
Behavior-based Iterative Component Architecture for robotic applications
with the Nao humanoid

Francisco Martín José M. Cañas Carlos Agüero Eduardo Perdices
Robotics Group Robotics Group Robotics Group Robotics Group

U.Rey Juan Carlos U.Rey Juan Carlos U.Rey Juan Carlos U.Rey Juan Carlos

francisco.rico@urjc.es jmplaza@gsyc.es caguero@gsyc.es edupergar@gmail.com

Abstract

Software architectures are essential for robotic
applications development. They organize per-
ception and actuation capabilities in order to
achieve the goals the robots are developed
for. In this paper we present the second ma-
jor release of our software architecture, named
BICA, that aims to be applied in a wide range
of applications using the Nao humanoid robot
as the hardware platform. This architecture
has been designed using state-of-the-art con-
cepts to be reliable, extensible and efficient
and the second release improves some of the
shortcomings observed along the experience
with the initial design. In order to prove these
features, this architecture has been tested in
different domains, mainly the Robocup Stan-
dard Platforms League, which is very demand-
ing, competitive and dynamic. Around this
software architecture we have developed an
useful set of tools to design, setup and debug
the perceptive habilities and the behaviors the
robot performs.

1 Introduction

The focus of robotic research continues to shift
from industrial environments, in which robots
must perform a repetitive task in a very con-
trolled environment, to mobile service robots
operating in a wide variety of environments,
often in human-habited ones. There are robots
in museums [2], domestic robots that clean our
houses, robots that present news, play music
or even are our pets. These new applications

for robots make arise a lot of problems which
must be solved in order to increase their auton-
omy. These problems are, but are not limited
to, navigation, localization, behavior genera-
tion and human-machine interaction.

In many cases, research is motivated by ac-
complishment of a difficult task. In Artificial
Intelligence research, for example, a milestone
was to win to the chess world champion. This
milestone was achieved when deep blue won to
Kasparov in 1997. In robotics there are sev-
eral competitions which present a problem and
must be solved by robots. For example, Grand
Challenge propose a robotic vehicle to cross
hundred of kilometers autonomously. This
competition has also a urban version named
Urban Challenge.

Our work is related to RoboCup. This is
an international initiative to promote research
on the field of Robotics and Artificial Intel-
ligence. This initiative proposes a very com-
plex problem, a soccer match, in which several
techniques related to these field can be tested,
evaluated and compared. The long term goal
of the RoboCup project is, by 2050, develop
a team of fully autonomous humanoid robots
that can win against the human world cham-
pion team in soccer.

This work is focused on the Standard Plat-
form League. In this league, all the teams use
the same robot and changes in hardware are
not allowed. This is the key factor that makes
that the efforts concentrate on the software as-
pects rather than in the hardware. Until 2007,
the official robot to play in this league was
quadruped Aibo robot, but since 2008 is the

1

Figure 1: Robot Nao playing soccer.

Nao humanoid (Figure 1). This change has
had a big impact in the way the robot moves
and its stability while moving. Also, the sizes
of both robots is not the same. Aibo is 15 cm
tall while Nao is about 55 cm tall. That causes
big differences on perception. Both robots use
a single camera to perceive. In Aibo the per-
ception was 2D because the camera was very
near the floor. Robot Nao perceives in 3D be-
cause the camera is at a higher position and
that enables the robot to calculate the posi-
tion of the elements that are located on the
floor.

Many problems have to be solved before
having a fully featured soccer player. First
of all, the robot has to get information from
the environment, mainly using the camera. It
must detect the ball, goals, lines and the other
robots. Having this information, the robot
has to self-localize and decide the next action:
move, kick, search another object, etc. The
robot must perform all these tasks very fast
in order to be reactive enough to be compet-
itive in a soccer match. It makes no sense
within this environment to have a good local-
ization method if that takes several seconds to
compute the robot position or to decide the
next movement in few seconds based on the
old perception. The estimated sense-think-act
process must take less than 200 millisecond to
be truly efficient. This is a tough requirement
for any behavior architecture that wishes to be

applied to solve the problem.
With this work we are proposing a behav-

ior based architecture that meets with the re-
quirements needed to develop a soccer player.
Every behavior is obtained from a combina-
tion of reusable components that execute iter-
atively. Every component has a specific func-
tion and it is able to activate, deactivate or
modulate other components. This approach
will meet the vivacity, reactivity and robust-
ness needed in this environment. This archi-
tecture is inherited from the one we presented
in [1], but redesigned in order to improve ef-
ficiency and reliability. We will present the
problems we had to face to using the previ-
ous approach. These problems made us to re-
design the entire architecture.

In section 2 we will present relevant previ-
ous works which are also focused in robot be-
havior generation. In section 3 we will present
the Nao and the programming framework pro-
vided to develop the robot applications. In
section 4, the behavior based architecture and
their properties will be described. Next, in
section 5, we will show two useful tools in the
architecure. In section 6 we will describe some
experiments carried out to validate the archi-
tecture and some actuation and perception de-
veloped components. Finally, section ?? will
summarize the conclusions.

2 Related works

There are many approaches that try to solve
the behavior generation problem. One of the
first successful works on mobile robotics is
Xavier [3]. The architecture used in these
works is made out of four layers: obstacle
avoidance, navigation, path planning and task
planning. The behavior arises from the combi-
nation of these separate layers, with an specific
task and priority each. The main difference
with regard to our work is this separation. In
our work, there are no layers with any specific
task, but the tasks are broken into components
in different layers.

Another approach is [4], where a hybrid
architecture, which behavior is divided into
three components, was proposed: delibera-

tive planning, reactive control and motivation
drives. Deliberative planning made the navi-
gation tasks. Reactive control provided with
the necessary sensorimotor control integration
for response reactively to the events in its sur-
roundings. The deliberative planning compo-
nent had a reactive behavior that arises from
a combination of schema-based motor control
agents responding to the external stimulus.
Motivation drives were responsible of moni-
toring the robot behavior. This work has in
common with ours the idea of behavior decom-
position into smaller behavioral units. This
behavior unit was explained in detail in [5].

The JDE architecture [9] has several simi-
larities with the one presented in this work,
including the activation/deactivation of reac-
tive components called schemas.

In the RoboCup domain, a hierarchical
behavior-based architecture was presented in
[7]. This architecture was divided in several
levels. The upper levels set goals that the
bottom level had to achieve using information
generated by a set of virtual sensors, which
were an abstraction of the actual sensors.

Saffiotti [6] presented another approach in
this domain: the ThinkingCap architecture.
This architecture was based in a fuzzy ap-
proach, extended in [10]. The perceptual and
global modeling components manage informa-
tion in a fuzzy way and they were used for
generating the next actions. This architecture
was tested in the four legged league RoboCup
domain and it was extended in [13] to the
Standar Platform League, where the behaviors
were developed using a LUA interpreter.

Much research has been done over the Stan-
dar Platform League. The B-Human Team [8]
divides their architecture in four levels: per-
ception, object modeling, behavior control and
motion control. The execution starts in the
upper level which perceives the environment
and finishes at the low level which sends mo-
tion commands to actuators. The behavior
level was composed by several basic behavior
implemented as finite state machines. Only
one basic behavior could be activated at the
same time. These finite state machine was
written in XABSL language [11], that was in-

terpreted at runtime and let change and reload
the behavior during the robot operation.

A different approach was presented by Cer-
berus Team [?], where the behavior generation
is done using a four layer planner model, that
operates in discrete time steps, but exhibits
continuous behaviors. The topmost layer pro-
vides a unified interface to the planner ob-
ject. The second layer stores the different roles
that a robot can play. The third layer pro-
vides behaviors called ”Actions”, used by the
roles. Finally, the fourth layer contains basic
skills, built upon the actions of the third layer.
The behavior generation decomposition in lay-
ers is widely used to solve the soccer player
problem. In [15] a layered architecture is also
used, but including coordination among the
robots. They developed a decentralized dy-
namic role switching system that obtains the
desired behavior using different layers: strate-
gies (the topmost layer), formations, roles and
sub-roles. The first two layers are related to
the coordination and the other two layers are
related to the local actions that the robot must
take.

3 Nao and NaoQi framework

The behavior based architecture proposed in
this work has been tested using the Nao robot.
The applications that run in this robot must
be implemented in software. The robot manu-
facturer provides an easy way to access to the
hardware and also to several high level func-
tions, useful to implement the applications.
This software is called NaoQi and provides
a framework to develop applications in C++
and Python. Our soccer robot application uses
some of the functionality provided by this un-
derlying software.

NaoQi is a distributed object framework
which allows to several distributed binaries
be executed, all of them containing several
software modules which communicate among
them. Robot functionality is encapsulated in
software modules, so we can communicate to
specific modules in order to access sensors and
actuators.

Every binary, also called broker, runs inde-

pendently and is attached to an address and
port. Every broker is able to run both in the
robot (cross compiled) and in the computer. A
complete application may be composed by sev-
eral brokers, some running in a computer and
some in the robot, that communicate among
them. This is useful because high cost pro-
cessing tasks can be done in a high perfor-
mance computer instead of in the robot, which
is computationally limited.

The broker’s functionality is performed by
modules. Each broker may have one or more
modules. Actually, brokers only provide some
services to the modules in order to accom-
plish their tasks. Brokers deliver call messages
among the modules, subscription to data and
so on.

NaoQi is voracious, consuming a lot of mem-
ory and computing resources. Intensive use
of memory, communication or synchronization
mechanism provided by NaoQi affect to the
robots movement. That is why we try to use
NaoQi as less as we can. In fact we use NaoQi
for motion and camera access mainly. We use
intensively only two NaoQi modules:

• ALMotion This module provides a set of
methods to move the robot motors. There
are methods which set a joint angle, meth-
ods which let us to set robot chains (head,
foots, and arms) to a desired cartesian po-
sition, and methods which provides a high
level functionality, such as walking move-
ment.

• ALVideoDevice This module lets us to
acquire an image for the camera.

The use of NaoQi framework is not manda-
tory, but it is recommended. NaoQi offers high
and medium level APIs which provide all the
methods needed to use all the robot’s func-
tionality. The movement methods provided by
NaoQi send low level commands to a micro-
controller allocated in the robot’s chest. This
microcontroller is called DCM and is in charge
of controlling the robot’s actuators. Some de-
velopers prefer not to use NaoQi methods and
use directly low level DCM functionality in-
stead. This is much laborious, but it takes ab-
solute control of robot and allows to develop

an own walking engine, for example. On the
other hand, NaoQi motion mechanism is bet-
ter than the majority of the motion mecha-
nisms developed until now.

Nao is a fully programmable humanoid
robot. It is equipped with a x86 AMD Geode
500 Mhz CPU, 1 GB flash memory, 256 MB
SDRAM, two speakers, two cameras (non
stereo), Wi-fi connectivity and Ethernet port.
It has 25 degrees of freedom. The operat-
ing system is Linux 2.6 with some real time
patches. The robot is equipped with a mi-
crocontroller ARM 7 allocated in its chest to
control the robot’s motors and sensors, called
DCM.

These hardware features impose some re-
strictions to our behavior based software ar-
chitecture design. The microprocessor is not
very powerful and the memory is very limited.
These restrictions must be taken into account
to run complex localization or sophisticated
image processing algorithms. Moreover, the
processing time and memory must be shared
with the OS itself (an GNU/Linux embedded
distribution) and all the software that is run-
ning in the robot, including the services that
let us access to sensors and motors, which we
mentioned before. Only the OS and all this
software consume about 67% of the total mem-
ory available and 25% of the processing time.

The software developed on top of NaoQi can
be tested both in real robot and simulator. We
use Webots (Figure 2) (MSR is also available)
to test the software as the first step before test-
ing it in the real robot. This let us to speed up
the development and to take care of the real
robot, whose hardware is fragile.

4 BICA: Behavior-based architec-
ture for robot applications

It is possible to develop basic behaviors using
only the Naoqi framework, but it is not enough
for our needs and developing complex applica-
tions using NaoQi only is hard. We need an
architecture that let us to activate and deac-
tivate components, which is more related to
the cognitive organization of a behavior based
system. This is the first step to have a wide

Figure 2: Webots simulator and real robot.

variety of simple applications available.
In this section we will describe the design

concepts of the robot architecture we propose
in this paper, named BICA. The main element
in BICA is the component, it is the basic unit
of functionality. In any time, each component
can be active or inactive. This property is
set using the start/stop interface. When it
is active, it is running and a step() function
is iteratively called to perform the component
task. When inactive, it is stopped and it does
not consume computation resources. A com-
ponent also accepts modulations to its actua-
tion and provides information of the task it is
performing.

A component, when active, can activate
another components to achieve its goal, and
these components can also activate another
ones. This is a key idea in our architecture.
This let to decompose functionality in several
components that work together. An appli-
cation is a set of components which some of
them are activated and another ones are de-
activated. The subset of the components that
are activated and the activation relations are
called activation tree.

In Figure 3 there is an example of an ac-
tivation tree. When component A, the root
component, is activated, it activates compo-
nent B and E. Component B activates C and

Figure 3: Activation tree composed by several
components.

Figure 4: Activation tree where two components
activate the same component.

D. Component A needs all these components
activated to achieve its goal. This structure
may change when a component is modulated
and decides to stop a component and activate
another more adequate one. In this example,
component A does not need to know that B
has activated C and D. The way component
B performs its task is up to it. Component A
is only interested in the component B and E
execution results.

Two differents components are able to ac-
tivate the same child component, as we can
observe in Figure 4. This property lets two
components to get the same information from
a component. Any of them may modulate it,
and the changes affect to the result obtained
in both components.

The activation tree is no fixed during the
robot operation. Actually, it changes dy-
namically depending on many factors: main
task, environment element position, interac-
tion with robots or humans, changes in the
environment, error or falls. The robot must

Robot Soccer

10

Fig. 10. Activation tree composed by several components.

Two differents components are able to activate the same child component, as we can
observe in figure 11. This property lets two components to get the same information from a
component. Any of them may modulate it, and the changes affect to the result obtained in
both component.

Fig. 11. Activation tree where B and D activates D component.

The activation tree is no fixed during the robot operation. Actually, it changes dinamically
depending on many factors: main task, environment element position, interaction with
robots or humans, changes in the environment, error or falls… The robot must adapt to the
changes in these factors by modulating the lower level components or activating and
deactivating components, changing in this way the static view of the tree.

The main idea of our approach is to decompose the robot functionality in these components,
which cooperate among them to make arise more complex behaviors. As we said before,
component can be active or inactive. When it is active, a step() function is called
iteratively to perform the component task.

Fig. 12. Activation tree with two low level components and a high level components that
modulates them.

As an example, in figure 12 we show an activation tree composed by 3 components.
ObjectPerception is a low level component that determines the position of an
interesting object in the image taken by the robot’s camera. Head is a low level component

Figure 5: Activation tree with two low level com-
ponents and a high level components that modu-
lates them.

adapt to the changes in these factors by mod-
ulating the lower level components or activat-
ing and deactivating components, changing in
this way the static view of the tree.

As an example, Figure 5 shows an activa-
tion tree composed by 3 components. Ob-
jectPerception is a low level component that
determines the position of an interesting ob-
ject in the image taken by the robot’s cam-
era. Head is a low level component that moves
the head. These components functionality
is used by a higher level component called
FaceObject. This component activates both
low level components, that execute iteratively.
Each time FaceObject component performs its
step() function, it asks to FaceObject for the
object position and modulates head movement
to obtain the global behavior: facing the ob-
ject.

Components can be very simple or very
complex. For example, the ObjectPerception
component of the example is a perceptive it-
erative component. It does not modulate or
activate any other component, it only extracts
information from an image. The FaceObject
component is an iterative controller, that acti-
vates and modulates other components. One
component may activate and deactivate other
components dynamically depending on the sit-
uation. They are implemented as finite state
machines. In each situation a set of compo-
nents is active, and this set is eventually dif-
ferent to the one in other state. Transitions
among states reflect the need to adapt to the
new conditions the robot must face to.

Using this guideline, we have implemented
our architecture in a single NaoQi module.
The components are implemented as Singleton
C++ classes and they communicate among
them by method calls. It speeds up the com-
munications with respect to the SOAP mes-
sage passing approach.

Activations and deactivations are made im-
plicit in the components code. There is not
an activate method, but each component that
wants to activate other component, calls to its
step() method. When NaoQi module is cre-
ated, it starts a thread which continuously call
to step() method of the root component (the
higher level component) in the activation tree.
Each step() method of every component at
level n has the same structure:

1. Calls to step() method of components in
n-1 level in its branch that it wants to be
active to get information.

2. Performs some processing to achieve its
goal. This could include calls to compo-
nents methods in level n-1 to obtain in-
formation and calls to lower level compo-
nents methods in level n-1 to modulate
their actuation.

3. Calls to step() methods of component in
n-1 level in its branch that it wants to be
active to modulate them.

The step() code of the last example looks
like this:

void
FaceBall::step(void)
{
perception->step();

if (isTime2Run())
{
head->setPan(perception->getBallX());
head->setTilt(perception->getBallY());
}
head->step();
}

Each module runs iteratively at a configured
frequency. It has not sense that all the com-
ponents execute at the same frequency. Some
informations are needed to be refreshed very
fast, and some decisions are not needed to be
taken such fast. Some components may need

to be configured at the maximum frame rate,
but another modules may not need such high
rate. When a step() method is called, it
checks if the elapsed time since last execution
is equal or higher to the established according
to its frequency. In that case, it executes (1),
(2) and (3) items of the structure the have just
described. If the elapsed time is lower, it only
executes (1) and (3) items.

Using this approach, we can modulate every
module frequency, and be aware of situations
where the system has a high load. If a module
does not meet with its (soft) deadline, it only
makes the next component to executed a lit-
tle bit late, but its execution is not discarded
(graceful degradation).

5 Tools

Several tools have been built in BICA, which
ease and speed up the development of robotic
applications, their debugging and fine tunning.

5.1 VICODE: VIsual COmponent DE-
signer

The robot applications are organized as a col-
lection of connected components, perceptive
ones and actuation ones. Developing them
in BICA is quite easy, but can be tedious
and tricky for complex components. Some ac-
tuation components may be succesfully pro-
grammed as reactive controllers or simple PID
feedback controllers. Many times the com-
plexity of the components fits well in finite
state machines (FSM). Using FSMs powerful
components can be programmed which unfold
complex behaviors. But developing complex
behaviors based on FSMs is complicated and
prone to errors. Because of this we have de-
veloped an useful tool, named VICODE (VI-
sual COmponent DEsigner), that automati-
cally generates C++ code from a visual de-
scription of the finite state machine.

We use VICODE for the development of
complex components, and even for the basic
ones, as the code generation is faster and more
reliable using it than writting the code manu-
ally in C++.

Figure 6: VICODE tool for component generation.

This tool (Figure 6) let us to design an iter-
ative finite state machine setting its states and
transitions. Each state has a source code at-
tached to be run at each iteration of the FSM
being in such state. At the same time it has a
source code to check possible transitions from
it to other states when certain perceptive con-
ditions are met. Furthermore, we can visually
establish which components are used in each
state, and whether it is a modulation or a re-
quirement link.

VICODE generates the component C++
code. This includes state machine code, the
headers file with the component API, and calls
to the step() method of the components that
it uses or modulates. VICODE lets us to edit
the states and transitions code. This code is
even refreshed if the code is externally edited
to avoid inconsistencies. Transitions are de-
fined as functions that return true or false if
the transition has to be taken. This informa-
tion to take the decisions can be provided by
other components or by a timer (used for time-
based transitions).

5.2 JManager

VICODE is included in the JManager tool as
a tab. JManager is an external application
which centralizes all the debugging and moni-
torization tools developed for the BICA archi-
tecture. This tool lets to set up the compo-
nents (e.g. color of the stimulus), activate and
modulate them. Each component may have an

Figure 7: Debugging tool: JManager.

specific tab inside JManager for its debugging.
For instance, a color filter tuner tab is shown

at Figure 7, which lets us select on the fly the
right thresholds for the color filter component
inside BICA. The computation of the End-Of-
Field in the image can also be debugged.

JManager runs at an external computer
and connects to the BICA software inside the
Nao humanoid using an ad-hoc communica-
tion protocol through the wireless or wired
network connection. It has been programmed
in Java.

6 Experiments in the RoboCup sce-
nario

In this section we will present, not only the ex-
periments carried out to validate this behav-
ioral architecture, but the previous approach
we took in the architecture design.

6.1 First BICA design

Not always the first steps are the right ones.
In this architecture design, the proposed so-
lution is not the first approach we took. At
the beginning we tried to exploit all the ben-
efits that NaoQi provides. This software lets
to decompose our application functionality in
NaoQi modules which cooperate among them
to achieve a goal. Each module performs some
processing task and sends data to other mod-
ules. This would let to implement our archi-
tecture in a natural way using this approach.

NaoQi has a functionality to start and stop
calling iteratively a method, using a callback
to a periodic clock event. This solves the exe-
cution cycle to call step() method iteratively.
Communications among modules are solved by
the SOAP messages mechanism that NaoQi
provides. We also could use ALMemory as
a blackboard where all the information from
sensorial components and all the modulations
to actuation modules are registered and taken.
Even callbacks can be set up in each module
to be called each time an interesting value in
this blackboard changes. This was the first
approach we took to design our architecture.
Unfortunately, an intensive use of these mech-
anisms had a big impact in NaoQi performance
and some real time critical tasks were severely
affected. One of them is the movement gen-
eration. When the performance in a task is
poor, the movement is affected and the robot
fell to floor.

6.2 Forward soccer Player

Using BICA we have developed the ford-
ward Player behavior set and tested it at
RoboCup 2009 in Graz with real robots.
Before the real tests we used the tools de-
scribed in section 5 to calibrate the colors
of the relevant elements in the environment.
Once tuned, the robot is ready to work.
The next sequence has been extracted from
a video which full version may be visualized at
www.teamchaos.es/index.php/URJC#RoboCup-
2009.

Figure 8 shows the finite state machine cor-
responding to the forward player component.
Figure 9 shows a piece of an experiment of
the soccer player behavior. In this experi-
ment the robot starts with total uncertainty
about the ball. Initially, the Player component
is in LookForBall state and it has activated
the SearchBall component to look for the ball.
Player component is continuously asking Per-
ception component for the ball presence, and
when the ball is detected in the image (fourth
image in the sequence), SearchBall component
is deactivated and FollowBall component is ac-
tivated, approaching to the ball (fifth image in
the sequence).

Figure 8: Finite State Machine for Player behavior

Figure 9: Ball searching sequence.

Figure 10: Ball approaching modulation to make
the robot turn.

FollowBall component activates FaceBall
component to center the ball in the image
while the robot is approaching to the ball. Fol-
lowBall activates Body to approach the ball.
As the neck angle is less than a fixed value, i.e
35 degrees (the ball is in front of the robot),
Body activates GoStraight component in order
to make the robot walk straight.

The approaching to the ball, as we said be-
fore is made using FaceBall component and
Body component. Note that in any moment
no distance to the ball is taken into account.
Only the head pan is used by the Body com-
ponent to approach the ball.

In Figure 10, while the robot is approach-
ing to the ball, it has to turn to correct the
walk direction. In this situation, the head
pan angle is higher than a fixed value (35 de-
grees, for example) indicating that the ball is
not in front of the robot. Immediately, af-
ter this condition is true, FollowBall modu-
lates Body so the angular speed is not null
and forward speed is zero. Then, Body com-
ponent deactivates GoStraight component and
activates Turn Components, which makes the
robot turn in the desired direction.

The robot reaches the ball while it is walk-
ing to the ball, the bottom camera is active,
the head tilt is higher than a threshold, and
the head pan is low. This situation is shown
in the first image in the Figure 11. In that
moment, the robot has to decide which kick it
has to execute. For this reason, the net has
to be detected. In the last image, the condi-
tions to kick the ball are held and the player
component deactivates FollowBall component
and activates the SearchNet component. The
SearchNet component has as output a value

Figure 11: Search net behavior and kick.

that indicates if the scan is complete. The
Player component queries in each iteration if
the scan is complete. Once completed, de-
pending on the net position (or if it has been
detected), a kick is selected. In the second im-
age of the same figure, the blue net is detected
at the right of the robot. For this test we have
created 3 types of kicks: front, diagonal and
lateral. Actually, we have 6 kicks available be-
cause each one can be done by both legs. In
this situation the robot selects a lateral kick
with the right leg to kick the ball.

Before kicking the ball, the robot must be
aligned in order to situate itself in the right
position to do an effective kick. For this pur-
pose, the player component asks to the Per-
ception module the ball position in 3D with
respect to the robot. This is the only time the
ball position is estimated. The player compo-
nent activates Fixmove component with the
selected kick and a lateral and straight align-
ment. As we can see in third and fourth im-
ages, the robot moves on its left and back to
do the kick. While the kick is performing and
after the kick, FaceBall component is activated
to continue tracking the ball.

This experiment has been carried out at the
RoboCup 2009 in Graz. This behavior was
tested in the real competition environment,
where the robot operation showed robust to
the noise produced by other robots and peo-
ple.

Figure 12: 3D perception.

6.3 Player perception

Several perceptive components have also been
programmed in order to provide the relevant
enviroment information for control decisions.
At the RoboCup competition, the environ-
ment is designed to be perceived using vision
and all the elements have a particular color
and shape.

In our architecture, perception is decom-
posed in several components. There are a
different component for each different stimuli
(ball, net, other robot, field lines,...). This let
us to save processing time when a stimulus is
not needed. For example, if FaceBall compo-
nent is the only one active, it activates the
BallDetector components and it looks only for
the ball in the image. If localization is active,
it activates the components that perceives nets
and field lines.

We perform a 3D perception using projec-
tive geometry. Taking into account all the
joint positions, we can determine the camera
position and orientation in 3D. This let us to
project the image pixels in the 3D world to de-
termine the 3D position (knowing other data,
like the Z coordinate) and backproject a 3D
hypothesis on the image to validate an image
detection.

Each perceptual component stores the ele-
ment position, and actualizes it with odome-
try in order to maintain a perceptual memory.
This is useful to develop behaviors which de-
pends on several stimulus, and they are not
always present in the image.

7 Conclusions

In this paper we have proposed a robotic
behavior based architecture. With this ar-
chitecture we can create robotic behaviors.
The behavior arises from a cooperative execu-
tion of iterative processing units called com-
ponents. These units are hierarchically orga-
nized, where a component may activate and
modulate another components. In every mo-
ment, there are active components and latent
components that are waiting for be activated.
This hierarchy is called activation tree, and di-
namically changes during the robot operation.
The components whose output is not needed
are deactivated in order to save the limited re-
sources of the robot.

In this paper we have shown how the behav-
iors are implemented within the architecture.
As a test, we have created a forward player
behavior to play soccer in Standar Platform
League at the RoboCup. This is a dynamic en-
vironment where the conditions are very hard.
Robots must react very fast to the stimulus in
order to play well. This is an excellent test to
the behaviors created within our architecture.

We have developed several components to
get a forward soccer player behavior. These
components are latent until a component ac-
tivate it to use it. These components have a
standard modulation interface, perfect to be
reused by others without any modification in
the source code or to support multiple differ-
ent interfaces. The highest level component
is the Player component. This component has
been implemented as a finite state machine us-
ing one BICA tool, VICODE, for the visual
design of FSM. It activates the previously de-
scribed components in order to obtain the for-
ward player behavior.

This Player behavior has been tested in the
RoboCup environment, but BICA architec-
ture is not limited to that scenario. We want
to use this architecture to create robot behav-
iors to solve other problems out of this envi-
ronment. For instance we are working in using
the humanoid robot in healthcare applications
where it serves as a personal assistant for elder
people, or as a cognitive estimulation thera-

peutic tools for Alzheimer patients.

Acknowledgments

This work has been funded by Spanish Min-
isterio de Ciencia y Tecnología, National
Program of Design and Industrial Develop-
ment Project, under the COCOGROM project
DPI2007-66556-C03-01 and Comunidad de
Madrid under the project RoboCity2030-II:
S2009/DPI-1559.

References

[1] Francisco Martín, Carlos E. Aguero and
José María Cañas (2009). Follow ball be-
havior for an humanoid soccer player.
X Workshop de Agentes Físicos. Cáceres
(Spain), Septiembre 2009.

[2] Thrun, S.; Bennewitz, M.; Burgard, W.;
Cremers, A. B.; Dellaert, F.; Fox, D.; Hah-
nel, D.; Rosenberg, C. R.; Roy, N.; Schulte,
J; Schulz, D. (1999). MINERVA: A Tour-
Guide Robot that Learns. Kunstliche Intel-
ligenz, pp. 14-26. Germany

[3] Reid, S. ; Goodwin, R.; Haigh, K.; Koenig,
S.; O’Sullivan, J.; Veloso, M. (1997).
Xavier: Experience with a Layered Robot
Architecture. Agents ’97, 1997.

[4] Stoytchev, A.; Arkin, R. (2000). Com-
bining Deliberation, Reactivity, and Mo-
tivation in the Context of a Behavior-
Based Robot Architecture. In Proceed-
ings 2001 IEEE International Symposium
on Computational Intelligence in Robotics
and Automation. 290-295. Banff, Alberta,
Canada. 2000.

[5] Arkin, R. (1989). Motor Schema Based
Mobile Robot Navigation. The Interna-
tional Journal of Robotics Research, Vol.
8, No. 4, 92-112 (1989).

[6] Saffiotti, A. ; Wasik, Z. (2003). Us-
ing hierarchical fuzzy behaviors in the
RoboCup domain. Autonomous robotic
systems: soft computing and hard com-
puting methodologies and applications. pp.

235-262. Physica-Verlag GmbH. Heidel-
berg, Germany, 2003.

[7] Lenser, S.; Bruce, J.; Veloso, M. (2002). A
Modular Hierarchical Behavior-Based Ar-
chitecture, Lecture Notes in Computer Sci-
ence. RoboCup 2001: Robot Soccer World
Cup V. pp. 79-99. Springer Berlin / Hei-
delberg, 2002.

[8] Röfer, T.; Burkhard, H. ; von Stryk, O. ;
Schwiegelshohn, U.; Laue, T.; Weber, M.;
Juengel, M.; Gohring D.; Hoffmann, J.;
Altmeyer, B.; Krause, T.; Spranger, M.;
Brunn, R.; Dassler, M.; Kunz, M.; Ober-
lies, T.; Risler, M.; Hebbela, M.; Nistico,
W.; Czarnetzkia, S.; Kerkhof, T.; Meyer,
M.; Rohde, C.; Schmitz, B.; Wachter, M.;
Wegner, T.; Zarges. C. (2008). B-Human.
Team Description and code release 2008.
Robocup 2008. Technical report, Germany,
2008.

[9] Cañas, J. M.; and Matellán, V. (2007).
From bio-inspired vs. psycho-inspired to
etho-inspired robots. Robotics and Au-
tonomous Systems, Volume 55, pp 841-
850, 2007. ISSN 0921-8890.

[10] Gómez, A.; Martínez, H.; (1997). Fuzzy
Logic Based Intelligent Agents for Reactive
Navigation in Autonomous Systems. Fitth

International Conference on Fuzzy Theory
and Technology, Raleigh (USA), 1997

[11] Loetzsch, M.; Risler, M.; Jungel, M.
(2006). XABSL - A pragmatic approach to
behavior engineering. In Proceedings of the
IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2006),
pages 5124-5129, Beijing, October 2006.

[12] Denavit, J. (1955). Hartenberg RS. A
kinematic notation for lower-pair mecha-
nisms based on matrices. Transactions of
ASME 1955;77: 215?221 Journal of Ap-
plied Mechanics, 2006.

[13] Herrero, D. ; Martínez, H. (2008).
Embedded Behavioral Control of Four-
legged Robots. RoboCup Symposium
2008. Suzhou (China), 2008.

[14] Akin, H.L.; Meriçli, Ç.; Meriçli, T.;
Gökçe, B.; Özkucur, E.; Kavakhoglu, C.;
Yildiz, O.T. (2008). Cerberus?08 Team Re-
port. Technical Report. Turkey, 2008.

[15] Chown, E.; Fishman, J.; Strom, J.;
Slavov, G.; Hermans T.; Dunn, N.;
Lawrence, A.; Morrison, J.; Krob, E.
(2008). The Northern Bites 2008 Standard
Platform Robot Team. Technical Report.
USA, 2008.

