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Attentive visual memory for robot localization
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Abstract

Cameras are one of the most relevant sensors in autonomous robots. Their main challenges are to extract useful information
from captured images and to manage the small field of vision of regular cameras, visual attention systems and active vision may
help to overcome them. This work proposes a dynamic visual memory to store the information gathered from a moving camera on
board a robot, an attention system to choose where to look at with this mobile camera, and a visual localization approach which
uses this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is
wider than than the current camera field of view. The attention system takes into account the need to reobserve objects in the
visual memory, explore new areas and test hypothesis about object existence in the robot surroundings. The visual memory is
useful also in localization tasks since it provides more information about robot surroundings than the current instantaneous image.
Several experiments have been carried out both with simulated and real robots. The system has been programmed and validated
in real robots that use the information in the visual memory for localization tasks.

Index Terms

Visual attention, object recognition and tracking, active vision, visual localization.

I. INTRODUCTION

Cameras have been incorporated in the last years to robots as common sensory equipment. They are very cheap sensors and
may provide much information to robots about their environment. However, extracting relevant information from the image flow
is not easy. Vision has been used in robots for navigation, object recognition, 3D mapping, visual attention, robot localization,
etc.

A. 3D visual memory

Robots usually navigate autonomously in dynamic environments, and so they need to detect and avoid obstacles. There are
several sensors which can detect obstacles in robot’s path, such as infrared sensors, laser range finders, ultrasound sensors, etc.
When using cameras, obstacles can be detected through 3D reconstruction.

Computer vision is one of the most successful sensing modalities used in mobile robotics. It would seem to be the most
promising one for the long term. Computer vision research is currently growing rapidly, both in robotics and in many other
applications, from surveillance systems for security purposes to the automatic acquisition of 3D models for Virtual Reality
displays. The number of commercial applications is also increasing, like traffic monitoring, parking access or face recognition.

And we feel that it is well worth continuing with work on the long-term problems of making robotic vision systems.
Vision is the sensor whose main skill lies in giving information about which and where are the objects that the robot is

finding over its path. And, although we must be wary when comparing a robot with a biological organism [Nehmzow, 1993],
what is clear is that sight is the main sense used by animals when they want to move around the environment.

Humans have an active vision system ([Bajcsy, 2009]). This means that we are able to concentrate on particular regions of
interest in a scene, by movements of the eyes and head or just by shifting attention to different parts of the images we see.
What advantages does this offer over the passive situation where visual sensors are fixed and all parts of images are equally
inspected? First, some parts of a scene perhaps are not accessible to a single sensor are viewable by a moving device. In
humans, movable eyes and head give us almost a full panoramic range of view. Second, by directing attention specifically
to small regions which are important at various times we can avoid wasting effort trying always to understand the whole
surroundings, and devote as much as possible to the significant part. For example, when attempting to perform a difficult task
such as catching something, a human would concentrate solely on the moving object and it would be common experience to
become slightly disoriented during the process.

Active vision can be thought as a more task driven approach than passive vision. With a particular goal in mind for a robot
system, an active sensor is able to select from the available information only that which is directly relevant to a solution,
whereas a passive system processes all of the data to construct a global picture before making decisions; in this sense it can
be described as data driven.

The emerging view of human vision as a bag of tricks [Ramachandran, 1990]; a collection of highly specialised pieces of
software running on specialised hardware to achieve vision goals, rather than a single general process, seems to fit in with
active vision ideas when a similar approach is adopted in artificial vision systems. High-level decisions about which parts of a
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scene to direct sensors towards and focus attention on them can be combined with decisions about which algorithms or even
which of several available processing resources to apply to a certain task. The flexibility of active systems allows them to have
multiple capabilities of varying types which can be applied in different circumstances.

In this work we describe an overt attention system for a mobile robot endowed with a pan-tilt camera, whose will let it to
find paper arrows on its surroundings and navigate through the 3D-space avoiding obstacles. This system performs an early
segmentation on color space to select a set of candidate objects. Each object enters a coupled dynamics of life and salience
that drives the behavior of the attention system over time. That way, our system will continuously keep relevant objects around
the robot -such as arrows or parallelograms- in its visual short-term memory and it will know where they are located.

B. Visual localization

Robots need to know their location inside the environment in order to unfold the proper behavior, according to its sensor
measures. Classical localization techniques use input data from laser range scanners or ultrasound sensors. In this chapter, a
new technique to perform robot self-localization using only visual input data is presented.

Self-localization is at the moment one of the most important challenges in robotics. Using robot sensors, such as cameras,
laser sensors or ultrasonic sensors, our robot must be able to calculate its own localization inside a known environment. Once
the robot knows its position, it can adapt its behavior depending on where it is located.

However, robot self-localization has proven to be one the most complex task on mobile robots, since they must face unknown
situations, such as being surrounded by other robots or people, or being located inside a dynamic environment.

This task is especially tough when our environment is symmetric, that is, robot sensors values are similar at different
environment positions. For instance, if our robot is inside an office building and its main sensor is a camera pointing towards
a closed door, the robot only will be able to know that it is in front of a closed door, but there will be several positions (one
for each door) where this data may be obtained. Thus, it is unlikely to calculate the proper robot localization only with this
information.

Nevertheless, robot localization might be more reliable if we are able to accumulate information over time. To achieve this
aim, there are different approaches widely used on research, such as particle filters (also known as Monte Carlo methods
(MCL) [Fox et al., 1999]), Kalman filters [Kalman, 1960], or Markov models [Simmons y Koening, 1995].

We have designed a new approach specifically designed to bear symmetries, as we will explain in Section VI.
In this paper we propose a visual perceptive system for an autonomous robot composed of two modules. First, a short

term visual memory of robot surroundings fed with images from a mobile camera. The memory stores 3D segments of the
environment and objects. A gaze control algorithm has been developed to select where the camera should look at at every
time. Second, a visual localization algorithm that uses current image or the current contents of this memory to estimate robot
position.

The remainder of this chapter is organized as follows. Second section reviews some of the related works. Third section
presents the design of the proposed visual system. The next three sections describe its three building blocks: visual memory
component, visual attention component and localization component. The seventh section include some experiments, both with
simulated and real robots, performed to validate our system. Finally some conclusions are summarized.

II. RELATED WORKS

Vision has been used in robotics almost from its beginning. In the last years its use is increasing, mainly because of the
reduction in the camera price, the available computing power and the potential of cameras as source of information about robot
surroundings. Many issues have been taclked in the intersection of computer vision and robotic fields. For instance, vision-based
control or navigation, vision-based map building and 3D representation, vision-based localization, object recognition, attention
and gaze control among others. We will review some examples here.

Regarding vision based control and navigation, Remazeilles et al.[Remazeilles et al., 2006] presented the design of a control
law for vision-based robot navigation. The particularity of this control law is that it does not require any reconstruction of the
environment, and it does not force the robot to converge towards each intermediary position in the path.

Recently, Srinivasan [Srinivasan et al., 2006] presented a new system to increase accuracy in the optical flow estimation
for insect-based flying control systems. A special mirror surface is mounted in front of the camera, which is pointing ahead
instead of pointing to the ground. The mirror surface decreases the speed of motion and eliminates the distortion caused by
the perspective. Theoretically, the image should present a constant and low velocity everywhere, simplifying the optical flow
calculation and increasing its accuracy. Consequently, the system increases the speed range and the number of situations under
which the aircraft can fly safely.

Badal [Badal et al., 1994] reported a system for extracting range information and performing obstacle detection and avoidance
in outdoor environments based on the computation of disparity from the two images of a stereo pair of calibrated cameras.
The system assumes that objects protrude high from a flat floor that stands out from the background. Every point above the
ground is configured as a potential object and projected onto the ground plane, in a local occupancy grid called Instantaneous
Obstacle Map (IOM). The commands to steer the robot are generated according to the position of obstacles in the IOM.
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Goldberg [Goldberg et al., 2002] introduced a stereo vision-based navigation algorithm for the rover planetary explorer
MER, to explore and map locally hazardous terrains. The algorithm computes epipolar lines between the two stereo frames
to check the presence of an object, computes the Laplacian of both images and correlates the filtered images to match pixels
from the left image with their corresponding pixels in the right image. The work also includes a description of the navigation
module GESTALT, which packages a set of routines able to compute actuation, direction, or steering commands from the
sensor information.

In autonomous robots it is important to perform a visual attention control. The cameras of the robots provide a large flow
of data you need to select what is interesting and ignore what does not; this is the main goal of visual attention. There
are two aspects of visual attention: overt attention and covert attention. The aim of covert attention [Tsotsos et al., 1995;
Itti y Koch, 2001], [Marocco y Floreano, 2002] is to select interesting information within an image. Overt attention selects
from the environment surrounding the robot, beyond the field of view, those objects of interest, and it looks at them [Cañas
et al., 2008].

The visual representation of the interesting objects around the robot can improve the quality of the robot’s behavior and
the ability to handle more information when making their decisions. This poses a problem when those objects are not in the
immediate field of vision. To solve this problem, some studies used omnidirectional vision, in others using a regular camera
and a mechanism for overt attention [Itti y Koch, 2001; Zaharescu et al., 2005], which enables fast-to-take samples of a very
broad area of interest. The use of a camera in motion to facilitate object recognition was proposed by [Ballard, 1991], and has
been used, for example, to distinguish between different forms in the images [Marocco y Floreano, 2002].

One of the concepts widely accepted in the work area is the salience map. It is found in [Itti y Koch, 2001], as a covert
visual attention mechanism, independent of the particular task to be performed and composed by all visual stimuli that attract
attention from the scene. In such work is considered purely a form of ”bottom up”, where, as we see in Figure 1 in each
iteration the different scene-descriptive maps (as colors, intensities or directions) compete between each other. Then, they
merged into conspicuity maps (one for each feature) and eventually will form a unique and representative salience map.

Fig. 1. Salience map as proposed by Itti

Hulse [Hulse et al., 2009] presented an active robotic vision system based on the biological phenomenon of inhibition of
return, used to modulate the action selection process for saccadic camera movements. They argued that visual information has
to be subsequently processed by a number of cortical and sub-cortical structures that place it: 1) in context of attentional bias
within egocentric salience maps; 2) the aforementioned IOR inputs from other modalities; 3) overriding voluntary saccades
and 4) basal ganglia action selection. Thus, biologically there is a highly developed, context specific method for facilitating
the most appropriate saccade as a form of attention selection.

Arbel and Ferrie presented in [Arbel y Ferrie, 2001] a gaze-planning strategy that moves the camera to another viewpoint
around an object in order to recognize it. Recognition itself is based on the optical flow signatures that result from the camera
motion. The new measurements, accumulated over time, are used in a one-step-ahead Bayesian approach that resolves the
object recognition ambiguity, while it navigates with an entropy map.
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Grid based probabilistic localization algorithms were successfully applied with laser or sonar data in small known environ-
ments [Burgard y Fox, 1997]. They use discretized probability distributions and update them from sensor data and movement
orders, accumulating information over time and providing a robust position estimation. Particle filters use sampled probability
functions [?] and extend the techniques to larger environments. At the beginning the maps were provided in advance but
in the last years the SLAM techniques tackle localization simultaneously with the map building. There are many particle
filter based SLAM techniques. In addition, one of the most successful approaches is Mono-SLAM from Andrew Davison [?;
?] based on a fast Extended Kalman Filter for continuous estimation of 3D points and camera position from relevant points
in the image.

In ([Mariottini y Roumeliotis, 2011]) Mariottini and Roumeliotis presented a strategy for active vision-based localization
and navigation of a mobile robot with a visual memory where previously visited areas are represented as a large collection
of images. It disambiguates the location taking into account the sequence of distinctive images, while concurrently navigating
towards the target image.

Gartshore [Gartshore et al., 2002] developed a map building framework and a feature position detector algorithm that
processes images on-line from a single camera. The system does not use matching approaches. Instead, it computes probabilities
of finding objects at every location. The algorithm starts detecting the objects boundaries for the current frame using the Harris
edge and corner detectors. Detected features are back projected from the 2D image plane considering all the potential locations
at any depth. The positioning module of the system computes the position of the robot using odometry data combined with
image feature extraction. Color or gradient from edges and features from past images help to increase the confidence of the
object presence in a certain location. Experimental results tested in indoor environments set the size of the grid cells to 25
mm 25 mm. The robot moved 100 mm between consecutive images.

In [Jensfelt y Kristensen, 2001], Jensfelt et al. presented an active global localization strategy that uses Kalman filtering
(KF) to track multiple robot pose hypotheses. Their approach can be used even with incomplete maps and the computational
complexity is independent on the size of the environment.

III. DESIGN

The proposed perceptive system is designed for autonomous robots that use a mobile camera, like that on the head of
humanoids or in robots with pan-tilt units. The block diagram of the robot control architecture is showed in Figure 2. It has
been divided into two main components: active_visual_memory and localization. They will be described in detail
in the following sections.

Fig. 2. Block diagram of the proposed visual system

First, the active_visual_memory component builds a local active visual memory of objects in the robot’s surroundings.
The memory is built analyzing each camera image looking for relevant objects (like segments, parallelograms, arrows, etc) and
updating the object features already stored in the memory like their 3D position. The memory is dynamic and is continuously
coupled with camera images. The new frames confirm or correct the object features stored in memory, like their 3D relative
position to the robot, length, etc.. New objects are introduced in memory when they appear in images and do not match any
known object.

This memory has a broader scope than the camera field of view and objects in memory have more persistence than the
current image. Regular cameras typically have 60 degrees of scope. This would be good enough for visual control but a broader
scope may improve robot responses in tasks like navigation, where the presence of obstacles in the robot’s surroundings should
be taken into account even if they lie out of current field of view.
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This memory is intended as local and short-term. Relative object positions are estimated using robot’s odometry. Being only
short term and continuously correcting with new image data there is no much time to accumulate error in the object relative
position estimation. Currently the system deals only with objects on the floor plane (ground hypothesis) and uses a single
camera. It can be extended to any 3D object position and two cameras.

In order to keep this short term visual memory consistent with reality, the system has mechanisms to properly refresh it. The
camera is assumed to be mobile, typically mounted over a pan-tilt unit. Its orientation may be controlled and changed during
robot behavior at will, and so, the camera may look towards different locations even if the robot remains static. In order to
feed the visual memory, an overt attention algorithm has been designed to continuously guide camera movements, choosing
where to look at at every time. It has been inserted inside the active_visual_memory component and associates two
dynamic values to each object in memory: salience and life (quality). Objects with low life are discarded and objects with
high salience are good candidates to look at.

The position of objects already in memory are themselves foci of attention in order to refresh their perceived features.
Random locations are also considered to let the robot explore new areas of its surroundings. In addition, new foci of attention
may also be introduced to check the presence of some hypothesized objects. For instance, once the robot has seen three vertices
of a parallelogram, the position of the fourth one is computed from the visual memory and ordered as a tentative focus of
attention for the camera.

Second, a vision based localization algorithm has been developed in the localization component. It uses a population
of particles and an evolutionary algorithm to manage them and find the robot position. The health of each particle is computed
based on the current image or based on the current contents of the visual memory. The local visual memory provides information
about robot’s surroundings, typically more than the current instantaneous sensor readings. In this way, the visual memory may
be used as a virtual sensor and its information may be used as observations for the localization algorithm. Because of its
broader scope it may help to improve localization, especially in environments with symmetries and places that look like
similar according to sensor readings.

The robot control architecture brings together the different capabilities described above in a consistent framework. This
architecture is showed in in Fig. 3. As vision is the only sensor utilized, it all starts with a camera stream which serves as
input data for a memory structure.

Fig. 3. Architecture designed

IV. VISUAL MEMORY

The goal of our visual memory is to do a visual tracking of the various basic objects in the scene surrounding the robot. It
must detect new objects, track them updating its relative position to the robot and remove them from the memory once they
have disappeared.

The first stage of the system is the 2D analysis, which detects 2D segments present in the current image. Then the 3D
reconstruction algorithm places these objects in 3D space according to the ground-hypothesis (that is, we suppose that all
objects are flat on the floor). And finally, the 3D memory system stores their position in 3D space, calculates perceptual
hypotheses and generates predictions of these objects in the current image perceived by the robot.

The visual memory component has several building blocks (see Fig. 4). First, an object detector is responsible of identifying
basic shapes in the current image. Second, the prediction mechanism allow the system to predict how the stored items will
appear in next images, reducing the computational cost of image processing. Third, a 3D reconstruction block is responsible
to obtain 3D instantaneous information from objects in the current image and merging them with the objects already stored in
the visual memory.

The algorithm also creates perceptual hypothesis with the items stored, allowing the system to abstract complex objects.
And all borne on visual memory, which forms the core of the whole attention system. This allows to extend the field of vision
to the whole scene surrounding the robot, instead of just the current visual field.
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Fig. 4. Visual Memory scheme

To move and track features simultaneously, our system executes a loop at a frequency of 5Hz. In each iteration a motion
prediction is made, the head is moved, images are acquired and displayed, image processing occurs and all the estimated
quantities are updated.

However, we quickly found out that the main factor limiting speed of operation was the processing time needed to perform
image processing on the received images. Robot odometry is used to provide the trigger for the loop execution: a new image
is acquired when the robot has reached a certain position according to readings from its encoders. In this sense, the update
frequency is linked to distances travelled by the robot, and so 5Hz is only an approximate value calculated from the robot
calibration.

A. 2D Image Processing
The main goal of this part of the system is to extract 2D straight segments as a basic primitive, based on [Solis et al., 2009].

In recent years we realized that using Canny algorithm and Hough transform to extract straight segments was not an accurate
method. Usually, the outcome was not fully effective: line segments were often disconnected.

Now, following this new design, edges extraction from color images is done using much simpler Laplace operator instead of
sophisticated Canny edge detector from OpenCV. This algorithm uses a compilation of different image processing steps such
as normalization, Gaussian smooth, thresholding, and Laplace edge detection to extract edge contours from input images.

Just as Solis et al. told us, this solution gives us a surprisingly more accurate, faster and simpler answer with fewer parameters
than the widely used Hough Transform algorithm for detecting lines segments among any orientation and location inside images.
To implement these techniques, we use the OpenCV library.

Figure (5) shows the differences between Canny+Hough and Solis algorithms. While the first one is able to recognize just
a really small set of unappreciated segments (blue lines), the second one gets all of them. Furthermore, the floor used here is
a textured surface, so the border detection is quite difficult to do; because of that, we see some false positives.

B. Predictions
The 2D analysis system is connected directly to the 3D visual memory to alleviate the computational cost due to image

analysis. So before extracting features of the current image, the system makes the prediction of those objects stored in the 3D
memory which should be visible from the current position.

We have used our library called Progeo, which provides projective geometry capabilities given a calibrated camera. So
each 3D visible object is stored and made its projection on the image plane. The system refutes/corroborates such segments
predicted, comparing one of these segments with those obtained by the Hough Transform. This comparison leads to three sets
of segments, as seen in Figure 6.

C. Reconstruction with 3D segments and parallelograms
The above mechanism extracts a set of 2D segments which must be located in 3D space. To do this, and as we have already

mentioned, we rely on the idea of ground-hypothesis. Since we have one camera, we need a restriction which will enable to
estimate the third dimension. We assume that all objects are flat on the floor.
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Fig. 5. Differences between Canny+Hough and Solis algorithms

Fig. 6. 3D projection on the image plane and matching between predicted and instant segments

Once we have the 3D objects, and before including them on the 3D memory, postprocessing is needed to avoid duplicates
in memory due to noise in the images. This postprocessing compares the relative position between segments, as well as its
orientation and proximity. The output is a set of 3D segments situated on the robot coordinate system. Figure 7 shows the
3D scene with the parallelograms reconstructed by the system, the segments detected in the current image and the segments
predicted from the current position.

We use four coordinate systems to define the geometric model, as we can see in Figure 8:
• The absolute coordinate system whose origin lies somewhere in the world where the robot is moving.
• The system located at the base of the robot. The robot odometry gives its position and orientation with respect to the

previous system.
• The system relative to the base of the pan-tilt unit to which the camera is attached to. It has its own encoders for its

position at any given time, with pan and tilt movements with respect to the base of the robot.
• And finally we have the coordinate system of the camera itself, displaced and oriented in a particular mechanical axis

from the pan-tilt unit.

D. Inserting segments into the 3D visual memory
3D memory comprises a dynamic set of lists which stores information about the different types of elements present in the

scene (position, type or color). The most basic form of structure is the segment. Thanks to the memory we can establish
relationships between them to make up more complex elements such as arrows, parallelograms, triangles, circles or other
objects.

To store a segment we have a structure called Segment3D, consisting in a start and end point and a pointer to other possible
structures of which it can be part of: Arrow3D or Parallelogram3D.



8 ROBOTIC VISION: TECHNOLOGIES FOR MACHINE LEARNING AND VISION APPLICATIONS

Fig. 7. Scene situation, instantaneous image and 3D scene reconstruction

Fig. 8. Coordinate systems used to define the geometric model

Incorporating 3D memory segment basically consists of comparing each segment individually calculated in the snapshot
with those already stored. In case of nearby segments with similar orientation, the system combines these segments into a new
one taking the longest length of its predecessors, and the orientation of the more recent, as probably it is more consistent with
reality (the older ones tend to have more noise due to errors robot odometry).

To make this fusion process computationally lighter, the system has a segment cache with only the segments close to the
robot (in a radius of around 4 m.). Its implementation is basically a dynamic list of pointers to these segments. The system
always works with subsets of features, which are pointers to the overall 3D memory elements.

E. Predictions: deletion and correction of segments

As mentioned before, the 2D analysis system returns different subsets of segments, as the result of comparison between
instant and predicted segments from 3D memory.

If a segment is identified in the current image and it does not match the predictions, the system creates a new one in 3D
which might replace an existing one (replacement or correction) under certain restrictions. To reflect this process, system has
a parameter called uncertainty which will increase as the time segment remains in memory.

The element deletion process is based on the same principle, but here there are more rigorous restrictions. So, the replacement
process is a priority compared to deletion.

F. Perceptual hypothesis generation

Our object model consists of a set of segments whose vertices can belong to more abstract structures like parallelograms.
The vertices are labeled with the number of segments that are tied to them. This requires an object model for cases in which
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certain vertices are not visible at any given time. For instance, for parallelograms the minimum number of visible vertices is
small, with three points we are able to estimate the fourth one.

The segments and their corresponding vertices are used to detect parallelograms checking the connection between them and
the parallelism conditions. The analysis of the angles formed by each segment provides information about how the segments
are connected to each other. In addition, this feature can be used to merge incomplete or intermittent segments. Similarly,
we can extract the position of a possible fourth vertex using the information about other edges and/or possible parallelogram
vectors. This capability makes our algorithm robust against occlusions, which occur frequently in the real world.

Figure 9-b, c illustrates an example of occlusion that is satisfactorily solved by our algorithm. The results of reconstruction
of parallelograms can be seen in Figure 9-a. In this situation, we have a collection of parallelograms spread on the floor. The
robot, after several snapshots, captures what is around itself: those parallelograms, and noise extracted by the segmentation
algorithm. However, our parallelogram hyphotesis generation is able to extract only the real parallelograms, avoiding such
noise.

Similarly, we can abstract other abstract objects such as arrows.

Fig. 9. Generation of hypothesis: parallelogram with occlusion

V. VISUAL ATTENTION SYSTEM

In the previous section we have described in detail the operation of placing objects on the robot 3D visual memory. Now
we will describe the visual attention mechanism implemented based on two of object attributes: salience and life. The salience
is used for deciding where to look at in every moment, while life is the mechanism for forgetting an object, deleting it from
memory, when it has disappeared from the scene.

In addition, we have designed a mechanism to control the camera movements, to track objects, and another mechanism to
explore new unknown areas from the scene.

A. Gaze control: salience dynamics

Some sort of decision-making mechanism to indicate to the system where to look at in the next instant. Each object in the
visual memory has its coordinates in the scene representation. It is desirable to control the movement of the pan-tilt unit to
direct the focus to that position periodically in order to reobserve that object. To control the movement of the pan-tilt unit, we
introduced the dynamics of salience and attention points. They mainly represent the detected objects in the scene. Each one
contains a position in the 3D scene (X, Y, Z), which is translated into mechanical commands to the pan-tilt unit in order to
direct the focus at that point.

Anything that attracts attention or stands in a given situation is salient. The focus may be changing over time to look at all
the salient points. In this system salience indicates how attention selects the next object to be visited. Each memory element
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has an associated salience, which grows over time and vanishes every time that element is visited. The focal point with highest
salience will be the next to be visited. If the salience is low, it will not be visited now.

Salience(t) =

{
Salience(t− 1) = 0 if object attended
Salience(t− 1) + 1 otherwise

When a point is visited, its salience is set to 0. A point that the system has not visited recently calls more attention than one
which has just been attended. The system is thus similar to the behavior of a human eye, as pointed by biology studies [Itti
y Koch., 2005]: when the eye responds to a stimulus that appears in a position that has been previously treated, the reaction
time is usually higher than when the stimulus appears in a new position.

The designed algorithm allows the system to alternate the focus of the camera between the different objects in the scene
according to their salience. In our system, we consider that all objects have the same preference of attention, so all of them
are observed during the same time and with the same frequency. If we assigned different priorities to the objects, we could
establish different rates of growth of salience. This would cause the pan-tilt unit to pose more times in the object whose
salience grows faster.

The problem of how to revisit a point is solved considering the spatial interpretation, because we consider it is a problem
of evolution of the hypothesis in the time among detections in t and t + n (where n is the time a point is not visited).

We assume that a detected object will be found near the location where it was previously.

B. Tracking of a focused object

When the look-sharing system chooses the attention point of a given object, it is going to be looking for a certain time (3
seconds), tracking it if it moves spatially. For this tracking, and to avoid excessive oscillations, we use a P-controller (Fig.
10) to control the speed of the pan and tilt and thus continually focus that object on the image center. This driver orders
high speeds to the pan-tilt unit if the focus of attention is far from the predicted position; or lower speeds if it requires small
corrections. The controller follows next equations.

Fig. 10. P-controller mechanism

v(Pan) =

 0 if ε < 0.3
Kp · (Pt − Pa) if 0.3 ≤ ε < Mp

Mp if Mp < ε

v(Tilt) =

 0 if ε < 0.1
Kp · (Tt − Ta) if 0.1 ≤ ε < M t
Mt if Mt < ε

Where: Kp is the P control gain, Tt is the Tilt of the target, Ta is the actual Tilt, Pt is the Pan of the target, Pa is the actual
Pan, Mt is the maximum Tilt and Mp is the maximum Pan.

C. Exploring new areas of interest

At any time, it may be interesting to look for new objects in the scene. For that search our system will insert periodically
(every forcedSearchTime) scanning points with high salience in memory. This search is especially interesting at the beginning,
when there are many unknowns areas of the scene where there can be objects of interest.
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The scanning points can be of two types: random and systematic ones. The first type are assigned uniformly random
coordinates (pan, tilt) within the pan-tilt range (pan = [-159, + 159], tilt = [-31, +31]). That way, the system ensures that all
areas of the scene will be visited. Thus, these points will range from the lowest position of pan-tilt to the highest position,
and also with the tilt coordinate. Systematic scanning points follow a regular pattern to finally cover the whole scene around
the robot.

The attention points, whatever their type, have a high initial salience in order to be quickly visited with the camera and
thereby check whether any object of interest is found around it. In such a case that object will enter into the memory and into
the gaze sharing module.

There will be a proliferation of points of exploration in the beginning, because the most interesting process in that moment
is to find areas of interest in the scene as we start from the absolute ignorance of the environment.

As we discover objects, the desire to explore new areas will decrease in proportion to the number of already detected objects.

D. Representation of the environment: life dynamics

As already discussed in previous sections, our visual attention system guides the search and tracking of objects within the
scene. The objects may eventually disappear from the scene, and then they should be removed from the memory in order to
maintain coherence between the representation of the scene and the reality.

To forget such old elements, we have implemented the life dynamics. With this mechanism the system can know whether
an object has left the scene or it is still there. The life operation is the reverse of the salience, that is, a frequently visited
object will have more life than one less visited. When the life of an object is below a certain threshold, it will be discarded.

Every time the attention system visits an object, its life increases one point, with a maximum limit to provide saturation.
The life of unobserved objects will decrease over time. Thus, when the life of an object exceeds a certain threshold, which is
still on the scene, whereas when is below it is gone.

Life(t) =


min(MAXLIFE , Life(t− 1) + ∆)

if object observed
Life(t− 1) − 1

otherwise

E. Attentive system operation

The objects of the environment surrounding the robot guide the movements of the camera. So the mechanism of attention
is so far bottom-up. Besides, the underlying mechanism of top-down attention is that existing relevant objects are only those
that have a certain appearance given by the task at hand: in our examples, parallelograms or arrows. This tendency to look at
objects with a certain aspect is similar to the bias detected by ethologists in animals with respect to certain stimuli [?].

The visual attention system presented here has been implemented following a state-machine design, which determines when
to execute the different steps of the algorithm. Thus, we can distinguish four states:

• Discuss next goal (state 0).
• Saccade is completed (state 1).
• Analyze image (state 2).
• Tracking object (state 3).

Periodically the system updates the salience and life attributes of the objects that have already stored in memory following
previous equations. It checks whether any of them is already outdated, because its life is below a certain threshold. If not, it
increases its salience and reduces its life.

Based on the initial state (or state 0), the system asks whether there is any attention point to look at (in case we have
an object previously stored in memory) or not. If so, it goes to state 1. If not, it inserts a new scanning attention point into
memory and goes back to state 0.

In state 1 the task is to complete the movement towards the absolute position specified in state 0. Once there, we go to
stage 2 where we will analyze whether there are relevant objects or not. In any case, it passed the state 0 and back again.

VI. VISUAL LOCALIZATION

As we explained in Section I-B, we have designed a new approach to solve robot self-localization specifically designed
to bear symmetries. That is, an evolutionary algorithm, a type of metaheuristic optimization algorithm that is inspired by the
biological evolution to solve a problem.

In this kind of algorithms, candidate solutions are so-called ”individuals”, which belong to a population that evolve over
time using genetic operators, such as mutation or crossover, as we will explain later.

Besides, each individual is evaluated with a quality function which calculates its ”health”, that is, a measure to know how
good is the current localization with regard to the optimal solution. The algorithm is independent of this health function, so
that it works either with instantaneous measures of robot sensors or with the visual memory described in previous sections.
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In our approach, the evolutionary algorithm has 4 main members:
• Individuals: An individual represents a concrete candidate solution. It stores a robot pose (X,Y, θ) (Fig. 11) and a

probability obtained with the quality function.
• Races: Each race is a set of individuals that represents a possible solution to robot’s localization. The algorithm has

N races which compete among each other to be the race selected in each iteration, i.e. the solution to the localization
problem. The parameters stored in each race are the robot pose (X,Y, θ), its ”health”, number of times selected and its
”life” (iterations left without being able to be deleted).

• Explorers: Independent individuals who try to find new good positions where creating new races.
• Exploiters: Each individual who belongs to a race. They analyze deeply the neighbor positions of the current race pose

to get the best solution close to it.
The main idea of the algorithm consists of keeping several races competing among each other in several positions. In case

of symmetries from observations, we will create new races on various positions where the robot can be located. After some
iterations, predictably, new observations will provide information to reject the most of race poses and we will obtain the real
robot pose.

Fig. 11. 2D robot pose

In each iteration of the algorithm there are several steps to be performed to know the current robot pose (Fig. 12).

Fig. 12. Basic diagram of evolutionary algorithm

Next we are going to describe the most important steps in each iteration:
• Analyze image: We need to take information from robot’s camera, either analyzing each image or using the visual memory.

First we are going to explain how our algorithm would work analyzing images and we will explain the differences if we
use the visual memory in Section VI-A.

• Health calculation: We use the information obtained after analyzing images and calculate the current race health (including
its exploiters), as we will explain in Section VI-B.

• Explorers creation: We spread randomly new explorers with the aim to find new positions where new races could be
created. We will detail this process in Section VI-D.

• Races management: We create, merge or delete races depending on their current state and the new explorers health, as
we will see in Section VI-E.
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• Races evolution: If we have just created a new race, we create its exploiters, or if they already exist, we evolve them
by using genetic operators. Besides, if the robot is moving, we update all races and exploiters taking into account this
movement. We will explain all these operator in Section VI-F.

• Selecting current robot pose: After calculating each race health, we will select one of them to set the current robot pose
with requirements we will detail in Section VI-G.

A. Analyzing images

To validate our approach independently of the visual memory, we have tested the algorithm with instantaneous images of
robot camera. Thus, we analyze the the current image to obtain characteristic lines from environment.

The fist step consists of using the line detection algorithm we explained in Section IV-A, this algorithm gives us a set of
segments which must be processed. With this segments we created the visual memory explained in Section IV, where we
rejected segments over the horizon and we merged them in our 3D visual memory.

However, we proceed now in other way, we don’t need to reject segments that don’t lie on the floor, since we don’t need to
backproject segments in 3D, and we only need to merge segments in 2D, to join consecutive segments together (Figure 13).

Before merging, we need to label each segment with a type depending on its colors, so, segments with unknown type are
rejected. After labeling each segment, we try to merge segments with the same type if their extremes are very close to each
other.

Fig. 13. Image analysis before merging (left) and after merging (right)

Finally, we rule out segments too small and save the rest of them. We could use these lines directly as input data, but we
have decided to divide this lines into points to make the comparison between lines easier, as we will explain in Section VI-B.

So, we have created a grid with dynamic size and we only save a new point where the lines detected intersect with this
grid (Figure 14). The size of this grid changes because we want to analyze the top of the image more deeply than the bottom,
since further objects will be at the top of the image and its resolution will be smaller.

Fig. 14. Image grid (left) and points selected (right)

All these points selected will be the input data we will use to calculate the health of each Individual.
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B. Health calculation with instantaneous images

The health of an individual placed at certain location is computed comparing the theoretical set of visible objects from that
location (theoretical observation) with objects currently observed (real observation). The more similar the predicted objects
and the observed object are, the more likely such location is the correct one.

Thus, we cover all points detected as we explained in Section VI-A and calculate for each point the Euclidean distance
di in pixels to the closest theoretical line with the same type than the point. These theoretical lines are generated ad-hoc for
each concrete position, projecting lines from a predesigned environment (an accurate replica of the real environment) into the
current image.

After calculating di for all points, we will be able to calculate the Individual’s health by the average distance, as we show
in the next equation:

H = 1 −
∑N

i=0
di

N

M
(1)

where N is the number of points and M is set to 50 pixels for a 320x240 image size.
We will show in Section VII-B1 several experiments to analyze the health function behavior in different situations.

C. Health calculation with Visual Memory

In case we use the visual memory instead of instantaneous images, as we explained in previous Section, we don’t need to
analyze each image, but we obtain the visual memory in real time from the visual memory component.

The kind of health function we use to evaluate each Individual is independent to the rest of the algorithm, so we don’t need
to change the algorithm behavior.

The memory obtained is a set of 3D points relatives to our robot, so we can’t compare lines in image as we did before.
Besides, we have to take into account that lines may not be detected completely or they may be divided into several small
lines.

Thus, to calculate the current health of an Individual we cover all lines belonging to the visual memory, for each line we
get its extremes and calculate the Euclidean distances djs and dje in meters to the closest theoretical line with the same type,
that is, similar to health function with instantaneous images but in 3D.

After calculating djs and dje for each line, we use the next equation to calculate the Individual’s health:

H = 1 −
∑N

i=0
(
djs

+dje
2 )

N

M
(2)

where N is the number of lines and M is set to 0.5 meters.

D. Explorers creation

Explorers are individuals who don’t belong to any race and who try to find positions where health obtained is better than
current races health.

There are two ways to spread explorers around the environment, randomly or predesigned. If our environment is odd enough,
we can deduce certain positions where explorers might obtain high health if current visual memory give us enough environment
information.

However, to proceed this way, we would need to adapt our algorithm to each concrete environment. So we have decided to
exclude this kind of features, and we just spread explorers around the environment randomly.

When an iteration of explorers creation is performed, we create N explorers, calculate their health and arrange them according
to its health. After that, we pick up the M best explorers evaluated and promote them to became a candidate to create a new
race.

Number of explorers created N changes dynamically depending on current algorithm status. Thus, if our robot is lost, we
increase N , and decrease it if its location is reliable.

Besides, since explorers creation takes a great amount of time, when current location is reliable, we don’t execute this
procedure during all the iterations, but once every N iterations.

E. Races management

Since we have several races, we have to develop a mechanism to manage them, in other words, we need to know when
to create a new race, delete it, or merge two races. Before explaining these mechanisms, we need to introduce two existing
parameters in each race, ”Victories” and ”Life”:

• Victories: A race has a ”Victory” in an iteration when its health is higher than in the rest of races. At first, races have
just been created, so ”Victories” is set to 0. This number can increase or decrease depending on how a victory is got in
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each iteration, as we will explain in Section VI-G. This parameter is useful to select the race that set the current robot
pose in each iteration.

• Life: This parameter has been created with two objectives. The first one is preserving new races against new candidates,
to avoid creating races that will be deleted in the next iteration. For that, when a race is created, we set a minimum life of
3 iteration, period during which this race can’t be deleted or replaced (although it may be merged). The second objective
is avoiding deleting a race because of wrong information when predictable it was a good race. To achieve this, we set a
minimum life of 9 iterations when a race has the highest health in an iteration.
This way, we try to provide stability to races and avoid creating and deleting races continually.

1) Creating races: Whenever the explorers creation has been executed and we have new candidates to became a race, we
have to decide when to create new races and when to replace an existing one. Our approach has a maximum number or races
N that avoids the exponential increasing of computation time related to the number of races.

The first step consists of checking if there are enough races already created. To that end, we need to check if we have
already reached the maximum number of races N . In case N is reached, we need to check if any race may be replaced, that is
to say, we can’t replace a race if either its life or its number of wins is greater than 0. If any race can’t be replaced, candidates
are ignored.

If we can create or replace new races, the next step is checking the innovation of the candidates, that is, for each candidate
we find out if an existing race is located in the same position (X,Y, theta). If this is the case, we don’t try to create a new
race, but we assume that the existing race already represents this candidate, and we increase the race’s life.

Finally, if candidates are innovative, we create new races until we reach N races or replace a race if the health of the
candidate is greater than the health of the race replaced.

2) Merging races: In case two races evolve towards the same localization, that is, position and orientation, we consider
that they lead us to the same solution, so we merge them. This merging consist of deleting the race with lower victories, or
if both have the same victories, we keep the best race according to its health.

3) Deleting races: In case a race may be deleted, that is, both its victories and its life are 0, we need to check if its
current health is lower than a threshold, what would mean that the race is not in the real robot pose anymore. We have set
this threshold to 0.6, so if its health is lower than 0.6, we consider this race location wrong and delete it.

F. Races evolution

When a race is created from an explorer, all its exploiters are created applying a random thermal noise to the explorer who
created the race. From then on, in the next iterations, its exploiters are evolved through three genetic operators:

• Elitism: We select the N best exploiters of each race, arranging them according to their health. Elitist exploiters are saved
in the next iteration without any change.

• Crossover: We select two exploiters of the race randomly and calculate their average with their values (X,Y, θ).
• Mutation: We select an exploiter randomly and apply a thermal noise to its position and orientation.
Once we have evolved all the exploiters of each race, we calculate the final pose of the race as the average of its elitist, to

avoid abrupt changes in its localization.
Besides, in case the robot has moved since the last iteration, we apply a motion operator to all races and exploiters at the

beginning of each iteration using robot odometry.

G. Selecting current robot pose

After evaluating all the existing races, we need to choose one of them in each iteration to be the current pose of the robot.
The race selected will be the one with more victories, so we need to increase or decrease this parameter for each race in each
iteration.

The first step is selecting the race with greatest health in the current iteration (Ri). If the race selected was the same in the
previous iteration (Rp), we will increase the victories of Ri and will decrease the victories of the rest. However, if Ri and Rp

are different, we only change the races victories if the difference between Ri health and Rp health is greater enough.
This distinction is made because we want race changing to be difficult if Rp has been the selected race during a lot of

iterations. With this behavior, we try to help the races who have been selected in the previous iterations and we only change
the winner race when the health difference is big enough (what would mean that the current localization is wrong).

At the end of the iteration, the selected race will be the one with more victories, and its pose will determine the calculated
robot pose by the algorithm.

VII. EXPERIMENTS

To verify our different approaches of visual memory, visual attention and visual localization, we conducted several experi-
ments. Our experimental real platforms were an ActivMedia Pioneer 2DX robot equipped with a Logitech Autofocus camera
(2 megapixels) and a Nao Robot from Aldebaran Robotics (v. 3). Besides, we have used Gazebo 0.9 as robot simulator. All
our experiments are implemented on C++ under JdeRobot robotics software platform, which uses ICE as a middleware.
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A. Attentive visual memory

1) Robot in the middle of a room: For the first experiment, the robot is in the middle of a room (see 15-a). Then the robot
turns around on itself. Figure 15-b shows a instantaneous view from the room, where robot is able to detect a simple line on
the floor.

After a few seconds, the robot has turned full circle, having stored all the information about their surrounding environment.
Thus, we can see in figure 15-c, how the short-term memory provides more information than an instantaneous image.

Fig. 15. (a) Situation; (b) Instantaneous image; (c) Short-term memory

2) Robot navigating a curve: In this experiment we wanted to show how the robot is unable to navigate using only the
instantaneous information received from the camera.

The situation is as follows: the robot, while navigating through a corridor, is approaching a curve area (see 16-a).
If robot uses instantaneous image (16-b), it is able to see just some lines in front of itself (17-a), but with short-term memory

it can observe that the path in front of itself is a curve (17-b).
In addition, robot can quickly explore the surrounding environment thanks to the visual attention mechanism, which forces

the system to explore unknown areas of the environment.

Fig. 16. (a) Situation; (b) Instantaneous image

Fig. 17. (a) Instantaneous memory; (b) Short-term memory
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3) Robot occlusions: Here, the situation is presented to solve a temporary occlusion. This happens very often in real
environments where there are dynamic objects which can obstruct the robot field of view.

Fig. 18. (a) Situation; (b) Short-term memory got after a while

The initial situation is showed in figure 18-a. After a few seconds, robot has recovered environment information thanks to
the short-term memory and the visual attention system. This information is showed in 18-b.

Fig. 19. (a) Situation; (b) Field of view

After a while another robot appears situation showed in figure 19-a occluding the field of view of our robot (19-b), so it is
unable to see anything. This situation continue for some time while the second robot moves away from our robot (20-a,b).

Fig. 20. (a) Situation; (b) Field of view

This situation is solved by our system because of the persistence of the short-term memory. As we discussed in section ??,
the memory is refreshed over time. If it is inconsistent, that is, what the robot sees does not match with the information stored
in memory, we give a confidence interval until this situation is solved.

B. Visual localization

We have performed several experiments to validate the evolutionary algorithm as well, especially with real robots. The
algorithm has several parameters to be configured, such as the maximum number of races (10), the number of exploiters (30),
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and the percentages of the genetic operators we explained in Section VI-F (20% elitism, 20% crossover and 60% mutation).
The maximum number of races has been a crucial factor, since a high number of races improves the precision of the calculated
localization, but it also increases the algorithm execution time. Because of that, we have selected a value where efficiency and
precision balance each other out, this is, 10 races.

The first experiment has been performed with a real Nao robot travelling through a corridor (Figure 21).

Fig. 21. Nao robot travelling a corridor for experiments

It shows how the algorithm is able to follow the real movement of the robot starting on a known position. At first, the robot
is located in a known position, aftwerwards we move the robot around the environment and measure its localization error.
The red line in Figure 22 shows the calculated positions, the green line the real robot path, and the brown area is the error
measured.

Fig. 22. Estimated localization and position error over time

The average error has been 11,8 cm and 2,1 grades, the algorithm is able to follow the robot movement even when its
instantaneous observations don’t provide enough information thanks to robot odometry. Besides, we can emphasize that the
trajectory followed by the robot is very stable and is always close to the real location of the robot.

The second experiment shows how the algorithm works with symmetries and kidnappings . At first (1.a), we locate the robot
in front of a door, so the algorithm creates several races where the robot may be located, the algorithm select one of them (a
wrong one) but keeps another one on the right location, then the robot moves and obtains more information from the world
and finally rules the wrong location out and selects the correct one (1.b). Afterwards, we kidnap the robot to another location
(2.a) and it takes a while until the robot changes to the new right location. It happens because the location’s reliability changes
gradually to avoid changing with false positives, but after a while, it changes to the new position (2.b). A second kidnap is
performed (3.a), this case is similar to the first one, at first it selects a wrong localization (very close to the correct one, 3.b),
but after some iterations it changes to the correct one (3.c).

The average error after selecting the correct race has been 14,9 cm and 3,2 degrees. We have also measured the time spent
until the algorithm calculates a new plausible pose after a kidnapping (recovery time). In this experiment was 29,6 secs.

1) Health function with instantaneous images: To validate the health function, we have implemented a debug mechanism
to show graphically the value returned by the health function in different positions. In Fig. 24 we show the value returned in
all positions (X, Y), where red areas are the ones with highest probability and white areas with the lowest.

As we can see, the position with highest probabilities is plausible with the input image.
In case of symmetries we will obtain high probabilities in several positions. In Fig. 25 we show what would happen if we

obtain an image in front of a door, we would obtain high probabilities in front of each door of our environment:
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Fig. 23. Position error over time (a) and angle error over time (b)

Fig. 24. Image obtained (left) and probabilities calculated with theta equals to 0 radians(right)

Fig. 25. Image obtained in front of a door (left) and probabilities calculated for any theta (right)

The algorithm has been tested in more complex contexts, such as occlusions or false positives. In cases of occlusions the
algorithm keeps a good behavior, since our approach doesn’t penalize if an object is not detected in the image when it should
be, and the only objection is a higher probability in some field areas (compare Fig. 26 and Fig. 27). However, false positives
affects negatively to health function and the calculated localization can be totally wrong (compare Fig. 26 and Fig. 28).

C. Visual localization with attentive visual memory

In this experiment, we have tested our system including visual memory, visual attention algorithm and visual localization
on a real robotics platform such as Nao humanoid robot.

The robot is in the middle of our department corridor recovering information about the environment around itself. It is able
to move autonomously around the corridor; furthermore, it is moving its neck in order to detect all segments in a few seconds.
We can see in figure ?? some snapshots and the short-term memory built with them.
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Fig. 26. Image obtained (left) and probabilities calculated without occlusions or false positives for any theta (right)

Fig. 27. Image obtained (left) and probabilities calculated with occlusions for any theta (right)

Fig. 28. Image obtained (left) and probabilities calculated with false positives for any theta (right)

1) Health function: In case we use visual memory instead of instantaneous images, as we explained in Section VI-C, the
calculated probabilities will be similar to previous health function, but we will get two benefits, there will be less symmetries,
since we will get more information about the environment, and temporal occlusions won’t affect our health function.

For instance, in Fig. 30 we show the probability map and localization calculated with the visual memory of Figure ??.

VIII. CONCLUSIONS

Location recognition in static environments is really tough. In this work, we presented a new method for robot localization,
using a 3D visual memory (see section IV) built through a sequence of images-snapshots. In particular, we adopted a 3D-
information recovering method based on the ground-hypothesis. Although most effort in computer vision area has been on
stereo-vision based methods, we decided to use the first simplified option in order to avoid the difficulty in point matching,
which is very challenging in untextured surfaces.



VEGA, PERDICES AND CAÑAS: ATTENTIVE VISUAL MEMORY FOR ROBOT LOCALIZATION 21

Fig. 29. Visual memory with 3D segments coming from four images of robot surroundings

Fig. 30. Probabilities for any theta (left) and localization (right) calculated with visual memory

Another difficulty we solved was to extract useful information from the richness of camera data. To do that we used different
methods of image filtering, edge detection and segmentation. The mechanism based on Solis’s article was a great improvement
over previous methods which we used for segmentation, such as Canny algorithm or Hough transform.

Also, we have presented the implementation of a visual attention system (see section V) employing both top-down and
bottom-up information. It runs in real time and it is used to control the overt attention mechanism of our robot. This eventually
gives solution to a different sort of problems compared to the more typical implementations that only generate scan paths on
static images.

The robot acquires information about objects through active exploration section ??) and uses it in the attention system
as a top-down primer to control the visual search of that object. The model directs the attention towards the abstract-object
(parallelogram) or segmented object center of mass, similarly to the behavior observed in humans. In fact it has been proven
that the first glance to a simple shape that appears in the periphery tends to look at its center of gravity.

Afterwards, we have presented a self-localization algorithm specially designed to bear symmetries (section VI). The algorithm
receives as input data either 2D segments detected from instantaneous images or 3D segments from the visual memory, without
influencing the rest of the algorithm.

Our system has been proven in practice to be useful to guide a robot, to select objects to be tracked (helping the visual
search and recognition tasks), and to locate a robot inside a known environment in an accurate way.

Our future work will be addressed to extend our experimental results to large scenarios as well as to visit previously
unexplored fields. We are also planning to design new methods for recognizing new and more complex abstract objects which
are typically inside the buildings; such as tables, chairs, etc. About localization, our future work will be focused to improve
the calculated localization precision and to reduce false positives by using more complex objects than segments.
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