub-tasks
are assigned to the robots obtaining an increase in the overall
goal of the team achieving the original shared task.

In this article, we present the software architecture utilized,
including the communications layer developed. The protocol
designed for roles allocation is detailed in section IV. Finally,
we show as a real application the results obtained in the
passing challenge in the RoboCup 2006 edition.

II. TEAMCHAOS ARCHITECTURE

TeamChaos is a multi-university, multi-national effort to
create a multi-robot team of soccer playing physical robots
to enter the RoboCup international competition in the 4-
legged league. TeamChaos software development is organized
in three main projects: TeamChaosRobot, ChaosDocs, and
ChaosManager.

TeamChaosRobot contains all code related to the robot,
ChaosManager is a suite of tools for calibrating, preparing
memory sticks and monitoring different aspects of the robots
and the games, and ChaosDocs contains all the available
documentation, including team reports, team description
papers, and RoboCup applications.

For the purpose of this article, we are going to focus in
the TeamChaosRobot project. The code developed has been



written using the API offered by Sony included in the Open-
R library [4]. The programming structure of the robot code is
based in Open-R objects. Each object is a single thread and the
mechanism for communicating objects solves using a message
exchange mechanism.

The TeamChaosRobot code is organized around four Open-
R objects:

• ORLROBOT is the low level processing object that
interacts with the hardware to produce motion or to
process images. This object produces a data structure
comprising local perceptions and odometry estimations.
It accepts motion commands and perceptual “needs” [5],
that is, elements (ball, landmarks, etc.) that the higher
levels would like to track.

• ORHROBOT is the high level object that implements
the control strategies and that maintains local and global
representations of the environment.

• ORTCM is the communications managing object. It is in
charge of sending and receiving data to and from other
robots and/or to and from external computers.

• ORGCTRL There is an additional Open-R object in
TeamChaos named ORGCtrl that is the one in charge
of managing the game all instructions sent by the
GameController, which is an electronic referee during
the match.

Fig. 2. Modules organization of the TeamChaos code

Each robot uses a conceptual layered architecture, which is
a variant of the ThinkingCap architecture [6]. ThinkingCap is
a framework for building autonomous robots jointly developed
by Örebro University and the University of Murcia that aids
developers in the process of implementing complex behaviors.
The robot software architecture is divided in three levels or
layers: the lower level offers hardware abstraction, the middle
layer maintains a model of the environment and the higher
level manages the strategy actions.

This theoretical layers have been implemented into the
code as software blocks that we have called modules. The
lower layer (implemented in the CMD, or Commander
Module) provides an abstract interface to the sensori-motoric
functionalities of the robot. The middle layer maintains
a consistent representation of the space around the robot
(through the PAM, or Perceptual Anchoring Module), and
implements a set of robust tactical behaviors (in the CTRL,
or Controller Module). The higher layer maintains a global
map of the field (kept in the GM, or Global Map), and makes
real-time strategic decisions based on the current situation
(situation assessment and role selection is performed in the
HFSM, or Hierarchical Finite State Machine).

As we can see in figure 2, the ORLRobot and ORHRobot
objects manage the three control layers of the architecture.
Inside each object we can see the modules involved. Note
that there is not a clear vision of the layers in the figure,
this is due to the figure represents the architecture from the
implementation point of view and not from a design angle.

The communications module contained in the ORTcm is
briefly explained in next section because is the most interesting
module for our cooperation purposes.

The next sections of the article are going to show the more
relevant points of the communications infrastructure and the
dynamic task allocation mechanism designed. Once we have
explained those two main elements, section V gives the details
of the proposal we have chosen for try to solve the RoboCup
4-legged passing challenge.

III. COMMUNICATIONS

Communications let us to use external tools for making
laborious tasks more easily. For instance, they let us to receive
images and data from the robot to debug its behavior, to
refine the camera parameters, to reconfigure the robot camera
while the robot is running, or to teleoperate the robot to check
kicks or locomotion using communication between robots and
ChaosManager too. Besides being used as support for these
tools, communications among robots are needed for sharing
information among them and playing in a coordinated way.

The communications module developed is explained in
more detail in [7] and [8]. In this article, we only want
to mention the highlights of the communication library,
embedded in our aiBo framework, relevant for the cooperation
challenge faced (those highlights are described in the following
sub-sections).

A. TcmClient: Open-R abstraction

The use of Open-R objects is a bit arduous due to the
message passing mechanism used in Open-R. Developers that
want to use the primitives offered by the communication
module need to know the Open-R exchange system to
fulfill their jobs. We have designed Open-R wrapper called
TcmClient. TcmClient offers a simple interface to every object
for sending/receiving data hiding all Open-R details.



B. Asynchronous sent

Each Open-R object is a single-thread process, however the
ORTcm object must listen messages from several independent
robots. Bottlenecks may happen in those objects if they have
to wait its turn in the Team Communication module. This is
the reason for developing a non-blocking scheme for sending
data. We have developed a message queue, common to all
objects. The communication library manages all operations
that involves this queue.

C. Independent protocol data length

Open-R offers TCP support but we have selected the UDP
alternative for making lighter and real time communications
due to the lack of retransmissions, connection establishments,
etc.

We have chosen UDP as the protocol for the team
communications. There are not any connection establishment
and termination. Also, transmissions are not reliable and the
communication protocol does not use any acknowledgments
or retransmissions.

UDP protocol establishes a limit for data length. We have
developed a cut/compose phase into the Tcm object that allows
to exceed the UDP limit in a transparent way.

D. Asynchronous reception

Normally, objects decides when are they sending data, but
they do not know when they are going to receive it. The option
of waiting until data arrives is clearly discarded due to the non-
blocking requirements of all objects. We have implemented a
callback mechanism to solve this situation.

It is necessary to register a method associated to a specific
type of data. The communication layer associates the module,
data type and callback method and automatically invokes the
suitable method when data are received.

The concept could be summarized into the next phrase: I am
the Global Module and I am interested in localization data.
When some data localization arrives, please invokes the
method dispatchLocalizationData.

E. Independent type messages

Data must be serialized before it can be sent. This is a
simple task when we know what kind of data we are handling.
The problems arise when we are designing an independent
communication object that does not know which kind of data
(pointers, objects, scalar values, etc.) is going to manipulate.
We have created an interface class called ISerializable with
two empty methods that must be implemented for each object
that wants to travel using the network. Those methods are
serialize() and unserialize() and every object will need to
inherit from ISerializable to be sent.

Along this section we have talked about the key points
of the TeamChaos communication infrastructure that allow
developers to design cooperative behaviors. Next section
introduces the dynamic task allocation problem, which we
have found interesting for coordination issues, and details
some aspects of our proposal to this problem.

IV. DYNAMIC TASK ALLOCATION: Switch!

Dynamic task allocation is a requirement for a multi-robot
system that wants to fulfill a common task. Splitting the global
task of the team in several subtasks is a way of cooperating
among the members of the group. In very static environments
it is possible to assign fixed roles to each robot. However, in
dynamic scenarios we need dynamic task allocation to adapt
the team to the changes of the environment. In [9] is detailed
in depth the problem of dynamic task allocation.

We have designed and implemented a simple dynamic task
allocation mechanism called Switch! [10]. The main purpose
of Switch! is to offer a software layer to applications, that
manages all issues related to role assignment. This system
provides a simple interface for knowing which is the most
appropriate task for a particular robot given the actual “state”
and a set of available “roles”. Inside Switch!, there is an
explicit communication protocol among robots based in local
perceptions and global localization of each robot.

Our role allocation algorithm is based in heuristic functions.
Those functions evaluates some parameters (distance to
relevant objects, localization, etc.) and obtains a value for each
available role. We will call this value utility. Utilities will be
calculated periodically and roles will be assigned to robots in
a priorized way according to the values obtained.

A general definition for utility is “value to estimate the
cost of executing an action”. Utilities has been used in
several environments, they have been applied to game theory,
operations research, economics and multi-robot coordination,
as we can see in [11]. In our approach, utilities are employed
to evaluate the degree of adaptation of one role to one robot,
in a particular moment, and in a specific environment.

In our proposal utilities will be individually computed by
each robot as the weighted sum of several factors. In order to
describe those factors, we will use the formalism described in
[10]:

• Let I1, ..., In be the set of n robots.
• Let J1, ..., Jn be the set of n priorized roles and

w1, ..., wn their relative weights.
• Let Uij the nonnegative utility of robot Ii for role Jj ,

1 ≤ i, j ≤ n.
Every robot Ii always must have an associated role,

and every role Jj should be allocated to one robot in a
priorized way. If during some period of time communications
are perturbed, some roles will not be assigned (due to
all robots will choose the more priorized role). When the
communications will be restored, role assignment will start
selecting among all roles again.

The steps for using Switch! are the following:
1) Choose an specific set of roles. For example: {Goal-

keeper, defender, striker and supporter} in the soccer
domain.

2) Establish the order of assignation among the roles.
Order means priority of assignment.

3) Specify one utility function for each role based in
a given heuristic. A role exchange cost has to be



included in all heuristic functions to prevent excessive
roles exchanges if only small changes have happened
in the environment. This factor provides some kind of
hysteresis to the system.

4) Create the information exchange unit (IEU). This is
the entity that robots communicate among them. The
information contained inside an IEU will be received by
each robot. Switch! will update its data structures with
this information, and the heuristic functions will use it
for generating utilities.

Once the previous items are correctly selected, the dynamic
task allocation mechanism starts its job. Switch! computes a
matrix with all combinations among robots and roles according
to the heuristics configured. Then, it selects the more suitable
robot for the roles available in the specified order. Note that
Switch! is a non centralized method, so each robot will be
running all steps we are describing here.

Communication among robots is transparently managed by
Switch!. It sends and receives the information exchange units
and also monitorizes the state of the teammates. If it detects
some failure of one member of the group, the less important
role is discarded in the process of role assignment (as we can
see in figure 3). This guarantees that the roles with higher
priority are always assigned.

Fig. 3. Switch! monitorizing teammates and selecting available roles

V. COOPERATION IN THE 4-LEGGED PASSING CHALLENGE

Last RoboCup edition was the first time for the passing
technical challenge. This challenge has been created to
promote coordination, passing, and catching skills among
teams participating. In this challenge each team is required to
provide three robots. Each robot is placed on the field inside
a circle. The center of each circle is known by the robots.
Initially the robots are in a previous state called set for 15
seconds, this enables them to localize. The robots are then
placed into the playing state and given two minutes to pass
the ball around.

We have used our communication architecture and Switch!
as the main ingredients for developing the behavior to
participate in the challenge. So, we have a solid base for
implementing the cooperation needed but we also have some
weak points that set some limitations in our behaviors. The
main restriction is that we are not able to walk with the

Fig. 4. Picture of an instant of the passing challenge in our laboratory

ball catched. This constraint forces us to maintain the ball
controlled inside the circles. If the ball leaves one of the
circles, we will not be capable to return it to the circle and
try a pass. Rules say that pass must be started inside a circle
and catched inside another.

As we explained in section IV, our dynamic role allocation
system needs that some parameters will be adjusted. Next we
are going to describe the instance of Switch! used to face the
challenge.

1) Set of roles: striker, catcher1, and catcher2 are the roles
defined. Striker should catch the ball, point out to a
teammate, and then kick the ball towards some catcher.
Catchers should be looking at the ball and catch the ball
when it will be kicked.

J1 = Striker, J2 = Catcher1, J3 = Catcher2
2) Order of role assignation: In this case the order is

first allocate the striker role, and then the others. This
is to favor that the robot best situated to catch the ball
always was selected first. The weight of the Striker role
is higher than the others. The roles with more weight
(more priority) will be assigned before the others.

w1 = 0, 50, w2 = 0, 25, w3 = 0, 25
3) Utility functions: As the numbers of robots is very

low, and given that there are only two different roles
available, catcher1 and catcher2 will run the same
behavior. We have only declared the utility function for
the striker robot.
Switch! will evaluate the degree of adaptation to all
robots to the striker role. The robot better positioned will
be the striker and the rest will run the catcher behavior.
The heuristic selected for this role is based in the local
estimation of the distance to the ball (less utility is
better). Role Exchange Cost is a penalty added to the
utility function when the robot changes from one role
to another different. This extra cost of changing the role
avoids very quickly role changes adding some hysteresis
to the system.

Ui,Striker = DIi,Ball + RoleExchangeCost



4) Information exchange unit: Due to the heuristic
selected only uses local ball estimation, this is the only
data shared among the robots. We have tested other
method that uses a global estimation of the ball but
this approach has a clear problem: a good localization
is needed to fix a global ball position. The uncertainty
in localization adds bigger errors than the alternative
chosen that only shares local estimations.

Once we have configured Switch!, using the ChaosManager
we have created the behaviors for the robots. One of the
tools of the ChaosManager is the HFSM (Hierarchical Finite
State Machine) that allows to integrate low level behaviors
into a more complex one. Using this tool we have designed
a common behavior for all robots with the block structure
described in figure 5:

Fig. 5. HFSM tool with the behaviors diagram using states and transitions

• Initialize localization: In this state the robots rotate and
look for landmarks in order to stabilize localization. The
duration of this state is fixed and ends when expires a
timeout.

• Localize in circle: The robot computes the distance to its
own position towards the center of the three circles. Note
that the center of the circles are known but the robots
do not know in which of those circles are located (they
always start inside a circle). 1

Once the first robot estimates the closest distance to some
circle, it supposes that it is inside this circle. This robot
composes a message for informing to its teammates that
this circle has been allocated minimizing the options of
the teammates. If the localization of some robot has some
error, using this simple protocol the probability to choose
an erroneous circle is reduced. We have also implemented
acknowledgements to guarantee that all robots receive
those messages.

• Find ball: When a robot has a stable localization and
it knows in which circle is located, it starts to rotate in
order to find the ball. We use our own scan algorithm for

1In 2006 RoboCup edition, organization relaxed this rule allowing robots
to know in which circle they started

quickly find the orange ball. Once the robot is correctly
faced towards the ball, the robot is ready to play.

• Ready: This step is designed to synchronize all team
members before playing. If robots are not synchronized,
maybe the robot located closer to the ball, would be
localizing inside its circle even, while other robot starts
to approach to the ball (with the striker role). We need
that all robots will be ready in order to start in the
best conditions for guarantee that the striker role will
be assigned to the appropriate robot.
In this state the robot broadcasts a ready message to its
teammates. This ready message must be confirmed with
an ack by every robot. We have included retransmissions
in this synchronization protocol.

• Everybody is ready: When a robot has sent its ready
message, it has received the confirmation from its
teammates, and it has received the ready message from
the other members of the group, it assumes that all robots
are ready. Now, the robot starts to play.

• Start to play: This is a state always guided by Switch!
that selects the correct behavior for the robot. If the robot
has been allocated the striker role, it will run a low level
behavior for catching the ball. Now, the robot will point
out to the center of some of the circles using its own
position and the known location of the destination centers.
At this moment, it will broadcast an imminent passing
message for warning the teammates and will kick the
ball.
Catchers will be running a behavior called face ball that
will do robots always stay looking at the ball. If they
receive an imminent passing message or the distance to
the ball gets small, they will execute a special kick to
stop the ball.
Then, Switch! will do a role exchange in some robots,
striker/catcher roles will be swapped and the game will
continue.

VI. CONCLUSION

Cooperation is a requirement for improving multi-robot
teams. In this work we have experimented with one method
to generate cooperation using explicit communications among
the members of the group. We have observed that the use of
coordination aids to solve some problems, as the RoboCup
passing challenge.

We also used the passing challenge to validate our
communication infrastructure, developing some protocols for
the challenge easily. It means that the effort for hiding Open-
R details and for improving the previous communication
architecture has been useful.

Switch! also has been tested in another environment different
to a typical soccer match. In this scenario we have checked
its correct operation and also the value of a good dynamic
task allocator. In every robot Switch! always have managed
the roles, keeping the catchers for going to the ball and
contributing to deploy an organized common behavior.



In RoboCup 2006 at Bremen, only four teams achieved to
complete some pass. We were one of the teams that reached
the objective finishing in the third position of this technical
challenge2.

ACKNOWLEDGMENTS

Authors would like to thank the TeamChaos members for
their support. This work has been partially sponsored by grants
DPI2004-07993-C03-01 and S-0505/DPI/0176 corresponding
to ACRACE and Robocity 2030 projects respectively.

REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa,
“Robocup: The robot world cup initiative,” in ICJAI-95 - Workshop on
Entertainment and AI/ALIFE, 1995.

[2] Legged Robocup Federation, “Robocup Four-Legged League,”
http://www.tzi.de/4legged/bin/view/Website/WebHome, 2006.

[3] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,” Autonomous Robots, vol. 4, no. 1,
pp. 7–23, March 1997.

[4] Sony, “Sony AIBO SDE and Open-R SDK,” http://openr.aibo.com, 2006.
[5] A. Saffiotti and K. LeBlanc, “Active perceptual anchoring of robot

behavior in a dynamic environment,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), San Francisco, CA, 2000, pp. 3796–
3802, online at http://www.aass.oru.se/˜asaffio/.

[6] H. Martı́nez and A. Saffiotti, “Thinkingcap-II architecture,” online at
http://ants.dif.um.es/˜humberto/robots/tc2/.

[7] C. E. Agüero, F. Martı́n, H. Martı́nez,
and V. Matellán, “Communications and basic coordination of robots
in TeamChaos,” in Actas VII Workshop de Agentes Fı́sicos, 2006, pp.
3–9.

[8] TeamChaos, “Team report 2005,” 2006, online at www.teamchaos.es.
[9] K. Lerman, C. V. Jones, A. Galstyan, and M. J. Mataric, “Analysis of

dynamic task allocation in multi-robot systems,” International Journal
of Robotics Research, vol. 25, no. 4, pp. 225–242, 2006.

[10] C. E. Agüero, V. Matellán, V. Gómez, and J. Cañas, “Switch! Dynamic
roles exchange among cooperative robots,” in Proceedings of the 2nd
International Workshop on Multi-Agent Robotic Systems - MARS 2006.
INSTICC Press, 2006, pp. 99–105.

[11] B. Gerkey and M. Mataric, “On role allocation in RoboCup,” in
RoboCup 2003: Robot Soccer World Cup VII, 2004. Springer-Verlag,
2004, pp. 43–53.

22006 results are available at
http://www.tzi.de/4legged/bin/view/Website/Results2006


