
Chapter X

Humanoid soccer player design

Francisco Martín, Carlos Agüero, José María Cañas & Eduardo Perdices
Rey Juan Carlos University

Spain

1. Introduction

The focus of robotic research continues to shift from industrial environments, in which
robots must perform a repetitive task in a very controlled environment, to mobile service
robots operating in a wide variety of environments, often in human-habited ones. There are
robots in museums (Thrun et al, 1999), domestic robots that clean our houses, robots that
present news, play music or even are our pets. These new applications for robots make arise
a lot of problems which must be solved in order to increase their autonomy. These problems
are, but are not limited to, navigation, localisation, behavior generation and human-machine
interaction. These problems are focuses on the autonomous robots research.

In many cases, research is motivated by accomplishment of a difficult task. In Artificial
Intelligence research, for example, a milestone was to win to the chess world champion. This
milestone was achieved when deep blue won to Kasparov in 1997. In robotics there are
several competitions which present a problem and must be solved by robots. For example,
Grand Challenge propose a robotic vehicle to cross hundred of kilometers autonomously.
This competition has also a urban version named Urban Challenge.

Our work is related to RoboCup. This is an international initiative to promote research on
the field of Robotics and Artificial Intelligence. This initiative proposes a very complex
problem, a soccer match, in which several techniques related to these field can be tested,
evaluated and compared. The long term goal of the RoboCup project is, by 2050, develop a
team of fully autonomous humanoid robots that can win against the human world
champion team in soccer.

Fig. 1. Standard Platform League at RoboCup.

Robot Soccer

2
This work is focused on the Standard Platform League. In this league, all the teams use the
same robot and changes in hardware are not allowed. This is the key factor that makes that
the efforts concentrate on the software aspects rather than in the hardware. This is why this
league is known as The Software League. Until 2007, the chosen robot to play in this league
was Aibo robot. But since 2008 there is a new platform called Nao (figure 1). Nao is a biped
humanoid robot, this is the main difference with respect Aibo that is a quadruped robot.
This fact has had a big impact in the way the robot moves and its stability while moving.
Also, the sizes of both robots is not the same. Aibo is 15 cm tall while Nao is about 55 cm
tall. That causes the big difference on the way of perception. In addition to it, both robots
use a single camera to perceive. In Aibo the perception was 2D because the camera was very
near the floor. Robot Nao perceives in 3D because the camera is at a higher position and that
enables the robot to calculate the position of the elements that are located on the floor with
one single camera.

Many problems have to be solved before having a fully featured soccer player. First of all,
the robot has to get information from the environment, mainly using the camera. It must
detect the ball, goals, lines and the other robots. Having this information, the robot has to
self-localise and decide the next action: move, kick, search another object, etc. The robot
must perform all these tasks very fast in order to be reactive enough to be competitive in a
soccer match. It makes no sense within this environment to have a good localisation method
if that takes several seconds to compute the robot position or to decide the next movement
in few seconds based on the old percerpetion. The estimated sense-think-act process must
take less than 200 millisecond to be truly eficient. This is a tough requirement for any
behavior architecture that wishes to be applied to solve the problem.

With this work we are proposing a behavior based architecture that meets with the
requirements needed to develop a soccer player. Every behavior is obtained from a
combination of reusable components that execute iteratively. Every component has a
specific function and it is able to activate, deactivate o modulate other components. This
approach will meet the vivacity, reactivy and robustness needed in this environment. In this
chapter we will show how we have developed a soccer player behavior using this
architecture and all the experiments carried out to verify these properties.

This paper is organised as follows: First, we will present in section 2 all relevant previous
works which are also focused in robot behavior generation and following behaviors. In
section 3, we will present the Nao and the programming framework provided to develop
the robot applications. This framework is the ground of our software. In section 4, the
behavior based architecture and their properties will be described. Next, in section 5, we
will describe how we have developed a robotic soccer player using this architecture. In
section 6, we will introduce the experiment carried out to test the proposed approach and
also the robotic soccer player. Finally, section 7 will be the conclusion.

2. Related work

In this section, we will describe the previous works which try to solve the robot behavior
generation and the following behaviors. First of all, the classic approaches to generate robot
behaviors will be described. These approaches have been already successfully tested in
wheeled robots. After that, we will present other approaches related to the RoboCup
domain. To end up, we will describe a following behavior that uses an approach closely
related to the one used in this work.

Humanoid soccer player design

3
There are many approaches that try to solve the behavior generation problem. One of the
first successful works on mobile robotics is Xavier (Simmons et al, 1997). The architecture
used in these works is made out of four layers: obstacle avoidance, navigation, path
planning and task planning. The behavior arises from the combination of these separate
layers, with an specific task and priority each. The main difference with regard to our work
is this separation. In our work, there are no layers with any specific task, but the tasks are
broken into components in different layers.

Another approach is (Stoytchev & Arkin, 2000), where a hybrid architecture, which behavior
is divided into three components, was proposed: deliberative planning, reactive control and
motivation drives. Deliberative planning made the navigation tasks. Reactive control
provided with the necessary sensorimotor control integration for response reactively to the
events in its surroundings. The deliberative planning component had a reactive behavior
that arises from a combination of schema-based motor control agents responding to the
external stimulus. Motivation drives were responsible of monitoring the robot behavior.
This work has in common with ours the idea of behavior decomposition into smaller
behavioral units. This behavior unit was explained in detail in (Arkin, 2008).

In (Calvo et al, 2005) a follow person behavior was developed by using an architecture
called JDE (Cañas & Matellán, 2007). This reactive behavior arises from the
activation/deactivation of components called schemes. This approach has several
similarities with the one presented in this work.

In the RoboCup domain, a hierarchical behavior-based architecture was presented in
(Lenser et al, 2002). This architecture was divided in several levels. The upper levels set
goals that the bottom level had to achieve using information generated by a set of virtual
sensors, which were an abstraction of the actual sensors.

Saffiotti (Saffiotti & Zbigniew, 2003) presented another approach in this domain: the
ThinkingCap architecture. This architecture was based in a fuzzy approach, extended in
(Gómez & Martínez, 1997). The perceptual and global modelling components manage
information in a fuzzy way and they were used for generating the next actions. This
architecture was tested in the four legged league RoboCup domain and it was extended in
(Herrero & Martínez, 2008) to the Standar Platform League, where the behaviors were
developed using a LUA interpreter. This work is important to the work presented in this
paper because this was the previous architecture used in our RoboCup team.

Many researches have been done over the Standar Platform League. The B-Human Team
(Röfer et al, 2008) divides their architecture in four levels: perception, object modelling,
behavior control and motion control. The execution starts in the upper level which perceives
the environment and finishes at the low level which sends motion commands to actuators.
The behavior level was composed by several basic behavior implemented as finite state
machines. Only one basic behavior could be activated at same time. These finite state
machine was written in XABSL language (Loetzsch et al, 2006), that was interpreted at
runtime and let change and reload the behavior during the robot operation. A different
approach was presented by Cerberus Team (Akin et al, 2008), where the behavior generation
is done using a four layer planner model, that operates in discrete time steps, but exhibits
continuous behaviors. The topmost layer provides a unified interface to the planner object.
The second layer stores the different roles that a robot can play. The third layer provides
behaviors called “Actions”, used by the roles. Finally, the fourth layer contains basic skills,
built upon the actions of the third layer.

Robot Soccer

4
The behavior generation decomposition in layers is widely used to solve the soccer player
problem. In (Chown et al 2008) a layered architecture is also used, but including
coordination among the robots. They developed a decentralized dynamic role switching
system that obtains the desired behavior using different layers: strategies (the topmost
layer), formations, roles and sub-roles. The first two layers are related to the coordination
and the other two layers are related to the local actions that the robot must take.

3. Nao and NaoQi framework

The behavior based architecture proposed in this work has been tested using the Nao robot.
The applications that run in this robot must be implemented in software. The hardware
cannot be improved and all the work must be focused in improving the software. The robot
manufacturer provides an easy way to access to the hardware and also to several high level
functions, useful to implement the applications.

Our soccer robot application uses some of the functionality provided by this underlying
software. This software is called NaoQi1 and provides a framework to develop applications
in C++ and Python.

NaoQi is a distributed object framework which allows to several distributed binaries be
executed, all of them containing several software modules which communicate among
them. Robot functionality is encapsulated in software modules, so we can communicate to
specific modules in order to access sensors and actuators.

Fig. 3. Brokers tree.

Every binary, also called broker, runs independently and is attached to an address and port.
Every broker is able to run both in the robot (cross compiled) and the computer. Then we
are able to develop a complete application composed by several brokers, some running in a
computer and some in the robot, that communicate among them. This is useful because high
cost processing tasks can be done in a high performance computer instead of in the robot,
which is computationally limited.

The broker's functionality is performed by modules. Each broker may have one or more
modules. Actually, brokers only provide some services to the modules in order to
accomplish their tasks. Brokers deliver call messages among the modules, subscription to

1 http://www.aldebaran-robotics.com/

Humanoid soccer player design

5
data and so on. They also provide a way to solve module names in order to avoid specifying
the address and port of the module.

Fig. 4. Modules within MainBroker.

A set of brokers are hierarchically structured as a tree, as we can see in figure 3. The most
important broker is the MainBroker. This broker contains modules to access to robot sensors
and actuators and other modules provide some interesting functionality (figure 4). We will
describe some of the modules intensively used in this work:

• The main information source our application is the camera. The images are fetched

by ALVideoDevice module. This module uses the Video4Linux driver and makes the
images available for any module that create a proxy to it, as we can observe in
figure 8. This proxy can be obtained locally or remotelly. If locally, only a reference
to the data image is obtained, but if remotelly all the image data must be
encapsulated in a SOAP message and sent over the network.
To access the image, we can use the normal mode or the direct raw mode. Figure 9
will help to explain the difference. Video4Linux driver maintains in kernel space a
buffer where it stores the information taken from the camera. It is a round robin
buffer with a limited capacity. NaoQi unmaps one image information from Kernel
space to driver space and locks it. The difference in the modes comes here. In
normal mode, the image transformations (resolution and color space) are applied,
storing the result and unlocking the image information. This result will be
accessed, locally or remotelly, by the module interested in this data. In direct raw
mode, the locked image information is available (only locally and in native color
space, YUV422) to be accessed by the module interested in this data. This module
should manually unlock the data before the driver in kernel space wants to use this
buffer position (around 25 ms). Fetching time varying depending on the desired
color space, resolution and access mode, as we can see in figure 9.

Fig. 8. NaoQi vision architecture overview.

Robot Soccer

6

Fig. 9. Access to an image in the NaoQi framework.

Fig. 9. Access time to the image depending on resolution and space color. Last column is
direct raw mode.

• In order to move the robot, NaoQi provides the ALMotion module. This module is
responsible for the actuators of the robot. This module's API let us move a single
joint, a set of joints or the entire body. The movements can be very simple (p.e. set a
joint angle with a selected speed) or very complex (walk a selected distance). We
use these high level movement calls to make the robot walk, turn o walk sideways.
As a simple example, the walkStraight function is:

void walkStraight (float distance, int pNumSamplesPerStep)

This function makes the robot walk straight a distance. If a module, in any
broker, wants to make the robot walk, it has to create a proxy to the ALMotion
module. Then, it can use this proxy to call any function of the ALMotion module.

The movement generation to make the robot walk is a critical task that NaoQi
performs. The operations to obtain each joint position are critical. If these real time
operations miss the deadlines, the robot may lost the stability and fall down.

• NaoQi provides a thread-safe module for information sharing among modules,

called ALMemory. By its API, modules write data in this module, which are read by
any module. NaoQi also provides a way to subscribe and unsubscribe to any data
in ALMemory when it changes or periodically, selecting a class method as a callback
to manage the reception. Besides this, ALMemory also contains all the information
related to the sensors and actuators in the system, and other information. This
module can be used as a blackboard where any data produced by any module is

Humanoid soccer player design

7
published, and any module that needs a data reads from ALMemory in order to
obtain it.

As we said before, each module has an API with the functionality that it provides. Brokers
also provide useful information about their modules and their APIs via web services. If you
use a browser to connect to any broker, it shows all the modules it contains, and the API of
each one.

When a programmer develops an application composed by several modules, she decides to
implement it as a dynamic library or as a binary (broker). In the dynamic library (like a
plug-in) way, the modules that it contains can be loaded by the MainBroker as its own
modules. Using this mechanism the execution speeds up, from point of the view of
communication among modules. As the main disadvantage, if any of the modules crashes,
then MainBroker also crashes, and the robot falls to the floor. To develop an application as a
separate broker makes the execution safer. If the module crashes, only this module is
affected.

The use of NaoQi framework is not mandatory, but it is recommended. NaoQi offers high
and medium level APIs which provide all the methods needed to use all the robot's
functionality. The movement methods provided by NaoQi send low level commands to a
microcontroller allocated in the robot's chest. This microcontroller is called DCM and is in
charge of controlling the robot's actuators. Some developers prefer (and the development
framework allows it) not to use NaoQi methods and use directly low level DCM
functionality instead. This is much laborious, but it takes absolute control of robot and
allows to develop an own walking engine, for example.

Nao robot is a fully programmable humanoid robot. It is equipped with a x86 AMD Geode
500 Mhz CPU, 1 GB flash memory, 256 MB SDRAM, two speakers, two cameras (non
stereo), Wi-fi connectivity and Ethernet port. It has 25 degrees of freedom. The operating
system is Linux 2.6 with some real time patches. The robot is eqquiped with a
microcontroller ARM 7 allocated in its chest to controll the robot’s motors and sensors,
called DCM.

Fig. 2. Aldebaran Robotics’ Nao Robot.

These features impose some restrictions to our behavior based architecture design. The
microprocessor is not very powerful and the memory is very limited. These restrictions
must be taken into account to run complex localization or sophisticathed image processing
algorithms. Moreover, the processing time and memory must be shared with the OS itself
(an GNU/Linux embedded distribution) and all the software that is running in the robot,
including the services that let us access to sensors and motors, which we mentioned before.

Robot Soccer

8
Only the OS and all this software consume about 67% of the total memory available and
25% of the processing time.

The robot hardware design also imposes some restrictions. The main restriction is related to
the two cameras in the robot. These cameras are not stereo, as we can observe in the right
side of the figure 2. Actually, the bottom camera was included in the last version of the robot
after RoboCup 2008, when the robot designer took into account that it was difficult track the
ball with the upper camera (the only present at that time) when the distance to the ball was
less than one meter. Because of this non stereo camera characteristic, we can’t estimate
elements position in 3D using two images of the element, but supposing some other
characteristics as the heigh position, the element size, etc.

Besides of that, the two cameras can’t be used at same time. We are restricted to use only
one camera at the time, and the switching time is not negligible (about 70 ms). All these
restrictions have to taken into account when designing our software.

The software developed on top of NaoQi can be tested both in real robot and simulator. We
use Webots (figure 5) (MSR is also available) to test the software as the first step before
testing it in the real robot. This let us to speed up the development and to take care of the
real robot, whose hardware is fragile.

Fig. 5. Simulated and real robot.

4. Behavior based architecture for robot applications

The framework we presented in the last section provides useful functionality to develop a
software architecture that makes a robot perform any task. We can decompose the
functionality in modules that communicate among them. This framework also hides almost
all the complexity of movement generation and makes easy to access sensors (ultrasound,
camera, bumpers…) and actuators (motors, color lights, speaker…).

Humanoid soccer player design

9
It is possible to develop basic behaviors using only this framework, but it is not enough for
our needs. We need an architecture that let us to activate and deactivate components, which
is more related to the cognitive organization of a behavior based system. This is the first step
to have a wide variety of simple applications available. It’s hard to develop complex
applications using NaoQi only.

In this section we will describe the design concepts of the robot architecture we propose in
this chapter. We will address aspects such as how we interact with NaoQi software layer,
which of its functionality we use and which not, what are the elements of our architecture,
how they are organized and timing related aspects.

The main element in the proposed architecture is the component. This is the basic unit of
functionality. In any time, each component can be active or inactive. This property is set
using the start/stop interface, as we can observe in figure 6. When it is active, it is running
and performing a task. When inactive, it is stopped and it does not consume computation
resources. A component also accepts modulations to its actuation and provides information
of the task it is performing.

For example, lets suppose a component whose function is perceive the distance to an object
using the ultrasound sensors situated in the robot chest. The only task of this component is
to detect, using the sensor information, if a obstacle is in front of the robot, on its left, on its
right or there is not obstacle in a distance less than D mm. If we would like to use this
functionality, we have to activate this component using its start/stop interface (Figure 6).
We may modulate the D distance and ask whenever we want what is this component output
(front, left, right or none). When this is information is no longer needed, we may deactivate
this component to stop calculating the obstacle position, saving valuable resources.

Fig. 6. Component inputs and outputs.

A component, when active, can activate another components to achieve its goal, and these
components can also activate another ones. This is a key idea in our architecture. This let to
decompose funtionality in several components that work together. An application is a set of
components which some of them are activated and another ones are deactivated. The subset
of the components that are activated and the activation relations are called activation tree. In
figure 7 there is an example af an activation tree. When component A, the root component, is
activated, it activates component B and E. Component B activates C and D. Component A
needs all these components actived to achieve its goal. This estructure may change when a
component is modulated and decides to stop a component and activate another more
adequate one. In this example, component A does not need to know that B has activated C
and D. The way component B performs its task is up to it. Component A is only interested in
the component B and E execution results.

Robot Soccer

10

Fig. 7. Activation tree composed by several components.

Two differents components are able to activate the same child component, as we can
observe in figure 8. This property lets two components to get the same information from a
component. Any of them may modulate it, and the changes affect to the result obtained in
both component.

Fig. 7. Activation tree where B and D activates D component.

The activation tree is no fixed during the robot operation. Actually, it changes dinamically
depending on many factors: main task, environment element position, interaction with
robots or humans, changes in the environment, error or falls… The robot must adapt to the
changes in these factors by modulating the lower level components or activating and
deactivating components, changing in this way the static view of the tree.

The main idea of our approach is to decompose the robot functionality in these components,
which cooperate among them to make arise more complex behaviors. As we said before,
component can be active or inactive. When it is active, a step() function is called
iteratively to perform the component task.

Fig. 6. Activation tree with two low level components and a high level components that
modulates them.

Humanoid soccer player design

11
As an example, in figure 6 we show an activation tree composed by 3 components.
ObjectPerception is a low level component that determines the position of an
interesting object in the image taken by the robot’s camera. Head is a low level component
that moves the head. These components functionality is used by a higher level component
called FaceObject. This component activates both low level components, that execute
iteratively. Each time FaceObject component performs its step() function, it asks to
FaceObject for the object position and modulates Head movement to obtain the global
behavior: facing the object.

Components can be very simple or very complex. For example, the ObjectPerception
component of the example is a perceptive iterative component. It does’t modulate or
activate another component. It only extract information from an image. The
ObjectPerception component is a iterative controller, that activate and modulate
another components. Another components may activate and deactivate components
dinamically dependining on some stimulus. They are implemented as finite state machine. In
each state there is set of active components, and this set is eventually different to the one in
other state. Transitions among states reflect the need to adapt to the new conditions the
robot must face to.

Using this guideline, we have implemented our architecture in a single NaoQi module. The
components are implemented as Singleton C++ classes and they communicate among them
by method calls. It speeds up the communications with respect the SOAP message passing
approach.

When NaoQi module is created, it starts a thread which continuosly call to step() method
of the root component (the higher level component) in the activation tree. Each
step()method of every component at level n has the same structure:

1. Calls to step() method of components in n-1 level in its branch that it wants to
be active to get information.

2. Performs some processing to achieve its goal. This could include calls to
components methods in level n-1 to obtain information and calls to lower level
components methods in level n-1 to modulate their actuation.

3. Calls to step() methods of component in n-1 level in its branch that it wants to
be active to modulate them.

Each module runs iteratively at a configured frequency. It has not sense that all the
components execute at the same frequency. Some informations are needed to be refreshed
very fast, and some decisions are not needed to be taken such fast. Some components may
need to be configured at the maximun frame rate, but another modules may not need such
high rate. When a step() method is called, it checks if the elapsed time since last
execution is equal or higher to the established according to its frequency. In that case, it
executes 1, 2 and 3 parts of the structure the have just described. If the elapsed time is lower,
it only executes 1 and 3 parts. Tipically, higher level components are set up with lower
frequency than lower level ones, as we can observe in figure 7.

Robot Soccer

12

Fig. 7. Activation tree with a root component in the higher level. As higher is the level, lower
is the frequency.

Using this approach, we can modulate every module frequency, and be aware of situations
where the system has a high load. If a module does not meet with its (soft) deadline, it only
makes the next component to executed a little bit late, but its execution is not discarted
(graceful degradation).

In next section we will describe some of the components developed using this approach for
our soccer player application, clarifying some aspects not fully described .

5. Soccer player design

The concepts presented in last section summarizes the key ideas of this architecture design.
We have presented the component element, how these components can be activated in a
activation tree and how they execute. This architecture is focused to develop robot
applications using a behavioral approach. In this section we will present how, using this
architecture, we solve the problem previously introduced in the section 1: play soccer.
A soccer player implementation is defined by the set of activation trees and how the
components modulate another ones. These components are related to perception and
actuations and are part of the basis of this architecture. High level components make use of
these lower level components to achieve higher level components. So, the changes between
soccer player implementations depends on these higher level components. We will review
in next sections how particular components to make a robot play soccer are designed and
implemented.

5.1 Soccer player perception

At RoboCup competition, the environment is designed to be perceived using vision and all
the elements have a particular color and shape. Nao is equipped with two (non-stereo)
cameras because they are the richest sensors available in robotics. This particular robot has
also ultrasound sensors to detect obstacles in front of it, but a image processing could also
detect the obstacle and, additionally, recognize whether it is a robot (and what teams it
belong) or another element. This is why we have based the robot perception in vision.

The perception is carried out by the Perception component. This component obtains the
image from one of the two cameras, process it and makes this information available to any
component interested on it using the API it implements. Furthermore, it may calculate the
3D position of some elements in the environment. Finally, we have developed a novel
approach to detect the goals, calculating at same time an estimation of the robot pose in 3D.

Humanoid soccer player design

13

The relevant elements in the environment are the ball, the green carpet, the blue net, the
yellow net, the lines and the other robots. The ilumination is not controlled, but it is
supposed to be addequate and stable. The element detection is made attending to its color,
shape, dimensions and position with respect the detected border of the carpet (to detect if it
is in the field).

Fig. 8. Relevant elements in the environment.

We want to use direct raw mode because the fetching time varying depending on the desired
color space, resolution and access mode, as we can see in figure 9.

Perception component can be modulated by other components that uses it to set different
aspects related to the perception:

• Camera selection. Only bottom or upper camera is active at same time.
• Set the stimulus of interest.

We have designed this module to detect only one stimulus at the same time. There are four
types of stimulus: ball in the image, goals in the image, ball in ground coordinates and goal
in robot coordinates. This is usefull to avoid unncecessary processing when any of the
elements are not usefull.

5.1.1 Ball and goal in image

These stimulus detection is performed in the step() method of this component. Once the
image obtained is filtered attending only to the color of the element we want to detect. To
speed up this process we use a lookup table. In the next step, the resulting pixels on the
filtering step are grouped in blobs that indicate connected pixels with the same color. In the
last step, we apply some conditions to each blob. We test the size, the density, the center
mass position with respect the horizont, etc. The horizon is the line that indicates the upper
border of the green carpet. Ball is always under horizon, and nets have a maximun and
minimum distance to it. All this process for ball and net is shown in figure 10.

Robot Soccer

14

Fig. 10. Element detection process.

The element detected is coded as a tuple {[-1,1],[-1,1]}, indicating the normalized position
{X,Y} of the object in the image. When step() method finishes, any component can ask for
this information using method such us getBallX(),getBlueNetY(), etc.

Fig. 11. Tuple containing the ball position.

5.1.2 Ball in ground coordinates

In last subsection we describe how the element information is calculated. This information is
2D and is related to the image space. Sometimes it is not enough to achieve some task. For
example, if the robot wants to be aligned in order to kick the ball, it is desired to have the
ball position available in the robot space reference, as we can see in figure 11.

Obtain the element position in 3D is not an easy task, and it is more difficult in the case of an
humanoid robot that walks and perceive an element with a single camera. We have placed
the robot axes in the floor, centered under the chest, as we can see in figure 11. The 3D
position {OX, OY, OZ=0} of the observed element O (red lines in figure 11) is with respect the
robot axes (blue lines in figure 11).

To calculate the 3D position, we start from the 2D position of the center of the detected
element related to the image space in one camera. Using the pinhole model, we can calculate
the a 3D point situated in the line that joints the center of the camera and the element
position in the camera space.

Humanoid soccer player design

15
Once obtained this point we represent this point and the center of the camera in the robot
space axes. We use NaoQi functions to help to obtain the transformation from robot space to
camera space. Using Denavit and Hartenberg method (Denavit, 1955), we obtain the (4x4)
matrix that correspond to that transform (composed by rotations and translations).

Fig. 11. Element 3D position and the robot axes.

Each time this component is asked for the 3D position of an image element, it has to
calculate this transformation matrix (each time the joint angles from foots to camera are
differents) and apply to to the 2D element position in the camera frame calculated in the last
step() iteration.

5.1.3 Goal in robot coordinates

Once the goal has been properly detected in the image, spatial information can be obtained
from the that goal using geometric 3D computations. Let Pix1, Pix2, Pix3 and Pix4 be the
pixels of the goal vertices in the image. The position and orientation of the goal relative to
the camera can be inferred, that is, the 3D points P1, P2, P3 and P4 corresponding to the goal
vertices. Because the absolute positions of both goals are known (AP1,AP2,AP3,AP4) that
information can be reversed to compute the camera position relative to the goal, and so, the
absolute location of the camera (and the robot) in the field. In order to perform such 3D
geometric computation the robot camera must be calibrated.

Fig. 12. Goal detection.

Two different 3D coordinates are used: the absolute field based reference system and the
system tied to the robot itself, to its camera. Our algorithm deals with line segments. It
works in the absolute reference system and finds the absolute camera position computing
some restrictions coming from the pixels where the goal appears in the image.

Robot Soccer

16
There are three line segments in the goal detected in the image: two goalposts and the
crossbar. Taking into consideration only one of the posts (for instance GP1 at Fig. 12) the
way in which it appears in the image imposes some restrictions to the camera location. As
we will explain later, a 3D thorus contains all the camera locations from which that goalpost
is seen with that length in pixels (Fig. 13). It also includes the two corresponding goalpost
vertices. A new 3D thorus is computed considering the second goalpost (for instance GP2 at
Fig.12), and a third one considering the crossbar. The real camera location belongs to the
three thorus, so it can be computed as the intersection of them.

Fig. 13. Camera 3D position estimation using a 3D thorus built from the perception.

Nevertheless the analytical solution to the intersection of three 3D thorus is not simple. A
numerical algorithm could be used. Instead of that, we assume that the height of the camera
above the floor is known. The thorus coming from the crossbar is not needed anymore and it
is replaced by a horizontal plane, at h meters above the ground. Then, the intersection
between three thorus becomes the intersection between two parallel thorus and a plane. The
thorus coming from the left goalpost becomes a circle in that horizontal plane, centered at
the goalpost intersection with the plane. The thorus coming from the right goalpost also
becomes a circle. The intersection of both circles gives the camera location. Usually, due to
simmetry, two different solutions are valid. Only the position inside the field is selected.

To compute the thorus coming from one post, we take its two vertices in the image. Using
projective geometry and the intrisinc parameters of the camera, a 3D projection ray can be
computed that traverses the focus of the camera and the top vertex pixel. The same can be
computed for the bottom vertex. The angle α between these two rays in 3D is calculated
using the dot product.

Let's now consider one post at its absolute coordinates and a vertical plane that contains it.
Inside that plane only the points in a given circle see the post segment with an angle α . The
thorus is generated rotating such circle around the axis of the goalpost. Such thorus contains
all the camera 3D locations from which that post is seen with a angle α, regardless its
orientation. In other words, all the camera positions from which that post is seen with such
pixel length.

Fig. 14. Estimation of the robot position

Humanoid soccer player design

17

5.2 Basic movements

Robot actuation is not trivial in a legged robot. It is even more complicated in biped robots.
The movement is carried out by moving the projection of center of mass in the floor (zero
moment point, ZMP) to be in the support foot. This involves the coordination of almost all
the joints in the robot. In fact, it is common even use the arms to improve the balance.

It is hard to develop complete walking mechanism. This means to generate all the joint
positions in every moment, which is not mathematically trivial. It also involves real time
aspects because if a joint command is sent late, even few milliseconds, the result is fatal, and
the robot may fall to floor. All this work is critical for any task that the robot performs, but it
has not very valuable, from the scientific point of view. Sometimes there is not chance, and
this work has to be done. For example, we had to calculate every joint position each 8
milliseconds to make walk the quadruped AiBo robot because there were not any library or
function to make it walk. Luckily, NaoQi provides some high level functions to make the
robot move. There are function to walk (straight or side), turn or move in many ways an
only joint. It is not mandatory to use it, and everyone can develop his own walking
mechanism, but it is difficult to improve the results that NaoQi provides.

We have chosen to use NaoQi high level functionality to move the robot. We do not use
these function in every component that wants to move the robot in any way. This would
incur in conflicts and it is not desiderable mix high and low level functions. For these
reasons, we have developed some components to manage the robot movement, providing
and standard and addequate interface for all the component that wants to perform any
actuation. This interface is implemented by the Body, Head and FixMove components.

5.2.1 Body component

The Body component manages the robot walk. Its modulation consists in two parameters:
straight velocity (v) and rotation velocity (w). Each parameters accepts values in the [-1,1]. If
v is 1, the robot walks forward straight; if v is -1, the robot walks backward straight; if v is 0,
robot doesn’t move straight. If w is 1, the robot turn left; if w is -1, the robot turn right; if w is
0, robot doesn’t turn. Unfortunately, this movements can’t be combined and only one of
them is active at the same time.

Actually, Body doesn’t this work directly but it activates and modulates two lower level
components: GoStraight and Turn, as we can see in figure 15. When v is different to 0, it
deactivates Turn component if it was active, modulates and activates GoStraight
component. When w is different to 0, it deactivates GoStraight and activates Turn.

Robot Soccer

18

Fig. 15. Body component and its lower level components, which comumnicate with NaoQi
to move the robot.

5.2.2 Head component

Body component makes move all the robot but the robot head. Robot head is involved in the
perception and attention process and can be controlled independiently from the rest of the
robot. The robot head is controlled by the Head component. This component, when active,
can be modulated in velocity and position to control the pan and tilt movement. While the
head control in position is quite simple (it sends motion commands to ALMotion to set the
joint to the desired angle), the control in velocity is more sophisticated. We developed a PID
controller to adjust the movement speed. The modulation parameter for this type of control,
in range [-1,1] in each pan and tilt, is taken as the input of this controller. The value -1 means
the maximun value in one turn sense, 1 in the other sense, and 0 means to stop the head in
this axe.

5.2.3 Fixed Movement behavior

The last component involved in actuation is the FixMove component. Sometimes it is
required to perform a fixed complex movement composed by several joint positions in
determined times. For example, when we want that robot kicks the ball we have to made a
coordinate movement that involves all the body joints and takes several seconds to
complete. These movements are coded in several files, one for each fixed movement, that
describe the joints involved in the movement, the positions and when these positions should
applied. Lets look an example of this file:

Movement_name
name_joint_1 name _joint_2 name _joint_3 ... name _joint_n
angle_1_joint_1 angle_2_joint_1 angle_3_joint_1 ... angle_m1_joint_1
angle_1_joint_2 angle_2_joint_2 angle_3_joint_2 ... angle_m2_joint_2
angle_1_joint_3 angle_2_joint_3 angle_3_joint_3 ... angle_m3_joint_3
...
angle_1_joint_n angle_2_joint_n angle_3_joint_n ... angle_mn_joint_n
time_1_joint_1 time_2_joint_1 time_3_joint_1 ... time_m1_joint_1
time_1_joint_2 time_2_joint_2 time_3_joint_2 ... time_m2_joint_2
time_1_joint_3 time_2_joint_3 time_3_joint_3 ... time_m3_joint_3
...
time_1_joint_n time_2_joint_n time_3_joint_n ... time_mn_joint_n

Humanoid soccer player design

19
In addition to the desired fixed movement, we can modulate two parameters that indicates a
walking displacement in straight and side senses. This is useful to align the robot with the
ball when kicking the ball. If this values are not zero, a walk preceed the execution of the
fixed movement.

As we have just introduced, we use this component for kicking the ball and for standing up
when the robot is pushed and falls to the floor.

5.3 Face Ball behavior

FaceBall component tries to center the ball in the image taken from the camera. To
achieve this goal, when active, this component activates both Perception and Head
components, as we see in figure 16.

Fig. 16. FaceBall component.

This component activates Perception and Head while it is active. It modulates
Perception to detect the ball. In its step() function, it simply takes the output of the
perception component and uses this value as the input of the Head component. These
values are in the [-1,1] range. When the ball is centered, the X and Y value of the ball are 0,
so the head is stopped. If the ball is in the extreme right, the X value, 1, will be the
modulation of the pan velocity, turning the head to the left. Here is the code of the step()
funtion of FaceBall.

void
FaceBall::step(void)
{
 perception->step();

 if (isTime2Run())
 {
 head->setPan(perception->getBallX());
 head->setTilt(perception->getBallY());

}

 head->step();
}

Robot Soccer

20
5.4 Follow Ball behavior

The main function of FollowBall component is going to the ball when it is detected by the
robot. This component activates FaceBall and Body components. The modulation of the
Body component is the position of the robot head, that is tracking the ball. Simplifying, the
code of the step function of this component is something like this:

void
FollowBall::step(void)
{
 faceball->step();

 if (isTime2Run())
 {
 float panAngle = toDegrees(headYaw);
 float tiltAngle = toDegrees(headPitch);

 if(panAngle > 35) body->setVel(0, panAngle/fabs(panAngle));
 else body->setVel(1, 0);

 }

 body->step();
}

Fig. 17. FollowBall component.

5.5 Search Ball behavior

The main function of SearchBall component is search the ball when it is not detected by
the robot. This component introduces the concept of finite state machine in a component.
When this component is active, it can be in two states: HeadSearch or BodySearch. It starts
from HeadSearch state and it only moves the head to search the ball. When it has scanned all
the space in front of the robot it transitates to BodySearch state and the robot starts to turn
while it is scanning with the head. In any state, SearchBall component modulates
Perception component in order to periodically change the active camera.

Depending on the state, the activation tree is different, as we can see in figure 18. At start,
the active state is HeadSearch. In this state only Head component is active. During this state,

Humanoid soccer player design

21
Head component is modulated directly from SearchBall component. It starts moving the
head up and it continues moving the head to scan the space in front of the robot. When this
scan is completed, it transitates to BodySearch state. In this state, Body component is also
activated in order to make turn the robot in one direction.

Fig. 18. The two states that this component can be and the activation tree in each state.

This component does not use the Perception component to get information about the ball
presence. This component only manages the robot movement and the camera selection. Any
other component has to activate SearchBall and Perception components, and stop
SearchBall once the ball is found. Next we will see which component do this work.

5.6 Search Net behavior

This behavior is implemented by the SearchNet component is used to search the net where
the robot must kick the ball to. It activates Head and Perception components. Its work is
divided in two states: Scanning and Recovering.

When the Scanning state starts, the head position is stored (it is supposed to be tracking the
ball) and the robot modulates Perception component to detect the nets instead of the ball.
It has not sense continuing doing processing to detect the ball if now it is not the interesting
element, saving processing resources.

While Scanning state, this component also modulates Head component to move the head
along the horizont, searching the ball. When this component is active, the robot is stopped,
and we can suppose where is the horinzont. If the scanning is complete, or the net is
detected, this component tansitates to the Recovering state.

In the Recovering state the Perception component is modulated to detect the ball, and the
head moves to the position stored when Scanning state started.

5.5 Field Player behavior

The Player component is the root component of the forward player behavior. Its
functionality is decomposed in five states: LookForBall, Approach, SeekNet, Fallen and Kick.
These five states encode all the behavior that makes the robot play soccer.

Robot Soccer

22

In LookForBall state, Player component activates SearchBall and Perception components, as
is shown in figure 19. For clarity reasons, in this figure we don’t display all the activation
tree but the components that Player component directly activates.

When the Perception components indicates that the ball is detected, this component
transitates to Approach state. It deactivates SearchBall State, and the ball is supposed to be in
the active camera. In this state is activated the FollowBall component in order to make the
robot walk to the ball.

It is common that the robot initially detects the ball with the upper camera, and it starts the
approach to the ball using this camera. When the ball is nearer than one meter, it can’t
follow it with the upper camera bacause of the neck limitations and the ball is lost. It
transitates to the LookForBall state again and starts searching the ball, changing the camera.
When the ball is detected with the lower camera, it continues the approaching with the right
camera.

Fig. 19. Player component finite state machine with its corresponding activation tree.

When the ball is close to the robot, the robot is ready to kick the ball, but it has to detect the
net first in order to select the addecuate movement to score. For this reason, the Player
component transitates to SeekNet state, activating SearchNet component.

Once detected the net, the robot must kick the ball in the right direction according to the net
position. Player component makes this decission in the Kick state. Before activating

Humanoid soccer player design

23
FixMove component, Player component ask to Perception component the 3D ball
position. With this information, it can calculate the displacement needed by the selected kick
to perform this kick correctly. Once activated the FixMove component, the robot performs
the kick.

In this state, this component also activates FaceBall component to track the ball while the
robot is kicking the ball.

The last state is Fallen. This component goes to transitates to this state when the robot falls to
the floor. It activates Fixmove component and modulates it with the right movement to
make it getting up.

These are the components needed for the forward player behavior. In next sections we will
explain the tools developed to tune, configurate and debug these components, and also the
components developed to make a complete soccer player.

6. Tools

In previous section we described the software that the robot runs onboard. This is the
software needed to make the robot perform any task. Actually, this is the only software that
is working while the robot is playing soccer in an official match, but some work on
calibrating and debugging must be done before a game starts.

We have developed a set of tools useful to do all the previous work needed to make the
robot play. Manager application contains all the tools used to manage the robot. This
application runs in a PC connected to the robot by an ethernet cable or using wireless
communications.

To make possible the communication between the robot and the computer we have used the
SOAP protocol that NaoQi provides. This simplify the development process because we do
not have to implement a socket based communication or anything similar. We only obtain a
proxy to the NaoQi module that contains our software, and we make calls to methods to
send and receive all the management information.

Next, we will describe the main tools developed inside the Manager. These tool let to debug
any component, tune the vision filters and the robot movements.

6.1 Component debugging tool

Inside the Manager we can debug any component individually. We can activate a
component, modulate it and change its frequency. It is also possible to take measures related
to the CPU consumption.

In figure 20 we show the GUI of this tool and how the Turn component is debugged. We
can activate independiently using a checkbox. We can also configurate the frequency, in this
case it is set to run at 5 Hz. We use the slider to modulate this component setting its input in
the [-1,1] range. In the figure the modulation is 0, so the robot is stopped. Finally, we can
obtain the mean, maximum and minimum CPU consumption time in each iteration.

Robot Soccer

24

Fig. 20. Component debugging tool and how the Turn component is debugged.

6.3 Perception tool

The environment conditions are not similar in every place the robot must work. Even in the
same place, the conditions are not similar along the day. For this reason to calibrate the
camera characteristics and the color definitions is essential to face these changes in the ligt
conditions.

The Manager contains some tools to do this calibratarion. Figure 21 shows the tool used to
calibrate the camera values (brightness, contrast, …). Each relevant element to the robot has
a different color, as we explained in section 5.1.1. These colors and the recognization values
are calibrated with the tools shown previously in figure 10.

Fig. 21. Camera values tunning.

6.4 Fixed Movement tool

In some situations the robot must perform a fixed movement. To kick the ball or to get up,
the robot needs to follow a sequence of movements that involves many joints. It is difficult
to create these movements without a specific tool.

We have implemented a tool to create sequences of movemenet. For each sequence we have
to specify the joints involved, the angles that each joint has to be set and the time these
angles are set. This was explained when we presented the component that performs these

Humanoid soccer player design

25
movements, Fixmove (section 5.3), where we shown an example of the file that stores the
sequence. The goal of this tool, shown in figure 22, is to create these sequence files.

Using this tool we can create the sequence step by step. En each step we define the duration
and we change the joint values needed in this step. We can turn off a single joint and move
it manually to the desired position, and then get that position. This makes easy to create
movement using this process for each step and for each joint.

We have created three types of kicks using this tool. Each kick can be done simetrically with
both legs, then we really have six kicks. Also, we have created two movements to make the
robot get up from the floor.

Fig. 22. Fixed movement sequence generation tool.

7. Experiments

In this behavior we have presented our behavior based architecture and a complete soccer
player application using it. In this chapter we will show the experiments carried out during
and after its development.

7.1 First behavior architecture attempt

Not always the first steps are the right ones. In this architecture design, the proposed
solution wasn’t the first approximation we took. At initial we tried to exploit all the benefits
that NaoQi provides. This software element lets to decompose our application functionality
in modules which cooperate among them to achieve a goal. Each module perfoms some
processing task and sends data to other modules. This would lets to implement our
architecture in a natural way using this approximation. NaoQi has a funtionality to start and
stop calling iteratively a method, using a callback to a periodic clock event. This solves the
execution cycle to call step() method iteratively. Communications among modules are
solved by the SOAP messages mechanism that NaoQi provides. We also could use
ALMemory as a blackboard where all the information from sensorial components and all
the modulations to actuation modules are registered and taken. Even callbacks can be set up

Robot Soccer

26
in each module to be called each time an interesting value in this blackboard changes. In
fact, this was the first approach we took to design our architecture. Unfortunately, and
intensive use of these mechanisms had a big impact in NaoQi performance and some real
time critical tasks were severely affected. One of these real time critical tasks is movement
generation. When the performace in this task was poor, the movement was affected and the
robot fallen to floor.

7.2 General behavior creation process using the proposed architecture

The final design tried to use as less NaoQi mechanisms as possible. We use NaoQi to access
sensors and actuators, but all the communication via SOAP messages are reduced to the
minimun possible. ALMemory as a blackboard was discarded and callbacks to data are used
only to the essential information generated by NaoQi that are useful to our tasks. Although
we have taken this decission, some of the NaoQi functionality is still essential to us. We use
NaoQi for accessing to the camera images or for walking generation. We are not interesed in
developing our own locomotion mechanism because this is being improved continuosly by
the robot manufacturer and we want to concentrate in hich level topics.

With the changes from the initial to the final version we obtained better performance and
we avoid to affect NaoQi locomotion mechanism. Althought our software wants to consume
too much processing time, only our software will be affected. This is a redical improvement
with respect the initial version.

The robot soccer behavior is itself an experiment to test the proposed behavioral
architecture. Using this architecture, we have developed a complete behavior able to cope
with the requirements that a RoboCup match imposes. We have shown some of the
characteristics of this robot architecture during this process:

• FaceBall, SearchNet and SearchBall components reuses the component
Head. In this way we have shown how a component can be reused only changing
its modulation.

• Only Perception, GoStraight and Turn components face to the complexity of
the robot hardware, which let in the other levels to ignore this complexity.

• Component activations and deactivations, for example in section 5.5, let to have
diferent behaviors on the robot.

7.3 Forward soccer player test

The final experiment is the real application of this behavior. We have tested it at RoboCup
2009 in Graz. Before the test we had to use the tools described in section 6 to calibrate the
colors of the relevant elements in the environment. Once tuned, the robot is ready to work.
This sequence has been extracted from a video which full version may be visualized at
http://www.teamchaos.es/index.php/URJC#RoboCup-2009.

Figure 23 shows a piece of an experiment of the soccer player behavior. In this experiment
the robot starts with total uncertainty about the ball. Initially, the Player component is in
LookForBall state and it has activated the SearchBall component to look for the ball.
SearchBall component uses first the bottom camera. The shadow area respresents the
camera coverage, where the red area represents the bottom camera coverage and the blue
area the upper camera coverage. In the two first images the robot is scanning the nearest
space with the bottom camera and it doesn’t find any ball. Once completed the near scan,

Humanoid soccer player design

27
SearchBall component modulates Perception component in order to change the camera,
covering the blue marked area. Player component is continously asking Perception
component for the ball presence, and when the ball is detected in the image (fourth image in
the sequence), SearchBall component is deactivated and FollowBall component is activates,
approaching to the ball (last image in the sequence). Take note that in this example, the
upper camera is now active.

Fig. 23. Ball searching sequence.

FollowBall component activates FaceBall component to center the ball in the image while the
robot is approaching to the ball. FollowBall activates Body to approach the ball. As the neck
angle is less than a fixed value, i.e 35 degrees (the ball is in front of the robot), Body activates
GoStraight component in order to make the robot walk straight.

The approaching to the ball, as we said before is made using FaceBall component and Body
component. Note that in any moment no distance to the ball is take into account. Only the
head pan is used by the body component to approach the ball.

In figure 24, while the robot the robot is approaching to the ball, it has to turn to correct the
walk direction. In this situation, the head pan angle is higher than a fixed value (35 degrees,
for example) indicating that the ball is not in front of the robot. Immediately, after this
condition is true, FollowBall modulates to Body so the angular speed is not null and
forward speed is zero. Then, Body component deactivates GoStraight component and
activates Turn Components, which makes the robot turn in the desired direction.

Robot Soccer

28

Fig. 24. Ball appraching modulation to make the robot turn.

The robot reached the ball when it is walking to the ball, the bottom camera is active, the
head tilt is higher than a threshold, and the head pan is low. This situation is shown in the
first image in the figure 25. In that moment, the robot has to decide which kick it has to
execute. For this reason, the net has to be detected. In the last image, the conditions to kick
the ball are held and the player component deactivates FollowBall component and activates
the SearchNet component. The SearchNet component has as output a value that indicates if
the scan is complete. The Player component queries in each iteration if the scan is complete.
Once completed, depending on the net position (or if it has been detected) a kick is selected.
In the second image of the same figure, the blue net is detected at the right of the robot. For
this test we have created 3 types of kicks: front, diagonal and lateral. Actually, we have 6
kicks available because each one can be done by both legs. In this situation the robot selects
a lateral kick with the right leg to kick the ball.

Before kick the ball, the robot must be aligned in order to situate itself in the right position to
do an effective kick. For this purpouse, the player component ask to the Perception module
the ball position in 3D with respect the robot. This is the only time the ball position is
estimated. The player components activates Fixmove component with the selected kick and
a lateral and straight alignement. As we can see in third and fourth image, the robot moves
on its left and back to do the kick.

Fig. 25. Search net behavior and kick.

Humanoid soccer player design

29
While the kick is performing and after the kick, FaceBall component is activeted to continue
traking the ball. This spped up the recovering after the kick and sometimes it is not needed
to transitate to the searching ball state, but the approaching to the ball state.

This experiment has been carried out at the RoboCup 2009 in Graz. This behavior was tested
in the real competition environment, where the robot operation showed robust to the noise
produced by other robots and persons.

7.4 Any Ball challenge

In RoboCup 2009 competitions we also took part in the Any Ball Challenge. The goal was to
kick ball differents to the orange official one. To achieve this goal we changed the Perception
component to detects the non-green objects under the orizont that seemed like balls. In the
figure 26 (and in the video we mentioned before) we can see how the robot was able to kick
differents balls.

Fig. 26. Any Ball Challenge. The robot must detect and kick hetereogeneuos balls.

7.4 Camera switching experiment

In the experiment described in section 7.2, between the instant 3 and 4 sequence, a camera
switch has made. For clarity, lets use another texperiment to explain this change with
another sequence. In figure 27, the robot is approaching to the ball using the upper camera.
The Player component has activated FollowBall component and the robot is walking
straight to the ball using the upper camera. When ball enters in the red area and the tilt head
has the maximun value, ball dissapears from the image taken by the upper camera. Then,
the Player components deactivates FollowBall components (and their activated components
in cascade) and activates SearchBall component. SearchBall component always starts with
the bottom camera activated and moves the head up. In few steps (maybe 1 or two are
enough) ball is detected again. Player component deactivates SearchBall component and
activates FollowBall component, that starts with the bottom camera selected. The camera
change is made.

Robot Soccer

30

Fig. 27. Camera switching.

8. Conclusions

In this chapter we have proposed a robotic behavior based architecture. With this
architecture we can create robotics behaviors. The behavior arises from a cooperative
execution of iterative processing units called components. These units are hierarchically
organized, where a component may activate and modulate another components. In every
moment, there are active components an latent components that are waiting for be activated.
This hierarchy is called activation tree, and dinamically changes during the robot operation.
The components whose ouput is not needed are deactivated in order to save the limited
resources of the robot.

We can use this behavior architecture for create any robotic behavior. In this chapter we
have shown how the behaviors are implemented within the architecture. We have created a
forward player behavior to play soccer in Standar Platform League at RoboCup. This is a
dynamic environment where the conditions are very hard. Robots must react very fast to the
stimulus in order to play soccer in this league. This is an excellent test to the behaviors
created within our architecture.

We have developed a set of component to get a forward soccer player behavior. These
components are latent until a component activate it to use it. These component have a
standar modulation interface, perfect to be reused by several component without any
modification in the source code or to support multiple different interfaces.

Humanoid soccer player design

31
Perception is done by the Perception component. This component uses the camera to get
different stimulus form the environment. The stimulus that it detect are the ball and the net
in image coordinates, the ball in ground coordinates and the goal in camera coordinates.
This component only perceives one stimulus at the same time, saving the limited resources.

Locomotion is done by the Body component, that uses Turn or GoStraight components
alternatively to make the robot walk to the ball. This component is modulated by
introducing a lineal or rotational speed. We found this interface is more appropiate that the
one provided by the NaoQi high level locomotion API to create our behaviors.

The head movement is not managed from the Body components because it is involved in the
perception process and we think that it is better to have a sepparate component for this
element. This component is the Head component, and moves the robot’s neck in pan and tilt
frames.

Robot also moves by performing a sequence of basic joint-level movements. This
functionality is obtained from the FixMove component execution. This is useful to create
kicking sequences or getting up sequences.

These components use the NaoQi API directly and are usually in the lower level of the
activation tree. They are iterative components and no decision are taken in each step. There
are other more complex components. These components activate other components and
may vary dinamically the set of components that it activates.

The FaceBall component activates Perception and Head component in order to center
the ball in the image. This component is very important, because when it is activated, we
can assume that the ball position is where the ball is pointing at. This is used by the
FollowBall component. This components uses Body component to make the robot move
ahead when the neck pan angle is small, and turning when it is big. There is not need to
know the real distance or angle to the ball, only the neck pan angle.

When the ball is not detected in the image, the SearchBall component activates and
modulates Head and Body components to detect the ball. In the same way, the SearchNet
component component uses the Head component to look for the goals, in order to calculate
the right kick to use in order to score.

The higher level component is the Player component. This component is implemented as a
finite state machine and activates the previously described components in order to obtain
the forward player behavior.

This behavior, created with this architecture, has been tested in the RoboCup environment,
but it is not limited to it. We want to use this architecture to create robot behaviors to solve
another problems out of this environment.

9. References

Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A. B.; Dellaert, F.; Fox, D.; Hahnel, D.;
Rosenberg, C. R.; Roy, N.; Schulte, J; Schulz, D. (1999). MINERVA: A Tour-Guide
Robot that Learns. Kunstliche Intelligenz, pp. 14-26. Germany

Reid, S. ; Goodwin, R.; Haigh, K.; Koenig, S.; O'Sullivan, J.; Veloso, M. (1997). Xavier:
Experience with a Layered Robot Architecture. Agents '97, 1997.

Robot Soccer

32
Stoytchev, A.; Arkin, R. (2000). Combining Deliberation, Reactivity, and Motivation in the

Context of a Behavior-Based Robot Architecture. In Proceedings 2001 IEEE International
Symposium on Computational Intelligence in Robotics and Automation. 290-295.
Banff, Alberta, Canada. 2000.

Arkin, R. (1989). Motor Schema Based Mobile Robot Navigation. The International Journal of
Robotics Research, Vol. 8, No. 4, 92-112 (1989).

Saffiotti, A. ; Wasik, Z. (2003). Using hierarchical fuzzy behaviors in the RoboCup domain.
Autonomous robotic systems: soft computing and hard computing methodologies
and applications. pp. 235-262. Physica-Verlag GmbH. Heidelberg, Germany, 2003.

Lenser, S.; Bruce, J.; Veloso, M. (2002). A Modular Hierarchical Behavior-Based Architecture,
Lecture Notes in Computer Science. RoboCup 2001: Robot Soccer World Cup V. pp.
79-99. Springer Berlin / Heidelberg, 2002.

Röfer, T.; Burkhard, H. ; von Stryk, O. ; Schwiegelshohn, U.; Laue, T.; Weber, M.; Juengel,
M.; Gohring D.; Hoffmann, J.; Altmeyer, B.; Krause, T.; Spranger, M.; Brunn, R.;
Dassler, M.; Kunz, M.; Oberlies, T.; Risler, M.; Hebbela, M.; Nistico, W.;
Czarnetzkia, S.; Kerkhof, T.; Meyer, M.; Rohde, C.; Schmitz, B.; Wachter, M.;
Wegner, T.; Zarges. C. (2008). B-Human. Team Description and code release 2008.
Robocup 2008. Technical report, Germany, 2008.

Calvo, R.; Cañas, J.M.; García-Pérez, L. (2005). Person following behavior generated with JDE
schema hierarchy. ICINCO 2nd Int. Conf. on Informatics in Control, Automation and
Robotics. Barcelona (Spain), sep 14-17, 2005. INSTICC Press, pp 463-466, 2005.
ISBN: 972-8865-30-9.

Cañaas, J. M.; and Matellán, V. (2007). From bio-inspired vs. psycho-inspired to etho-inspired
robots. Robotics and Autonomous Systems, Volume 55, pp 841-850, 2007. ISSN 0921-
8890.

Gómez, A.; Martínez, H.; (1997). Fuzzy Logic Based Intelligent Agents for Reactive Navigation in
Autonomous Systems. Fitth International Conference on Fuzzy Theory and
Technology, Raleigh (USA), 1997

Loetzsch, M.; Risler, M.; Jungel, M. (2006). XABSL - A pragmatic approach to behavior
engineering. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2006), pages 5124-5129, Beijing, October 2006.

Denavit, J. (1955). Hartenberg RS. A kinematic notation for lower-pair mechanisms based on
matrices. Transactions of ASME 1955;77: 215–221 Journal of Applied Mechanics,
2006.

Herrero, D. ; Martínez, H. (2008). Embedded Behavioral Control of Four-legged Robots. RoboCup
Symposium 2008. Suzhou (China), 2008.

Akin, H.L.; Meriçli, Ç.; Meriçli, T.; Gökçe, B.; Özkucur, E.; Kavakhoglu, C.; Yildiz, O.T.
(2008). Cerberus’08 Team Report. Technical Report. Turkey, 2008.

Chown, E.; Fishman, J.; Strom, J.; Slavov, G.; Hermans T.; Dunn, N.; Lawrence, A.; Morrison,
J.; Krob, E. (2008). The Northern Bites 2008 Standard Platform Robot Team. Technical
Report. USA, 2008.

