
Socarrat: Building Cost-Effective Secure WORM
Devices Following the Reverse File System Approach

Abstract

Gorka Guardiola Múzquiz
Enrique Soriano-Salvador

Universidad Rey Juan Carlos, Madrid
{gorka.guardiola,enrique.soriano}@urjc.es

WORM (Write Once Read Many) devices permit data to
be written only once. Subsequently, the system can read the
data an unlimited number of times. These devices are used
for logging purposes and are essential for a wide range of
applications. A recurring theme in data regulations is the ne-
cessity for regulatory-compliant storage to ensure WORM
assurances that enable guaranteed retention of the data, se-
cure deletion, and compliant migration [8]. In addition, the
data should be tamper-evident: if the data has been manipu-
lated, the auditor must to be able to detect it.

Although it may appear straightforward, implementing
secure WORM devices is highly complex. The traditional
approach to this problem involves using paper printers or
optical devices (i.e. CD-ROMs or DVDs) [5], which inher-
ently provide WORM capabilities. Another approach is to
use some kind of content addressed storage like the filesys-
tem Fossil [7] does with Venti [6]. Some manufacturers of-
fer WORM hard disks compatible with standard applica-
tions and file formats, including conventional file systems
such as NTFS, ExFAT and EXT4 [1]. However, the underly-
ing technology of these devices is closed and obtaining fur-
ther details about the architecture and pricing appears to be
challenging. Although there is extensive research focused on
developing WORM memories using different physical ap-
proaches (e.g. organic components), this technology is not
currently available. Naturally, there are numerous distributed
approaches to address this problem, leveraging Cloud Com-
puting and blockchain technologies, see as an example [4]
(the list is too extensive to be enumerated here).

In addition to these considerations, the possibility of a
cyberattack on the machine storing the data must be taken

[Creative Commons CC BY-NC-ND 4.0 Attribution-NonCommercial-NoDerivatives
4.0 International]

into account. If the attacker takes control of the system, she
should not be able to delete or modify the WORM data of
the log. At this point, all solutions based on file system ca-
pabilities may fail: If the attacker elevates privileges, she can
change the file system configuration or simply modify or
delete the files, the data blocks (directly from the block de-
vice), the address of the data blocks if it is content-addressed
or format the file system.

We propose Socarrat, a radical and cost-effective solution
to address this problem locally with a simple external usb de-
vice: a small single board running Linux and with USB OTG
support.1 For example, a Raspberry Pi with Socarrat can ex-
port a 1 TB USB mass storage WORM device, which can
be mounted on any regular operating system as an EXT4 or
EXFAT file systems (i.e. without running special software)
for approximately $100.

Socarrat is based on a novel if somewhat contorted ap-
proach: The Reverse File System. This approach consists of
analyzing the blocks that are written to the storage device in
order to infer the file system operations executed at the up-
per layers. Socarrat only takes into account write operations
at the end of the corresponding files, ignoring any other op-
eration.

Suppose the following scenario: Alice connects a USB
black box2 to her server. The operating system of the server
detects an USB mass storage device formatted as an EXT4
or ExFAT file system. Then, this drive is mounted in the sys-
tem. In the mount point, there is a file named log. The ap-
plications running in the server are able to use this volume
as a normal one, by performing the traditional system calls
to work with the files (open, write, read, close, etc.). The
only difference is that, when the applications access to log

file, only read operations and append-only write operations
are effective; the rest of write operations over the log file
(and its metadata) are ignored within the USB mass storage

1 USB OTG enables a USB port to be used as a device.
2 Socarrat running on a SOC like the Raspberry Pi with an SSD drive
connected, in a box.

Preprint abstract 1 2024/12/23

ar
X

iv
:s

ub
m

it/
60

90
61

9
 [

cs
.C

R
]

 2
3

D
ec

 2
02

4

device. Later, she can extract the log file from the device,
along with an additional file that authenticates all the entries
added to the log during this period. Using a diagnostic tool,
she or a third party (the auditor) can verify that the log data
corresponds to the entries made during the operational pe-
riod, ensuring that no records have been deleted or tampered
with.

Paspberry Pi OTG

block device

USB mass storage

kernel

kernel

userland

userland

user's machine

/var/log/blackbox/log

/soca/log

mount (EXT4, EXFAT)

socket

blocks

blocks

blocks

blocks

disk

syscalls

syscalls

/dev/sda

appapp

soca

nbd

read/write

append

EXT4/EXFAT
image

EXT4 file system

/dev/nbd0/dev/sda

sealfs

log SEALlog

Figure 1. General architecture of the Socarrat system.

Figure 1 shows the general architecture of our system:

• In the user’s machine (Linux), the USB mass storage de-
vice (/dev/sda) is mounted in /var/log/blackbox/.
In this directory, there is the log file cited above3. Appli-
cations read and write /var/log/blackbox/log as a
normal file. If we are using EXT4, this file is an append-
only file (using the extended attributes supported by this
file system). All operations over the file system are trans-
lated to operations over the block device. When data is
written in the log file, the corresponding blocks of the
data and the metadata (i.e. the i-node) must be written to
the disk (/dev/sda).

• Our Socarrat device receives the read/write operations
on the blocks through the USB and the NDB (network
block device), that are redirected to the /dev/nbd0 block
device. The operations are forwarded to our program,
soca, by using a local unix domain socket.

• soca is a userspace program written in Go that processes
the NDB requests to read and write blocks, following the
NDB protocol [2].
This is where the Reverse File System approach is im-
plemented. By analyzing the operations on the blocks,
soca infers the operations that the user’s machine is per-
forming on the file system objects inside the block device
served by soca itself. We currently support EXT4 and
ExFAT file systems, so the system works on all major op-
erating systems (Linux, Windows and macOS).

3 Note that the name and number of log files can be configured, we suppose
that there is only one file for simplicity.

In the EXT4 case, soca watches the read/write opera-
tions on the blocks of the log file i-node. When it grows,
the new data added to the last blocks referenced by the
i-node are appended to /soca/log file. In fact, the real
/soca/log file is stored in the main file system of the
Socarrat device, which is not served to the user’s ma-
chine.
In the ExFAT case, soca watches the FAT table (or the
contiguous blocks if it bitmap allocated) of log file and
does the analogous thing appending the last part as it
grows to the /soca/log file.
There is no operation to delete or overwrite the externally
kept /soca/log file: it behaves as a WORM.

• In order to provide the block device, soca has been
configured to use a EXT4 (or ExFAT) image with the
initial file system withing the USB mass storage device
plugged to the user’s machine.

• As stated before, the real /soca/log file is stored in a
private volume (/dev/sda in the Linux system), which
is only accessible within the Socarrat device. This file is
secured by SealFS [3, 9], a tamper-evident mechanism
that provides forward integrity to log files following a
HMAC ratchet/storage-based hybrid scheme.
At the end, we have two main files in this private volume:
(i) The real /soca/log file with all the data appended by
the applications running in the user’s machine and (ii) the
authenticated log file (also known as SEALlog , see [9])
that contains the metadata of all the append operations
performed over the log file. The metadata is authenti-
cated with HMACs ratchets that make it tamper-evident.
After normal operation, the first file can be verified using
the second file. This can be done by the user or by a third
party (i.e. an auditor).

In this system, in case of a total compromise of the
user’s machine after a remote logical attack, the attack
surface to delete or modify the data already stored in the
log file is restricted to the USB link. Moreover, if the at-
tacker ultimately succeeds in modifying the data previously
stored in the log file, the attack will be detected.

The USB link can be hardened in various ways, like hav-
ing a intermediary program that watches the USB transac-
tions and alerts of anything out of what is expected, the end-
points for the mass storage and the corresponding block op-
erations. Also, the device can be powered through the USB
link, but this can be a weakness, so it can carry a small bat-
tery to close this attack surface which can go from power
analysis side channels to powering on and off to try to find
weak states of the system.

We are currently developing the first research prototype
of Socarrat, which will be released as libre software under
the GNU General Public License.

Preprint abstract 2 2024/12/23

References
[1] Wormdisk zt storage, 2024. URL https://greentec-usa.

com/products/.

[2] Networn block device github, 2024. URL https://github.

com/NetworkBlockDevice.

[3] G. Guardiola-Múzquiz and E. Soriano-Salvador. Sealfsv2:
combining storage-based and ratcheting for tamper-evident
logging. Int. J. Inf. Secur., 22(2):447–466, Dec. 2022. ISSN
1615-5262. doi: 10.1007/s10207-022-00643-1.

[4] M. Li, C. Lal, M. Conti, and D. Hu. Lechain: A blockchain-
based lawful evidence management scheme for digital foren-
sics. Future Generation Computer Systems, 115:406–420,
2021.

[5] S. Quinlan. A cached worm file system. Software: Practice
and Experience, 21(12):1289–1299, 1991. doi: https://doi.org/
10.1002/spe.4380211203.

[6] S. Quinlan and S. Dorward. Venti: A new approach to archival
data storage. In Conference on file and storage technologies
(FAST 02), 2002.

[7] S. Quinlan, J. McKie, and R. Cox. Fossil, an archival file server.
World-Wide Web document, 2003.

[8] R. Sion. Strong worm. In 2008 The 28th International Confer-
ence on Distributed Computing Systems, pages 69–76, 2008.
doi: 10.1109/ICDCS.2008.20.

[9] E. Soriano-Salvador and G. Guardiola-Múzquiz. Sealfs:
Storage-based tamper-evident logging. Computers and Secu-
rity, 108:102325, 2021. ISSN 0167-4048. doi: 10.1016/j.cose.
2021.102325.

Preprint abstract 3 2024/12/23

https://greentec-usa.com/products/
https://greentec-usa.com/products/
https://github.com/NetworkBlockDevice
https://github.com/NetworkBlockDevice

