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Abstract: This paper presents an open-access platform for practical learning of intelligent robotics
in engineering degrees: Robotics-Academy. It comprises a collection of exercises including recent
service robot applications in real life, with different robots such as autonomous cars, drones or
vacuum cleaners. It uses Robot Operating System (ROS) middleware, the de facto standard in
robot programming, the 3D Gazebo simulator and the Python programming language. For each
exercise, a software template has been developed, performing all the auxiliary tasks such as the
graphical interface, connection to the sensors and actuators, timing of the code, etc. This also
hosts the student’s code. Using this template, the student just focuses on the robot intelligence (for
instance, perception and control algorithms) without wasting time on auxiliary details which have
little educational value. The templates are coded as ROS nodes or as Jupyter Notebooks ready to use
in the web browser. Reference solutions for illustrative purposes and automatic assessment tools
for gamification have also been developed. An introductory course to intelligent robotics has been
elaborated and its contents are available and ready to use at Robotics-Academy, including reactive
behaviors, path planning, local/global navigation, and self-localization algorithms. Robotics-Academy
provides a valuable complement to master classes in blended learning, massive online open courses
(MOOCs) and online video courses, devoted to addressing theoretical content. This open educational
tool connects that theory with practical robot applications and is suitable to be used in distance
education. Robotics-Academy has been successfully used in several subjects on undergraduate and
master’s degree engineering courses, in addition to a pre-university pilot course.

Keywords: intelligent robotics; engineering education; distance learning; open educational tool

1. Introduction

An increasing number of robotic applications are available to the general public. Beyond
the classic industrial applications and automobile assembly processes, robots are used today, for
example, in food packaging or in warehouse logistics. Robotic vacuum cleaners have been an
unprecedented sales breakthrough, using autonomous robots to successfully solve a real life need at
homes. Cars are also increasingly incorporating robotic technologies such as auto-parking or even
autonomous driver-assistance systems. The big automakers have encouraged these new technologies,
achieving advanced prototypes of autonomous cars. Software companies like Google or Apple have
been at the forefront of these developments. In addition, applications with aerial robots (drones) are
also rapidly growing in number.
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All the robotic applications that reach the general public have software inside and much of their
intelligence and value lies in that software. Typically, this software has several layers (such as drivers,
middleware and application layers) and has specific requirements different from those required in other
fields: real-time operation, robustness, reliability, distributed nature and heterogeneous hardware.
In addition, graphical interfaces are often used for debugging, but seldom at runtime.

The growth of robotics technology has created the need to train professionals in the sector, who can
take the current limits further and produce new robotics applications to serve common people. Robotics
is a cross-disciplinary field involving many technologies: electronics, mechanics, computer science,
telecommunications, etc. At universities, robotics subjects and programs are traditionally taught at
schools of mechanical engineering, electrical engineering and computer science [1,2], both on degree
courses and post-graduate courses.

Prestigious associations such as ACM, IEEE-CS, IEEE-SMC and IEEE-RA consider robotics to
be one of the fundamental knowledge areas in computer science and engineering studies, especially
in the field of intelligent systems [3]. The leading American universities in technology (Carnegie
Mellon University, Stanford, Massachusetts Institute of Technology, Georgia Institute of Technology,
etc.) include graduate and post-graduate studies in robotics and related fields, such as computer vision
and artificial intelligence. There are many minor, bachelor, master and Ph.D. programs in robotics.

Due to its cross-disciplinary nature, robots can be approached from many perspectives.
For instance, as a set of sensors and actuators with intelligent software placed in between. Following
this approach, the goal of the present work is to increase the quality of robotics teaching proposing
a new open educational resource for higher education named Robotics-Academy. This focuses on
software for robots as the key element for their intelligence, more on the algorithms rather than the
middleware. It has been designed especially for students learning perception, planning and control
algorithms common in robotics syllabuses of university courses (12–14 weeks).

The remainder of this paper is organized as follows: the second section provides an overview
of robotics teaching at university level and reviews several teaching tools used by the community.
The third section explains the general design of the proposed teaching suite and several key decisions
that have guided its development. In Section 4, we describe an introductory Intelligent Robotics course,
including diverse practical exercises available in the framework. The fifth section presents results of
courses in which the framework has been used and student evaluations. The last section summarizes
the main conclusions and future lines of work.

2. Robotics Teaching in Higher Education

There are two large trends in teaching robotics content at university: subjects focused on industrial
robots, arms and manipulators [4–6] and subjects based on mobile robots. In the first case, control
techniques, inverse and kinematics or trajectory calculations are usually addressed. In the second
case, the techniques generally explained are local and global navigation, position control (avoiding
obstacles), perception, self-location, etc. This dichotomy of contents is also reflected in the robotic
platforms that are used in the exercises.

Both types of robotic subject have a notably practical character. Student interaction with robots
facilitates the learning and assimilation of the theoretical concepts, algorithms and techniques [7].
Exercises promote the paradigm of learning through doing, or active learning. They usually take place
within a specific robotic framework, using a teaching tool where robot behavior is programmed using
a certain language. A great diversity of the hardware platforms is used to support the experimental
component of robotics courses. Virtual [7–9] and remote laboratories [10] are frequent in the literature.
In terms of programming environments, according to Esposito [11], MATLAB (62%) and C (52%)
remain the dominant choices, with a minority using free open-source packages such as the Robot
Operating System (ROS) (28%) or OpenCV (17%).

One of the most commonly used teaching suites for practice sessions is MATLAB, with its own
language, sometimes accompanied by the Simulink package. For example, Gil et al. [12] describe
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the MATLAB ARTE (A Robotics Toolbox for Education) toolbox, oriented towards manipulation and
have used it in their courses including 3D visualization and arm programming with an industrial
language. Aliane [2] uses MATLAB and Simulink to present students’ practical sessions on trajectory
calculation and a Selective Compliant Articulated Robot Arm (SCARA) manipulator control. Gonzalez
et al. [13] have developed the Robot Motion Toolbox which allows mobile robot planning, navigation
and control, and includes its own simulator. Corke [14] developed the Robotics Toolbox to program
mobile robots, arms and robots with vision [15].

The Mobile Robot Interactive Tool [16] is a teaching platform for mobile robots. It is a
two-dimensional environment and is made with SysQuake (similar to MATLAB). It allows the
testing and adjustment of parameters of different navigation solutions integrated in the tool (Visibility
Graph, Generalized Voronoi Diagram, Wavefront, Bug, Visbug, etc.) and the robot kinematics. They use
the Tritton or the PeopleBot robots to follow a trajectory. This platform together with MATLAB is used
on the courses organized by Berenguel et al. [3], providing a mixed profile covering both manipulators
(Scorbot-ER Plus V) and mobile robots (LEGO, PeopleBot).

Fabregas et al. recently presented Robots Formation Control Platform [9], a teaching suite oriented
towards controlling groups of mobile robots and their movement in formations. Rather than focusing
on behavior programming, it allows the user to select some of the Vector Field Histogram control
algorithms already programmed within the suite (VFH, VFH+, VFH*), configure them in different
ways, decide whether there are obstacles or not, choose the desired formation or the robot kinematic
model and view the resulting trajectories.

Guyot et al. [17] proposed a complete teaching suite with the Webots simulator for a small mobile
robot, the e-puck. This environment includes multi-level exercises, from novice to the intermediate,
advanced or expert. The C programming language is used for some of the exercises developed in
the suite.

The SyRoTek teaching platform [10] provides web access to 13 small real mobile robots operating
in an enclosed space, the Arena. This remote laboratory was used by more than 80 students from the
Czech Republic and Argentina in exercises about robot exploration, navigation and map building.
It uses Player/Stage framework and ROS interfaces. Farias et al. [18] describe another relevant teaching
platform which combines several Khepera IV physical robots and the use of V-REP simulator to teach
control of mobile robots. Some teaching experiments inside their platform such as Position Control,
Trajectory Tracking, Path Following and Obstacle Avoidance are also reported.

An interesting teaching suite for robotics in computer degrees is Tekkotsu [1]. Initially designed
for the Aibo robot, it has been made cross-platform and includes several libraries with already
programmed functionality (handling of three-dimensional information, navigation, etc.). The approach
focuses on integration and understanding existing code rather than developing a new basic version of
an algorithm.

TRS [19] is a free software robotic framework for postgraduate students. It is based on the V-REP
simulator, which is multiplatform and has been used in a robotics course at Liege University and
Aalborg University Copenhagen. It has outstandingly quick and easy installation. It enables students
to program control, navigation or manipulation algorithms in Python or MATLAB code.

In the last five years ROS middleware has become the de facto standard in the robotics research
community [20–23] and has also increased its presence in education [24–27]. Some of these works
combine or compare ROS and MATLAB [28–30].

In addition, digitalization is changing how knowledge is created, consumed and taught.
Universities increasingly offer massive online open courses (MOOC) exploring new educational
possibilities such as e-learning. In particular, universities such as Stanford, MIT, Harvard have
led initiatives in this direction since 2011. They have succeeded in promoting open learning,
although MOOCs have also been criticized for their high drop-out rates and behaviorist pedagogical
approach. Some works propose their redesign towards gamification to overcome some of their
limitations [31]. The robotics field has also been influenced by this movement and there are
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increasing numbers of robotic courses of this style [32], like Artificial Intelligence for Robotics
(https://www.udacity.com/course/artificial-intelligence-for-robotics--cs373) from Stanford University
(Udacity, Sebastian Thrun), Autonomous Navigation for Flying Robots (https://www.edx.org/course/

autonomous-navigation-flying-robots-tumx-autonavx-0) from the Technical University of Munich or
Autonomous Mobile Robots (https://www.edx.org/course/autonomous-mobile-robots-ethx-amrx-1)
from the ETH Zurich. Another example is the MOOC on the Art of Grasping and Manipulation in
Robotics [33] from the University of Siena.

This trend in web-based and practical educational frameworks also appears in other fields.
For instance, Google Colaboratory (https://colab.research.google.com) provides a simple-to-use
infrastructure where the students can learn deep learning using Jupyter Notebooks from their
web browser which are run on Google servers. No installation by the students is required.

In robotics this is complemented by usage of robotic simulators through a web interface.
For example, one important online teaching initiative is Robot Ignite Academy from The Construct [34].
It is based on ROS, Gazebo and Jupyter, and provides several short courses. Another is robotbenchmark
(https://robotbenchmark.net) from Cyberbotics. It is open, based on Webots simulator and provides 12
Python exercises with several robots such as Thymio II and Nao humanoid.

Another noteworthy ROS-based initiative is Robot Programming Network [35–37]. This extends
existing remote robot laboratories with the flexibility and power of writing ROS code in a Web browser
and running it in the remote robot on the server side with a single click. It uses Moodle, VirtualBox,
html, and Robot Web Tools as its underlying infrastructure.

Table 1 summarizes the features of the main reviewed frameworks for teaching intelligent robotics.
Not all of them are compatible with ROS nor support both simulated and physical robots. Only the
Robotics-Academy platform proposed in this article provides automatic evaluators.

Table 1. Features of main frameworks for teaching intelligent robotics.

Educative Platform Programming
Language

Supported
Robots

Physical
Robots Simulator Open

Source ROS Evaluators

Mobile Robot
Interactive Tool

SysQuake
(~MATLAB) Three No No ~Yes No No

Robots Formation
Control Platform ~parameters Moway Yes RFC SIM No No No

Guyot et al. C e-puck No Webots ~Yes No No
SyRoTek C/C++ S1R Remote Stage No Yes No

Farias et al. C/C++ KepheraIV Remote V-Rep No No No

TRS Python/
MATLAB Several No V-Rep Yes No No

Tekkotsu C++ Several Yes Mirage Yes No No
Robot Ignite

Academy Python Several No Gazebo No Yes No

robotbenchmark Python ThymioII,
Nao No Webots Yes No No

Robot Programming
Network

Python/
Blockly Several Remote Stage

Webots No Yes No

Robotics-Academy Python Several Yes Gazebo Yes Yes Yes

3. Robotics-Academy Design

The presented educational resource consists of a set of independent exercises. Each exercise
proposes a specific robotics problem (typically an autonomous behavior) and the student is intended
to develop the intelligence of the robot to solve it. This suite is an evolution from one previously
designed [38,39], and its main components are listed below:

• Python programming language
• ROS middleware
• Gazebo simulator

https://www.udacity.com/course/artificial-intelligence-for-robotics--cs373
https://www.edx.org/course/autonomous-navigation-flying-robots-tumx-autonavx-0
https://www.edx.org/course/autonomous-navigation-flying-robots-tumx-autonavx-0
https://www.edx.org/course/autonomous-mobile-robots-ethx-amrx-1
https://colab.research.google.com
https://robotbenchmark.net
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• A code template per exercise (Python ROS node/Jupyter Notebook)
• Automatic evaluator for each exercise

Python has been chosen as programming language because it has a learning curve that is not as
steep as C++ and at the same time has the power of object-oriented programming. Python has already
been used in teaching robotics several times [40].

The proposed teaching suite encourages the use of standard libraries in the field, such as OpenCV
for image processing, MoveIt! for robot arms, and Open Motion Planning Library (OMPL) for path
planning, etc. In this way, students become familiar with current state-of-the-art libraries that they
may encounter on their future professional careers.

Each exercise in Robotics-Academy has three elements, as shown in Figure 1. First, on the lower
layer is the robot itself which will perform tasks in a certain environment. It can be either simulated or
real. Second, on the intermediate layer there are drivers that give the software access to the sensors
and actuators of the robot. Both the robot and the drivers can be reused in different exercises. Third,
on the upper layer is the robot application, the academic application in this case. This contains the
robot intelligence and analyzes the sensor data and makes decisions or even performs the planning
if necessary.
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Programming robots is not an easy task and it is advisable to avoid exposing the students to
the whole complexity immediately. Therefore, the application for each exercise is divided into a
specific template code and the student’s code. The template contains a code that resolves several
auxiliary aspects like Graphical User Interface (GUI) or connections with drivers, leaving the core
of the algorithm to be programmed by the student. There are two different templates developed in
Robotics-Academy: Python ROS nodes and Python Jupyter Notebooks.

3.1. Physical and Simulated Robots Availability: Gazebo

One of the first design decisions was not to focus the exercises on a specific robot, but to choose
a variety of platforms: drones, robot TurtleBot with wheels, cars, humanoids, etc. with the idea of
being able to design practical sessions that cover different aspects of robotics without the limitation of
a particular robot typology or model. This contrasts with other teaching suites focused on a specific
robot platform like [17].

Figure 2 shows some of the robots supported by the current version of the teaching suite.
These include indoor robots with wheels and differential traction, such as the TurtleBot robot (real
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and simulated), or outdoor ones like a Formula-1 car and a simulated taxi. Drones typology is also
supported, for instance, Parrot ArDrone is included in both real and simulated versions. It also offers
the possibility of practical activities with sensors such as cameras, lasers, Global Positioning System
(GPS), RGB-D cameras (Kinect, Xtion), etc.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 21 
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Simulators are frequently used in robotics, both in research and in teaching. Some of their
advantages in education are:

• Simulators allow robotics to be learnt with complex and powerful robots without the real hardware.
They facilitate learning for many students, as sessions can be conducted with more learners than
real available robots. They are ideal, for example, for mass online courses.

• In a simulator the programming failures by students do not damage any real hardware.
• It is possible to reduce the complexity of some problems taking information from the simulator. For

example, the simulator provides the true absolute position of the robot at any time. The student
may take it for granted and focus only on the control code, not the self-localization.

• They allow fair comparisons for gamification, and results indicate that games and/or simulations
have a positive impact on learning goals [41]. With simulators, the code of all students can be
executed exactly on the same machine and in the same simulated world.

• They enable development of automatic evaluators for the assessment of the student’s solutions.
These evaluators can be connected to the simulated world collecting all the data needed to evaluate
the quality of the student’s solution.

Experience with real platforms is academically very valuable in itself, although it has some
practical drawbacks too. The software design for Robotics-Academy allows a balance between practical
sessions with simulated robots and with physical robots (when available). It permits the same
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academic application to be connected to a physical robot or its simulated counterpart with only a few
configuration changes.

There are many simulators available: V-REP, Webots, etc. All the practical sessions presented in this
paper for teaching intelligent robotics were designed to work with the Gazebo simulator [42], which has
been chosen as a reference (http://gazebosim.org). It is free software, of high quality, maintained by
the Open Source Robotics Foundation (OSRF) and has great acceptance in the international robotics
community. The version currently used in Robotics-Academy is Gazebo-9.

3.2. Drivers and Middleware: Robot Operating System (ROS)

In recent years, many environments have appeared (middleware), such as ROS, Open Robot
Control Software (Orocos) and Yet Another Robot Platform (YARP), that simplify programming of
applications for robots. Middleware is very useful for shortening the development time and increasing
the robustness of robotics applications, because well-tested software pieces are reused.

ROS [20] was chosen as reference middleware for Robotics-Academy. It is the de facto standard
and has a larger user and developer community than any other middleware. It provides an extensive
set of drivers, including drivers for robotic arms, indoor robots, drones, etc.

It was initially implemented in C++ but now supports many programming languages (including
Python). It was created for Linux machines but now tends to be multi-platform (recently Windows
support was announced). Currently, the version used in Robotics-Academy is ROS Melodic.

3.3. Exercise Templates as Python ROS Nodes

One of the templates used in Robotics-Academy for exercises are ROS Python nodes, as shown in
Figure 3. They contain two parts: an already programmed part and the student’s code.
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The already programmed part acts as a container where the student code is incorporated and
provides several contributions:

1. It solves the GUI using PyQt (https://pypi.org/project/PyQt5/), necessary for debugging,
and provides a simple Application Programming Interface (GUI API) for the student to use which
is ad hoc and academically illustrative for that specific exercise.

2. It provides a simple, local programming interface for sensors and actuators (Hardware Abstraction
Layer API).

3. It provides a timing skeleton for robot behaviors.

The GUI allows sensory data or even partial processing suitable for each exercise to be shown.
For example, the student can include code to show if a color filter is working well on the image of the

http://gazebosim.org
https://pypi.org/project/PyQt5/
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robot’s camera, or even show the path selected by the planning algorithm in the simulated world of
the robot. As all this functionality is already provided, the student is not distracted by programming
graphical functionalities, but can benefit from them to debug. PyQt is used for this part.

The Python ROS node conceals the complexity and details of the robotic middleware used. It connects
to the sensors and actuators of the robot using the appropriate ROS methods and communication
mechanisms (topics, subscriptions, publishing, . . . ), but provides a simple local API in Python for the
student. In this way, the student simply invokes Python methods to update the data collected by the
sensors and to send commands to the actuators. ROSpy is used for this part.

The most common timing skeleton for robot behaviors is a continuous loop of iterations.
Each iteration executes four steps: collecting sensory data, processing them, deciding actions and
sending orders to the actuators. This timing engine is very suitable for materializing reactive behaviors.
The Python ROS nodes in Robotics-Academy provide a Callback function that must be filled by the
student and is invoked from the timing engine typically 15 times per second.

The typical architecture of an exercise with a simulator is shown in Figure 4. The Gazebo simulator
materializes the behavior of the physical robot in a virtual scenario. The drivers are plugins that run
inside the simulator itself and provide access to the sensors and actuators of the simulated robots.
In order to start a world simulation for a specific exercise, a configuration file that determines the
scenario, the robots involved, etc. is created and used. Gazebo provides a local viewer to observe the
evolution of the simulated world, including the behavior of the robot programmed by the student and
also allowing interaction with the scene by adding certain element at runtime, stopping, re-launching
the simulation, etc. The Python ROS node is also executed through a configuration file.
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3.4. Exercise Templates as Jupyter Notebooks

The second template used in Robotics-Academy for exercises is Jupyter Notebooks (http://jupyter.
org/) [43,44]. They also provide GUI-API, HAL-API and a timing skeleton for robot behaviors to the
student, but inside a web browser.

The web-based Notebooks support rich documents that combine code and computational results
with text narratives, mathematics, images, video and any media that a modern browser can display.
They are a highly useful tool for teaching, presenting, and sharing computational work. Their new
architecture allows users to work in any language, with implementations in Python, R, Julia and Haskell.

http://jupyter.org/
http://jupyter.org/
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In Robotics-Academy, a Notebook has been created for each exercise following the design shown
in Figure 5. This includes code cells where the student may write Python code. It then connects with
an underlying Python interactive shell (IPython, renamed Jupyter kernel) by a specific protocol named
Zero Message Queue. The interactive shell already executes the Python code and connects to the ROS
drivers of the robot using ROSpy library.
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This new document format provides several educational advantages. First, theory can also be
included in the Notebooks, which helps to explain the related theoretical concepts to the student,
helping them to successfully solve the corresponding exercise. Second, graphics can also be included
in the Notebooks, which may show the result of any computation on the student’s code or be used for
debugging. Third, Notebooks can be shared. Fourth, no additional editor program is needed, the web
browser is directly used for writing the code, and browsers are multi-platform.

There are also some drawbacks when using Jupyter Notebooks for robotics exercises. The GUI is
much slower than Python ROS nodes. For instance, real time image display (at 30 fps) is not possible.
Running through the web browser and the IPython kernel adds a computing overhead which prevents
real-time applications.

In order to execute the student’s solution for an exercise, the Jupyter Notebook is run from the
browser, connecting to the simulated robot (Gazebo simulator) using the Jupyter Kernel (Figure 6).
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3.5. Installation and Distribution

The presented framework is open source, available at GitHub (https://github.com/JdeRobot/
RoboticsAcademy). It is open to collaborations, extensions and modifications. Teachers may create
their own exercises and submit them to the public repository of the platform.

Easy installation of the framework is very important, so the student does not get lost in the
middleware and may start programming the robotics exercises from the very first day. Special care
has been taken in Robotics-Academy to make it very simple to install and use. All its underlying
infrastructure (Python, Gazebo, ROS, Jupyter) is provided as regular and standard Debian packages,
and so they can be installed easily. Both ROS middleware and Gazebo are well maintained by OSRF
for Ubuntu Linux, which releases official Debian packages for them. There are also official Jupyter
packages and instructions for their installation. In addition, the required underlying resources which
are not contained in standard Gazebo or ROS packages are created and stored in several Debian
packages from the JdeRobot organization.

The created Python ROS nodes and Jupyter Notebooks for the exercises are provided as source
code which needs to be cloned on the student’s machine from the Robotics-Academy GitHub repository.
The whole set is presented as a collection of independent exercises. Each exercise contains its specific
templates and the corresponding configuration files. Designing them as self-contained makes this
collection easily extensible.

Robotics-Academy is multi-platform. It natively runs on Ubuntu Linux computers, and Docker
images have been created and are maintained for Windows and MacOS users, so they can have access
to the framework on a virtual machine (Docker container) in their computer.

3.6. Available Exercises

The collection of available exercises is accessible on the web (https://jderobot.github.io/

RoboticsAcademy), and deals with different problems of service robotics, control, automation and
computer vision. Attractive practical problems were chosen, aiming to develop solutions for service
robots that have recently emerged in society: autonomous cars, robotic vacuum cleaners, drones,
etc. In this way, the student is involved in real-life applications, motivated and will find easier to
understand the direct usefulness of the concepts.

Currently there are 18 exercises already available, as shown in Table 2, and the collection is
expandable. Any subset of exercises can be extracted at will to support the practical side of any
robotics course.

Table 2. List of exercises available at Robotics-Academy.

Mobile Robots

MR1 Bump and go behavior

MR2 Roomba cleaning an apartment (without self-location)

MR3 Roomba cleaning an apartment (with self-location)

MR4 Follow line behavior

Autonomous Cars

AC1 Formula1: follow a line in a race circuit

AC2 Local navigation with Virtual Force Field (VFF)

AC3 TeleTaxi: Global navigation with Gradient Path Planning (GPP)

AC4 TeleTaxi: Global navigation with Open Motion Planning Library (OMPL)

AC5 Autonomous car negotiating a crossroad

AC6 Autonomous car: parallel parking

https://github.com/JdeRobot/RoboticsAcademy
https://github.com/JdeRobot/RoboticsAcademy
https://jderobot.github.io/RoboticsAcademy
https://jderobot.github.io/RoboticsAcademy
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Table 2. Cont.

Drones

D1 Navigation by position

D2 Drone following an object on the ground

D3 Drone following a road with visual control

D4 Drone cat and mouse

D5 Escape from a maze following visual clues

D6 Searching for victims within a perimeter

Computer Vision

CV1 Color filter

CV2 3D reconstruction from a stereo pair

4. Intelligent Robotics Course

An introductory course to Intelligent Robotics has been developed, using Robotics-Academy as a
platform for practical exercises. The syllabus of the proposed course covers these units:

• Unit 1. Introduction: Robot products and applications (vacuum cleaners, autonomous driving,
factories, etc.), software for robotics.

• Unit 2. Sensors and actuators: Laser, light detection and ranging (LIDAR), cameras, Pulse Width
Modulation (PWM) motors, servos, locomotion systems, manipulation systems.

• Unit 3. Reactive systems: Control loop, proportional-integral-derivative (PID) controllers, Finite
State Machines, behavior-based robotics.

• Unit 4. Map building: Occupancy grids, topological maps.
• Unit 5. Robot Navigation: Local navigation algorithms (VFF, CVM), path planning algorithms for

global navigation (A *, GPP, visibility graphs).
• Unit 6. Self-localization for robots: Probabilistic techniques, particle filters, visual SLAM.

This course follows the ‘learn by doing’ paradigm, focusing on the programming of robotics
algorithms. Its practical contents are publicly available and ready to use. Its most representative
exercises are detailed below, describing the robot used, the scenario and the task to be solved. Reference
solutions have been also developed for all exercises, they are used to record and publish videos so
students may see in advance the expected robot behavior on each exercise. In addition, automatic
evaluators have been programmed, providing automatic feedback to the students and encouraging
them to improve their solutions.

4.1. Bump and Go Behavior

The challenge of this exercise (MR1) is to program a simple bump and go behavior for an indoor
robot like the TurtleBot2. It has to wander advancing in a straight line until it meets an obstacle, then go
back for a while, and randomly turn to avoid the obstacle.

The TurtleBot2 robot has two driving wheels, with differential traction, to which commands are
made through the intermediate interface of movement: forward speed V and speed of rotation W.
It is equipped with odometry and a depth sensor (RPLidar in the real TurtleBot, Hokuyo laser in the
simulated one).

This behavior can be solved with three simple states: “forward”, “backward” and “turn” as can
be seen in the upper part of Figure 7. This exercise shows the power of finite state machines (FSM)
when programming robot intelligence. The student learns the use of states and transitions, switching
for example from “forward” to “backward” when the laser sensor detects an obstacle that is too close,
or switching from “turning” to “forward” after a random time interval. This exercise was also tested
with a real TurtleBot2 robot as shown in the bottom part of Figure 7.
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Figure 7. Simulated and real Turtlebot with a finite state machine (FSM) for wandering without hitting
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4.2. Drone Cat and Mouse

This exercise (D4) proposes a game of cat and mouse between two drones. The student is asked
to develop a behavior for the drone that acts like the cat to chase and stay close to the mouse drone.
In the simulated world the mouse drone is red and moves autonomously. Figure 8 shows the world in
Gazebo, free of obstacles (only far trees), with the mouse (red drone) and the cat (black drone). For this
exercise, a set of mice of several difficulty levels were prepared. The simplest is slow and predictable
in its movement. The most difficult one is the fastest and most unpredictable in its movement.
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The drone is equipped with two cameras, front and vertical, inclinometers and GPS. It has four
rotors operated with an intermediate global interface that accepts commands to move the whole drone
in 3 axes: forward/backward, elevation/descent, lateral displacements and rotations. This aerial robot
is similar to Parrot’s ArDrone2. The local API provides simple methods in Python to access these
sensors and movement interface. These include the method sensor.getImage() to obtain images from
the camera, pose.getPose3D() to get the drone’s 3D position from two inclinometers and GPS (as an
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XYZ vector and a quaternion for orientation), the methods extra.takeoff() and extra.land() to take off

and land, and the method cmdvel.sendCMDVel() to send movement commands to the drone.
This exercise was designed to teach basic reactive control in robotics, including PID controllers,

as well as introducing the students into basic image processing, for example color filters, morphological
filters or the segmentation of the other drone in an image. The typical solution performs a switch-case
based control, including the automatic search if the mouse is lost and the regular case of vision-based
monitoring, where a PID reactive control works successfully accelerating when the mouse becomes
small, rising when the mouse is in the upper part of the image, etc.

A code snippet is shown in Figure 9, containing an example of student’s code. The code template
calls the execute() method iteratively ten times per second, and the student fills it with its own solution
code (inside the orange rectangle). It includes code for sensor reading, image processing, the PID
control computation and the motor command on each iteration.
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Figure 9. Code snippet showing part of the exercise solution (student´s code inside the orange
rectangle).

This exercise includes an evaluator which automatically measures the quality of the student’s
solution. It continuously computes the spatial distance between the two drones and computes the
number of seconds below a certain threshold. Figure 10 shows the graphic interface of this automatic
evaluator and the evolution of that spatial distance over time in an example.

The test consists of several rounds of two minutes with the successive mice. The score is the
number of seconds the cat-drone code developed by the student is close enough to the mouse-drone
(distance is less than 3 m).
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4.3. Roomba Cleaning an Apartment

The proposed problem in this exercise (MR3) is to program a high-end Roomba vacuum cleaner
to clean an apartment. The robot is intended to autonomously visit the whole area of the apartment,
the faster the better. Revisiting the same area twice or more does not increase the area already cleaned.
It can softly bump into obstacles like walls, chairs, etc., as real vacuum cleaners do.

The robot has motors which can be commanded in translation speed V and rotation speed W.
It includes a laser sensor (the purple area in Figure 11) and encoders as main sensors. The local API
offers simple methods in Python to access these sensors and actuators. For instance, the getLaserData()
method is used to read the laser measurements. The vacuum cleaner also has an onboard camera
which is used for estimating the 3D position of the robot. Its position estimations are available using
the pose.getPose3D() method.
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To solve this task, random wandering algorithms may be developed. For example, initial
spiral and bump and go behavior may be proposed as base solutions. However, this exercise has
been designed to teach some planning algorithms. As self-localization is provided, more efficient
foraging algorithms such as [45,46] are also available choices to be implemented in order to solve this
exercise. They minimize revisiting places and sweep the apartment more systematically and efficiently.
This exercise includes an evaluator which automatically measures the quality of the student’s solution.
As shown in Figure 12, it displays the path followed, measures the area cleaned and shows the
remaining time of the test. The final score is the percentage of apartment cleaned after a 10-min round.
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4.4. Autonomous Car: Parallel Parking

The challenge of this exercise (AC6) is to program an autonomous car (sedan like a Tesla) to perform
parallel parking in a street. The scenario provided in the Gazebo simulator is shown in Figure 13,
with the street almost full of green cars, but with a gap big enough for the yellow autonomous car.
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Figure 13. Autopark exercise on autonomous car.

The robot is a yellow sedan equipped with odometry (encoders) and three laser sensors on board
(blue for front, red for right side, light green for back). Regarding movement, it has a steering wheel
and two driving wheels, but supports an intermediate command interface: forward speed V and
speed of rotation W. The robot has inertia and does not instantly achieve the speeds commanded by
the software. This car model was created for the Gazebo simulator, with a realistic appearance and
embedded sensors.

Several algorithm choices such as [47–49] are available to be implemented by students. For instance,
it has a fully reactive approach with case-based control and a definition of several cases according to the
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distances from the front car, the back car and side empty space. A second reference solution performed
by students includes a path planner and a position-based pilot that follows the path. The OMPL and
its path planning for non-holonomic robots were used.

The automatic evaluator measures the time taken to complete the parking maneuver, the final
orientation of the car (approximately parallel to the street) and the distances to front and rear cars
already parked.

5. Experimental Results

The proposed teaching suite was used on a bachelor’s degree course in Telematics (Robotics
subject) and a master’s degree course in computer vision at Rey Juan Carlos University (Vision in
Robotics subject). It was also used in 6 introductory courses (up to 20 h) to robotics and drone
programming. More than 150 students used it. This provides first experimental validation and
preliminary feedback from real users.

In all these courses 50% of the time was dedicated to theory, while the other 50% was to practical
individual exercises (both online and on-site). The exam included an oral presentation for each exercise
where each student showed and explained their solution answering questions about the code they
developed. In addition, the students wrote blogs describing their projects including text, images and
videos. These blogs helped them to share their insights and promote improvement and competition.

The master’s degree students completed two exercises: (AC1) follow line and (CV2) 3D
reconstruction from a stereo pair. The undergraduate students accomplished five exercises: (MR1)
bump and go behavior, (AC1) follow line, (D4) drone cat and mouse, (AC2) Formula-1 local navigation
with VFF and (AC4) TeleTaxi: Global navigation with GPP. The students with the best results under
simulation were given the opportunity to test and improve their algorithms using the real TurtleBot2
robots available at the laboratory.

The surveys completed by the students showed a favorable reaction to the educational tool and
its exercises, with 95% of evaluations being equal to or higher than 5 points out of 10, and 80% of
evaluations being equal to or higher than 8 points, as shown in Table 3.

For instance, two representative open comments from students were: “I like this tool because
it allows me to develop several algorithms without worrying about the required infrastructure”
and “With Robotics-Academy you may program robots easily, even without previous experience in
robotics”. They also revealed that the evaluation of the installation is positive, although it should be
further simplified.

Table 3. Information from students’ surveys.

Global Evaluation of Robotics-Academy (0 = Extremely Bad; 10 = Extremely Good)

Score 0 1 2 3 4 5 6 7 8 9 10
Percentage 0 0 0 2.5 2.5 2.5 12.8 28.2 20.6 25.7 5.2

Difficulty of Installation of Robotics-Academy (0 = Extremely Difficult; 10 = Extremely Easy)

Score 0 1 2 3 4 5 6 7 8 9 10
Percentage 2.6 0 2.6 5.1 2.6 20.5 15.4 15.4 17.8 15.4 2.6

In 2019, Robotics-Academy was used in a pilot study with 221 pre-university students
(167 who were17 years old and 54 who were 18 years old). Five exercises with
their Jupyter Notebook templates were used to introduce those students to Python and
robot programming (https://www.rtve.es/alacarta/videos/la-aventura-del-saber/aventura-del-saber-
pensamiento-computacional-bachillerato/5273296/). A control group and an experimental group took
the same “Technology, Programming and Robotics” course, the former group in a traditional way and
the latter using Robotics-Academy. Quantitative analyses of the impact of the tool were performed [50]
using the Computational Thinking Test [51] and six different Bebras problems [52]. The experimental

https://www.rtve.es/alacarta/videos/la-aventura-del-saber/aventura-del-saber-pensamiento-computacional-bachillerato/5273296/
https://www.rtve.es/alacarta/videos/la-aventura-del-saber/aventura-del-saber-pensamiento-computacional-bachillerato/5273296/
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and objective results showed that Robotics-Academy had a small positive impact for 17-year-old
students and a more significant positive impact on 18-year-olds. For both ages, the learning experience
is better using Robotics-Academy.

In addition, the “Drone cat and mouse” exercise was successfully used in the three editions
of the robot programming competition PROGRAM-A-ROBOT (https://jderobot.github.io/activities/
competitions/2018). The last one was celebrated at the IROS-2018 conference (https://www.youtube.
com/watch?v=VFBL6zuXqgo). The automatic evaluator was very useful to compute and for seeing the
participant’s score in real time.

In the courses, the exercises were presented as competitive games (gamification), which makes
them more appealing and fun. In our experience of teaching and organizing robotic competitions this
gamification increases a student’s motivation and results. Thus, several exercises are presented as a
type of competition: which drone spends more time close to another one? How long does it take a
programmed Formula-1 car to complete a lap following a line? etc. The developed evaluators are
useful for providing an instant and objective score in the simulator.

The open source Robotics-Academy repository is currently active, having more than 90 forks
(repository change proposals) in the last months.

6. Conclusions

A new open educational resource, named Robotics-Academy, has been presented for teaching
robotics in higher education. An introductory Intelligent Robotics course has been presented. It is
based on Robotics-Academy, publicly available and ready to use. The course includes several
appealing exercises related to drones, autonomous cars, mobile robots and computer vision. Both the
Intelligent Robotics course and the underlying Robotics-Academy platform are the main contributions
of this article.

The proposed open educational resource was preliminarily validated in several engineering
courses (Bachelor’s and Master’s) at the Rey Juan Carlos University. Over 150 students used it and
more than 95% of them gave a positive evaluation of the framework in the surveys. It has also been
validated with 221 pre-university students. An objective quantitative analysis performed shows that
the Robotics-Academy tool had a positive impact on students’ learning results, when compared to the
control group.

Robotics-Academy integrates five remarkable features. Their combination makes the platform
unique, advantageous and different from other available programs for robotics education presented in
the related work section.

First, the programming language should not be too complex as it is not the learning focus,
only a tool for learning robotic concepts. The Python language was selected for its simplicity and
expressive power.

Second, Robotics-Academy supports both simulated and physical robots. Simulators provide
many advantages when teaching robotics, although the experience with real robots is certainly valuable
as well. The Gazebo simulator was chosen as reference because it is open source, a standard in the
community, and developed by experts. As it supports many different robot types, it widens the range
of implementable exercises, providing a greater range than educational frameworks which focus on
one type of robot only, as SyRoTek, Tekkotsu or Robots Formation Control Platform.

Third, ROS has recently been incorporated as the underlying middleware for Robotics-Academy.
Major code refactoring and rewriting have been performed to adapt the whole platform. This makes
our open educational resource more general, easier to install, easier to maintain and widens the number
of potential users, as ROS is the de facto standard in robot programming.

Fourth, the robotic software systems are complex, and it is advisable to expose students gradually
to such complexity, especially beginners. To conceal this complexity a template was programmed
for each robotic exercise. Each template provides a simple interface (HAL-API) to access the robot
sensors and actuators, wrapping and hiding the middleware details. The template also solves many

https://jderobot.github.io/activities/competitions/2018
https://jderobot.github.io/activities/competitions/2018
https://www.youtube.com/watch?v=VFBL6zuXqgo
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auxiliary tasks such as the specific graphical interface (GUI-API) for each exercise and its timing engine.
Those auxiliary tasks are required to have a running robot application but have little educational value
for an introductory course. Two types of template have been created in Robotics-Academy: Python
ROS nodes and Jupyter Notebooks. The students have to simply complete these templates adding
there the code of their solutions.

Fifth, installation of the framework is easy as it is mainly undertaken through Debian packages.
Developing the code templates was a time-consuming task, but it is an essential contribution of
Robotics-Academy. Templates make a difference for the students by letting them focus on the
algorithms and providing simple, pleasing and useful programming interfaces. The complexity of
the middleware and of the Graphical User Interface is hidden from students. This contrasts with
other approaches, such as Robot Ignite Academy, which exposes the students to all ROS messages and
inner workings.

The programming of several automatic evaluators is another important contribution. They provide
instant feedback for students and allow gamified educative approaches [53]. The students’ performance
and motivation are bound to improve using them. To our knowledge, no other available platform for
robotics education provides such automatic evaluators.

With respect to the first original release of Robotics-Academy [38], the programming language has
been changed from C++ to Python, the support for several robot types has been integrated (instead of
only the Pioneer 2DX robot), and the platform provides a specific template for each exercise (instead of
a generic template for all) allowing more illustrative GUIs. Regarding the upgrades from the previous
release [39], new exercises have been developed, ROS (instead of the previously used ICE) has been
fully integrated as underlying robotics middleware and Jupyter Notebooks have been added as an
alternative template for the exercises. In addition, automatic assessment has been incorporated as a
new feature.

In order to improve Robotics-Academy, several lines are under development:

• new exercises are being added such as one with a robot arm, a Formula-1 race with several
autonomous cars competing at the same time, and another in the Amazon logistics context.

• we are upgrading the educative framework to work with ROS2 as underlying infrastructure.
• we are working on providing this educational resource as a pure web online application, so students

around the world can use it on their computers without any installation at all.
• a comprehensive experimental analysis of the student’s experience when using this platform

is planned, creating a complete questionnaire and collecting information from more students.
This improvement will surely provide more solid methodological bases for the proposed platform.
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