Algoritmo ligero de estimación de vecindario para radiado fiable en nivel de enlace *

Miguel Ortuño, Vicente Matellán, José Maria Cañas, Carlos Agüero

Departamento de Ingeniería Telemática y Tecnología Electrónica Universidad Rey Juan Carlos - Móstoles - Madrid {miguel.ortuno,vicente.matellan,josemaria.plaza,carlos.aguero} @ urjc.es

Resumen En computación ubicua deben coexistir las redes con infraestructura como Internet y las redes Ad-Hoc (auto-organizadas y sin infraestructura previa). Participarán ordenadores convencionales y también equipos con capacidades muy limitadas en los que centramos nuestra atención. Deseamos que un nodo envíe tramas a todos sus vecinos, obteniendo cierta información sobre el éxito del envío y a un bajo coste (energético y de carga del medio). Los protocolos existentes no son adecuados para máquinas muy pequeñas por lo que desarrollamos el protocolo LLRB (Link Layer Reliable Broadcast), del que presentamos aquí el tercero de los módulos de los que consta: el Algoritmo LANE (Low-Cost Algorithm for Neighborhood Estimation, algoritmo ligero de estimación de vecindario), o algoritmo del maestro tolerante. En LLRB una estación emite una trama para todos sus vecinos, repitiendo el envío mientras no tenga suficientes respuestas. Para esto es necesario conocer, o al menos estimar, quiénes son todos, tarea de la que se encarga LANE. La ausencia de una respuesta puede deberse a que el nodo haya abandonado el vecindario o a un fallo en las comunicaciones (puesto que un gran número de nodos deben enviar asentimientos en corto espacio de tiempo en un único medio compartido). LANE debe ser capaz de discriminar ambos casos, buscando siempre un compromiso entre precisión y coste. Ofrecemos en este trabajo algunos resultados y su análisis tras implementar el algoritmo en un simulador.

1. Introducción

En informática, robótica y comunicaciones los equipos mejoran continuamente. Pero siempre habrá dispositivos sencillos, por diversos motivos. Se les puede exigir ser extremadamente fiables, baratos o desechables, como material docente o como juguetes, colonias numerosas, microrobots, nanorobots, etc. Puede que necesiten una vida útil muy larga con serias limitaciones de consumo energético que les obliguen a efectuar sólo las comunicaciones imprescindibles, por ejemplo en redes de sensores.

 $^{^{\}ast}$ Este trabajo ha sido parcialmente financiado por el proyecto CICYT DPI2004-07993-C03-01

El presente artículo se enmarca en una serie de trabajos que desarrollamos sobre encaminamiento en redes Ad-Hoc, basados en dos premisas fundamentales: los algoritmos deben ser aptos para máquinas de recursos limitados y queremos mantener el direccionamiento IP dentro de la red Ad-Hoc. Hemos propuesto el protocolo de red ADSR [1], que por motivos de espacio no podemos describir aquí. Diremos sólo que exige un protocolo de enlace inalámbrico con radiado fiable. El radiado fiable en general es un problema clásico [2], para el nivel de enlace en particular existen diversos protocolos que repasaremos a continuación. Todos ellos se encuentran en estado experimental y están basados en MACA (MultiAccess Collision Avoidance [3]) y su estándar más extendido: IEEE 802.11. MACA ofrece fiabilidad para los envíos unidireccionales (no para el radiado): cuando un nodo desea emitir un dato, previamente envía al destinatario una trama especial denominada RTS (Request To Send, petición de envío). El destinatario responde con un mensaje CTS (Clear to Send). Tras el intercambio con éxito del RTS y CTS, el nodo origen envía la trama de datos, si el destinatario la recibe correctamente responde con una trama ACK (Acknowledgment, asentimiento).

Uno de estos protocolos de enlace con radiado fiable es AGENT MAC [4], que usa multiplexación por división de tiempo, donde el número de posibles direcciones es el mismo que el número de divisiones en el tiempo. MACA/PR [5] está orientado a tráfico multimedia, el mecanismo RTS/CTS se emplea sólo para el primer paquete de un flujo. MACA-BI, (MACA por invitación) [6] suprime las tramas RTS, las estaciones envían CTSs cuando están listas para aceptar datos; por tanto necesita una estimación sobre cuándo se espera que se envíen datos. El protocol BMW [7] es muy pesado para el tipo de máquinas que nos ocupan, especialmente en demanda de memoria. Usa varios buffers para las tramas, uno de ellos almacena tantas tramas como el número máximo de posibles vecinos. Los mismos autores desarrollaron una extensión de IEEE-802.11 [8] para aumentar la probabilidad de éxito en el envío de un paquete broadcast añadiendo tramas RTS/CTS, pero sin confirmación de la recepción.

Estos protocolos son interesantes pero inadecuados para nuestros propósitos, por lo que desarrollamos LLRB (*Link Layer Reliable Broadcast*), también basado en MACA y compuesto por trés módulos:

- 1. Extensión del mecanismo RTS/CTS/ACK para múltiples destinatarios [9]. LLRB usa un intercambio RTS/CTS/ACK pero modificado para varios destinatarios: el emisor envía una trama RTS única, a lo que cada destinatario (en principio todos los vecinos) responde con una trama CTS. El emisor envía la trama de datos, que cada vecino asiente con una trama ACK. Esta multiplicidad de CTSs y ACKs en un único medio compartido es posible dividiendo el tiempo en ranuras de longitud predeterminada.
- 2. Contención limitada en respuesta al radiado mediante máscaras de elección de slot [10]. Se establece qué ranura de tiempo emplea cada vecino para enviar su CTS o ACK de respuesta. Idealmente cada ranura debería ser ocupada por exactamente una respuesta, pero lograr esto por medios tradicionales tendría un coste muy elevado, es necesario un mecanismo de coordinación que consuma muy pocos recursos. En nuestra propuesta el emisor envía una

- $m\'{a}scara$ de elección de slot, un único byte que cada destinatario compone mediante un and lógico con su propia dirección para decidir el momento en que responde.
- 3. Algoritmo ligero de estimación de vecindario para radiado fiable en nivel de enlace, que presentamos en el apartado siguiente.

2. Algoritmo ligero de estimación de vecindario

La aportación del presenta trabajo es el algoritmo ligero de estimación de vecindario LANE (Low-Cost Algorithm for Neighborhood Estimation), que también llamamos algoritmo del maestro tolerante.

En un envío unicast convencional el nivel de enlace acepta un paquete del nivel de red. Este paquete tiene una dirección de destinatario en el nivel de red de la estación remota, que se resuelve con mecanismos como ARP para obtener la dirección de enlace de la estación destinataria. El nivel de enlace repetirá la transmisión hasta recibir un asentimiento o hasta considerar el envío fallido y desistir. El éxito o el fracaso en la comunicación se indica al nivel de red.

El algoritmo LANE se comporta de forma similar, repite la transmisión hasta que estima que ha llegado a todos los nodos vecinos, si bien ya no es necesario el ARP. Esta radiado fiable coexiste con el radiado no fiable convencional. El nivel de enlace del nodo que implementa LANE hace un número de repeticiones del envío y comunica al nivel de red una estimación de cuáles son las estaciones que han recibido la trama. Observese que en el caso del unicast el nivel de enlace comunicaba lo mismo al nivel de red: los nodos a los que llegó el mensaje correctamente. (Uno, es decir el destinatario en caso de éxito, ninguno en el caso del fracaso).

A su vez, indicar la estimación de las trama que han llegado a su destino es tanto como decir cuál es la estimación del vecindario actual, puesto que todos los nodos vecinos deberán asentir la trama y en LANE la única forma de saber que una estación es vecina es haber recibido un asentimiento, donde por asentimiento nos referimos tanto a una trama CTS como a una trama ACK.

Sólo un observador omnisciente, externo a todos los nodos podría conocer con certeza quiénes son los vecinos de cada estación. Los nodos individualmente conocerán las estimaciones que les proporciona LANE. El grado de certidumbre siempre puede aumentarse asumiendo el coste correspondiente, por lo que se trata de obtener un compromiso entre la certidumbre necesaria y el coste. Este precio será el número de repeticiones en el envío, por tanto disminución del ancho de banda y aumento del consumo de energía.

2.1. Metáfora del maestro tolerante

Ilustraremos el algoritmo LANE con una imagen. Supongamos un profesor de primaria que debe controlar la asistencia a clase de sus estudiantes. Dispone de una lista con los alumnos escolarizados. Lo normal sería ir diciendo uno a uno el nombre de cada niño y comprobar si ha venido, pero el profesor de nuestro

Metáfora	Concepto Real en LANE	Abreviatura
Estructura de datos que el algoritmo calcula y ofrece al nivel de red		
Lista de escolarizados	Estimated Neighborhood	EN
Estructuras de datos internas		
Lista diaria de respuestas	Reciently Perceived Neighborhood	RPN
Días sin notocias de cada niño	Abscences in RPN	AR
Parámetros del algoritmo		
Ratio de ausencias que hacen tolerable lista diaria	Tolerated Abscensces in Repetitions	TAR
Días sin noticias de cada niño	Tolerated Abscenses in Sendings	TAS
Métricas de la bondad del algoritmo		
Niños erróneamente incluidos entre los escolarizados	False Positives	FP
Niños erróneamente excluidos de los escolarizados	False Negatives	FN

Cuadro 1. Estructuras, parámetros y métricas empleados en LANE

ejemplo tiene una manera peculiar de pasar lista: cada mañana, pregunta en voz alta $\dot{\varrho}$ Quiénes estáis en clase?, tras lo cual los niños van respondiendo con su nombre, uno tras otro, en un orden previamente establecido mientras el profesor va anotando en una segunda lista los nombres de los presentes ese día. El aula es muy ruidosa, es posible que el profesor no oiga alguna de las respuestas, así que este proceso se repite un cierto número de veces, hasta que esta lista diaria tenga un tamaño suficiente. Una vez que se oye una respuesta de un niño, es indiferente si se oyen más. Algunos niños no estarán en esta lista, bien porque no están en clase o bien porque estando, su respuesta se ha perdido, así que no por esto les elimina inmediatamente de la lista de alumnos escolarizados, sino que actualiza en una tercera lista el número de faltas que tiene cada estudiante y destruye la lista diaria, tras lo cual empieza la clase. Este procedimiento se repite cada día. Cuando pasen cierto número de días sin noticias de un niño, se le elimina de la lista de escolarizados, lista que se comunica al director del centro para que tome las medidas que correspondan.

El cuadro 1 resume las estructuras, parámetros y métricas empleados en LA-NE, y su correspondencia con la metáfora, el cuadro 2 contiene el pseudocódigo del algoritmo. En la metáfora anterior, el director del colegio se corresponde con el nivel de red y el profesor con el nivel de enlace. El paso de un paquete de datos desde el nivel de red hasta el nivel de enlace es un día de clase. La lista de niños escolarizados es la lista EN (Estimated Neighborhood, Vecindario Estimado). Cada una de las repeticiones del mensaje ¿Quiénes estáis en clase? serían los envíos de tramas RTS y tramas de datos. Las respuestas de los niños son los CTS v los ACK. La lista de respuestas diarias es el RPN (Reciently Perceived Neighborhood, vecindario percibido recientemente). El número de veces que se repite la pregunta cada día está indicado por el parámetro TAR (Tolerated Absences in Repetitions, Ausencias Toleradas en las Repeticiones). Un valor TAR de por ejemplo 0.3 significa que cuando la longitud de RPN alcance el $70\,\%$ de la longitud del EN, ya no se vuelven a pedir asentimientos a los niños. Si transcurren un número de iteraciones max repetition sin que se alcance esta condición, también se detienen las repeticiones. ¿Cuándo se elimina a un niño del EN? Esto está regulado por el parámetro TAS (Tolerated Abscences in Sendings), que es un número natural: para cada niño se almacena un valor AR (Abscenses in RPN,

```
repetir
enviar trama de datos
actualizar RPN
hasta ((1 - (longitud RPN) / longitud EN) <= TAR) o
n_repeticiones>max_repetition

actualizar AR
para todos los nodos de EN
si AR > TAS
entonces
eliminar el nodo de EN
```

Cuadro 2. Pseudocódigo del algorimo LANE

ausencias en el vecindario percibido recientemente), cuando estas ausencias sean mayores que el valor TAS, se le excluye del EN.

La eficacia del algorimo depende fundamentalmente de los parámetros TAR y TAS, que deben ser los adecuados al entorno. Buscaremos los mejores valores para cada caso con el apoyo de simulaciones. Compararemos las estimación del vecindario calculado por LANE con los vecindario reales, conocidos por un observador omnisciente ajeno a la red. La bondad en la estimación del vecindario la representaremos con dos métricas: FP (falsos positivos), que serán el número de nodos que aparecen en el vecindario estimado sin estar en el vecindario real; y FN (falsos negativos), las estaciones que no están el vecindario estimado y sí en el real. También será interesante conocer el porcentaje de casos en que se detienen las repeticiones de un envío no porque el RPN alcance la longitud del EN indicado por TAR, sino por haber llegado al número máximo de iteraciones max repetition. A esta métrica la denominamos excesos.

Modificar TAS tendrá influencia en FP y FN: un TAS muy alto significaría un profesor muy tolerante, que permite muchas faltas antes de notificar la ausencia de un niño, con lo que muchos niños se considerarán escolarizados sin estarlo. Esto es, habrá muchos falsos positivos. Además, tardará mucho tiempo en notificar la pérdida de un vecino: un TAS de 10 significa que desde que un nodo sale del vecindario, se esperarían 10 paquetes antes de notificar el error.

Un TAS muy bajo representaría a un profesor que con pocas ausencias consideraría a un alumno no escolarizado, cuando tal vez el niño estaba en clase pero sus respuestas se perdieron. O lo que es lo mismo, provocará muchos falsos negativos, aunque será muy sensible notificando variaciones en el vedindario.

La modificación del TAR influye en la carga en la red. Un número bajo generá un RPN muy fiable, pero con muchos reintentos de envío lo que reduce el ancho de banda aumenta la carga del medio y el consumo de energía. Un TAR alto, provoca la inversa de lo anterior.

3. Experimentación

Hemos hecho simulaciones a partir de una implementación del algoritmo en C++, disponible en http://gsyc.es/~mortuno/11rb_2.tgz. Empleamos los mismos escenarios para el simulador de red ns-2 usados por Broch et al [11]

en su comparativa del redimiento de varios protocolos de encaminamiento para redes ad-hoc. Sobre un área de 1500×300 metros, durante un tiempo simulado de 900 segundos se sitúan arbitrariamente 50 nodos que envían tramas de enlace y estiman su vecindario mediante el algorimo LANE. El alcance de la transmisión de cada nodo se ha fijado en 250 m. Las estaciones se mueven siguiendo el modelo de movimiento $random\ waypoint$: cada nodo hace una pausa de cierta duración y a continuación se mueve en línea recta con velocidad aleatoria y constante, de media $1\ m/s$, a un punto aleatorio dentro del escenario. Esta pausa es el parámetro $pause\ time\ y\ variar$ á entre $0\ segundos\ (movimiento\ continuo)\ y\ el tiempo\ total de la simulación\ (ausencia de movimiento).$

Nuestro objetivo es valorar la bondad de la estimación del vecindario en función de los parámetros TAR y TAS. Las métricas serán los falsos positivos, falsos negativos y el porcentaje de excesos. Hemos hecho simulaciones con valores TAS de 4, 6, 8 y 10, con valores TAR relajado (0.5), medios (0.3) y estricto (0.1), con intervalos entre paquetes de 0.05, 0.1 y 0.25 segundos (20, 10 y 4 paquetes por segundo respectivamente), dando al parámetro max repetition el valor 20.

La figura 1(a) muestra los excesos con intervalo entre paquetes de 0.1 segundos y TAR intermedio, donde se obtienen valores del orden del 1 por mil. La figura 1 (b) muestra los falsos positivos para la misma configuración, con valores del orden de las diezmilésimas. Otras valores TAR y otros intervalos entre paquetes no suponen cambios de importancia en ninguna de estas dos métricas.

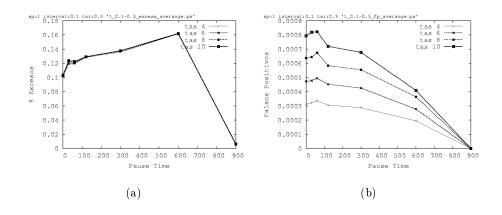
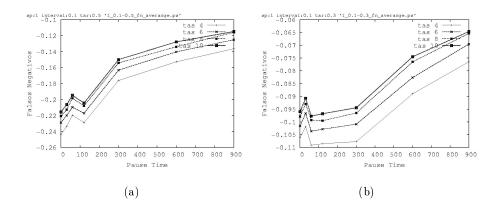
Recordemos que un falso positivo se produce cuando un vecino desaparece pero se le mantiene en el vecindario estimado. Por tanto, con poca movilidad, habrá pocas desapariciones de vecinos y pocos falsos positivos. Esto es consistente con la figura 1(b), donde los falsos positivos decrecen según aumenta el pause time, esto es, según decrece la movilidad de la red.

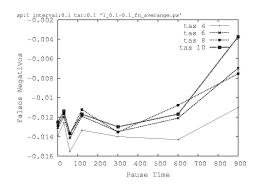
En las figuras 2 y 3 observamos como los falsos negativos aumentan con la disminución de la movilidad: habrá disposiciones de vecinos especialmente desfavorables donde no existan buenas máscaras de elección de slot, un porcentaje importante de asentimientos no lleguen a recibirse y se provoquen falsos negativos. Muchas de estas situaciones desfavorables pueden mejorar con cambios en el vecindario, y se mantendrán con vecindarios estáticos. En la figura 2(a), correspondiente a un TAR laxo los falsos negativos se mueven en torno al 20 %. Un TAR intermedio (figura 2(b)) mejora los falsos negativos, que se sitúan sobre el 8 %. Un TAR más estricto rebaja el error hasta el 1 % (figura 3).

4. Discusión

Hemos presentado el algoritmo LANE, que ofrece una estimación del vecindario de un nodo que emplea el protocolo de radiado fiable LLRB. El algoritmo LANE apenas da falsos positivos, siendo mucho más sensible a los falsos negativos. Para justificarlo, podemos decir en sentido figurado que tenemos una fuerza F_1 que hace desaparecer los asentimientos, está provocada por la dificultad de que cada ranura del tiempo la ocupe sólo un vecino. El algoritmo LANE genera F_2 , una fuerza en sentido contrario a F_1 que produce lo que podríamos llamar

asentimientos virtuales. Idealmente ambas fuerzas serían iguales en valor absoluto y no habría falsos positivos ni falsos negativos: una estimación perfecta. Si F_2 es demasiado grande habrá falsos positivos, si F_2 es insuficiente habrá falsos negativos. En pocas ocasiones F_2 es demasiado grande, los asentimientos virtuales no surgen caprichosamente de la nada, sólo se generan cuando hay una constancia relativamente reciente de la presencia del vecino. Es más frecuente que F_2 se quede por debajo de lo necesario: la desaparición de CTSs está provocada por colisiones en el medio, muchas de ellas debidas a las limitaciones de las máscaras de elección de slot y difíciles de distinguir de la verdadera ausencia de un vecino.


Figura 1. Repeticiones abandonadas por exceder el límite(a) y Falsos Positivos (b)

Referencias

- Ortuño, M.A., Matellán, V., Rodero, L., Robles, G.: Abbreviated Dynamic Source Routing: Source routing with non-unique network identifiers. In: Proceedings of WONS 2005. Second Annual Conference on Wireless On-demand Network Systems and Services. IEEE Computer Society. (2005) 76–82
- 2. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcast and related problems. In Mullender, S., ed.: Distributed Systems. ACM Press, New York (1993) 97–145
- 3. Karn, P.: MACA a new channel access method for packet radio. In: Amateur Radio 9th Computer Networking Conference. (1990) 134–140
- Myers, A.D., Záruba, G.V., Syrotiuk, V.R.: An adaptive generalized transmission protocol for ad hoc networks. Mob. Netw. Appl. 7(6) (2002) 493-502
- Lin, C.R., Gerla, M.: Asynchronous multimedia multihop wireless networks. In: Proceedings of IEEE INFOCOM'97. (1997) 118–125
- 6. Talucci, F., Gerla, M.: MACA-BI (MACA by invitation) a wireless MAC protocol for high speed ad hoc networking. In: Proceedings of IEEE PIMRC'97. (1997) 913–917

Figura 2. Falsos Negativos con TAR laxo (a) y Falsos Negativos con TAR intermedio (b)

 ${\bf Figura\,3.}\ {\bf Falsos}\ {\bf Negativos}\ {\bf con}\ {\bf TAR}\ {\bf estricto}$

- 7. Tang, K., Gerla, M.: MAC reliable broadcast in ad hoc networks. In: Proceedings of IEEE MILCOM 2001. (2001)
- 8. Tang, K., Gerla, M.: MAC layer broadcast support in 802.11 wireless networks. In: Proceedings of IEEE MILCOM 2000. (2000)
- 9. Ortuño, M., Matellán, V., Cañas, J.M., Agüero, C.: Extensión del mecanismo RTS/CTS/ACK para múltiples destinatarios. In: Actas conferencia IADIS Ibero-Americana WWW/Internet 2005, IADIS Press (2005) 207–214
- Ortuño, M., Matellán, V., Simón, C., Cañas, J.M.: Contención limitada en respuesta al radiado mediante máscaras de elección de slot. In: Actas I Simposio sobre Computación Ubicua e Inteligencia Ambiental UCAmI'2005. Ed. Thomson Paraninfo. (2005) 305–312
- Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.C., Jetcheva, J.: A performance comparison of multi-hop wireless ad hoc network routing protocols. In: Mobile Computing and Networking, (ACM MOBICOM'98) (1998) 85–97