
UNIVERSIDAD
REY JUAN CARLOS

GRADO INGENIERÍA SISTEMAS AUDIOVISUALES Y

MULTIMEDIA

Curso Académico 2017/2018

Trabajo Fin de Grado

HERRAMIENTA PARA IDENTIFICAR Y

EXTRAER MASIVAMENTE ARTEFACTOS DE

GITHUB

Autor : Miguel Ángel Fernández Sánchez

Tutor : Dr. Gregorio Robles

Trabajo Fin de Grado

Herramienta para Identificar y Extraer Masivamente Artefactos de GitHub

Autor : Miguel Ángel Fernández Sánchez

Tutor : Dr. Gregorio Robles Martı́nez

La defensa del presente Trabajo Fin de Grado se realizó el dı́a de

de 2018, siendo calificada por el siguiente tribunal:

Presidente:

Secretario:

Vocal:

y habiendo obtenido la siguiente calificación:

Calificación:

Fuenlabrada, a de de 2018

Dedications

A mi padre y a mi madre:

Gracias por vuestro

incansable esfuerzo y apoyo.

Este es vuestro éxito.

To my mother and father:

Thank you for your

endless effort and support.

This is your success.

I

II

Acknowledgements

First, I want to dedicate these first words to my parents and the rest of my family. I am grateful

for the values they taught me about persistence, tolerance and self-sufficiency. Their constant

effort and support made possible for me studying at the university, which is something I feel

really proud of.

I want to thank my tutor Gregorio, for granting me the great opportunity of working in GSy-

C/LibreSoft research group where I have lived some of my great experiences at the university;

growing as a person, meeting wonderful people, travelling and learning far beyond I could have

ever imagined.

To my friends and classmates from the university: Eduardo, Eva, Diego, Sara, Raúl, Olalla, Javi,

Bea, Dani, Carol, Marta, Cristina, Nuria, Raquel and many more. Without your friendship, help

and support I would have not reached this goal, thank you.

To the people who have helped me to review and improve this thesis: Gregorio, Santiago,

Valerio, Fernando, Saray, Eva and Sara. Thank you for your patience and sharing your time and

knowledge so generously.

Finally, thanks to the people who contributed with their GitHub account to make this study

possible: Gregorio R., Michel C., Truong H.Q., Eva H., Olalla S., Beatriz C., Diego S., Eduardo

D., Javier M., Diego J., Jose M., Alejandro F., Ángel C., Alejandro, Cristina, Fernando, Irene,

Nacho, Ana R. and Ronny.

III

IV ACKNOWLEDGEMENTS

Summary

In this thesis, a method for extracting and analyzing information from Free / Libre / Open-source

software (FLOSS) repositories hosted in GitHub, a popular software development platform with

millions of projects, is presented. Thus far, many studies focused in one single project or in a

limited dataset when software development is analyzed. The goal of this project is to extract

and analyze data from the whole GitHub platform in a scalable, semi-automated way in order

to obtain information about the usage of a certain file types, programming languages or/and any

search that can be expressed into patterns and heuristics.

To perform the data extraction, the tool starts with a dataset provided by the GHTorrent project,

a database which contains a partial mirror of data from the GitHub API. Then, a series of scripts

are used for extracting file-related data from the repositories, identifying interesting projects

looking for patterns and/or specific file extensions and analyzing those positive results using

an external tool called Perceval, which extracts additional metrics from them. Finally, this

information is structured into a database where a deeper analysis can be performed.

This project was created to be applied to a research case study: the search of UML models in

FLOSS projects, although it has been used succesfully to identify software architecture docu-

ments as well. With the identification of such artifacts, the knowledge of usage and evolution

of UML models can be widened, quantifying and analyzing its use in projects hosted in the

GitHub platform, tracking them throughout the whole projects life-span.

V

VI SUMMARY

Resumen

En esta memoria se presenta un método para extraer y analizar información de repositorios de

software libre y open-source (FLOSS) alojados en GitHub, una plataforma dedicada al desar-

rollo de software con millones de proyectos software. En el pasado se habı́an realizado varios

estudios analizando el desarrollo de software, concentrándose en un conjunto muy limitado de

proyectos para realizar dicho análisis. El objetivo de este proyecto es extraer y analizar datos

obtenidos de todo GitHub de una forma escalable y semi-automática, con el fin de recopilar

información sobre el uso de cierto tipo de ficheros, lenguaje de programación y/o cualquier

búsqueda que pueda ser expresada en forma de patrones y heurı́sticos.

Para realizar la extracción de los datos, la herramienta usa un conjunto de datos iniciales pro-

porcionados por el proyecto GHTorrent, una base de datos que contiene una copia de datos

obtenidos de la API de GitHub. A continuación, se usan una serie de scripts para extraer datos

relacionados con los ficheros que contienen los repositorios, identificar aquellos proyectos de

interés a través de patrones y/o extensiones de fichero especı́ficas y por último analizar aquel-

los resultados positivos usando una herramienta externa llamada Perceval, que extrae métricas

adicionales de dichos resultados. Finalmente, esta información es estructurada en una base de

datos donde se puede realizar un análisis más profundo.

Este proyecto fue creado para ser aplicado a un caso de estudio: la búsqueda de modelos UML

en projectos FLOSS, ası́ como de archivos que describen arquitecturas software. La herramienta

permite, por tanto, ayudar en el desarrollo de estudios que profundicen en el conocimiento sobre

el uso y la evolución de los modelos UML, cuantificando y analizando dicho uso en proyectos

alojados en la plataforma GitHub y rastreando su evolución a través de todo el tiempo de vida

de cada proyecto.

VII

VIII RESUMEN

Contents

1 Introduction 1

1.1 Context . 2

1.2 Free/Libre/Open-Source Software . 4

1.3 Structure of the thesis . 5

2 Objectives 7

3 State of the art 11

3.1 Python . 11

3.2 Git . 12

3.3 GitHub . 13

3.4 GHTorrent . 13

3.5 GrimoireLab and Perceval . 14

3.6 MySQL . 16

4 Design and implementation 17

4.1 Preliminary phase . 18

4.2 Data extraction . 21

4.3 Data filtering . 23

4.4 Data analysis . 30

4.4.1 Extract extended repository information 30

4.4.2 Building the database . 30

5 Results 33

5.1 Case of study: UML models in GitHub projects 34

IX

X CONTENTS

5.2 Case of study: Software Architecture documents & extended UML models in

GitHub projects . 40

6 Conclusions 41

6.1 Achieved objectives . 41

6.2 Knowledge application . 42

6.3 Learning outcomes . 43

6.4 Future work . 44

6.5 Personal assessment . 45

Bibliography 47

A Definitions 51

A.1 Git objects definitions . 51

A.1.1 Commit . 51

A.1.2 Tree . 51

A.1.3 Branch . 52

A.2 API . 52

A.2.1 GitHub API . 53

A.2.2 API token . 53

A.3 Essential freedoms of Free/Libre Software . 53

B Code of the tool 55

C Published papers 57

C.1 The Quest for OS Projects that use UML: Mining GitHub 57

C.2 An extensive dataset of UML models in GitHub 69

C.3 Practices and Perceptions of UML Use in OS Projects 74

List of Figures

3.1 How other non-git VCS store information [17]. 12

3.2 How git structures its information internally [17]. 13

3.3 Estimation: Evolution of number of GitHub repositories across time 14

3.4 GHTorrent database relational schema . 15

4.1 General architecture of the tool . 19

4.2 Projects table structure from GHTorrent database 21

4.3 Example: JSON response to the query asking for master branch data 24

4.4 Flow-chart of github-api.py script . 25

4.5 Example: File-structure of a project to apply filters. 27

4.6 Example: JSON file containing information about tree objects 28

4.7 Flow-chart with the functioning of github-tree.py and hits2urls.py

scripts. 29

4.8 Database schema from the data-analysis phase. 32

5.1 Examples of how UML models can be found, text-based (left) or image type

(right). 38

5.2 Diagram: Distribution from potential files with UML to validated UML files. . 39

A.1 Interaction among commits, trees and blobs (unique IDs above) [17]. 52

A.2 Abstraction of git branches structure in a repository. 53

XI

XII LIST OF FIGURES

Chapter 1

Introduction

GitHub is the most used online code platform in the world. We can extract huge amounts of

information from millions of projects about how software is being developed: productivity,

issue-tracking methods, developer-to-developer relations, etc. [12] For researchers, GitHub is

an endless source of publicly available data for potential studies, and for companies and com-

munities it is probably the best way to know how (its) software is evolving over time, so they can

use this data to make the right decisions for the future (known as data-driven decisions).

I was working as a researcher assistant in the GSyC/LibreSoft1 research group at the Universidad

Rey Juan Carlos when I started to deepen into Free/Libre software and the world of metrics.

There, I had the great luck of start participating in a study that Dr. Robles was doing with

researchers from Chalmers University in Gothenburg, Sweden. The main aim of their research

was to learn how UML models2 are used in public FLOSS3 projects (particularly, projects hosted

in GitHub), as most of the previous studies focused only on its industrial use.

Given the large size of GitHub as a platform and its access limitations [9], this research required

to build a tool which extracts Git data from all the existing repositories on GitHub, then filters

those repositories which may include at least one UML model and finally analyzes the set of

projects that meet this condition more in-depth.

1http://www.libresoft.es
2http://uml.org/what-is-uml.htm
3Free/Libre and Open Source Software. Complete definition at section 1.2

1

http://www.libresoft.es
http://uml.org/what-is-uml.htm

2 CHAPTER 1. INTRODUCTION

Since early stages of this research, this tool was designed and built using a modular structure,

thought to be reusable and adaptable to any kind of files that have to be found, but also to

the way GitHub provides data, with the hope to be useful for other researches or any other

person who might be interested on extracting this information. Besides, the scale of this project

presented a personal challenge which provided me the opportunity to extend my knowledge and

obtain a valuable point of view about research and large-scope projects.

1.1 Context

The way people develop software has evolved during the last years [18]. There is an extended

social perception of developers to being introverted, solitary people, with very few social skills,

but this sense is outdated: the paradigm has changed, as coding has become a social activity.

Developers who work collaborating with others produce better software [20, 10], as they are

continuously reading code from other developers, getting feedback about their contributions

and consequently widening their knowledge with new procedures and ideas.

In the last few years we have seen how this social trend came to software with the emergence

of social coding platforms, such as GitHub4, BitBucket5, GitLab6, etc.

Social interactions in these platforms are about how software is developed and maintained but

also how contributions are managed (code review, continuous integration, etc.).

So, for example, on GitHub7 we can interact to obtain or produce different data:

• Forking a repository (create an editable copy of a project).

• Viewing the changes in the last commit (i.e., the difference between most recent version

and last version of the project).

• Contributing to a repository.

• Submitting a Pull Request (proposal to merge changes in a project).

4https://github.com
5https://bitbucket.org/product
6https://gitlab.com/
7https://github.com

https://github.com
https://bitbucket.org/product
https://gitlab.com/
https://github.com

1.1. CONTEXT 3

These interactions leave traces which remain stored in some computer on Earth and generally

are visible to everybody. This means we can obtain these data (though not all of it is publicly

available) through the Internet using an API8. Once this information is retrieved, we can analyze

it and extract conclusions about it.

To complete the context for this thesis, it is necessary to situate what UML is and why it is

important. The Universal Modeling Language (UML) is a graphic, descriptive language to vi-

sualize, specify, construct and document the artifacts from a system (mainly: structure, behavior

and interaction) containing a great amount of software [14]. UML provides a standard way to

write the plans of a system, covering from conceptual aspects like business processes and system

features to particular aspects like classes in a certain programming language, database schemas

and reusable software components with a higher level of abstraction. Therefore, modeling with

UML is considered as one more component in a software development process [1].

For industrial software, the use of UML is commonly accepted and software engineering re-

searchers in the area of modeling have made efforts to collect examples of projects that use

modeling and their models. Nonetheless, industrial projects are very averse to share their mod-

els because of these projects’ licenses and privacy issues (e.g., its current state, new features,

among others). This situation hinders the task of creating a models dataset for researchers. So,

in Summer 2016 a dataset containing around 81 models from open source projects was probably

the one with the larger number of models that could be accessed. At that moment, there was

not much research about the use of UML in open source. Furthermore, most open source code

platforms do not provide funcionality for model management.

In this context, a tandem research was born, merging the experience of LibreSoft team re-

searchers (from the Universidad Rey Juan Carlos) about FLOSS and software development

processes and the experience of the Software Engineering Division researchers (at Chalmers

University) about software modeling to obtain quantitative data about the use of UML in open

source projects. To make this study a reality, they decided to get these projects from GitHub,

because it is the code platform containing the greatest amount of FLOSS projects. This moti-

vated to create the tool presented in this thesis, that had as aim to perform a systematic search

looking for UML models in an automated and scalable way.

8See the definition for API in section A.2

4 CHAPTER 1. INTRODUCTION

As I explain in the “Results” section (5.1), a total of 93,596 publicly available UML models

have been identified thanks to this research. This amount of models compounds a dataset that is

at least two orders of magnitude larger than the previous UML datasets from previous studies.

The results obtained with this tool and its subsequent analysis led to several scientific papers,

where I am a co-author, published in top international Software Engineering conferences, as I

detail on section 5. The published papers are available in Appendix C.

1.2 Free/Libre/Open-Source Software

The tool presented in this thesis is distributed as Free/Libre software. Moreover, in the following

sections we are going to talk about software and its development process, focusing on Free/Libre

and Open-source software (FLOSS) projects. Therefore it is inevitable to describe briefly what

FLOSS is about.

According to the Free Software Foundation9:

Free software means software that respects users’ freedom and community. Roughly,

it means that the users have the freedom to run, copy, distribute, study, change and

improve the software. Thus, free software is a matter of liberty, not price. (. . .)

(For an extended definition, see section A.3).

Due to the connotations which the word free has in English language, there is a definition for

Open source software by the Open Source Initiative10 which slightly varies from the FSF

definition. About this difference, Richard Stallman (founder of the FSF) comments:

The term open source software is used by some people to mean more or less the

same category as free software. It is not exactly the same class of software: they

accept some licenses that we consider too restrictive, and there are free software

licenses they have not accepted. However, the differences in extension of the cate-

gory are small: nearly all free software is open source, and nearly all open source

9https://www.gnu.org/philosophy/free-sw.html
10https://opensource.org/osd

https://www.gnu.org/philosophy/free-sw.html
https://opensource.org/osd

1.3. STRUCTURE OF THE THESIS 5

software is free.

During my degree, I was fortunate to be taught within FLOSS values, as most of my professors

plead for Free/Libre software as their teaching model, by which I have obtained a distinctive

knowledge and perspective as a professional but also as an individual.

1.3 Structure of the thesis

In this thesis, the main objectives which were marked to build the tool are presented in Chapter 2

“Objectives”, followed by a brief explanation of the technology which have been used to achieve

these objectives in Chapter 3 “State of the art”. Next, in Chapter 4 “Design and implementation”

the design process and the tool architecture is detailed, itemizing on each one of its components.

Thenceforth, the performance and results of the tool are explored in Chapter 5 “Results” by

means of two different use cases, presenting the obtained results but also taking into account

the technical particularities which arose during its development and how they were solved.

Furthermore, some conclusions are presented in Chapter 6 “Conclusions”, reviewing whether

the marked objectives have been accomplished or not, along with a brief discussion about the

limitations of the tool and future work.

Additionally, this thesis contains the following annexes:

A. Definitions

B. Code of the tool

C. Published papers

6 CHAPTER 1. INTRODUCTION

Chapter 2

Objectives

This tool was created with the purpose to address the following two research questions:

• RQ1: How many GitHub repositories contain at least one file with a certain extension or

a certain pattern in its file-name?

• RQ2: What is the history of those files in the life-span of the project?

Thus far, many studies focused on one single project or in a limited dataset, whereas the aim of

this research has been to obtain the whole dataset of repositories hosted in the GitHub platform

in order to obtain quantitative information about the usage of a certain file type, programming

language or/and any search that can be expressed into patterns and heuristics. Then, we store

that data in a database where it can be analyzed in a deeper way to extract elaborate information

about the data-set.

To meet these requirements, the tool had to achieve the following main objectives:

• OB1: Extract the whole set of projects hosted in GitHub.

• OB2: Collect data from all public projects about their file structure in a scalable, auto-

mated way.

• OB3: Establish a procedure to filter this extracted data using a determined kind of heuris-

tics and patterns.

• OB4: Analyze positive GitHub repositories (with at least one positive result) to obtain

7

8 CHAPTER 2. OBJECTIVES

enhanced Git data from them.

• OB5: Store this enhanced data in a database whose structure allows to query information

of interest.

To accomplish OB1 in a proper way we needed a static, reliable and updated source of GitHub.

GitHub allows to obtain its information through its API, but this entails several limitations. To

mention the most important ones:

• The GitHub API has a maximum rate of 5,000 requests per hour with each account.

• GitHub is not static (e.g., new repositories are added, existing ones are modified) which

leads to the problem of accessing concurrently to its data.

• There is no direct way of obtaining the amount of repositories in the platform at a certain

date using its API.

These limitations led to the decision of using the GHTorrent project [4], which offers a que-

riable, offline MySQL database with most of the information which the GitHub API can pro-

vide.

GitHub allows to filter projects by a certain programming language (e.g., Python, C++), and

offers a mechanism through which you can identify projects containing files with a certain

extension or how many files match with some word or pattern in their file-name in a repository.

But this filtering is limited to 10,000 projects, which is a relative small number if we consider

that it hosts millions of them. Therefore, to achieve OB2 and OB3 we had to extract the list of

files from the main branch1 of each repository. However, GHTorrent data does not contain file-

related information, so it is necessary to define a method to access the GitHub API in order to

retrieve this information so later it can be applied a set of filters to determine which repositories

meet the established requirements. Once OB1, OB2 and OB3 are achieved, the obtained results

will constitute the answer to RQ1.

OB4 and OB5 have to be completed to answer RQ2. Analyzing Git repositories is not a triv-

ial task, as it is crucial to retrieve complete and reliable information from them to perform a

robust analysis. That is why we decided to use a tool called Perceval [3] which belongs to

1Definition of branch and other Git objects in section A.1

9

the GrimoireLab project, an evolution from CVSanalY [11] software. GrimoireLab is a mature

and Free/Libre tool-set for software development analytics, used to extract metrics from large,

industrial projects but also to perform research studies in academia. With such background,

Perceval tool is suitable to comply with OB4. Nonetheless, it should be noted that this tool is

not valid to perform OB2 and that’s why the direct access to the GitHub API is still needed.

Lastly, to accomplish OB5 the approach is to store the data obtained with Perceval in a database

to execute the necessary queries to obtain answers for RQ2 and any further questions.

10 CHAPTER 2. OBJECTIVES

Chapter 3

State of the art

There are multiple tools to analyze GitHub repositories. Nonetheless, at the moment when this

tool was designed there was no application capable of meeting the diverse requirements for the

researcher’s needs to complete this study. The uniqueness of the structure of this information

along the process and its scale, together with the advantage of controlling every stage of the tool

in order to ensure the truthfulness of the results, triggered the need of creating a customized,

modular tool to satisfy every aspect of the study as much as possible.

These are the technologies that were chosen to build this tool. Every technology will be moti-

vated in Chapter 4.

3.1 Python

Python1 is an interpreted, object-oriented, high-level, open source programming language for

general-purpose programming created by Guido van Rossum in 1991 [19]. Nowadays, the most

recent version is 3.6.4, from December, 2017. Its design is focused on code readability and clear

syntax, making possible to program using fewer lines of code comparing to other programming

languages as C++ or Ada.

Python features a large standard library, which includes many different tasks from text pattern

1https://www.python.org/

11

https://www.python.org/

12 CHAPTER 3. STATE OF THE ART

Figure 3.1: How other non-git VCS store information [17].

matching to network scripting, in addition to a vast collection of third-party application li-

braries. Other remarkable features are portability, as Python interpreters are available for many

operating systems; and the component integration, as Python scripts can easily communicate

with other parts of an application or code, like C++ libraries, MySQL databases, etc.

3.2 Git

Git is an open-source Version Control System (VCS), originally developed in 2005 by Linus

Torvalds [16]. As any VCS, git is a system that records changes to a file or set of files over time

so that you can recall specific versions later. According to last surveys, it is by far the most used

VCS in the world2.

The major difference between git and any other VCS is the way git thinks about its data [15].

Conceptually, most other systems store information as a list of file-based changes. Other sys-

tems like Subversion, Perforce, Bazaar, etc. think of the information they store as a set of files

and the changes made to each file over time (see Figure 3.1).

Instead, git thinks of its data more like a series of snapshots of a miniature file-system (See

Figure 3.2). With git, every time you commit or save the state of your project, git basically

takes a picture of what all your files look like at that moment and stores a reference to that

snapshot. To be efficient, if files have not changed, git does not store the file again, just a link

2https://insights.stackoverflow.com/survey/2018

https://insights.stackoverflow.com/survey/2018

3.3. GITHUB 13

Figure 3.2: How git structures its information internally [17].

to the previous identical file it has already stored. All this information is stored in a key-value

system as git objects, with a unique identity for each of them.

3.3 GitHub

GitHub is a git and web-based repository hosting service founded back in 2008. While git is a

command line tool, GitHub provides a graphical interface, adding its own collaboration features

such as a wikis and basic task management tools for every project.

Each user on GitHub has their own profile, showing its past work and contributions to other

projects via pull requests, forking (create editable copies into someone’s account) other reposi-

tories, etc. Project revisions can be discussed publicly via issues so many people can collaborate

together to advance a project forward. GitHub is currently the largest host of source code in the

world (see Figure 3.3 for a quantitative estimation of its scale evolution across time) [2].

3.4 GHTorrent

GHTorrent is a project aimed to create a scalable, queriable, off-line mirror of data offered

through the GitHub API [4].

As they explain in their website3, GHTorrent monitors the GitHub public event time line. For

3http://ghtorrent.org/

http://ghtorrent.org/

14 CHAPTER 3. STATE OF THE ART

Figure 3.3: Estimation: Evolution of number of GitHub repositories across time

each event, it retrieves its contents and their dependencies, exhaustively. Then, it stores the raw

responses to a database whose structure is represented in Figure 3.4. For each release, you can

choose the dump (a raw copy of a database) you want to download: either a MySQL dump (the

full database, using one file per table) or a MongoDB one (an incremental database).

3.5 GrimoireLab and Perceval

GrimoireLab4 is a free, open source tool-set for software development analytics mainly de-

veloped by the Spanish company Bitergia5. It allows you to retrieve data from many kinds of

systems with information related to software development, and produce analysis and visualiza-

tions with it.

We are focusing on a particular tool of GrimoireLab called Perceval [3]. This tool can retrieve

data from more than 20 different kinds of data sources, from git repositories or GitHub projects,

to issue trackers such as Jira or Bugzilla, including messaging systems such as IRC, Slack

or mailing lists, or other types of systems such as StackOverflow or Jenkins in a regular and

4http://grimoirelab.github.io/
5https://bitergia.com/

http://grimoirelab.github.io/
https://bitergia.com/

3.5. GRIMOIRELAB AND PERCEVAL 15

Figure 3.4: GHTorrent database relational schema

16 CHAPTER 3. STATE OF THE ART

incremental way, allowing to produce uniform sets of information.

GrimoireLab is now part of CHAOSS6, a project by The Linux Foundation.

3.6 MySQL

MySQL is an open-source relational database management system based on Structured Query

Language (SQL), which is the most popular language for adding, accessing and managing con-

tent in a database. It is most noted for its quick processing, proven reliability, ease and flexibility

of use.

MySQL works in multiple platforms, running as a server and allows multiple users (MySQL

clients) to manage and create numerous databases.

It is a central component in the LAMP stack of open source web application software (LAMP

stands for Linux, Apache, MySQL, and PHP) and it is adequate to be used in high-profile,

large-scale systems and websites. To mention some examples, MySQL is used by Facebook,

Twitter, Flickr and YouTube.

6https://chaoss.community/

https://chaoss.community/

Chapter 4

Design and implementation

The tool has a modular design, to ease its adaptability to future updates, changes on it depen-

dencies or other needs which may appear. To fully understand the functioning of the tool, it is

necessary to be familiar with main git objects (commits, branches and trees), as they are going

to play a key role in this project. In Section A.1, a complete definition for these git concepts

can be found. It is also important to mark that the research which motivated this tool influenced

most of the decisions which were taken during the design phase.

The tool is divided into several linear sections with a set of Python scripts. We decided to

code this tool in Python because it was the programming language I feel more comfortable

with, along with its versatility due to the great amount of compatible packages and modules,

followed with a great amount of documentation.

The set of scripts which compounds this tool1 can be grouped into three main phases (see

Figure 4.1). Before going into detail in each of these stages, let’s introduce them briefly:

1. Preliminary phase

• Extract project list: In this preliminary phase is where the list of GitHub reposi-

tories is retrieved. Using an off-line dump of the GHTorrent database, we get the

project list file containing all GitHub repositories from one of its tables and use a

filter to choose among projects by their fields, like a major programming language,

1See more details about the code of this tool in appendix B.

17

18 CHAPTER 4. DESIGN AND IMPLEMENTATION

forked or not, etc.

2. Data extraction

• Extract file list: This is the most critical process, because it where we obtain the

main branch and the file list (for each repository in the list from last section) query-

ing the GitHub API.

• Filter projects: It consists on iterating over the extracted file lists, applying the

corresponding patterns and heuristics. This produces a list of positive results file

(repositories with at least one match).

3. Data analysis

• Analyze positive projects: Its function is to execute Perceval with every project on

the list of positive repositories, building a projects database which can be queried

to extract information.

4.1 Preliminary phase

Given the scale of GitHub, the main problem we face is that there is not a direct way of obtain-

ing the amount of repositories in the platform, neither getting a list of them using its API. Thus,

it is very difficult to have quantitative and reliable data. For example, for building a graph like

Figure 3.3, some of its numbers had to be obtained directly from articles written by the GitHub

team2 and some others by reading some GitHub-related papers containing quantitative data [5].

At this point it is where GHTorrent project plays a major role in this project, as they provide an

off-line database dump with most of the data which the GitHub API offers at a certain date. This

great collaborative effort is a huge advantage for researchers, otherwise it would be practically

non-viable retrieving full-scale GitHub data in a systematic way. Nevertheless, it is important

to mark that the GHTorrent database dump does not contain Git trees (i.e., file-related) infor-

mation: if this information was included, a major part of this tool would not be necessary, as

we could query and filter the data of our interest directly from the database provided by the

GHTorrent project.

2https://blog.github.com/2013-12-23-10-million-repositories/

https://blog.github.com/2013-12-23-10-million-repositories/

4.1. PRELIMINARY PHASE 19

Figure 4.1: General architecture of the tool

20 CHAPTER 4. DESIGN AND IMPLEMENTATION

Table 4.1: Adapted extract from projects.csv file, formatted as a table
id owner owner id name descriptor language created at forked from deleted updated at

20 chrisjaure 80 git-lava Branching metaphor for git Shell 2012-02-27 02:45:44 - 0 2015-10-18 01:39:38

21 ES-DOC 82 django-cim-forms - Python 2012-03-23 14:20:28 - 1 0000-00-00 00:00:00

23 adammark 86 Markup.js Powerful JavaScript templates JavaScript 2011-08-23 00:30:04 - 0 2015-10-12 10:46:04

24 leoamigood 88 1stdibs V2.1 Initial setup with mule-pull project Java 2012-05-03 11:43:31 - 1 0000-00-00 00:00:00

If we have a look at how the GHTorrent database is structured (see Figure 3.4), we can observe

that there is almost one table per GitHub object (users, projects, pull requests, issues, etc.).

Looking closer on these table’s structure, we realize the table we need is the Projects table (see

Figure 4.2), as it contains crucial repository-wise information including every project’s name

and URL, but also other complementary information which could be used as a primary filter, like

language (project’s main language, code-wise) or forked from (Empty if the repository

is not a fork from another project), etc.

To obtain the actual data, the procedure to follow is as follows:

1. Download from the GHTorrent website a particular MySQL dump, usually the most recent

one, which is provided as a compressed file in tar.gz format3.

2. Uncompress the tar.gz file, which contains one CSV file per table in the database.

3. Get the file projects.csv, whose data corresponds to the Projects table (See an

adapted4 example of this file in Table 4.1).

4. Run the Python script get-project-list.py setting up the corresponding filters

and parameters to obtain the main project list file, which will be the input for the next

stage.

Note that the filtering we establish in this phase is going to influence the results of our analysis.

Finally, we obtain a filtered project list file, which keeps the same format as projects.csv

of the database dump.

3To give an estimation of the current file sizes, the last available dump (March 1st 2018) has a compressed size

of 71,025 MB.
4The field url has been replaced by owner to make the table more readable.

4.2. DATA EXTRACTION 21

Figure 4.2: Projects table structure from GHTorrent database

4.2 Data extraction

Once the project list file is ready, we can proceed to extract the file list of the main branch

of each repository. To achieve this, we have to query the GitHub API several times for each

project. It is important to mark this, as the GitHub API has a limitation of 5,000 queries per

hour for every authenticated account, which caused a huge impact in the research and the data

retrieval process, as it is detailed in the case of study described in Section 5.1.

To make authenticated queries to the GitHub API we need an API token5. For instance, if I

want to fork a repository into my GitHub account, I could do it either in two ways:

• Log-in into my account, visit the repository URL and press the fork button on GitHub’s

web interface.

• Send an authenticated query6 to the GitHub API like this one7:

1 POST https://api.github.com/repos/:owner/:repo/forks?:token

5See the definition for API token in Subsection A.2.2
6From now on, every time I refer to a GitHub API request I will omit https://api.github.com.
7On the requests, the parameters are marked with two dots (:).

22 CHAPTER 4. DESIGN AND IMPLEMENTATION

The script for this phase, github-api.py (See its diagram in Figure 4.4) takes into account

this API limitation, ensuring that this limit is not exceeded. It employs three different directories

in order to classify its outputs: master, default and trees. Then, it reads the project list file and,

per line, executes the following actions:

• Check if the repository corresponding to that line has been downloaded before by looking

at the existing files in the directories master or default.

• If not, try to obtain data from the master branch, whose output will be saved into the

directory master. The query sent to the GitHub API to retrieve this data is:

1 GET /repos/:owner/:repo/branches/master?:token

If we obtain a successful response, we will have a JSON file similar to the one in Fig-

ure 4.3.

• If the master branch is not found, we have to obtain the default branch for that repository

and perform another query to retrieve the data from that branch, which will be saved into

the directory default. To retrieve this information, we need to obtain meta-data from the

repository first and then, keep the content of the variable default branch to perform

another query to obtain data from that branch:

1 GET /repos/:owner/:repo?:token

2 GET /repos/:owner/:repo/branches/:default_branch?:token

• The last step is to read the obtained JSON data and get the tree objects recursively using

the ID (SHA hash) of the first one found in the response:

1 GET /repos/:owner/:repo/git/trees/:sha?recursive=1&:token

This will be saved into the directory trees.

When this script finishes, we will have (assuming there were no errors) a JSON file per reposi-

tory, with the file-list information for the tree objects in each repository.

However, the design of this script would not be complete without considering all the possible

errors and particularities that may appear. Below, it is shown the most relevant setbacks and, if

possible, an alternative solution for every one of them:

4.3. DATA FILTERING 23

• Private repository. Some repositories in GitHub can be private if their owner hires a

special plan on GitHub. The only solution is to perform the request with a token with

granted access permissions to that repository, otherwise private repositories are ignored.

• Truncated response. Some repositories are too large so their tree and blob information

is not completely sent within the response, but only a part of it and a Boolean field called

truncated set to True. This was something that the GitHub API implemented while

we were performing the data retrieval of our use case, so we had to adapt the tool for

it. The solution is to clone (download) the repository, so later the next script can iterate

locally over its files and folders.

• Repository no longer exists. There are repositories which existed at the time when that

particular dump of the GHTorrent database was created, but they do not exist anymore.

• Charset-related errors. Either the name of the repositories, owners, files, etc. can be

written using different types of characters (Japanese, for instance) or other unknown char-

acters (using another encoding) which sometimes caused encoding-decoding errors.

4.3 Data filtering

In this section is where the data we have obtained from the previous stage is filtered according

to our search. The approach that have been followed to apply filters is to define three types of

heuristics, related to file extensions and keywords:

• Level-1 file extensions, those which are a top priority in our search. They are immediately

considered as positive results.

• Level-2 file extensions, marked as relevant only if they meet one or more additional con-

ditions.

• Key-words, specific words or groups of characters which a file-name with a Level-2

extension has to contain to be considered as a positive result.

Let’s imagine a basic example where we are interested in projects related with web develop-

ment. Defining the necessary heuristics as in Table 4.2, we will keep any file whose extension

24 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.3: Example: JSON response to the query asking for master branch data

4.3. DATA FILTERING 25

Figure 4.4: Flow-chart of github-api.py script

26 CHAPTER 4. DESIGN AND IMPLEMENTATION

is on Level-1 list, and those files whose extension is on Level-2 list AND whose file-name

contains at least one of the words (or group of characters) defined in the key-word list.

• .html is on Level-1 list, so any file with html extension will be a positive result directly.

• .py is on Level-2 list, so only .py files containing at least one key-word in their file-

name (i.e. urls) will be considered as a positive result.

To complete this example, if we apply this filter to a repository whose file structure is like the

one in Figure 4.5, we would obtain the set of positive results showed at Table 4.3.

Now, the next step is applying these filters to the JSON files which have been obtained before.

Specifically, we are interested only in those files included into the trees directory. Each of those

files contains the file structure of the last version of its repository, where the tree object contains

under itself all the files (blob objects) and sub-directories (other tree objects). Every object, no

matter if it is a tree or a blob, contains the following parameters:

• path: Absolute path of that file or folder inside the repository.

• mode: This number shows file mode information (file type, permissions, etc.) using

UNIX notations.

• type: This value will be blob if it is a file, or tree if it is a folder.

• sha: Unique identifier for that git object.

• size: File size in bytes. Only blob objects contain this parameter.

• url: Link to this object in GitHub API.

There is a simple example of the content of one of these files in Figure 4.6.

The corresponding scripts for this phase are github-tree.py and hits2urls.py (See a

diagram for both of them in Figure 4.7). github-tree.py iterates over all the JSON files in

the trees directory, executing these simple instructions per file:

• Load JSON data into a Python dictionary (a key-value data structure).

• Obtain the parent tree object (field “tree” in our dictionary).

• Check the “type” field for every child object.

4.3. DATA FILTERING 27

Figure 4.5: Example: File-structure of a project to apply filters.

Table 4.2: Example: definition of heuristics.

Type of Heuristic Pattern(s)

Level-1 .html, .css, .js

Level-2 .py

Key-words urls, views, forms, models

• If its type is “blob”, apply the pre-defined patterns and heuristics.

• Provide the positive results printing every matching object’s “path” and “URL”.

hits2urls.py is a simple script which converts every URL from the last script (links to

blob objects in the GitHub API), to the URL for the actual file which that object is representing.

Here is an example of one URL which belongs to a blob object converted to the URL pointing

to the actual file (see below lines 1 and 2, respectively):

1 https://api.github.com/repos/mafesan/ptavi-pfinal/git/blobs/3eb76189a21a...

2 https://raw.githubusercontent.com/mafesan/ptavi-pfinal/master/uaclient.py

28 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.6: Example: JSON file containing information about tree objects

4.3. DATA FILTERING 29

Figure 4.7: Flow-chart with the functioning of github-tree.py and hits2urls.py

scripts.

30 CHAPTER 4. DESIGN AND IMPLEMENTATION

Table 4.3: Positive results after applying heuristics filter.

Path Type of positive

scripts/shorten urls.py Level-2 + contains key-word

scripts/views.py Level-2 + contains key-word

style/template.css Level-1

web/error.html Level-1

web/index.html Level-1

4.4 Data analysis

In this section, the positive results are analyzed to end up building a database to store all the

extracted information so it can be queried to perform our desired analysis.

4.4.1 Extract extended repository information

To analyze the resulting repositories we take advantage of Perceval, a mature, powerful tool

which is capable of retrieving data from more than 25 different data sources producing a uniform

set of data which can be updated over time.

The data sources which Perceval supports are given by its backends. We use the Git backend to

obtain Git-related information from those GitHub repositories with at least one positive result.

Perceval clones repository by repository and parses every Git event log, producing a JSON file

per repository containing data for every commit and its related Git objects. This tool is written

in the Python language and it can be executed via command line or as a Python module, so it can

be easily integrated with this set of scripts. In our tool, the script managing Perceval execution

is called perceval-handler.py.

4.4.2 Building the database

The next step consists in building a database, which allows to store the extracted data in an

optimized way to obtain elaborated results by using queries according to our case of study.

4.4. DATA ANALYSIS 31

As we had used the GHTorrent database, which follows a MySQL database schema, we decided

to use a MySQL database for this purpose too, as it is easier to build and maintain. We designed

this database to contain five tables; four of them using data from the files which are obtained

with Perceval and one table from the GHTorrent database, USERS containing information about

GitHub user accounts. These tables contain the following information:

• REPOS: For a repository; its name, number of commits, URL, founder, etc.

• PEOPLE: Referring to the people who authored the commits, their name and email.

• COMMITS: For each commit object; its ID in Git, its ID on GitHub, which repository

belongs to, ID of its author, etc.

• INTERESTING FILES: For each file (positive result); its name, URL, which repository

belongs to and which commits this file is included into.

• USERS: From GHTorrent, GitHub user account information as login, name, location,

company, creation date, etc.

After a first version of this database, it was decided to add an additional table, FILE COMMITS,

which contains augmented information about each file commit, indicating the commit unique

ID, the name of the committed file and the field file-type (type of the committed file based on a

predefined classification, e.g., source code, documentation, etc.). These tables are represented

in the complete schema of this database in Figure 4.8.

The dedicated script which converts the analyzed data into a database, projects2sql.py,

produces one SQL script per table. Then, these scripts have to be imported into a MySQL

database whose structure has to be specified before. Once the database has been built and filled

with the data, we have to ensure to perform the correct queries to produce proper results for our

analysis. For instance, here are some queries we can execute to perform an analysis:

• Name of positive repositories with more than 200 commits and whose last commit has

been made after July 2, 2017:

1 SELECT name FROM repos

2 WHERE number_commits > 200

3 AND last_commit >= "2017-07-02";

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.8: Database schema from the data-analysis phase.

• Number of repositories with at least one file with .png extension:

1 SELECT COUNT(DISTINCT repos.name) FROM interesting_files

2 LEFT JOIN repos ON interesting_files.repo_id = repos.id

3 WHERE interesting_files.name LIKE ’\%.png’;

Chapter 5

Results

As I mentioned in the Introduction (see Chapter 1), this project was born in a research envi-

ronment. In this section, how the tool behaved in a real environment is described, with all

the setbacks and limitations that appeared during the whole process. We will remark that the

ongoing research influenced most of the decisions which were took during the design and im-

plementation of the tool that we saw in the last section, as well as how to overcome the different

drawbacks.

The results presented here led to several scientific papers published in international Software

Engineering conferences which are highly ranked according to the CORE1 portal:

• ICSE (International Conference on Software Engineering) - Rank A* (Source2).

• MODELS (International Conference on the Unified Modeling Language) - Rank A (Source3).

• MSR (International Conference on Mining Software Repositories) - Rank A (Source4).

The papers [6, 8, 13] are available in Appendix C.

1http://www.core.edu.au/conference-portal
2http://portal.core.edu.au/conf-ranks/1209/
3http://portal.core.edu.au/conf-ranks/1244/
4http://portal.core.edu.au/conf-ranks/711/

33

http://www.core.edu.au/conference-portal
http://portal.core.edu.au/conf-ranks/1209/
http://portal.core.edu.au/conf-ranks/1244/
http://portal.core.edu.au/conf-ranks/711/

34 CHAPTER 5. RESULTS

5.1 Case of study: UML models in GitHub projects

The method described in Chapter 4 was applied for the first time in the study published in the

paper “The quest for Open Source projects that use UML: Mining GitHub” [6] (The full paper is

available in Appendix C.1). This research has been a collaborative work between Chalmers and

Rey Juan Carlos University in the context explained in Section 1.1. The main goal of this study

was to deepen in the knowledge of usage and evolution of UML models in Free/Libre/Open

Source Software (FLOSS) projects, tracking them throughout the whole projects life-span. In

addition to the main research questions mentioned in Chapter 2, some of the specific RQs of

this study were:

• RQ1: Are there GitHub projects that use UML? Which are these projects?

• RQ2: Are there GitHub projects in which the UML models are also updated?

• RQ3: When in the project are new UML models introduced?

• RQ4: What is the time span of “active” UML creation and modification?

It is important to know if there is some peculiarity in the data we are looking for, for example,

UML models can be found in many different formats, but they can be classified into two main

types: text-based models, which are XML-alike files and image-based models (See Figure 5.1).

This entails an additional problem as an external validation of the data is required in an in-

termediate step between the data filtering phase and the analysis one, which will be detailed

later.

The first two phases of the tool, described in Sections 4.1 and 4.2 respectively are, by default,

independent from the case of study. However, these phases are not a trivial task because of

the amount of data that has to be processed with the difficulties and limitations associated with

it.

Regarding to the preliminary phase, the GHTorrent dataset used in this study is from February

1st 2016. At that time, there were a total of 26 million repositories hosted in GitHub (approx.).

As the main research that motivated this study was interested in identifying UML models intro-

duced in a project by its owners, we had to filter those projects to discard forked repositories.

Applying that filter we got 12,847,555 repositories ready to be analyzed.

5.1. CASE OF STUDY: UML MODELS IN GITHUB PROJECTS 35

As already noted, the greatest challenge was to execute the tool against almost 13 million

GitHub repositories, as the GitHub API has a limitation of 5,000 requests per hour & account.

As it is explained before, a maximum of three requests are made to obtain the main branch for

each repository, as we are not interested in secondary branches for our case of study. Making

the calculations about how much time would it take to complete this first stage:

• 3 queries for each project = 1,666 projects/hour (max).

• 12,847,555 projects / 1,666 projects per hour = 7,712 hours = 322 days

We made an estimation where 322 days would be needed with the best scenario, so we opted

for paralleling the process using many different GitHub accounts.

To make this possible, we asked for help to some students and professors so they can tem-

porarily borrow their GitHub account token and we obtained 21 account tokens. Finally, it took

almost 90 days to complete this task as we were receiving these credentials while we were al-

ready collecting data5. In addition to the GitHub API limitation, we may encounter technical

limitations: it is desirable to have a fast and stable Internet connection, enough space in the

hard drive and also use a powerful computer, as after the data extraction stage we got 126 GB

of compressed JSON files, which have to be opened and processed.

To continue with the data extraction phase, the next step is to apply the filter to the file-list

information we had obtained. In this case, we are interested in looking for files whose extension

matches with all possible extensions which an UML model can be found, as is it showed in

Table 5.1.

As described before, an additional problem arose: from all the identified files with the interest-

ing extensions, how many of those files really are a UML model, and how many are not? As

the tool has a modular design, it was easy to add an additional phase to verify the data which

was obtained after the filtering. This verification process was solved by Chalmers team, using

heuristics for the XML-alike files and image processing and machine learning techniques for

image files [7].

UML models can be included either in image or text files (see Figure 5.1), therefore our main

5I take this opportunity to thank every person who had the kindness to contribute to this project with their

GitHub accounts.

36 CHAPTER 5. RESULTS

filter using file extensions and character patters in file-names is not enough to completely iden-

tify UML files. That is why it was necessary the inclusion of an additional phase where all

the positive outcomes after applying the first filter (now marked as potential files) need to be

validated to determine whether they contain a UML model or not. This external validation stage

developed by the Chalmers team includes machine-learning and digital image processing tech-

niques which also required manual verification steps, which were very time-consuming.

This handicap led to the decision of shorten the data-set to analyze ∼10% of the total amount

of GitHub repositories which resulted in 1,240,000 repositories, in order to offer accurately

verified results. From those repositories, we obtained 100,702 potential files which matched

after applying the heuristics filter in Table 5.1. These potential files are the input of the vali-

dation stage whose process and results are summarized on Figure 5.2: A total of 21,316 UML

files were validated included in 3,295 different GitHub repositories, which is the answer to

RQ1.

Next, in the data-analysis phase these projects were processed with Perceval and a database was

built using that information. Once the database was created it was obtained more elaborated

data, for instance, the distribution of positive repositories according to how many UML models

contained each of them (see Table 5.2) but also the answers to the rest of the RQs:

• RQ2: Are there GitHub projects in which the UML models are also updated?

– Only 26% of this first data-set updated their UML files at least once.

• RQ3: When in the project are new UML models introduced?

– UML models are introduced in all active phases of a project with a tendency towards

the early phases.

• RQ4: What is the time span of “active” UML creation and modification?

– Few of the studied projects are active with UML during their whole lifetime. In

general, the projects work very shortly in UML, usually at the beginning.

Then, the validation process described before was extended to the whole set of potential results,

the UML search was finished. These complete results were presented in the paper “An extensive

dataset of UML models in GitHub” (The full paper is available in Appendix C.2), which resulted

5.1. CASE OF STUDY: UML MODELS IN GITHUB PROJECTS 37

in the identification of 93,596 (see Table 5.3) publicly available UML models in GitHub from

over 24,125 repositories. Though this amount of repositories only represents 0.19239% of the

total amount of the initial set, as I anticipated in the Introduction (Chapter 1), the identified

models constitute a dataset that is two orders of magnitude larger than the rest of UML data-

sets at the time of this research.

Applying the data-analysis phase to the complete UML models data-set we ended up with a

database with deeper information about these results, which broaden the possibilities to enrich

different aspects of this research. This derived in the paper “Practices and Perceptions of UML

Use in Open Source Projects” (the full paper is available in Appendix C.3), whose goal of this

later research was “to shed some light into the motivation and benefits of the use of modeling

and its use within project teams”. To do so, the applied method was to perform a survey among

open source developers, focusing on projects that use UML as a representative for software

modeling.

The constructed database played a pivotal role for this survey, as it was necessary to define

which projects and developers met the survey conditions executing the right queries to the

database. There were two main lines to obtain the survey target:

1. Filtering short-time projects out: For this paper, researchers aimed at projects that

are interesting from an industry perspective. Then, we focus on projects that are not

short-term and that do not jut consist of a singe contributor. In this context, the accurate

definitions of “short-time project” are:

i. Active time (time between the first and the latest commits) less then 6 months, OR

ii. less than 2 contributors, OR

iii. less than 10 commits.

After classifying and filtering short-time projects out, 4,650 UML projects (out of 24,125)

met the requirements.

2. Identify developer role in a repository: It was important to consider the role that the

different contributors play within the OSS projects with UML models to ask them the ap-

propriate questions, considering a combination of roles in the following two dimensions:

38 CHAPTER 5. RESULTS

Figure 5.1: Examples of how UML models can be found, text-based (left) or image type (right).

Table 5.1: Example: definition of heuristics for the case of study 1.

Type of Heuristic Pattern(s)

Level-1 .uml, .xmi, .uxf and .xdr

Level-2 .xml, .bmp, .jpg, .jpeg, .gif, .png and .svg

Key-words xmi, uml, diagram, architecture and design

i. Founder (F) vs. non-founder (NF)

ii. Non-UML Contributor (NUC) vs. first UML Contributor (1UC) & UML Contributor

or updater (non-1st contributor) (UC)

Therefore, each interview participant had to fulfill one of the following 6 roles: F-1UC,

F-NUC, F-UC, NF-1UC, NF-NUC, NF-UC.

Furthermore, researchers considered the possibility of having duplicate identities in our database,

as one contributor can use different emails, user-name (for example, changing the user-name

or email during the project time). The email and the full-name were the primary keys for this

check, which resulted in 99,319 distinct contributors out of 129,276 original ones.

5.1. CASE OF STUDY: UML MODELS IN GITHUB PROJECTS 39

Figure 5.2: Diagram: Distribution from potential files with UML to validated UML files.

Table 5.2: Validated positive repositories (partial) sorted by their number of UML models.

Number of UML models Number of repositories

1 1,947

From 2 to 9 1,169

From 10 to 99 158

100+ 4

Table 5.3: Complete results of validated positive UML models sorted by their type.

Type of model Number of UML models

Text-based (.uml, .xmi) 35,774

Image-based 57,822

40 CHAPTER 5. RESULTS

Table 5.4: Example: Definition of heuristics for the case of study 2.

Type of Heuristic Pattern(s)

Level-1 .uml, .xmi, .uxf, .xdr, .eap, .aird, .argo,

.asta, .dfClass, dfUseCase, .ecore, .ecorediag, .umlcd,

.mdj, .plantuml, .simp, .txvcls, .umlx, .ump,

.uxf, .zargo, .zuml, .zvpl, .dia, .modelproj,

.classdiagram, .sequencediagram, .activitydiagram, .usecasediagram,

.componentdiagram, .layerdiagram, .cd, .di and .umldi

Level-2 “”, .xml, .bmp, .jpg, .jpeg, .gif, .png,

.svg, .txt, .doc, .docx, .ppt, .pptx and .pdf

Key-words xmi, uml, diagram, architecture, design, sad,

sdd, arch and hier

5.2 Case of study: Software Architecture documents & ex-

tended UML models in GitHub projects

After the derived studies from the first dataset, the second case of study came out when the

same research team was interested in extending the search looking for models with other less-

restrictive extensions, but also looking for software architecture documents, as sometimes the

models from a project are defined inside a document (i.e., a PDF file).

Accomplishing this new case of study was substantially easier and faster, as all the JSON

files containing file-related information from all GitHub projects had already been downloaded.

Then, with the preliminary and data extraction phases completed, the procedure to follow was to

execute the steps from the data-filtering stage using the patterns and heuristics from Table 5.4.

This data-filtering phase resulted in a list of 6,373,748 potential files belonging to 573,854 dif-

ferent GitHub repositories. Since these potential results have not been validated yet, no further

phases of the tool were executed.

Chapter 6

Conclusions

During the whole implementation and the later set-up process of the tool with the different

use-cases, several handicaps, limitations and setbacks were found which affected how the ob-

jectives described in Chapter 2 were reached. Nonetheless, looking back at the tool and how

it performed with the different use cases, along with the obtained results, it is safe to say the

purpose of this tool was achieved, providing answers to the proposed research questions.

6.1 Achieved objectives

Regarding OB11, we were able to extract the whole set of projects hosted in GitHub at a certain

date and time thank to the GHTorrent project. This is the first threat following this approach:

during the time where the MySQL dump of GHTorrent from GitHub data is created and the

data extraction phase is executed, the source of information is constantly changing, so we may

encounter some projects that do not exist anymore, some projects become private and of course,

there are new projects that are being created. These limitations are hard to avoid but also it is

safer to extract the information from an static, reliable and uniform source.

About OB22, this was the most arduous objective to accomplish, as setting up and watching

over the different parallel instances (up to 21 instances running at the same time) to speed-up

1Extract the whole set of projects hosted in GitHub.
2Collect data from all public projects about their file structure in a scalable, automated way.

41

42 CHAPTER 6. CONCLUSIONS

the completion of the whole data-retrieval process required a huge amount of time and effort.

The GitHub API limit of 5,000 requests per hour & account was a huge drawback we tried

to avoid contacting to GitHub asking them for a special account without limitation in order to

perform the study, but the solution they gave us was to create more accounts and using them

all to perform more requests per hour (and so we did). Furthermore, GitHub API changed

during this data-retrieval phase including paginated results. That forced us to adapt this tool

and re-analyze some of the data that have been already downloaded.

These drawbacks could be avoided in future versions of this tool if GHTorrent included git-trees

information. It would save a lot of time and resources, together with having more reliability due

to the staticness this data would have.

Looking at OB33, the positive results can be identified properly. However, due to the different

particularities of the data we want to analyze, we may want to add more filtering layers to the

obtained potential results. Technically, the most difficult issue was to handle huge JSON files

(some of them sized GBs) and cover the diverse Charset-related errors.

OB44 was completely covered using Perceval, with the limitations of encountering positive

repositories which had been deleted or set as private, reducing the final data-set.

Finally, OB55 was also completely accomplished. These two last objectives share some tech-

nical difficulties regarding to storage space and performance: Perceval needed to clone the

repositories, which means it had to download and uncompress data; and some of the gener-

ated SQL files with the database information (like the one for the commits table) contained

millions of entries, which aside from their size, hindered the importing process.

6.2 Knowledge application

During my degree I have learned about important concepts and tools during the different courses,

but also about how to face new challenges where to implement the acquired knowledge. In this

project I have applied the learning outcomes from the following courses:

3Establish a procedure to filter this extracted data using a determined kind of heuristics and patterns.
4Analyze positive GitHub repositories to obtain enhanced Git data from them.
5Store the enhanced data in a database whose structure allows to query information of interest.

6.3. LEARNING OUTCOMES 43

1. “Informática I” (Fundamentals of Programming): This course was my first programming-

related course, where I learned the basics of programming” (basic data and flow-control

structures).

2. “Informática II” (Telecommunication Systems Programming): In this course I learned

advance programming techniques along with more complex data structures, including for

the first time communication protocols as UDP and TCP connections elaborating both

client-server and peer-to-peer applications.

3. “Arquitectura de Internet” and “Sistemas Telemáticos para Medios Audiovisuales”

(Computer Networks I and II): Thank to these courses I learned about both basic and

complex communication protocols and how the Internet works, from TCP/IP protocol to

HTTP connections, routing algorithms and protocols, etc.

4. “Protocolos de Transmisión de Audio y Video en Internet” (Audio/video Transmission

Protocols): In this course I learned how to program in Python language and the basic con-

cepts for object-oriented programming, in addition to real-time communication protocols

and basic Git concepts.

5. “Laboratorio de Tecnologı́as Audiovisuales en la Web” (Web-based Technologies):

Despite the fact this course is not directly related, I learned basic concepts about databases

and I fostered my programming skills in Python building my first Django application.

6.3 Learning outcomes

These are some of the learning outcomes I have reached thank to this project:

1. Fostering of my programming skills, especially in Python. Though I was familiar with

this programming language in particular, I have learned about general, complex concepts

of programming as parallelization and concurrency but also specific advanced Python

concepts and structures: sets (unordered collections of non-duplicated values), list com-

prehensions (a way to to create lists containing an expression followed by a for clause,

then zero or more for or if clauses) and other Python idioms.

44 CHAPTER 6. CONCLUSIONS

2. Learning new technologies, specially about databases and SQL language which comple-

ments my academic background. I have also learn how to interact with APIs for the first

time.

3. A great overview about research. Since I started to work as a researcher assistant, I was

surprised about how little I know about research and its procedures about scientific papers,

conferences, etc. With this project I was able to learn from the very beginning the stages

of the elaboration of a study to its final stages including the process for the paper to be

published.

4. A valuable perspective about team work and communication, having the possibility to

collaborate with an international team from a different university.

5. System administration experience. Taking care of the technical tasks about this project

forced me to learn how to execute and watch over all the stages of this tool in different

GNU/Linux distributions, mostly using a remote server.

6.4 Future work

The tool and its execution process can be improved in several aspects. Regarding to the prelimi-

nary and data-extraction stages, these are some of the features that could be implemented:

• A method to keep updated the initial set of GitHub projects from new dumps from GHTor-

rent.

• If GHTorrent dumps format change, adapt the necessary scripts to ensure compatibility.

• A method to keep updated the JSON files containing the file-list information for each

repository, and another to unify the format of that data in those repositories whose re-

sponse was truncated.

• Multi-thread execution support to have different parallel instances of github-api.py

script.

• Improve monitoring and exception management.

6.5. PERSONAL ASSESSMENT 45

In the data-filtering and the data-analysis phases, the proposed improvements are:

• Add more filter types or improve the existing ones.

• Improve the method to analyze the positive repositories using Perceval. There is a new

GrimoireLab tool called Arthur6, which is a distributed job queue platform that schedules

and executes Perceval using threads, error management and more. This new tool could

be integrated in the data-analysis stage to set the repositories to be analyzed by Perceval

in a more efficient way.

• Optimize how the analyzed data is imported into a new database even exploring other

different database types.

6.5 Personal assessment

I had the great luck to be in the right place at the right moment when I started this project.

Working on it has brought me a lot of great experiences and outcomes, which are extensive to

my period working as a researcher assistant in the GSyC/LibreSoft group where I met fantastic

people.

I feel fulfilled after having participated in such an important research and see its resulting scien-

tific papers presented and published in important conferences. I have obtained more knowledge

but also self-confidence to face large-scale projects, to make presentations in front of an au-

dience and also to foster my English level. Furthermore, I had the opportunity of traveling to

Gothenburg (Sweden) in June 2016 to meet the team from Chalmers University we were col-

laborating with. Afterwards, this cooperation provided me the chance to enroll myself in an

Erasmus+ traineeship in that university during Summer 2017.

6https://github.com/chaoss/grimoirelab-kingarthur

https://github.com/chaoss/grimoirelab-kingarthur

46 CHAPTER 6. CONCLUSIONS

Bibliography

[1] M. R. Chaudron, W. Heijstek, and A. Nugroho. How effective is uml modeling? Software

& Systems Modeling, 11(4):571–580, 2012.

[2] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: transparency and

collaboration in an open software repository. In Proceedings of the ACM 2012 conference

on Computer Supported Cooperative Work, pages 1277–1286. ACM, 2012.

[3] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona. Perceval: Software

project data at your will. In Proceedings of the 40th Intl Conference on Software Engi-

neering, ICSE’18, 2018.

[4] G. Gousios. The GHTorrent dataset and tool suite. In Proceedings of the 10th Working

Conference on Mining Software Repositories, MSR ’13, pages 233–236, Piscataway, NJ,

USA, 2013. IEEE Press.

[5] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman. Lean ghtorrent: Github data on

demand. In Proceedings of the 11th Working Conference on Mining Software Repositories,

MSR 2014, pages 384–387, New York, NY, USA, 2014. ACM.

[6] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Robles, and M. A. Fernandez. The quest for

Open Source projects that use UML: Mining GitHub. In Proceedings 19th International

Conference on Model Driven Engineering Languages and Systems, pages 173–183, 2016.

[7] T. Ho-Quang, M. R. V. Chaudron, I. Samúelsson, J. Hjaltason, B. Karasneh, and H. Os-

man. Automatic classification of UML class diagrams from images. In Proceedings of

the 2014 21st Asia-Pacific Software Engineering Conference - Volume 01, pages 399–406,

2014.

47

48 BIBLIOGRAPHY

[8] T. Ho-Quang, R. Hebig, G. Robles, M. R. Chaudron, and M. A. Fernandez. Practices and

perceptions of uml use in open source projects. In Software Engineering: Software Engi-

neering in Practice Track (ICSE-SEIP), 2017 IEEE/ACM 39th International Conference

on, pages 203–212. IEEE, 2017.

[9] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian. The

promises and perils of mining github. In Proceedings of the 11th working conference on

mining software repositories, pages 92–101. ACM, 2014.

[10] J. Moreno-León, G. Robles, and M. Román-González. Examining the relationship be-

tween socialization and improved software development skills in the scratch code learning

environment. J. UCS, 22(12):1533–1557, 2016.

[11] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, and I. Herraiz. Tools for the

study of the usual data sources found in libre software projects. International Journal of

Open Source Software and Processes, 1(1):24–45, 2009.

[12] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo. Beyond source code: the impor-

tance of other artifacts in software development (a case study). Journal of Systems and

Software, 79(9):1233–1248, 2006.

[13] G. Robles, T. Ho-Quang, R. Hebig, M. R. Chaudron, and M. A. Fernandez. An extensive

dataset of uml models in github. In Proceedings of the 14th International Conference on

Mining Software Repositories, pages 519–522. IEEE Press, 2017.

[14] J. Rumbaugh, I. Jacobson, and G. Booch. Unified modeling language reference manual,

the. Pearson Higher Education, 2004.

[15] N. B. Ruparelia. The history of version control. ACM SIGSOFT Software Engineering

Notes, 35(1):5–9, 2010.

[16] R. Somasundaram. Git: Version control for everyone. Packt Publishing Ltd, 2013.

[17] B. Straub and S. Chacon. Pro Git. Apress, second edition, 2014.

[18] M. Tepper. The rise of social software. NetWorker, 7(3):18–23, 2003.

BIBLIOGRAPHY 49

[19] G. Van Rossum et al. Python programming language. In USENIX Annual Technical

Conference, volume 41, page 36, 2007.

[20] B. Vasilescu. Software developers are humans, too! In Proceedings of the Companion

Publication of the 17th ACM Conference on Computer Supported Cooperative Work and

Social Computing, CSCW Companion ’14, pages 97–100, New York, NY, USA, 2014.

ACM.

50 BIBLIOGRAPHY

Appendix A

Definitions

A.1 Git objects definitions

A.1.1 Commit

A commit is a git object which contains a record of the changes made to the repository since

last modified version of itself (last commit object). In the example in Figure 3.2, each commit

would be each different Version (1, 2, 3...), meaning that there is a new version of the repository

with every commit.

A.1.2 Tree

A git tree represents a directory and its structure (including file-names) in the repository, con-

taining other possible sub-directories as other child tree objects. However, these objects do not

contain any information about the file contents: that is stored in blob objects. In Figure A.1

there is an example of how commits, trees and blobs are connected with each other.

51

52 APPENDIX A. DEFINITIONS

Figure A.1: Interaction among commits, trees and blobs (unique IDs above) [17].

A.1.3 Branch

A git branch is a pointer to a certain commit object. All new commits created from this pointer

will diverge from the previous commit-history of the repository in two distinct, independent

paths. Branching is a very common and useful practice, as it allows to isolate different versions

of the same files and directories (but also different) in the same repository, and later, those

branches can be merged into any other branch (See in figure A.21) a simplified example about

the structure of a repository with several branches).

A.2 API

An API (Application Programming Interface) is a set of subroutine definitions, protocols, and

tools for building application software. In general terms, it is a set of clearly defined methods

of communication between various software components.

1Source: https://www.atlassian.com/git/tutorials/using-branches

https://www.atlassian.com/git/tutorials/using-branches

A.3. ESSENTIAL FREEDOMS OF FREE/LIBRE SOFTWARE 53

Figure A.2: Abstraction of git branches structure in a repository.

A.2.1 GitHub API

GitHub API allows to access GitHub data, since own GitHub types like pull-requests, issues or

forks to git-related data, such as commits, branches or trees using HTTP requests and returning

information using JSON (JavaScript Object Notation) format.

A.2.2 API token

A token is a unique identifier of an application requesting access to a service. In the case

of GitHub API, they are long, alphanumeric strings of characters generated within a GitHub

account, so every executed action with that token is done on behalf of its owner’s account.

A.3 Essential freedoms of Free/Libre Software

A program is free software if the program’s users have the four essential freedoms:

• The freedom to run the program as you wish, for any purpose (freedom 0).

• The freedom to study how the program works, and change it so it does your computing

as you wish (freedom 1).

54 APPENDIX A. DEFINITIONS

• The freedom to redistribute copies (freedom 2).

• The freedom to distribute copies of your modified versions to others (freedom 3).

A program is free software if it gives users adequately all of these freedoms. Otherwise, it is

nonfree or propietary.

Appendix B

Code of the tool

The tool presented in this thesis consists on a set of Python scripts and a SQL script to set up

the database structure for the “Data analysis” phase. The last version of the code of this tool,

together with a short execution manual is publicly available on the following GitHub repository:

https://github.com/mafesan/2018-tfg-code.

To give an estimation about the magnitude of this tool, in table B.1 it is presented a software

metric generated using “SLOCCount”1, a set of tools for counting physical source lines of code

(SLOC).

Table B.1: Source Lines of Code (SLOC) for the scripts compounding the tool

Phase Script name SLOC

Preliminary get-project-list.py 91

Data extraction github-api.py 126

Data filtering github-tree.py 111

Data filtering hits2urls.py 107

Data analysis perceval-handler.py 109

Data analysis perceval2sql.py 228

Data analysis ghtorrent-users2sql.py 101

Total 873

1https://www.dwheeler.com/sloccount/

55

https://github.com/mafesan/2018-tfg-code
https://www.dwheeler.com/sloccount/

56 APPENDIX B. CODE OF THE TOOL

Appendix C

Published papers

C.1 The Quest for OS Projects that use UML: Mining GitHub

This paper was published in the MODELS conference (Saint-Malo, France), in October 2016.

The complete reference is following:

Hebig, R., Quang, T. H., Chaudron, M. R., Robles, G., & Fernandez, M. A. (2016, Octo-

ber). The quest for open source projects that use UML: mining GitHub. In Proceedings of

the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and

Systems (pp. 173-183). ACM.

57

The Quest for Open Source Projects that use UML

Mining GitHub

Regina Hebig, Truong Ho Quang,
Michel R.V. Chaudron

Chalmers | Göteborg University
{hebig,truongh,michel.chaudron}@cse.gu.se

Gregorio Robles,
Miguel Angel Fernandez

GSyC/LibreSoft
Universidad Rey Juan Carlos, Madrid, Spain
grex@gsyc.urjc.es, mafesan.nsn@gmail.com

ABSTRACT
Context: While industrial use of UML was studied intensely,
little is known about UML use in Free/Open Source Soft-
ware (FOSS) projects. Goal: We aim at systematically
mining GitHub projects to answer the question when mod-
els, if used, are created and updated throughout the whole
project’s life-span. Method: We present a semi-automated
approach to collect UML stored in images, .xmi, and .uml
files and scanned ten percent of all GitHub projects (1.24
million). Our focus was on number and role of contribu-
tors that created/updated models and the time span dur-
ing which this happened. Results: We identified and stud-
ied 21 316 UML diagrams within 3 295 projects. Conclu-
sion: Creating/updating of UML happens most often dur-
ing a very short phase at the project start. For 12% of the
models duplicates were found, which are in average spread
across 1.88 projects. Finally, we contribute a list of GitHub
projects that include UML files.

Keywords
UML, open source, free software, GitHub, mining software
repositories

1. INTRODUCTION
The Unified modeling language (UML) provides the facil-

ity for software engineers to specify, construct, visualize and
document the artifacts of a software-intensive system and to
facilitate communication of ideas [2]. For commercial soft-
ware development, the use of UML has been introduced and
commonly accepted to be a prescribed part of a company-
wide software development process.

When it comes to Free/Open Source Software (FOSS)
development, characterized by dynamism and distributed
workplaces, code remains the key development artifact [1].
Little is known about the use of UML in open source. Re-
searchers in the area of modeling in software engineering
have performed some efforts to collect examples of models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’16, October 02-07, 2016, Saint-Malo, France
c© 2016 ACM. ISBN 978-1-4503-4321-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976767.2976778

and of projects that use modelling. However the results are
often limited [19]. For example, the Repository for Model
Driven Development (ReMoDD)[5] is an initiative driven
by an international consortium of leading researchers in the
field of modeling. Nevertheless its content is growing at a
low rate: after 9 years (summer 2016) it contains around 81
models. Industrial projects are very reluctant to share mod-
els because they believe these reflect key intellectual prop-
erty and/or insight into their state of IT-affairs.

Due to the so far limited success in identifying open source
projects with UML, many researchers (including the authors
themselves at the start of this study) are rather pessimistic
finding much use of UML in open source projects. Further-
more, since most open source platforms, such as GitHub, do
not provide facilities for model versioning, such as tools for
model merging, we were even more pessimistic about finding
examples of UML models that were updated over time.

The lack of available data is the reason why so far no
answers could be given to several basic questions on the
amount of UML files in open source projects that are static
or updated, the time span during which models are created
or updated during the open source project, or the question
which of the project’s contributors do create models. Thus it
seems that UML is not frequently present in FOSS projects.
However, there is no exact quantification of its presence.

GitHub hosts around 10 million of non-forked repositories,
which makes it a good starting point to obtain an estimation
of the use of UML in FOSS projects. GitHub’s web search is
limited for this type of endeavor as it targets mainly source
code searches by developers. While there are many other
ways to access GitHub data (GHTorrent or the GitHub API)
obtaining data on UML usage is not trivial (as we will show).

In this paper we present our efforts to mine GitHub in or-
der to gain a list of open source projects that include UML
models. Due to the required manual steps, it is not yet fea-
sible to investigate all 12 million GitHub projects. Instead
we focus on a random sample of 10% of all GitHub projects
(1.24 million of the 12 million repositories). It turned out
that for achieving this goal we required to join forces and
expertise from different fields. The first challenge is the
identification of non-forked repositories in GitHub with the
help of the GHTorrent [6] in order to retrieve candidates for
files that might include UML diagrams. Since these many of
these diagrams are stored in formats that can also include
other information than models, e.g. images or XML based
files, it is further necessary to perform an automated recog-
nition of those files that actually are UML. Therefore, it is
required to perform two different checks, one for XML based

58 APPENDIX C. PUBLISHED PAPERS

formats and one for images, which is a state of the research
technology that just became available in 2014 [8]. Finally,
with the retrieved list of UML models, the git repositories
of these projects were accessed in order to retrieve informa-
tion about the repositories and further information about
commit and update histories of these models. As a result
we gain out of over 1 240 000 repositories a first list of 3 295
projects containing UML models.

The contributions of this paper are: 1. A first list of 3 295
GitHub repositories including altogether including 21 316
models. This list can be used by other researchers in future
to find case studies and experimental data, e.g. for develop-
ing model versioning technologies or for studying how design
decisions in models transfer to the code. 2. Based on this
data we give for the first time answers descriptive questions
about the number of models that are subject to updates,
the number of model duplicates that can be found, and the
point in a projects life time where models are created and
updated. 3. Furthermore, this research provides the basis to
ask when UML models are introduced and updated. Surely
the approach has still limitations, for example we will not be
able to identify how often the models are read. However, we
believe that these first descriptive results are just a starting
point. They enable us and other researchers to formulated
and address more advanced questions about UML usage and
its impacts on a project in future work.

The remainder of our paper is structured as follows. In
Section 2, we formulate a number of research questions. Sec-
tion 3 shows our review on relevant works. We describe our
study approach in detail in Section 4. Our findings are pre-
sented and discussed in Section 5 and Section 6, respectively,
including the threats to validity. We conclude our paper in
Section 8.

2. RESEARCH QUESTIONS
The data set that we are assessing in this work would allow

for a multitude of analysis, e.g. for assessing the distribution
of different model types more precisely than it has been done
in related work so far. However, answering all questions at
once is not possible due to space limitations, but also due
to limitation of time. Therefore, we decided to focus in this
paper on a set of descriptive questions that had not been
addressed in related work so far and that provide a necessary
starting point and frame for future analysis:

RQ1: Are there GitHub projects that use UML? Which
are these projects?

RQ2: Are there GitHub projects in which the UML models
are also updated?

These first two questions are interesting for two reasons.
First, their answer represents a description of the state of
practice that was simply not available so far. Second, projects
with updates are ideal candidates for future investigations
on model usage. For example, they might be used to evalu-
ate facilities for model versioning.

RQ3: When in the project are new UML models intro-
duced?

Is it at the beginning of the project or later? What span
of the project life time is covered by the phase where UML
models are actively created or modified? Again the descrip-
tive character of this questions is important. Only with
the answer, we will be capable to formulate more precise
questions on the model usage in future work. For exam-
ple, whether these results are homogeneous amongst open

source projects or not, will imply directions for future in-
vestigations. In long term/ future work this might lead to
investigations what form of model usage is most efficient and
so on.

RQ4: What is the time span of “active” UML creation
and modification?

With this question we want to know how long is the time
span during which models are in active use during a project?
A limitation of our methodology is that we cannot investi-
gate how often and when models are read. However, we can
have a look at the time span of active UML creation and
modification, i.e., the time between the first introduction of
a UML file and the last introduction or update of UML files
within a project.

RQ5: Are UML files originals? Special model versioning
techniques such as model merging are not explicitly sup-
ported by GitHub. Therefore, we are interested in the ques-
tion how many of the found models are duplicates of other
models.

Despite the big interest in these questions, it was until
now not possible to answer them. The reason is that simply
no systematic knowledge exists about UML in open source
projects. Furthermore, even if projects are known, it re-
quires advanced mining of the repository in order to get
related information about changes and contributors.

3. RELATED RESEARCH
This paper builds on previous research done in two re-

search communities: the software modelling- and the mining
software repositories communities.

3.1 Use of UML in FOSS
Studies on the usage of UML are frequently done amongst

in industry (mostly through surveys) [16, 20]. However, only
few studies focus on freely available models, such as can be
found in open source projects. Reggio et al. [16] investigated
which UML diagrams are used based on diverse available re-
sources, such as online books, university courses, tutorials,
or modeling tools. While this work was done mainly man-
ually, Karasneh et al. [11] use a crawling approach to auto-
matically fill an online repository1 with so far more than 700
model images- Both works focus on the models only and do
not take their project context into account. Further, they
do not distinguish between models that stem from actual
software development projects and models that are created
for other reasons, e.g. teaching. An index of existing model
repositories can be found online [19]2. However, in addition
to their small size, these repositories seldom include other
artifacts than the models, making it impossible to study the
models in the environment of actual projects.

Further, there are some works addressing small numbers
of case studies of modeling in open source projects. Yatani
et al. [23] studied the models usage in Ubuntu development
by interviewing 9 developers. They found that models are
forward designs that are rarely updated. Osman et al. [15]
investigated 10 case studies of open source projects from
Google-code and SourceForge that use UML. They focused
on identifying the ratio of classes in the diagrams compared
to classes in the code. They find only seldom cases where

1http://models-db.com/
2Index of model repositories http://www2.compute.dtu.dk/
˜hsto/fmi/models.html

C.1. THE QUEST FOR OS PROJECTS THAT USE UML: MINING GITHUB 59

models are updated.
Finally, there are three works that actually approach a

quantitative investigation of models in open source projects.
Chung et al. [3] questioned 230 contributors from 40 open
source projects for their use of sketches and found that
participants tend to not update these sketches. A study
that focuses on software architecture documentation in open
source projects was performed by Ding et al. [4] They man-
ually studied 2 000 projects from SourceForge, Google code,
GitHub, and Tigris. Amongst those projects that used such
documentations they identified 19 projects that actually use
UML.

The work that is probably closest to our study is the one
of Langer et al. [12] They searched for files conforming to
the enterprise architect file format (which is a format that
can be used to store UML files) within Google code and
GitHub. They identified 121 models. They further assessed
the model lifespan (between introduction and last update)
to be in average 1 247 days. However, studying a single file
format is a rather limited view on UML. Furthermore, the
project perspective is not considered and they rather put a
focus on the used UML concepts.

3.2 Mining
Mining software repositories has mainly focused on as-

pects related directly to (programming) source code. How-
ever, projects may include non-source-code sources such as
images, translation, documentation or user interface files,
that can be usually identified by their extension [18]. By do-
ing so, research has shed some light on the variation and spe-
cialization of workload that exist in FOSS communities [21].

The study of specific file formats that are non-source code
can be found as well in the research literature: McIntosh
et al. [13], [14] have investigated the build system for its
evolution and effort, or the analysis of infrastructure as code
that has become mainstream in the last years [9].

4. METHODOLOGY
In this section, we describe our study approach. The over-

all process is shown in Figure 1.

UML
File list

GitHub

1 Data	collection

Potential UML file list

3 Extract	Meta-data

2 Filter	UML	files
UML	Image	

Filter
Textual	
Filter

Validation

5 Analyse result

4 Query	database

CVSAnalY MySQL

GHTorrent

Figure 1: Overall process

First, we obtained a list of 10% of the GitHub repositories
from GHTorrent [6] that are not forks. This resulted in

a list of files of 1 240 000 repositories, those that had a
branch that could be downloaded. From this list, potential
UML files were collected using several heuristic filters based
on the creation and storage nature of UML files (Step 1).
Section 4.1 and Section 4.2 describe our approach and used
filters in detail.

An automated process was built to examine the existence
of UML notation in the obtained files (Step 2). A manual
validation step is taken in order to consolidate the classifi-
cation result. We describe the classification method in Sec-
tion 4.3.

We have then obtained the meta-data from those reposito-
ries where a UML file has been identified by means of using
the CVSAnalY tool [17] (step 3). Section 4.4 discusses tool’s
settings and the meta-data structure.

In step 4, we queried the metadata (taken in Step 3) with
respect to our research questions. We answer the research
questions by analyzing the result (Step 5). Note that during
the data analysis further files got lost for diverse reasons (see
discussion section 6). Thus, we were finally able to analyze
a set of 21 316 UML model files.

A replication package of our analysis is available online
[7].

4.1 Occurrence of UML
To understand how we searched for files containing UML,

it is important to understand how these files are created and
stored. Figure 2 illustrates the different sources of UML
files (at the bottom in green). UML models might be cre-
ated by manual drawing (sketching). Possibilities to create
models directly with a computer are the usage of tools that
have drawing functionality, such as Inkscape, or dedicated
modeling tools, such as Modelio or Argo UML. Some of the
modeling tools even provide the possibility to generate UML
models, e.g. based on source code. This differences in tool
support lead to a wide variety of ways in which UML mod-
els are represented by files. The different possibilities are
illustrated in blue at the top of Figure 2: Firstly, manual
sketches are sometimes digitized with the help of scanners
or digital cameras and thus lead to image files of diverse
formats. Secondly, tools with drawing capabilities can ei-
ther store the UML models as images, such as .jpeg and
.png or .bmp, or may have tool specific formats, e.g. ”pptx”.
Thirdly, dedicated modeling tools work with tool specific file
formats, e.g. the Enterprise Architect tool stores files with a
“.eap” extension. Also some tools work with ’standard’ for-
mats for storing and exchanging UML: “.uml” and “.xmi”.
Yet, modeling tools with specific formats often allow to ex-
port and import these standard formats and allow to export
the models as images. As a consequence, when searching for
UML many different file types need to be considered.

4.2 Data Collection
For all repositories from GHTorrent [6] that are not marked

as forks, we used the GitHub API: i) To obtain file list
for master branch; ii) If no master branch found, ask for
default branch; iii) To obtain the file list from default

branch. With up to three GitHub calls (i, ii and iii) for each
repository, given the GitHub API limitation of 5 000 re-
quests/hour, it took over two weeks to retrieve the complete
file list once the machinery was set up.

As explained in section 4.1, different file formats need to
be taken into account. However, as not every image file is

60 APPENDIX C. PUBLISHED PAPERS

UML Models

Image Formats,
e.g.: .jpg, .png …

Tools with drawing
functionality, e.g. PowerPoint

Tool specific file
formats, e.g.

.eap, .pptx, .argo,
.ecore …

Standard formats for storing and
transferring UML models:
• .uml
• .xmi

Modeling tools, e.g.:
• Eclipse UML2 Tools,
• Enterprise Architect,
• Modelio,
• ArgoUML,
• Microsoft Visio,
• …

Manual sketches,
e.g. scans

«store as»
«store as»

«export/store as» «store as»«export»

«export/store as»

Figure 2: There is a large variety of tools for creating and
formats for storing UML models

UML, also not every xmi file or files with the endings of tool
specific format extensions are UML. Therefore, the filtering
process does not only consist of the collection of files with a
specific extension, but also of a check whether the collected
files are really UML files. It makes no sense to collect files
in the first step, for which we have no automated support
for the second step.

Image files as well as standard formats are more common
and are created by most modeling tools. For such common
tools, developing an approaches to identify UML has a good
cost-benefit ratio. The applied methods are explained below
in section 4.3. However, for tool specific formats this ratio
can be very low. Therefore, we searched only files of those
formats where we could exclude two cases:

• The format is used within the tool exclusively for UML
models.

• The file extension of the format is not used by other
tools. For example the extension of Enterprise archi-
tect files (“.eap”) is also used for Adobe Photoshop
exposure files.

To identify these formats we used as a starting point the list
of UML modeling tools collected on WikiPedia3, which we as
experts consider as one of the most complete lists available.
We checked whether the file formats used by these tools do
not fulfill the two obstacles mentioned above.

Thus, we search for following file types:

• Images: Common filenames for UML files (such as
”xmi”, ”uml”, ”diagram”, ”architecture”, ”design”) that
have following extensions (”xml”, ”bmp”, ”jpg”, ”jpeg”,
”gif”, ”png”, ”svg”)

• Standard formats: [”uml”, ”xmi”]

Hence we do not consider document formats such as word
(.doc(x)), .pdf and powerpoint (.ppt(x)). The main reason
is that currently technology is not yet capable of extracting
UML models out of such general documents.

4.3 UML filters
At this stage, the files obtained from Step 1 were checked

if they really contain UML notation.

3List of modeling tools https://en.wikipedia.org/wiki/List
of Unified Modeling Language tools, Last visited 9th De-
cember 2015

4.3.1 Identify UML images
Firstly, all images were automatically downloaded. Files

that could not downloaded or unreadable were eliminated
(Result: Successfully downloaded files downloads: 55 747;
errors: 1 819). In addition, observations on downloaded im-
ages showed a remarkable number of icons and duplicate im-
ages. While it’s mostly impossible to find reasonable UML
content in icon-size images, including duplicate images in
candidate set could definitively cause redundancies to clas-
sification phase. Therefore, we eliminated icon-size images.
Duplicate images were proceeded as: i) Duplicate images
were automatically detected; ii) Representative images were
added to classification candidate list; iii) After classification
phase, duplicate images of an image will be marked as the
same label as the image.

In particular, 15 726 images that have icon-dimension-size
no bigger than 128 x 128 were excluded. Subfigures 3a, 3b
and 3c show examples of such images.

(a) Dup 1a (b) Dup 1b (c) icon

Figure 3: Example of duplicates and icon-size images

In order to detect duplicate images, we created a simple
detection tool by using an open source .NET library ”Sim-
ilar images finder” 4. Given two images, the tool calculates
differences between their RGB projections to say how simi-
lar they are. In our case, we chose a similarity threshold at
95% since it gave the best detection rate through a number
of tests on a subset of our images. Downloading of images
took 27 hours.

The final image set of 19 506 images were classified as
UML or non-UML images by using a classifier from our
prior research [8]. The classifier was trained by a set of
1 300 images (650 UML-CD images and 650 non-UML-CD
images). The Random Forest algorithm was chosen since
it performed the best in term of minimizing the amount of
false-positive rate (expecting below 4%). The automated
classification too 26.5 hours. In order to eliminate false-
positive and false-negative cases, we manually checked the
whole image set. It took 6 working days of effort of an UML
expert to complete the checking. This manual check allowed
us to prove our classification method and to consolidate clas-
sification results. It turned out that the automated analysis
had a 98.6% precision and 86.6% recall. The false positives
and negatives could be identified due the the manual check.

Gradually, we manually picked up UML in other types
(i.e., Sequence Diagram - SD, Component Diagram - CPD,
Deployment Diagram - DLD, State Machines - SM and Use-
case - UC). UML files that are sketches (SKE) were counted,
too. The list of images was marked with a number of labels:
”UNREAD”, ”SVG”, ”SMALL”, ”DUP”, ”CD”, ”SD”, ”CPD”,
”DLD”, ”SM”, ”UC” and ”SKE”.

4https://similarimagesfinder.codeplex.com/

C.1. THE QUEST FOR OS PROJECTS THAT USE UML: MINING GITHUB 61

4.3.2 Identify UML files among .xmi and .uml files
Both .xmi and .uml files are specific XML formats. The

later ones can include uml models, only and we found 10 171
of them. XMI is a standard format that should enable ex-
change of models between different tools. In theory it should
be simple to identify whether an XML file in general con-
tains a UML model: the schema reference in the XML file
defines the content’s format.

We performed the analysis in 3 steps:

1. In practice the schema reference are often generated
in different forms by tools. For example, we found fol-
lowing three schema references to the UML: “org.omg/
UML”,“omg.org/spec/UML”, and“http://schema.omg.
org/spec/UML”. Therefore we first of all searched
with a simple search function for the string “UML”
and “MOF” (the meta meta model of the UML lan-
guage) in a random subset of the models. This way
we could come up with a list of 7 strings representing
UML schema references.

2. In a second step we automatically downloaded the iden-
tified xmi files and parsed them for the schema refer-
ences. We could identify 876 files with UML schema
references.

3. In a last step we wanted to double check that the exis-
tence of such a schema reference is sufficient to assume
that the file includes UML. Therefore, we took a sam-
ple of four open source projects containing together 53
(between 1 and 33 respectively) links to xmi files. In
addition to the check for schema references, we went
manual through the content of the 53 files to assess
whether and what kind of models they include. A com-
parison of the results with the data from the step above
confirmed that the existence of an UML/MOF schema
is a reliable indicator for rating a file as UML: of the
53 xmi files, 30 had been rated by both approaches as
UML, while the other 23 were rated as non-UML.

Finally we run a duplicate detection on .xmi and .uml files
by comparing hash values of the file contents.

4.4 Metadata Extraction and Querying
We downloaded all repositories where at least one (real)

UML file was identified and extracted its metadata with the
help of CVSAnalY [17]. 100 repositories from the initial list
could not be retrieved, due to various reasons, e.g. changes
from public to private repositories.

In average, around 30 000 projects per day were down-
loaded for each GitHub account. Taking these results a
time span of 14 months ((12 847 555 projects / 30000) /
30) would be required for the analysis, when using one sin-
gle GitHub account. As this would have made this study
in feasible, we parallelized the retrieval of the JSON files
through many GitHub accounts, which were donated during
this process. This reduced the time span to approximately
one month. While the download is an automated process,
but the parallelization is not. It took around 1 h 30’ each
day to run and check each set of repositories, using up to 21
GitHub accounts. Altogether this process took 6 weeks.

After this process, we had 21 316 of the identified UML
files from 3 295 repositories and the corresponding meta-
data in a SQL database. A new SQL table was added to
the ones provided by CVSAnalY with just the UML files
for easy and efficient querying. A set of Python scripts were

used too query the database and aggregate the data required
to answer the RQs. This final step took 14 days.

5. RESULTS
This section presents the results of our investigation. In

this research an ample amount of data have been used, usu-
ally handled by scripts developed by the authors. Detailed
information of the former and the code of the latter can be
obtained in the replication package5.

5.1 RQ1: UML in GitHub projects
We downloaded 1 240 000 non-forked GitHub repositories

obtained from GHTorrent. After filtering the data for po-
tential UML files based on type, we retrieved a list of 100 702
links. Of those, 21 316 were classified as UML.

The further extraction of model related data, turned out
to be an additional filter, since details could not be ex-
tracted for all files. The reason for this is due to the fact
that our retrieval procedure takes so much time that con-
text changes. So, for instance, in the time that goes from
the retrieval of information of the files the are included in a
project (July/August 2015) to the time where the git reposi-
tories where downloaded (November/December 2015), some
of them were renamed, deleted or made private.

In consequence, 21 316 files could be retrieved for the
following analysis (as summarized in Table 1). These files
belong to 3 295 GitHub projects. Of these 1 947 include a
single UML file, only and 1 169 projects include between 2
and 9 UML files. Furthermore, we identified 158 projects
with 10 to 99 UML files and 4 projects with more than 100
UML files. In the following analysis, the later 21 projects
are taken separately, when statistics per model are shown.
The reason is that they show very different characteristics
and would, with their large number of models6, strongly bias
and hide trends that occur within the other projects. This
first list of identified GitHub projects that include UML can
be found online[7].

Table 1: Found distribution of model files by formats

xmi uml jpeg png gif svg bmp
Share 3.4% 44.9% 4.7% 29.6% 16.6% 0.6% 0.2%

Results for RQ1: The here identified repositories
with UML files represent already 0.28% of the
GitHub repositories. Of these, two thirds of the
projects contain a single UML file.

5.2 RQ2: Versions of UML models
The next important question was whether models are ’read-

only’ or also sometimes updated.
Table 2 summarizes the distribution of model files by num-

ber of updates per model. Our results show that the vast ma-
jority of the UML files (18 867) are never updated. Nonethe-
less, we found that more than 11% of the UML files in our
sample (2 449 models) were updated one or more times. Fur-
ther, the number of updates of models that are updated is

5Replication package http://oss.models-db.com
6One of the projects is “eclipse/emf.compare/”, which in-
cludes more than 6 000 models. We strongly assume that
many of these models are generated, e.g. for tests.

62 APPENDIX C. PUBLISHED PAPERS

Table 2: Distribution of files / projects by number of updates

number
of up-
dates

models in
projects with
1 to 99 models

models in
projects with
≥ 100 models

projects

0 7 947 10 921 2416
1 946 466 332
2 336 42 157
3 151 19 78
4 107 7 64
5 82 2 51
6 67 4 34
7 38 1 18
8 24 3 17
9 24 1 12
10 11 2 8
<20 70 3 50
<30 24 0 25
<40 14 0 8
<50 1 0 6
<60 2 0 2
<70 0 0 0
<80 0 0 2
<90 1 0 3
<100 1 0 1
>100 0 0 11

on average 3,0 times (although the median, which is more
significant given the skewed distribution, is 1 time). Fur-
thermore, Table 2 summarize the distribution of projects by
sum of model updates or all models of a project.

26.67% of the projects in our sample include at least one
model update. Models are less often updated in projects
that have more than 100 models (38.09% in our sample), in
contrast to 26.60% of the models in projects with less than
100 models are updated. There are only 11 projects that
include more than 100 model updates.

Results for Q2: Only 26% of the investigated
projects updated their UML files at least once.

2286

965

3259

883

390
291 323

131 149 193
97 47

402

135 53 27 15 99 81
0

500

1000

1500

2000

2500

3000

3500

M
o

d
el

 f
ile

s

Project age in days at a models initial commit

Figure 4: Distribution of model files sorted by project’s age
in days when the diagram was introduced (models within
projects that have less than 100 models)

5.3 RQ3: Time of UML model introduction
Figure 4 shows the dates of the introduction models con-

sidering the amount of days since the start of the project,

while Figure 5 displays the same information by dividing
the duration of the project from the start to nowadays in
a normalized way (so, the 50% mark would be half of the
project duration since its start until today).

Projects with less than 100 UML models seem to have
a tendency to introduce models at the project start. In
contrast, the 21 projects with 100 or more models show a
different graph. We decided to show the numbers separately,
since these projects with partially more than 1 000 models
would easily bias the presented view.

7129

819
438 485

162
399

111 68 152 83
0

1000

2000

3000

4000

5000

6000

7000

8000

M
o

d
el

 f
ile

s

Percentage of days (relative to time between the respectives project's start and today) alreday passed,
when the model files was initially committed

Figure 5: Distribution of model files sorted by percentage of
project time that passed when the UML file was introduced
(for projects that have less than 100 models)

However, we found that calender time (days) may not
be the best way to consider a project’s progress, since the
amount of activities can highly vary during the lifetime of
open source projects. Figure 6 shows the distribution of
the models based on the time of their introduction when
measured by the percentage of the project’s commits.

2452

786 823
742 788

618
782

884 837

1134

0

500

1000

1500

2000

2500

3000

M
o

d
el

 f
ile

s

Amount of overall number of commits already done within the respective project, when the model file
was committed

Figure 6: Distribution of files sorted by number of overall
commits done when the diagram was introduced (For models
in projects that have less than 100 models)

An interesting difference between the two views is that the
consideration of time in terms of amount of commits shows a
much more balanced view. While this may not be the most
intuitive notion, it helps to place the modeling activities
relative to the active phases of the project. Thus we can
see whether model introduction happened before or after
a majority of other development activities (such as coding
or documenting). In addition, it helps to better represent
projects that had their main activity in the past and/or have
become inactive. From our results, it can be seen that new

C.1. THE QUEST FOR OS PROJECTS THAT USE UML: MINING GITHUB 63

models are introduced predominantly in the early phases
(above 25% of them in the first 10% of the commits), but
that new UML models are introduced in later phases too.

Finally, as mentioned above the results look very different
for the 21 projects that have 100 or more models. As Fig-
ure 7 illustrates there most models are introduce during the
last third of the project activities.

1618

870 795

27
181 107

794

3523

1127

2429

0

500

1000

1500

2000

2500

3000

3500

4000

M
o

d
el

 f
ile

s

Amount of overall number of commits already done within the respective project, when the model file
was committed

Figure 7: Distribution of files sorted by number of overall
commits done when the diagram was introduced (For models
of the 21 projects that have 100 or more models)

Results for Q3: UML models are introduced in all
active phases of a project with a tendency towards
the early phases.

5.4 RQ4: Time span of active UML
In this RQ, we have looked at the time span of active

UML creation and modification, i.e., the time between the
first introduction of a UML file and the last introduction or
update of a UML file within a project.

1898

348
242

196

73

195
87 60 82 114

0

200

400

600

800

1000

1200

1400

1600

1800

2000

P
ro

je
ct

s

Time between first and last model commit or modification in amount of project's commits

Figure 8: Projects by time between first model commit and
last model update-or-commit as percentage of project’s com-
mits

Figure 8 summarizes these time spans. The maximum
time span found is thereby 100% of the projects commits,
while the median of the time spans is 5.8%. We found that
by far most projects seem to introduce (and update) all mod-
els within a single day. Model creation and updating plays
only in a minority of the projects a role during more than
10% of the project’s commits.

As with RQ3, we use commits as an alternative measure of
the time where UML introductions/updates occur. Figure 9

presents the active UML phase for all 3 295 projects from
this perspective. The active UML phase of a project is given
horizontally in percentages of commits done, starting when
the first model is introduced and ending when the last model
is introduced or updated. The diagram illustrates the above
finding that a minority of projects (less than 10%) have UML
active phases that cover nearly the whole project life time.
For a majority of projects the active UML phase is very
short and often concentrated in the first commits.

Results for Q4: Few of the studied projects are
active with UML during their whole lifetime. In
general, the projects work very shortly on UML,
usually at the beginning.

5.5 RQ5: Duplicates
Our final question was whether the 21 316 found model

files are all distinct originals. To answer the question we
used automated duplicate detection, as indicated above.

As a result we identified that 16 576 of the 21 316 found
models where unique in our sample. The remaining 4 741
model files represent 2 300 models of which each occurs at
least twice. Thus, 21 316 found model files include together
18 876 distinct models. In Figure 10 we summarize how
often models with duplicates occurred in our sample. Inter-
estingly, one of the models was found 79 times. In average,
models (if duplicated) are duplicated 3.63 times.

Furthermore, we investigated, whether model duplicates
belong to the same project. To our surprise this is the case
only for the half of the models with duplicates. However,
the roughly the half of these models have occurrences in
multiple repositories (up to 43). In average the number of
projects over which duplicates of a model are spread is 1.88.
Figure 11 summarizes the results in form of a histogram.

While duplicates that occur in the same repository might
be result of attempts to model versions, we cannot explain
the high number of cases were models occur in multiple
projects. A possible explanation might be that models might
be stored as part of platforms or plug-ins that are reused
in multiple projects. Another explanation could be project
forks that are done manually by cloning repositories instead
of using GitHubs fork mechanism.

Results for Q5: While most models seem to be
unique, a large number of identified distinct mod-
els (12%) occur several times. In average dupli-
cates are spread over 1.88 projects.

6. DISCUSSION
Considering our initial expectations we were surprised to

find such a big number of projects with UML. Surely, 3 295
projects are still a small number compared to the overall
number of GitHub projects. Nonetheless, the identification
of 21 316 UML models exceeds by far the expectations that
we had based on the numbers of models found so far in open
source projects in related work, e.g. 121 models by Langer
et al.[12] or 19 projects with UML by Ding et al.[4].

Data consistency.
We want to shortly discuss the type of data that we can

get with the presented mining method. The method we
applied is not trivial and consist of several steps of data

64 APPENDIX C. PUBLISHED PAPERS

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentages of commits before during and after active UML creation and modification phase

P
ro

je
ct

s
(s

o
rt

ed
 b

y
le

n
gt

h
 o

f
p

h
as

e
o

f
ac

ti
ve

 U
M

L
cr

ea
ti

o
n

 a
n

d
 m

o
d

if
ic

at
io

n
)

%commits during modeling

Figure 9: Plot of all 3 295 projects illustrating the placement of active UML creation and manipulation phase within the
overall project life span. Time is measured in percentages of commits done, when the first model is introduced and the last
model is introduced or updated. The projects are sorted by the relative amount of the active modeling phase (projects with
a relatively long active modeling phase are at the top, projects with a shorter phase are at the bottom).

1287

590

123
52 62

18 29 18 27 58 20 8 3 0 3 2 0
0

200

400

600

800

1000

1200

1400

N
u

m
b

er
 o

f
m

o
d

el
s

Number of found occurences of a model

Figure 10: Histogram of models that were found at least
twice indicating how often models occur.

1149

548 533

22 18 9 10 2 0 0 7 0 1 1 0
0

200

400

600

800

1000

1200

1400

N
u

m
b

er
 o

f
m

o
d

el
s

Number of projects that include dublicates of the same model

Figure 11: Histogram of models that have duplicates in one
or more projects. The histogram shows the number of mod-
els by number of projects within which occurrences of a
model were identified.

collection. For example, we search for UML candidates using
a GHTorrent dump, but accessed the GitHub API to retrieve
further information about model contributors. Due to the
difference in time between the creation of the GHTorrent
dump and the request to the GitHub API, we had drop outs
of identified models/projects during the second step.

In addition, we performed this method for the first time,
which had an exploratory component in trying out what
kind of data we can (and need to) retrieve. This led to the
situation that we accessed the GitHub API several times,
leading to different drop-outs in models and projects for the
different types of information collected.

A lessons learned is that, for the next analysis, we have
to make a clear planning of all required data in advance, to
ensure that at least the second threat to data consistency can
be reduced. For this paper we addressed the problem with
a reduction of the finally analyzed data set to models and
projects for which we had the data points that are necessary
to answer the different research questions.

Static models.
A finding is that many projects use UML only in a very

static way. In such projects models are never updated and
often all models are introduced at the same point in time.
These results confirm findings from smaller studies such as
Yatani et al.’s [23] or our own (Osman et al.’s [15]), who
both found that updates of models are rare. This can have
different reasons. One optimistic interpretation would be
that models are just introduced as first architectural plans
that are followed and used as documentations, but never
changed. Another rather pessimistic interpretation would
be that modeling is just “tried-out” at some point in time
and then dropped. An observation that at least supports the
idea that the optimistic interpretation plays a role is that
in most projects the main activities of introducing models
happen during the first half of all commit activities.

C.1. THE QUEST FOR OS PROJECTS THAT USE UML: MINING GITHUB 65

Projects with regular model usage.
Another number that we consider surprisingly high is the

number of projects (or models) with more than 20 updates
as well as projects with more than 1 year of active UML
creation and modeling. Again, compared to the number of
overall GitHub projects the here found number seem small.
Nonetheless, it was unexpected to find several projects that
seem to use modeling on a regular basis.

It has to be noted that the results we found are in contrast
to the study of Langer et al. [12] who found an average
model lifespan of 1 247 days, while studying 121 enterprise
architecture models in open source. We found much lower
lifespans. The difference in the findings might be caused by
the fact that enterprise architect is a modeling tool that is
rather used in an industrial context. Thus, the probability
that the projects studied by Langer et al. [12] have industrial
support is very high.

Model genesis.
An aspect that we could not address in this study the

source of the models or the reason for model usage. Accord-
ingly, the data set was not filtered to exclude for example
student projects. We expect this to influence the the find-
ings in this paper, since student projects might show differ-
ent patterns of model updates, model introduction time, and
life span than non-student projects. Addressing this threat
will be subject to future work.

Different populations.
A finding that is supported by multiple of the figures

shown above is that there seem to be different populations
of model usage. A first hint that the data set covers different
populations can be seen in Table 2. There is a difference in
the number of model updates between projects with more
than 100 model files and projects with less than 100 model
files. One reason for different populations could be the ac-
tual form of model usage and creation. Models might be
created manually or automatically (e.g. through reverse en-
gineering). They might solve as plans for system design or as
description for an already existing system. Model updates
might be performed in order to make small corrections af-
ter an initial creation (leading to updates within in short
span of time) or in order to make a documentation up to
date after a longer phase of system change. At the current
state we do not know whether these populations can actually
be distinguished on their characteristic commit and update
pattern. However, a further hint that they might play a role
can be seen in the relatively constant distribution models
by the amount of commits that were already done within a
project (see Figure 6). We can see model introductions at
all project ages. The in average short time of active UML
creation and modification speaks against the idea that these
introductions at different points in time happen within the
same projects. Thus, it seems that we have to deal with
different groups of projects introducing their models at dif-
ferent points in time. In future work we plan to have a closer
look at the model usage in order to study whether we can
associate pattern to different populations of model use.

Duplicates.
The large number of identified duplicates leads to ques-

tions. What are the reasons for duplicates? Missing model
versioning techniques alone cannot explain the found results.

Furthermore, it is not clear yet whether these duplicates
represent a form of model use. E.g. if models are adopted
together with code from other projects, they might be used
to understand the alien code that is embedded in a new
project.

Paving the way for future research.
Finally, one of our main contributions is that we presented

a method to systematically mine for UML models in GitHub
and that this leads to an enormously promising set (much
larger than any existing set of projects) for future analysis.
On the one hand this will help us to address in future ques-
tion that arise from the findings of this paper. For example,
concerning the model updates, it would be interesting to
consider following questions:

• Are models updated by their original authors or by
other people?

• In how many projects are UML files obsolete?

Further considering the time of model introduction, we would
like to address the following question further: Has the time
of introduction an influence on the ”success” of an open
source project, i.e. the question how many developers join
a project? And of course we would like to address the ques-
tion whether different populations of model-usages can be
statistically distinguished.

Even more important, the hereby published list of open
source projects using UML can help other researchers to
progress in their studies. For example:

• What kind of UML diagrams are used most often?

• What coding languages are used most often in combi-
nation with UML?

• What files are changed together with changes in archi-
tectural models?

• Can UML help to attract and integrate inexperienced
developers?

Furthermore, the data can be used to find case studies for
other model or architecture related research, such as:

• Does a good architectural design in models help to
create a good architecture in the code?

• Tools for traceability management and model merging
can benefit from the real case studies.

• Research that integrates models into fault prediction
can be evaluated with the help of that data.

Thus, we believe that the identified initial list of open
source projects with UML will be of great help for other
researchers, too.

7. THREATS TO VALIDITY
We defined a number of threats to our research’s validity.

We categorized them by using the validity terminology in-
troduced by Wohlin et.al [22]. We identified three types of
threats to validity, they are: Construction Validity, External
validity and Conclusion Validity.

7.1 Threats to construct validity
There were a number of threats that might cause the loss

of UML files during data collection phase:

66 APPENDIX C. PUBLISHED PAPERS

• With regards to the materials that were used to collect
data, we used a subset of GHTorrent SQL dump from
2015-06-18 which is out-dated at the current time. Ac-
cordingly, newer projects have a higher probability to
be dropped out. In addition, the limitation of 5 000
hits per hour of GitHub API made data collection last
long. Requests that were done at different points of
time during the period could give different outcomes,
and probably the loss of potential UML files.

• Our collection method, which made use of a number
of heuristic filters, might overlook potential UML files
which are not complying with searching terms and file-
type list. We noticed some cases where UML files had
been named differently such as act-cartesortir.jpg and
FrameworkInterface.png. Further, we restricted the
search to file formats for which we had techniques to
decided, whether the file includes UML. This excludes
a couple of other formats which might include mod-
els, such as some formats from modeling or graphic
tools (e.g. visio files or enterprise architect files), but
also documents that might include models as part of
documentations, e.g. pdf and word (docx) files or pow-
erpoint.

The loss of UML files might affect to our analysis in the
sense that it could make us underestimate the number of
projects with UML models and the number of UML models.
Being aware of the above consequences, in this research, we
don’t use our data to analyze the frequencies of model usage
as well as the evolution of model usage in general over *the
years*. We were focused on getting an overview of various
aspects of the use of UML in GitHub projects. We expect no
systematic bias concerning the aspects that we investigated!

The applied mechanisms for duplicate detection allow us
to identify duplicates within the same file type. However,
we cannot identify whether an image and an .xmi file are
duplicates. This might lead to an underestimation of the
amount of models in this paper. Despite this limitation,
our results are already interesting and we consider them a
valuable staring point, towards a better understanding of
model usage in FOSS.

Kalliamvakou et.al discuss a number of promises and po-
tential risks that researcher might be faced when mining
GitHub repository [10]. We found that the threat that many
active projects might not conduct all their software devel-
opment in GitHub could somehow mitigate our analysis.

7.2 Threats to external validity
During data collection phase, in order to minimize the

possibility of incorrectly collect non-UML files, we excluded
some tool-specific file types form the search for UML mod-
els. This might reduce the generalization of our results with
respect to these UML tools. However, most of these tools,
e.g. Enterprise Architect, are commercial. It is to be inves-
tigated in future work whether they are used in open source
projects to a similar degree as non-commercial formats.

Data in this research was only taken from GitHub, but
not other OSS hosts/platforms such as SourceForge, Google
Code, etc. As they differ to each other in terms of size,
functionality, users and user’s behaviors, the results of this
paper can hardly be generalized to the other platforms. It
is possible that UML is used in a different ration within
projects at other platforms. However, as GitHub is one of

the biggest player in the field, we strongly believe that our
investigation gives valuable insights to a majority of the OSS
community.

A manual glance at the retrieved list of UML models
shows that several project paths include names such as “As-
signment” or “master’s thesis”. While this is no direct threat
to our results, it limits the generalizability. For example, it is
possible that many of the projects that include single UML
files only, actually are result of university teaching.

Last but not least, outcomes of this research can not be
generalized to closed source community.

7.3 Threats to conclusion validity
As described above, the data has some limitations which

permit to do analysis of frequencies, since we expect to have
only discovered a part of the overall set of UML models
and respective projects. In particular we have not consid-
ered powerpoint, pdf, and word-formats of documentation in
which UML models may be embedded. For that reason we
do not do statistical analysis or even predictions, but stay
on a descriptive level in this paper. Nonetheless, we are
convinced that this descriptive analysis already represents a
valuable contribution to the research community.

8. CONCLUSIONS
In this paper we joined forces in repository mining and

model identification in order to identify open source projects
on GitHub that contain UML models.

As a result we can present a list of 3 295 open source
projects which include together 21 316 UML models. This is
the first time the modeling community can establish a corpus
comparable to collections already exist for source code only,
such as QualitasCorpus 7. Furthermore, the relatively low
amount of UML projects amongst the investigated GitHub
projects (0.28%) reconfirmed that our systematic mining ap-
proach was required in order to establish the corpus.

We analyzed the data to gain first descriptive results on
UML model usage in open source. One finding is that the
majority of models is never updates, but that projects ex-
ist that do update their models regularly. Furthermore, we
learned that models can be introduced during all possible
phases in the lifespan of an open source project. Nonethe-
less a peak of model introduction is during the first 10% of
the duration of projects.

A few projects are active with UML during their whole
lifetime. However, most projects work very shortly actively
on UML, usually at the beginning. We found that 12% of
the distinct models occurred several times. Duplicates are
in average spread across 1.88 projects.

In the future we plan to further explore the possibilities
that arise with the here presented new method to collect
data about UML usage in open source projects. For example
we plan to analyze the impact of model usage on project
dynamics, such as the number of people joining projects. We
are planning to proceed with mining GitHub in future work.
Based on the now investigated 10% of GitHub we expect
that GitHub includes around 34 000 projects with UML and
together around 200 000 UML models. Furthermore, we
will investigate possibilities to identify UML models that
are embedded in other files such as manuals stored in pdf.

7QualitasCorpus http://qualitascorpus.com/

C.1. THE QUEST FOR OS PROJECTS THAT USE UML: MINING GITHUB 67

9. REFERENCES
[1] O. Badreddin, T. C. Lethbridge, and M. Elassar.

Modeling practices in open source software. In Open
Source Software: Quality Verification, pages 127–139.
Springer, 2013.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. Unified
Modeling Language User Guide, The (2Nd Edition)
(Addison-Wesley Object Technology Series).
Addison-Wesley Professional, 2005.

[3] E. Chung, C. Jensen, K. Yatani, V. Kuechler, and
K. N. Truong. Sketching and drawing in the design of
open source software. In Visual Languages and
Human-Centric Computing (VL/HCC), 2010 IEEE
Symposium on, pages 195–202. IEEE, 2010.

[4] W. Ding, P. Liang, A. Tang, H. Van Vliet, and
M. Shahin. How do open source communities
document software architecture: An exploratory
survey. In Engineering of Complex Computer Systems
(ICECCS), 2014 19th International Conference on,
pages 136–145. IEEE, 2014.

[5] R. France, J. Bieman, and B. H. Cheng. Repository
for model driven development (remodd). In Models in
Software Engineering, pages 311–317. Springer, 2007.

[6] G. Gousios and D. Spinellis. Ghtorrent: Github’s data
from a firehose. In Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on, pages
12–21. IEEE, 2012.

[7] R. Hebig, T. Ho Quang, G. Robles, and M. R.
Chaudron. List of identified projects with uml and
replication package. http://oss.models-db.com.

[8] T. Ho-Quang, M. R. V. Chaudron, I. Samúelsson,
J. Hjaltason, B. Karasneh, and H. Osman. Automatic
classification of uml class diagrams from images. In
Proceedings of the 2014 21st Asia-Pacific Software
Engineering Conference - Volume 01, APSEC ’14,
pages 399–406, Washington, DC, USA, 2014. IEEE
Computer Society.

[9] Y. Jiang and B. Adams. Co-evolution of infrastructure
and source code - an empirical study. In 12th
IEEE/ACM Working Conference on Mining Software
Repositories, MSR 2015, Florence, Italy, May 16-17,
2015, pages 45–55, 2015.

[10] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining github. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
MSR 2014, pages 92–101, New York, NY, USA, 2014.
ACM.

[11] B. Karasneh and M. R. Chaudron. Online img2uml
repository: An online repository for uml models. In
EESSMOD@ MoDELS, pages 61–66, 2013.

[12] P. Langer, T. Mayerhofer, M. Wimmer, and
G. Kappel. On the usage of uml: Initial results of
analyzing open uml models. In Modellierung,
volume 19, page 21, 2014.

[13] S. McIntosh, B. Adams, and A. E. Hassan. The
evolution of ant build systems. In Mining Software
Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 42–51. IEEE, 2010.

[14] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and
A. E. Hassan. An empirical study of build
maintenance effort. In Proceedings of the 33rd

international conference on software engineering,
pages 141–150. ACM, 2011.

[15] M. H. Osman and M. R. V. Chaudron. UML usage in
open source software development : A field study. In
Proceedings of the 3rd International Workshop on
Experiences and Empirical Studies in Software
Modeling co-located with 16th International
Conference on Model Driven Engineering Languages
and Systems (MoDELS 2013), Miami, USA, October
1, 2013., pages 23–32, 2013.

[16] G. Reggio, M. Leotta, and F. Ricca. Who knows/uses
what of the uml: A personal opinion survey. In
Model-Driven Engineering Languages and Systems,
pages 149–165. Springer, 2014.

[17] G. Robles, J. M. González-Barahona,
D. Izquierdo-Cortazar, and I. Herraiz. Tools for the
study of the usual data sources found in libre software
projects. International Journal of Open Source
Software and Processes, 1(1):24–45, 2009.

[18] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo.
Beyond source code: the importance of other artifacts
in software development (a case study). Journal of
Systems and Software, 79(9):1233–1248, 2006.

[19] H. Störrle, R. Hebig, and A. Knapp. An index for
software engineering models. In International
Conference on Model Driven Engineering Languages
and Systems (MoDELS) 2014, pages 36–40, 2014.

[20] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and
G. Reggio. Relevance, benefits, and problems of
software modelling and model driven techniques - A
survey in the italian industry. Journal of Systems and
Software, 86(8):2110–2126, 2013.

[21] B. Vasilescu, A. Serebrenik, M. Goeminne, and
T. Mens. On the variation and specialisation of
workload - a case study of the gnome ecosystem
community. Empirical Software Engineering,
19(4):955–1008, 2014.

[22] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering: An Introduction. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[23] K. Yatani, E. Chung, C. Jensen, and K. N. Truong.
Understanding how and why open source contributors
use diagrams in the development of ubuntu. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 995–1004. ACM,
2009.

68 APPENDIX C. PUBLISHED PAPERS

C.2. AN EXTENSIVE DATASET OF UML MODELS IN GITHUB 69

C.2 An extensive dataset of UML models in GitHub

This paper was published in the MSR conference (Buenos Aires, Argentina), in May 2017. The

complete reference is following:

Robles, G., Ho-Quang, T., Hebig, R., Chaudron, M. R., & Fernandez, M. A. (2017, May). An

extensive dataset of UML models in GitHub. In Proceedings of the 14th International Confer-

ence on Mining Software Repositories (pp. 519-522). IEEE Press.

An extensive dataset of UML models in GitHub
Gregorio Robles∗, Truong Ho-Quang†, Regina Hebig†, Michel R.V. Chaudron†, Miguel Angel Fernandez∗

∗GSyC/LibreSoft, Universidad Rey Juan Carlos, Madrid, Spain
grex@gsyc.urjc.es, mafesan.nsn@gmail.com

†Chalmers — Göteborg University, Göteborg, Sweden
{truongh, hebig, chaudron}@chalmers.se

Abstract—The Unified Modeling Language (UML) is widely
taught in academia and has good acceptance in industry. How-
ever, there is not an ample dataset of UML diagrams publicly
available. Our aim is to offer a dataset of UML files, together with
meta-data of the software projects where the UML files belong to.
Therefore, we have systematically mined over 12 million GitHub
projects to find UML files in them. We present a semi-automated
approach to collect UML stored in images, .xmi, and .uml files.
We offer a dataset with over 93,000 UML diagrams from over
24,000 projects in GitHub.

Keywords-dataset; UML; GitHub; modeling; mining software
repositories;

I. INTRODUCTION

The Unified Modeling Language (UML) provides the fa-
cility for software engineers to specify, construct, visualize
and document the artifacts of a software-intensive system and
to facilitate communication of ideas [1]. UML is commonly
taught in the computer science curriculum worldwide, and
the use of UML is generally accepted in industrial software
development.

However, the number of publicly available examples of
UML is relatively low. To the knowledge of the authors, the
largest UML dataset up-to-date is the one reported in [2],
with around 800 UML models obtained by collecting examples
from the literature, web searches, and donations. However, that
dataset only contains lone-standing diagram. Thus, it cannot be
used for studying the software systems and projects associated
to these diagrams.

Even though it has been reported the UML is marginally
used in Open Source projects [3]1, the large amount of
repositories hosted in GitHub offers the possibility to look for
a large number of UML models used in software development
projects, together with their source code and development
meta-data. This is the reason why we have mined GitHub
for UML files. The result of this effort is a dataset with over
93,000 files with UML diagrams. These diagrams comprise
several types and formats and offer a valuable data source
for educational purposes, as they can be used as real-scenario
examples in class, and for further research.

The remainder of this paper is structured as follows: Next,
we introduce how we have extracted the data. Section III
contains the database schema, while section IV offers the

1In [3], we used a similar extraction methodology than the one presented
here but with only ∼10% of the GHTorrent repositories as of 2016-02-01.

possibilities that such a dataset offers to researchers and prac-
titioners. After presenting future improvements in Section V,
we detail the limitations and challenges in Section VI. Finally,
conclusions are drawn in Section VII

II. EXTRACTION METHODOLOGY

The data extraction process comprises the following four
steps: (i) retrieval of the tree (file list) from GitHub repositories
(Section II-A), (ii) identification (grepping) of potential UML
files (Section II-B), (iii) automated examination (and manual
evaluation) of the existence of UML notation in the obtained
files (Section II-C), and (iv) retrieval of the meta-data from
those repositories where a UML file has been identified
(Section II-D).

A. Step 1: Mining GitHub

We depart with a list of GitHub repositories obtained from
GHTorrent [4]2, which offers a list of over 15M non-forked
non-deleted repositories. Since GHTorrent now distributes
CSV files (one file per table) instead of mysqldump based
backups, we use data available in the projects.csv file: the
URL of the project and the values of forked from and deleted
(as we discard those projects that are forks or have been
removed/deleted).

For those projects that are not forks nor have been deleted,
we retrieve from the GitHub API3 the tree (file list) for the
master branch. If the master branch does not exist, then we
query again the GitHub API for the branch that the project
has set as default, and perform a third request to download its
tree. With up to three GitHub calls for each repository, given
the GitHub API limitation of 5,000 requests/hour, it would
take around 14 months to perform the retrieval of data in
this first step. As this would have made the data gathering
unfeasible, we downloaded the JSON files in parallel with
over 20 active GitHub accounts, which were donated during
this process. This reduced the time span to approximately one
month. For almost 3 million of the repositories we obtained an
empty JSON file or an error message from the GitHub API,
because the repository has been removed or made private in
the time that goes from GHTorrent obtaining its data (which
is before February 1st 2016) and our request to the GitHub
API (during Summer of 2017).

2Specifically its 2016-02-01 data release: https://ghtstorage.blob.core.
windows.net/downloads/mysql-2016-02-01.tar.gz

3https://developer.github.com/v3/git/trees/#get-a-tree

70 APPENDIX C. PUBLISHED PAPERS

UML Models

Image Formats,
e.g.: .jpg, .png …

Tools with drawing
functionality, e.g. PowerPoint

Tool specific file
formats, e.g.

.eap, .pptx, .argo,
.ecore …

Standard formats for storing and
transferring UML models:
• .uml
• .xmi

Modeling tools, e.g.:
• Eclipse UML2 Tools,
• Enterprise Architect,
• Modelio,
• ArgoUML,
• Microsoft Visio,
• …

Manual sketches,
e.g. scans

«store as»
«store as»

«export/store as» «store as»«export»

«export/store as»

Fig. 1: There is a large variety of tools for creating and formats
for storing UML models

Step 1 results in a JSON file per repository with information
of the files included in it – altogether, we store around 12,5
million JSON files that suppose 126 GB of compressed data.

B. Step 2: Identify potential UML files

To understand how we searched for files containing UML
in the file lists from GitHub, it is important to understand
how these files are created and stored. Figure 1 illustrates
the different sources of UML files (at the bottom in green).
UML models can be created in several ways: (i) by drawing
manually, (ii) with the use of tools that have drawing func-
tionality (e.g., Inkscape or Dia), or dedicated modeling tools
(e.g., Modelio or Argo UML). Some of the modeling tools
even provide the possibility of generating UML models, for
example, based on the source code. The variety of tools results
in different ways in which UML models can be represented
in files. Figure 1 shows these possibilities (at the top in blue):

1) Manual sketches may be digitized with scanners or digital
cameras and may be stored in image files of diverse
formats.

2) Tools with drawing capabilities may either store the UML
models as images, such as .jpeg and .png or .bmp, or may
have tool specific formats, e.g. “pptx”.

3) Dedicated modeling tools usually manage file formats
that are tool specific, e.g., the “.eap” extension is used
by the Enterprise Architect tool. Other tools work with
‘standard’ formats, such as “.uml” and “.xmi”. However,
modeling tools with specific formats often allow you to
export and import the UML diagrams in these standard
formats, as well as in images.

As a consequence, when looking for UML, one needs to
consider many different file types. Nonetheless, not all files
with a given extension, even those that are tool-specific or
standard formats, contain a UML diagram. Therefore, the
result of this step will be a list of files that potentially contain
UML. These files will have to be checked in the next step.

Given the large amount of files that could be identified
as potentially containing UML, we collect in this step only
those types of files for which we have automated support
to verify that they really contain UML, e.g., we have not
considered tool-specific formats and other formats where UML

files might be included, such as Word documents (.doc(x)),
Portable Document Format documents (.pdf) or PowerPoint
slides (.ppt(x)) as there is no current way of extracting the
UML models out of them in an automated way.

The list of file types that we look for is composed of:
• Images: Common filenames for UML files (such as

“xmi”, “uml”, “diagram”, “architecture”, “design”) that
have following extensions (“xml”, “bmp”, “jpg”, “jpeg”,
“gif”, “png”, “svg”)

• Standard formats: [“uml”, “xmi”]
The output of step 2 is a list of URLs with potential UML

files.

C. Step 3: Verify UML files

Files obtained in the previous step are verified for containing
UML diagrams. The procedure followed depends on the nature
of the file: images or standard formats. The output of this step
is a list of URLs with files with a very high probability of
containing UML diagrams.

1) Identify UML images: 423,974 images are successfully
downloaded. 18,570 files that cannot be downloaded or opened
are removed from the list. 100,032 images that have icon-
dimension-size i.e. at most 128 x 128 pixels were excluded.

Some images are icons and duplicates. For them, we i)
created a script to automatically detect them; ii) added only
one representative image for all duplicates found and iii)
marked all duplicate images with the same label obtained
in the classification as the representative image. We detect
duplicate images with a script that uses the open source .NET
“Similar images finder”4 library. This library offers the degree
of similarity between two images by calculating the differences
in their RGB projections. Two images are considered similar
if the degree is above a given threshold; after several tests on
a subset of all images, we used a threshold of 95%.

The final image set of 154,729 images were classified
as UML or non-UML images with support of an existing
classifier [5]. In particular, all images were first classified
as UML class diagrams or non-UML CD images. Then we
manually looked for other types of UML diagrams (e.g.,
sequence diagrams, component diagrams, use cases) within
the non-UML CD images. Sketches of UML were counted, as
well. It took 6 working days of effort by multiple UML experts
to complete the task. As a result, we identified altogether
57,822 UML images/models.

2) Identify UML files among .xmi and .uml files: Both
.xmi and .uml files are specific XML (eXtensible Markup
Language) formats. By manual checking we found that files
with the .uml extension are surely UML. We decided to
include all of them in the final UML file list.

The XML Metadata Interchange (XMI) is an Object Man-
agement Group (OMG) standard for exchanging metadata
information. Each XMI file has to contain a schema that
defines the format of the content. Looking at this schema
allows us to verify if it is a file containing UML. We have

4https://similarimagesfinder.codeplex.com/

C.2. AN EXTENSIVE DATASET OF UML MODELS IN GITHUB 71

TABLE I: Number of UML models per file format

File format .xmi .uml images
Number of models 3,700 32,074 57,822

found that the schema reference is generated in different ways
by different tools. For example, we found the following three
schema references: “org.omg/UML”, “omg.org/spec/UML”,
and “http://schema.omg.org/spec/UML”. Thus, we performed
the following identification procedure:

1) Identify possible schema references, by searching for
“UML” and “MOF” (the meta-model of the UML lan-
guage) in a random subset of the models. 7 different
references were found.

2) Download .xmi files and parse them for their schema
references. We identified 3,700 files with UML schema
references.

D. Step 4: Metadata Extraction

The input of this phase is a list of URLs that link to files
that contain UML. The GitHub repository where the file is
hosted can be identified from its URL. We downloaded all
repositories where at least one UML file was identified and
extracted its metadata with the help of the perceval tool5,
an enhanced version of CVSAnalY [6] that allows to retrieve
meta-data from git repositories in parallel.

After this process, we had identified 93,596 UML models
from 24,717 repositories. Figure I shows the number of
the UML models by their file format. We stored links to
these models and their corresponding meta-data in a SQL
database. A new SQL table was added to the ones provided
by CVSAnalY with just the UML files for easy and efficient
querying.

III. DATABASE SCHEMA

The main dataset consists of two CSV files 6.
• UMLFiles List.csv lists all identified UML files, sorted

by project name.
• Project FileTypes.csv lists all projects with summary in-

formation and statistics per project, including the number
of identified UML files and the file format (.xmi, .uml,
.jpg, .jpeg, .svg, .bmp, .gif, or .png) of the UML files.

The first line in the CSV files contains self-explanatory
variable names of the columns. In addition, we provide meta-
data of the repositories where UML files have been identified;
its database schema is shown in Figure 2. The main entities
and relationships are as follows:

• repos: Each repository has a unique name, a founder, a
URL to its GitHub page, and a total number of commits.
Dates of the first commit and the last commit are recorded
in first commit and last commit, respectively.

• umlfiles: This table contains information of all UML
files/models. Each UML file has a unique id, and belongs

5https://github.com/grimoirelab/perceval
6Data-set: http://oss.models-db.com/

Fig. 2: The relational database schema

to a specific repository characterized by a repo id. Each
UML file has a name and can be changed in multiple
commits. The commits id field is a foreign key to the
commits table, where all commits to a given UML file
can be tracked. Field url shows the URL of the latest
(i.e., the current version) UML file on GitHub.

• commits: Each commit has a gh id (a.k.a. sha) which is a
global unique identifier, a commit date and belongs to one
repository. A commit is committed by one person whose
id is people id. The number of files changed within this
commit is recorded in cochanged.

• file commits: Each file commit has a unique ID and
belong to a specific commit. Field name indicates the
name of the committed file. Field filetype shows the type
of the committed file based on a predefined classification
(e.g., source code, documentation) 7.

Our database schema can be augmented with information
provided by GHTorrent (and described in [4]). For instance,
in our schema, we have included the Users table, which linked
with the data in the people table (from GHTorrent) which
contains demographic information of the committers of UML
files.

IV. RESEARCH WITH THIS DATA

We consider the dataset as relevant for researchers in the
area of software design and modeling, because the whole
community lacks good examples of not just models, but
software systems that are built with the help of models as well.
The need can be seen on several previous initiatives to collect
datasets, which are often limited in the number of collected
models [7]. The future uses of our dataset can be sorted in
three groups:

a) Advantages and Trade-Offs of UML: The dataset can
be the basis for empirical studies on the advantages and
disadvantages of UML (and modeling). Some researchers have
already used it to investigate if anti-patterns are propagated

7Classification of filetypes: https://github.com/MetricsGrimoire/
CVSAnalY/blob/master/pycvsanaly2/extensions/FileTypes.py

72 APPENDIX C. PUBLISHED PAPERS

from models to the code [8]. Our dataset can help to enrich this
research, which qualitatively investigates single cases, with
quantitative studies. Further, the dataset can help to study in
more general how the use of UML modeling impacts the code
structure and whether improvements in software quality and
productivity can be observed when UML is introduced.

b) UML Use: The dataset can be used to study how UML
is used and to develop guidelines for UML novices. For exam-
ple, the data could be used to learn what model layouts OSS
developers use and what average size models have. Studying
UML that occurs in images can also deliver hints on needs
that OSS developers have for visual highlighting strategies. For
example, during the manual check of the images, we have seen
a lot of UML images where color was used for highlighting.
Furthermore, due to the availability of the models (and the
projects they belong to), the dataset will allow to analyze how
code and models are related to each other; we still do not
know what amount of a software system is typically covered
by models and to what degree models abstract the code.

c) Evaluation of Scientific Approaches and Modeling
Tools: Constructive research on software modeling often has
the problem that there are not enough real cases of models
to evaluate newly developed approaches and techniques. Cur-
rently, this limitation is worked around on the basis of toy
examples or artificially generated models. In exceptional cases,
researchers are allowed to use obfuscated industrial models or
models created with the help of practitioners for the purpose
of the evaluation [9]. Our dataset provides real cases of UML
models in machine readable form. Professional tool vendors,
who provide case tools for modeling, might be able to use the
dataset to test new features on real data e.g. layout generation.

V. FUTURE IMPROVEMENTS OF THE DATASET

Due to the fact that GitHub is a living organism with
projects appearing and disappearing over time, it will be neces-
sary to curate the dataset in the future. Especially for models
that are stored in images, this is today still associated with
manual effort. We believe that image recognition techniques
will improve in future and will help automate this task.

Besides that we plan to extend the dataset in the future.
For example, we still do not cover all file types that include
UML. Similarly, software models that do not follow the UML
standard, such as SysML models, are not part of the dataset.

However, it is not just future extensions that will make the
dataset more valuable, but also annotations that can be made to
the dataset. We have been requested to label the UML diagram
types used. Similarly, information about the goals of project
for using models, e.g., for design or documentation, can be a
valuable addition.

VI. LIMITATIONS AND CHALLENGES

Although the dataset is a huge progress for research on
model driven engineering, there are still some limitations that
should be considered when using it.

First, there are general issues with GitHub data, such as the
high number of student projects [10]. Many of these problems

also hold for our dataset. Researchers using the dataset should
filter it beforehand according to their needs.

GitHub being a dynamic environment, it is possible that
projects and models become inaccessible over time. Users
might experience that single projects or files cannot be found
in GitHub anymore. In addition, the dataset is not a complete
list of UML in GitHub, e.g., due to limitations in the searched
file formats. Therefore, the dataset cannot be used to know the
frequency of UML in GitHub projects.

Finally, due to the large scale of the dataset we cannot
exclude that some of the files identified as UML are false
positives, i.e., do not actually include UML. We have put a
lot of effort, e.g., with manual checks, into ensuring the quality
of the data. Researchers using the dataset should have a critical
look at the models.

VII. CONCLUSIONS

We offer a dataset with over 93,000 publicly available UML
models in GitHub from over 24,000 projects, offering a dataset
that is two orders of magnitude larger than current datasets.
Mining GitHub and identifying UML diagrams is not a trivial
task. The main challenges that we had to face to obtain the
dataset have been because of the large amount of data that
we had to handle, and the assessment of the different types
of files that are used to store UML. Our dataset offers many
possibilities for research and education on UML and modeling.

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide, The (2Nd Edition) (Addison-Wesley Object Technology
Series). Addison-Wesley Professional, 2005.

[2] B. Karasneh and M. R. V. Chaudron, “Online img2uml repository: An
online repository for UML models,” in EESSMOD@ MoDELS, 2013,
pp. 61–66.

[3] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for Open Source projects that use UML: Mining
GitHub,” in Proceedings 19th International Conference on Model Driven
Engineering Languages and Systems, 2016, pp. 173–183.

[4] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in Mining Software Repositories (MSR), 2012 9th IEEE Working Con-
ference on. IEEE, 2012, pp. 12–21.

[5] T. Ho-Quang, M. R. V. Chaudron, I. Samúelsson, J. Hjaltason, B. Karas-
neh, and H. Osman, “Automatic classification of UML class diagrams
from images,” in Proceedings of the 2014 21st Asia-Pacific Software
Engineering Conference - Volume 01, 2014, pp. 399–406.

[6] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, and I. Her-
raiz, “Tools for the study of the usual data sources found in libre software
projects,” International Journal of Open Source Software and Processes,
vol. 1, no. 1, pp. 24–45, 2009.

[7] H. Störrle, R. Hebig, and A. Knapp, “An index for software engineering
models,” in International Conference on Model Driven Engineering
Languages and Systems (MoDELS) 2014, 2014, pp. 36–40.

[8] B. Karasneh, M. R. V. Chaudron, F. Khomh, and Y.-G. Gueheneuc,
“Studying the relation between anti-patterns in design models and
in source code,” in Software Analysis, Evolution, and Reengineering
(SANER), 23rd International Conference on, vol. 1, 2016, pp. 36–45.

[9] P. Pietsch, D. Reuling, U. Kelter, J. Folmer, and B. Vogel-Heuser,
“Experiences on the quality and availability of test models for model
differencing tools,” in Free Models Initiative Workshop Proceedings,
2014, p. 11.

[10] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 92–101.

C.2. AN EXTENSIVE DATASET OF UML MODELS IN GITHUB 73

74 APPENDIX C. PUBLISHED PAPERS

C.3 Practices and Perceptions of UML Use in OS Projects

This paper was published in the ICSE (SEIP track) conference (Buenos Aires, Argentina), in

May 2017. The complete reference is following:

Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M. R., & Fernandez, M. A. (2017, May). Prac-

tices and perceptions of UML use in open source projects. In Software Engineering: Software

Engineering in Practice Track (ICSE-SEIP), 2017 IEEE/ACM 39th International Conference

on (pp. 203-212). IEEE.

Practices and Perceptions of UML Use in Open Source Projects

Truong Ho-Quang, Regina Hebig, Michel R.V. Chaudron
Chalmers — Göteborg University

Göteborg, Sweden
{truongh, hebig, chaudron}@chalmers.se

Gregorio Robles, Miguel Angel Fernandez
GSyC/LibreSoft

Universidad Rey Juan Carlos, Madrid, Spain
grex@gsyc.urjc.es, mafesan.nsn@gmail.com

Abstract—Context: Open source is getting more and more
collaborative with industry. At the same time, modeling is today
playing a crucial role in development of, e.g., safety critical
software. Goal: However, there is a lack of research about the
use of modeling in open source. Our goal is to shed some
light into the motivation and benefits of the use of modeling
and its use within project teams. Method: In this study, we
perform a survey among open source developers. We focus on
projects that use the Unified Modeling Language (UML) as a
representative for software modeling. Results: We receive 485
answers of contributors of 458 different open source projects.
Conclusion: We found out that collaboration seems to be the
most important motivation for using UML. It benefits new
contributors and even contributors who do not create models.
Teams use UML during communication and planning of joined
implementation efforts.

Keywords-UML; architecture documentation; OSS projects;
GitHub; motivation; communication; effectiveness of UML

I . I N T R O D U C T I O N

Open Source, which has its roots in the free software
movement, started partially as a counter-movement to the
software industry in the 80s and 90s [1]. Even though,
there was a clear border between Open Source and industry,
in the late 90s and early 2000s, the situation started to
change. In those years, some industry started to early adopt
the open source movement practices, collaborating with
communities [3], or some companies were created around
some communities [4]. Many projects created foundations
to serve as an umbrella to collaborate and integrate software
industry partners [5].

Thus, we have witnessed a process and technology transfer
among open source software (OSS) and industry, that has
made the line between both be vague nowadays. Notable
contributions from OSS to industry have been technologies,
such as git and GitHub, and community-managing practices,
although the list of adoptions is much larger [6]. On the
other hand, OSS has embraced practices from industry,
such as (modern) code review practices and planning and
requirements analysis mechanisms [7]. Companies with a
large pool of developers try to have an “internal” OSS-like
ecosystem, a concept coined as inner source [8]. Many OSS
practices are commonly taught at universities and young
graduates start their professional careers with experience in
OSS, whether in languages (Python, Perl, Ruby...), products

(JQuery, Hadoop...) and tools (GCC compiler tool chain, git
and GitHub...) [9]. And the software industry is looking into
popular Open Source repositories, such as GitHub, to find
suitable candidates to fill open development positions [10].

In this regard, we have seen a clash of two worlds, resulting
in new practices where industry sometimes has adopted
elements from OSS and vice versa. As the trend seems
to go on, we would like to draw attention on modeling,
specifically on the use of Unified Modeling Language (UML)
in OSS. UML has been around as a graphical language
for modeling software systems for about 25 years. As far
as it is known, UML is not yet frequently used in OSS
projects, with a rather marginal use [11]. OSS is known
to be programming-driven, with other tasks having room
for further improvement [12]. However, modeling is used in
major companies [14]. Modeling is, thus, an area where we
can find a gap between OSS and industry. Given that the use
of UML in OSS is not very well-known, we would like to
shed some light into this issue with the aim of discovering
how UML is used and whether it is considered useful. We
hope that the results will help to understand whether the use
of UML in open source helps these projects and whether
industry working with open source projects should promote
the UML use.

To this end, we used a technique, that we developed to
find UML in GitHub projects [11]. The paper showed the
feasibility of our approach and triggered us to come up with
various research questions addressed in this paper. For this
paper we scanned through the majority of non-forked GitHub
projects (over 12 million of projects) and identified which
of these projects use UML.

We performed a large scale survey directed at those
projects that use UML, with focus on how the UML is used
and how it impacts development activities. Contributions
of this research are: i) the identification of a large set of
open source projects that use UML and ii) insights from a
large scale survey under developers of open source projects
into use of UML. Amongst other insights, we found that
UML is used to coordinate the development. Furthermore
the use of UML seems to help new contributors to get started,
while it does not seem to attract new contributors. The set
of projects we identify are a valuable resource for future
empirical studies regarding the UML.

C.3. PRACTICES AND PERCEPTIONS OF UML USE IN OS PROJECTS 75

The rest of this paper is constructed as follow: We
formulate a number of research questions in Section II,
then introduce related work (Section III) and describe our
research method in Section IV. Section V presents our
findings. We discuss the our findings, possible threats to
validity and implications of our research in Section VI and
giving conclusions in Section VII.

I I . R E S E A R C H Q U E S T I O N

To better understand the use of UML in OSS, we formulate
the following 3 main research questions:
RQ1 Why is UML used in OSS projects?

To get an impression of the role of UML models in OSS
we formulate following this first question.

• SQ1.1 What are the motivations to use UML modeling?
• SQ1.2 What are the reasons not to use UML in projects?

RQ2 Is UML part of the interaction of (a team of) contribu-
tors?

Teams and interaction between developers play an im-
portant role within todays software intensive industry [13].
Models are used as artifacts that are basis for planning and
work coordination. However, it is an open question, whether
UML models fulfill a similar role in OSS projects. We
approach this question from three aspects: 1) the awareness
within the project that UML models are available, 2) the use
of UML during project planning and communication, and
3) the role of UML during joined implementation efforts.
These three sub-research questions are structured:

• SQ2.1 Are developers aware of the existence of UML
in their projects?

• SQ2.2 Are UML models used during communication
and team decision making?

• SQ2.3 Are modeled designs adopted afterward during the
implementation phase by teams of OSS contributors?

RQ3 What is impact/benefit of UML? Much research was
performed to identify benefits of UML usage in industry.
However, it is not yet clear whether UML usage impacts
or even benefits development in open source. Again, we
consider three different perspectives: 1) the role of UML for
novice contributors, 2) the impact of UML on the working
routine, and 3) the impact of UML on the attractiveness
of a project for potentially new contributors. The following
sub-research questions are structured:

• SQ3.1 Can UML models support new contributors?
• SQ3.2 What are the impacts of using UML in OSS

projects?
• SQ3.3 Can UML models help to attract new contributors?

I I I . R E L AT E D W O R K

In the following we discuss related studies about UML or
modeling in industry and open source.

A. Modeling in Industry

Modeling is widely studied in industry, for example in
surveys such as the ones performed by Torchiano et al. [14],
Gorschek et al. [15], or Forward et al. [16]. Torchiano et al.
found that models help to improve design and documentation.
However, they also found that model usage is connected to
extra effort, especially due to a lack of supporting tooling.
Forward et al. find that models are primarily used for design
and documentation, while code generation is rather seldom.
Gorschek et al. [15] focused on a different population, which
are programmers, partially working in industry and open
source. Within their sample design models are not use very
extensively. However, models and UML are found to be used
mainly for communication purposes. Further, they report on
a higher use of models for less experienced programmers.

Besides these big surveys also case studies were performed
in order to investigate the impact of the modeling/UML
usage. For example, Baker et al. [17] found an increase of
productivity when using UML in Motorola. Also Nugroho et
al. [18] investigated an industrial case study and found that
UML usage has the potential to reduce the defect density
and, thus, increase the quality of software. Just as in the case
described by Kuhn et al. [13], most of the case studies draw
a picture of model use, where models are actually artifacts
that are produced and consumed by different people.

B. Modeling in Open Source

Much less work has been done on UML use in open source
software. One reason for this is the challenge to actually
find cases that can be studied. For example, Badreddin et
al. studied 20 projects, without finding UML and concluded
that it is barely used in open source [19]. Similarly, Ding et
al. [20] found only 19 projects with UML when manually
studying 2000 open source projects. However, in our previous
work [11] we presented an approach to solve the problem of
finding projects with UML by mining GitHub for projects
with UML.There are several investigations of single or very
small numbers of cases of open source projects that use UML,
e.g. by Yatani et al. [21], who found that models are used
to describe system designs, but are rarely updated. Osman
et al. [22] studied to what ration classes in the diagrams
are implemented in the code. Finally, Kazman et al. [23]
investigate the Hadoop Distributed File System to learn
how documentation impacts communication and commit
behavior in the open source system. There are some studies
that approach model use in open source with a quantitative
perspective, studying large numbers of projects. For example,
to study the use of sketches, Chung et al. [24] collected
insights from 230 persons contributing to 40 open source
projects. Finally, Langer et al. [25] studied the lifespan of
121 enterprise architect models in open source projects.

However, to the best of our knowledge there is so far no
quantitative study targeting the use of UML within the team
communication and its effects.

76 APPENDIX C. PUBLISHED PAPERS

I V. R E S E A R C H M E T H O D O L O G Y

In this section, we describe our study method in details.
The overall process is shown in Fig. 1.

A. Data Collection

First step is to identify UML files in GitHub repositories.
In our previous work, we were able to identify UML files
in around 1.2 million GitHub repositories [11]. In this study,
we extend the data collection work to the whole GitHub
database using data collection method described in the paper.
A number of changes had been made in order to adapt the
big data retrieval. In this section, we briefly summarize the
data collection steps and the changes that were made.

1) Obtaining the full list of GitHub projects: To obtain
the list of projects, we used the data from the February 1st
2015 dump of GHTorrent [26]. From this dataset we could
obtain a list of projects that were not deleted and non-forks.
However, GHTorrent does not contain information on the
files contained in the repositories. Hence, we ended up using
GitHub API to obtain the list of files for a total number
of 12 847 555 repositories. The result is a JSON file per
repository with information on the files hosted in the master
(or default) branch of the repository.

2) Identifying UML files: Next step was to identify UML
files from the file list. Firstly, potential UML files were
collected using several heuristic filters based on the creation
and storage nature of UML files. After that, an automated
process was applied to examine the existence of UML
notation in the obtained files. A manual validation was
made to consolidate the identification result. Details about
the identification steps are described in Section 4 of the
paper [11]. At the end of this step, we were able to identify
93 648 UML files from 24 797 repositories.

3) Extracting meta-data: For all projects that contain a
UML file, development meta-data from the repositories has
been retrieved. Therefore, we use perceval, an evolution
of the well-known CVSanalY software [28], that allows to
obtain these data in JSON files, making it possible to perform
the process in parallel. It took the five instances of the tool
over 4 weeks to complete this task. At the end, and after
removing 240 JSON files that contained a 404 Not Found
response, we had 24 125 JSON files that were parsed and
normalized, and finally converted into SQL.

B. Filtering the obtained projects and contributors

In this phase, we aimed at mitigating a number of
known threats to validity when mining GitHub database, i.e.
sample/short-time projects [29] or identification of contribu-
tors [30]. Section IV-B1 and section IV-B2 show the criteria
that we applied to filter out short-time projects and to merge
duplicate contributors, respectively.

1) Filtering short-time projects: For this paper we aim
at projects that are interesting from an industry perspective.
Thus, we focus on projects that are not short-term and that

do not jut consist of a singe contributor. We define short-
time projects as those projects that have: i) active time (time
between the first and the latest commits) less then 6 months,
OR ii) less than 2 contributors, OR iii) less than 10 commits.
After classifying and filtering short-time projects, 4 650
UML-projects (out of 24 125, we use the term UML project to
refer to GitHub projects that contain UML file(s)) and 2 701
(out of 17 101) non-UML projects met our requirements. The
final list of the projects is shared in our replication package1.

2) Merging duplicate contributors: One contributor can
use different emails, user-name (for example, one changed
his profile user-name or email during the project time). This
might cause duplicate contributors, and as a consequence,
projects with one contributor only could be classified as
having more than one contributor [30]. We merge identities
with different ids that have: i) same e-mail address, or the
same full name -in the case of the full name; ii) names have
to have at least two words or including a number if only a
word, e.g., ”arg123”. This is a rather conservative approach,
but it minimizes the number of false positives [30]. After
running the script, the original 129 276 contributors result
in 99 319 distinct ones.

C. Conducting survey

In the following we give a short overview about how we
conducted the survey.

1) Participant: To ensure that be get a balanced picture,
we had to consider the role that the different contributors
play within the OSS projects with UML. Two dimensions
of roles are important (each questioned person would fulfill
a combination of roles in these two dimensions):

• Founder (F) vs. non-founder (NF)
• Non-UML Contributor (NUC) vs. first UML Contrib-

utor (1UC) & UML Contributor or updater (non-1st
contributor) (UC)

Consequently, each interview participant fulfills one of the
following 6 roles: F-1UC, F-NUC, F-UC, NF-1UC, NF-
NUC, NF-UC. For each project, we randomly selected 3
contributors, to whom we sent the questionnaire. The se-
lected 3 contributors had to fulfill one of the following 3
constellations of roles.

• F-NUC, NF-1UC, NF-UC
• F-1UC, NF-UC, NF-NUC
• F-UC, NF-1UC, NF-NUC

For some projects not all roles could be identified (e.g. there
are not necessarily NUCs or UCs). In this case we contacted
for respectively less contributors.

2) Questionnaire: The questionnaire is designed to meet
the following requirements:

1The replication package for this paper can be found at http://oss.
models-db.com/2017-icse-seip-uml/

C.3. PRACTICES AND PERCEPTIONS OF UML USE IN OS PROJECTS 77

Sent
Received

20	294	emails
1	628	complete	resp.
from	1	559 projects	

Input	to
analyses

485 complete	resp.
485 respondents
458 projects

2 Filter	data
Merge	

contributors
Filter	

projects
3 Conduct	 Survey 5 Analyse result

Define 93	648	UML	models
in 24	797 UML	proj.

GitHubGHTorrent ~ 12 millions projects

1 Data	collection
UML	

projects
Non-UML	
projects

Working	
set

4	650	UML	projects
99	319 contributors

Figure 1: Overall process

Multiple roles: We distinguish for the roles, what
questions they get, in order to facilitate different information
needs. For example, we would ask NUCs whether they are
aware that UML models exist in the project, while we would
ask UCs, whether they think that NUCs are aware of it. Thus,
depending on the role, participants received between 5 (NF-
NUC) and 19 (F-1UC) questions.

Exploration: We use a funneling approach (from broad
to narrow) when designing the survey. For example, if a UC
uses a UML model for architecture/design purpose, we would
ask if the model is adopted, and eventually, who implemented
the model. Accordingly, the number of questions would not
just be different between different roles, but also between
respondents who have the same role. In addition, to gain
more insights, we use a mix of close-ended and open-ended
questions in the survey.

Personalized Contact: To ensure that participants
know what projects and UML models we are referring
to, we personalized the email with which we contacted
potential participants by concretely referring to his/her
GitHub identification, the name of project of interest and (if
applicable) an URL to his (first) UML commit or to a UML
file committed by someone else. By following the URL (e.g.
https://github.com/rvs-fluid-it/wizard-in-a-box/blob/master/
src/doc/wizard-in-a-box-design.png), participants could get
further contextual information about the UML models, for
example commit messages, commit date, etc.

We used Lime Survey tool 2 as the tool provide func-
tionality to fulfill the survey requirement. Our Lime Survey
server is hosted at http://survey.models-db.com/. Details
about survey settings and email templates can be found in
the replication package.

3) Sending out the survey: We sent 20 294 survey emails
to OSS contributors in 6 days, from July 21 to July 26, 2016.
More than 1 000 emails were not sent because of various
problems, including out-dated emails, etc. We sent reminder
emails after one week and finally closed the survey in August
4, 2016. Altogether, we received 2 230 responses, of them,
1 628 were completed. After filtering responses that belong
to short-term projects, we gained 485 survey responses of

2LimeSurvey homepage: https://www.limesurvey.org/

respondents from 458 projects.

Table I: Number of emails sent, number of responses and
number of responses after filtering by participant categories

Founder Non-Founder SUM1UC NUC UC 1UC NUC UC
Sent emails 4509 3891 713 6737 3221 1223 20294
#full resp. 373 293 68 564 210 120 1628
#inc. resp. 167 105 24 214 56 36 602

#fil. resp. 84 79 27 176 80 39 485
Percent(%) 17.3 16.3 5.6 36.3 16.5 8.0 100

D. Data Analysis

First, we take into account completed responses only.
Second, we do not consider short-time projects.

Part of the questionnaire are free-text questions. We use
these questions to learn about phenomena for which we do
not know a fixed set of answers, yet. The goal of analyzing
these data is to identify reoccurring themes. Therefore, we
used a coding technique, following the constant comparison
method as described by Seaman [31]. We decided to use
an empty starting set of codes and develop them during
the coding. For each of the question two of the authors
coded the answers independently. In a second step we
inspected the codes together to identify and if necessary
resolve differences in the selected codes and application of
the coding. Afterward, we went a second time through the
data in order to ensure that the now fixed set of codes was
assigned consistently. We did this i) to increase the quality
of the coding and ii) to decrease the probability that we miss
interesting aspects. As a final step we checked whether codes
occurred for more than one project, in order to prioritize those
themes that are of greater relevance.

Furthermore, we took those cases where we got multiple
responses for the same project and aggregated them. This
aggregation was done as follows: we interpret observation
based questions (i.e. whether UML is used for communica-
tion) as reports about a project. Thus, aggregating a ”yes”
and a ”no” answer for the same project to a ”yes” to indicate
that there is a report about a phenomenon for that project.
Similarly, we prioritized ”no” over ”I have no opinion”. ”I
do” and ”I have seen other people doing” are merged to an
”I do”.

78 APPENDIX C. PUBLISHED PAPERS

V. R E S U LT S / F I N D I N G S

A. Respondent Demographics

A total of 2 230 respondents from 91 countries began
the survey, with 1 628 completed compulsory questions
of the survey. After classifying survey responses by short-
time projects, we ended up with 485 survey responses of
respondents from 458 projects. Among 485 respondents, 190
(about 40%) are founders of an OSS project, 159 (32.8%%)
are non-UML contributors (Table I). Regarding educational
background (as shown in Fig. 2), 37.73% respondents had
a Master’s degree, 30.31% had a Bachelors, 16,29% had a
Ph.D., and 11.75% were still in education. About 4% of the
respondents identified as autodidacts. A vast majority of the
respondents reported to be familiar with architecture docu-
mentation in different formats, leading by UML (90.31%),
then auto-generated code documentation and software models
in generic formats (78%) (Fig. 3). Only a half of them
(45%) were familiar with architectural notations on white
papers. There are programming languages where UML is
more frequently found (Smalltalk, Java, C# and C++). On
the other side, UML has not that much impact among the
Objective-C and Ruby community.

16.29%
37.73%

30.31%
11.75%

3.92%

0 50 100 150 200

PhD

Master

Bachelor

In	Education

None/Autodidact

#respondents

Highest	educational	background

Figure 2: Distribution of respondents based on their highest
educational background

44.74%
71.75%

77.94%
77.94%

90.31%

0 100 200 300 400 500

White	papers

Manuals

Auto-generated	code	documentations

Software	Models	in	general

UML

#respondents

Familiar	architecture	documentation	 formats

Figure 3: Architecture document formats that respondents
were familiar with. The respondents could choose multiple
formats

B. Why is UML used?

1) What are the motivations to use UML modeling?:

Fig. 4 shows the answers from 326 UCs (of 319 projects)
about the intent of UML files they added/updated. Most of

UML files served for design/architecture and documentation
purposes, with 70% and 71% of votes, respectively. For about
18% of the projects software verification was mentioned as
one of the main purposes. Refactoring and code generation
less usual (in 14.11% and 12.85% of the projects).

Among 125 NUCs that claimed to be aware of the
existence of UML models, 109 people (from 109 projects)
reported to find UML helpful. Fig. 5 presents their answers.
79% of the respondents found UML useful for understanding
the OSS systems. They also found UML models helpful as
the models assisted in improving communication within the
project, guiding implementation and managing quality of the
project.

71.16%

70.53%

12.85%

14.11%

17.87%

5.96%

6.27%

Documentation	(e.g.	model	is	reverse	engineered)

Design/architecture	for	(existing/new)	systems	parts

Code	generation

Refactoring

Verification

Models	are	test	data

Other

0 50 100 150 200 250

#	projects
#resp =	326
#proj =	319

Figure 4: Intent of UML models that were added/updated

75.23%

64.22%

48.62%

22.02%

6.42%

0 10 20 30 40 50 60 70 80 90

Help	to	understand/comprehend	 the	system	better	

Help	to	communicate	with	other	contributors	better	

I	followed	the	models	to	implement	the	system

I	used	the	models	for	quality	assurance	purposes	

Other

#	prjects

#resp =	109
#proj =	109
N	=	125

Figure 5: How did UML help non-UML contributors?

Results for SQ1.1: The majority of models are intended
for creating software designs and documenting software
systems. NUCs use benefit from UML models when it comes
to understanding a system and communication.

2) What are the reasons not to use UML in projects?:
To complement our finding on the motivations to intro-
duce/use UML, we asked those 16 NUCs, who did not find
UML models useful, for the reasons why. Respondents in 6
projects actually didn’t use the models, finding themselves
not required to learn/use UML (e.g. ”there was no demand
to do so”). Interestingly, in no case license problems for
modeling tools were a problem.

In 4 cases the UML files were outdated. Other reasons
that were brought up in free-texts are: missing support for
versioning models, a failed attempt to understand the models,
a preference for other means of communication (face to
face), a preference for other forms of modeling/sketching,
a preference for reading code rather than spending time for
UML models, and the dislike of UML (anti-UML attitude).

C.3. PRACTICES AND PERCEPTIONS OF UML USE IN OS PROJECTS 79

62.7%

21%
16.3%

0

10

20

30

40

50

60

70

Yes No No	opinion

#p
ro
je
ct
s

#resp =	326
#proj	=	319

(a) Do UCs think that other con-
tributors are aware of UML?

79.11%

20.89%

0%
0

10

20

30

40

50

60

70

80

90

Yes No No	opinion

#p
ro
je
ct
s

#resp =	159
#proj	=	158

(b) Are NUCs aware of the exis-
tence of the UML models?

Figure 6: Developer’s awareness about the existence of UML
in their projects (by project)

Results for SQ1.2: Only a small number of respondents found
UML not useful.

C. Is UML part of the interaction of contributors?

1) Developer’s awareness about the existence of UML in
their projects:
To answer this question we first asked creators/maintainers
of UML models whether they think that the models are
known by developers of the projects (summarized in Fig. 6a).
In 62.7% of 319 projects with responses, the UCs/1UCs
believed that UML models are known by developers of the
projects. Second, we asked NUCs of projects that use UML if
they aware of the existence of UML models in their projects
(Fig. 6b). Surprisingly, in the vast majority of the projects
(80%) NUCs stated that they are aware of UML models.

To better understand the difference between the answers
of UCs and NUCs, we looked in detail into the 24 projects
for which we received responses from NUCs and UCs. In 10
out of 24 projects, NUCs and UCs differed. Interestingly, it is
in 8 projects the case that UC(s) did not expect their UML to
be known by other developers, while the NUCs were aware
of it. It seems that model creators tend to underestimate the
spread of their models.

Results for SQ2.1: A majority of non-UML contributors are
aware of the UML models in their projects. This is even
slightly more than expected by the authors of the models.

2) Are UML models used during communication and team
decision making?:
In a first step we asked founders and UCs whether UML
models are considered in the communication between con-
tributors. Fig. 7 summarizes the 405 individual responses
from 388 projects. According to the responses, UML models
were considered in communications in a large majority of
the participated projects (60%).

As a step further, we asked whether UML models were
used as a basis for architectural decision making or mentoring
activities. Respondents from the majority of the projects
recalled that they had used the UML models for making

architecture decisions (58.7%) and explaining each other
different aspects of the system (58.25%) (summarized in
Fig. 8).

60.31%

21.91%
17.78%

0

50

100

150

200

250

UML	models	are	
considered

UML	models	are	
not	considered

No	opinion

#	
pr
oj
ec
ts

#resp =	405
#proj =	388

Figure 7: Are the UML model(s) considered in the commu-
nication between contributors? (per project)

58.76%

8.51%

32.73%

58.25%

9.79%

31.96%

0

50

100

150

200

250

I	used	UML	models	that	
way

I've	seen	other	contributors	
used	UML	models	for	that

I	have	not	witnessed	this	
use	of	UML	models

#	
pr
oj
ec
ts

UML	as	basis	for	architecture	decisions UML	as	a	basis	for	mentoring

#resp =	405
#proj =	388

Figure 8: Is UML a basis for architectural decisions or
mentoring activities? (per project)

Results for SQ2.2: UML models were considered as a mean
of communication and as a basis for architectural decisions
and for mentoring in a majority of projects.

3) Are modeled designs adopted afterward during the
implementation phase by teams of OSS contributors?:
For those projects that claimed to have design models, we
asked the question ”Was the UML models adopted during
the implementation phase?”. Fig. 9 summarizes for 225
projects the answers of the 231 respondents. In most cases
UML models were adopted partly or completely during the
implementation phase (about 92%).

If the answers was that UML models were at least partially
adopted, we asked further questions to find out who and how
many contributors implemented the modeled designs. Fig. 10
and Fig. 11 summarise the responses per project (based on
214 individual responses for 208 projects).

Creators of UML models are greatly involved in imple-
menting the modeled designs (in 88.5% of the projects).
Experienced contributors helped in 35.5% of the cases and
novice contributors helped in around 13% of the cases.

In the majority of the projects (around 66%) more that
1 person participated in the implementation of previously

80 APPENDIX C. PUBLISHED PAPERS

32.44%
35.56%

24.44%

7.56%

0

10

20

30

40

50

60

70

80

90

The	design	was	
completely	adopted

The	design	was	
adopted	with	minor	

changes

The	design	was	
partially	followed

The	design	was	not	
considered	at	all

#	
pr
oj
ec
ts

#resp =	231
#proj =	225

Figure 9: Was the UML models adopted during the imple-
mentation phase? (per project)

modeled designs. However, only 7% of the projects reported
to have more than 5 contributors involved such joined
implementation efforts.

88.46%

35.58%

13.46%

2.88%

0 50 100 150 200

The	creators	of	the	architectures/models

Experienced	contributors	of	the	project

Novice	contributors	of	the	project

Other

#	projects

#resp =	214
#proj	=	208

Figure 10: Who implemented the UML models? (by project)

1	person
33%

2	persons
26%

3	- 5	
persons
34%

6	- 10	persons
5%

11	- 20	persons
1% >	20	persons

1%

#resp =	214
#proj =	208

Figure 11: Number of contributors who implemented UML
models in a project

Results for SQ2.3: Designs introduced with UML are in most
cases adopted during implementation phase (fully or with
slight changes). Most often these designs are implemented
by groups of 2-5 persons.

D. What is impact/benefit of UML?

1) Can UML models support new contributors?:
We used two perspectives to approach the question whether
UML models support new contributors.

First, we ask founders if they think that the UML models
help new contributors to join their projects. We received

65.26%

18.42% 16.32%

0

20

40

60

80

100

120

140

Yes No No	opinion

#r
es
po

nd
en
ts

#resp =	190
N =	190

(a) Do UML models help new
contributors?

90.32%

56.45%
64.52%

6.45%

0

20

40

60

80

100

120

#r
es
po

nd
en
ts

#resp =	124
N =	190

(b) For what tasks do the models help?

Figure 12: Responses for the questions whether UML models
help new contributors to join the project.

190 responses from 84 F-1UCs, 79 F-NUCs and 27 F-UCs.
For those who agreed, we further asked with what tasks the
models help. Fig. 12 shows the responses in detail. 124 out of
190 respondents (65.26%) agreed that UML models can help
new contributors when joining the projects. They expected
the models to assist new contributors in comprehending the
system (90%), during implementation phases (65%), and
when communicating with other contributors (56.5%).

Second, we asked each contributor what software artifacts
he/she used when they got started with the project. 485 con-
tributors answered this question. Despite the fact that most
of respondents were familiar with architectural documents
(as shown in Section V-A) , source code still remains their
first choice to start working with an OSS project (81%) - see
Fig. 13. Remarkably, UML and software models in general
were reported to be starting points for 55% and 43.5% of the
respondents, respectively. This is more than the proportion
of contributors who started using wikis, issues, manuals,
and auto-generated code documentations. This conforms the
answers given by the founders about new contributors.

81.44%
55.26%

43.51%
31.75%
30.93%
30.31%
30.1%

11.13%
0 100 200 300 400 500

Code

UML	(Unified	Modeling	Language)

Software	Models	in	general

Wiki

Auto-generated	code	documentations

Issues

Manuals

White	papers

#respondents

Software	artifacts	to	get	started	working	with	OSS	projects

#resp =	485
N =	458

Figure 13: Software artifacts used by the respondents to
get started working with their OSS project (multiple choices
were allowed).

Results for SQ3.1: The results suggest that UML is helpful
for new contributors to get up to speed.

C.3. PRACTICES AND PERCEPTIONS OF UML USE IN OS PROJECTS 81

65.79%

1.58%

32.63%

0

20

40

60

80

100

120

140

Positive	impact Negative	
impact

No	specific	
impact

#resp =	190
N =	190

(a) Overall impact

33.68%
39.47%

26.84%

0

10

20

30

40

50

60

70

80

Yes,	the	way	of	
working	
changed

No,	there	is	no	
change

No	opinion

#resp =	190
N =	190

(b) Impacts on working routine

Figure 14: Impacts of introducing UML into OSS projects

2) What are the impacts of using UML in OSS projects?:

Because of their overview about the projects, we asked
founders for their impression about the impacts of introducing
UML to their project. Fig. 14a and Fig. 14b summarize
the 190 answers for the two questions. A majority of
respondents (65.79%) reported positive impacts, while only
a few founders (<2%) encountered negative impacts. Only,
34% of the founders saw changes in the way the contributors
worked after UML was introduced.

To find out more about the changes, we asked those who
observed changes to describe the way the working routine
had changed. We received 31 responses to the open ended
question. Comments positive to UML can be summarized in
following groups: i) Hiding complexity/improved overview
(mentioned 18 times); ii) Improved of communication/ re-
duced ambiguity (6 times); iii) Prevention of sub-standard
implementations (5 times); iv) Improved scoping and parti-
tioning of work (3 times); v) Improved/easier to implement
designs (9 times); vi) Improved quality assurance (1 time);
vii) Reduced architecture degradation (1 time).

We also received two answers describing negative changes,
complaining about more work and the need for developers
to learn the UML notation.

Results for SQ3.2: One third of respondents reported changes
of the working routine due to UML, mainly in planning
phase, development process and in communication. Most
reported changes can be considered positive.

3) Can UML models help to attract new contributors?:
We ask founders if they think that UML models helps to
attract new contributors to join their projects. 190 founders
answered this question. Fig. 12 shows the responses in detail.
Only a few of the respondents (21.58%) believe that UML
models can attract new contributors, while most of them think
UML is not an attractive factor (47.37%).

We asked those who think UML models attract new
contributors for reasons behind their thoughts. We received
only 25 answers, including following arguments: a) UML
models makes the project and its goals become easier to
understand (mentioned 13 times), b) the potential of UML
to help new contributors (by code comprehension) (7 times),

c) visual documentation is considered attractive (3 times),
and d) UML can support communication between old and
new members (2 times).

It is worth mentioning that two of the projects have been
based on executable UML diagrams (xtUML), therefore the
diagrams were considered a magnet to the contributors.

However, two of the respondents put their previous answer
that UML is an attracting factor in perspective, mentioning
additional factors, such as the personality, the quality of the
model, and complexity of the project, e.g. ”I feel that it
depends on two things: how perceptive the contributors are,
and how elegantly and interesting the models was structured”
.

21.58%

47.37%

31.05%

0

10

20

30

40

50

60

70

80

90

100

Yes No No	opinion
#	
re
sp
on

de
nt
s

#resp =	190
N =	190

Figure 15: Do UML models attract new contributors to join
the project?

Results for SQ3.3: Only few founders think UML models
attract new contributors to join the projects.

V I . D I S C U S S I O N S

In the following we discuss our insights in context of
related works and implications of our results. Furthermore,
we discuss threats to validity.

A. Comparison to Insights to Related Works

In this section, the observations are compared with findings
from related works.

Communication: First of all, the observation that UML
is used for communication purposes within OSS fits to
observations that were already made about the use of docu-
mentation by Kazman et al. [23] and sketches Chung et al.
[24]. Furthermore, the results fit to the insight of Gorschek et
al. [15], who also observed a use for communication within
industrial and open source programmers.

New contributors: The observation that new contributors
seem to benefit form the use of UML confirms the first
anecdotal evidence that Chung et al. [24] collected. Again,
Gorschek et al. [15] found similar tendencies in their survey,
where the use of models was found to be higher for novices.

Design and documentation: We could uncover one main
similarity in the use of UML in OSS and industry. First,
we observed that UML is mainly used for design and
documentation, and less for code generation within open

82 APPENDIX C. PUBLISHED PAPERS

source. Similar observations were made for industrial usage
by Torchiano et al. [14] and Forward et al. [16].

Role splits: However, we also found a hint to a contrast
in the UML usage. While we observed that the architectures
defined within UML models are often implemented by
multiple persons, as it happens within industry, we also
observed that in the most cases all of these contributors
participated in the model creation. This seems to be a contrast
to the practice in many industrial cases, where the people
creating the models are not necessarily the persons who
create the code, as, e.g., observed by Kuhn et al. [13].

Finally, we made two observations that should be further
studied also in industry. Passive benefits: This is on the one
hand the observation that many persons who do not create
UML, consider its existence in the project nonetheless as ben-
eficial. Partial adoption: Furthermore, we found that many
models are only partially adopted during the implementation.
It would be interesting to see whether this is conform or in
contrast to industrial practice.

B. Implications

In most investigated aspects the answers given by NUCs
showed a slight tendency to be more positive about UML than
the answers of UML contributors. Thus, it seems that models
have an impact on teams that affects not just the models
creators positively. We hope that OSS contributors feel mo-
tivated by these results to contributing models. Furthermore,
it seems that the usage of UML helps new contributors to
get productive. This might be seen as an incentive for the
UML introduction.

Finally, the observed contrast that most people implement-
ing a models also participated in its creation, might be
an interesting option for industrial practice, too. Especially,
when agile practices are applied.

C. Threats to Validity

In the following, we discuss internal and external threats
to validity of our study as introduced by Wohlin et al. [32].

Internal validity: Some threats that are generic to
research that bases on GitHub, as discussed by Kalliamvakou
et.al. [29], concern our study, too: First, a large amount of
GitHub projects are not software development projects or
have very few commits, only. Furthermore most GitHub
projects are inactive (Kalliamvakou et al. guess that the
amount of active projects is around 22%). To mitigate the
impact of these threats on our study, we filtered the projects
based on the number of commits and size. Since such
filters are always just heuristics, it is probable that some
of the remaining projects still are toy or educational projects.
However, we consider the remaining threat acceptable, since
we can assume that the vast majority of the here studied
projects are real software development projects.

We focus on projects that do use UML only, to ensure that
questioned developers have the experience of working in a

project with UML. To ensure nonetheless that persons that
prefer to not use UML are not underrepresented, we send
the questionnaire not just to persons who manipulated UML,
but also to contributors who did not change or introduce
UML files (NUCs). Therefore, we believe that our results
still provide valuable insights.

External validity: Our study focuses strongly on open
source projects. While we do not expect a direct generalizabil-
ity of our results to closed source projects, we expect them to
be mostly generalizable to open source projects. We did not
limit the domain. However, there might be a bias towards the
domain that comes with the usage of UML. Since we study
the impact of UML, when it is used, we consider our results
valuable despite the possible bias in studies domains. Finally,
we only have a look at UML models that are stored within
specific formats. Of course, it would be better to have a look
at all possible representations of UML models that exist.
However, the selected set of formats is with the standards
(.uml and .xmi) and image files already broad and allows a
first valuable insight.

V I I . C O N C L U S I O N A N D F U T U R E W O R K

In this paper we study the use of UML in open source, in
order to identify commonalities and differences to the use
of UML in industry. Therefore, we performed a survey with
contributors from 458 GitHub projects that include UML
files. Our study delivers some first insights that might help
companies to decide whether to promote UML usage in
open source projects. In favor of UML are the observations
that UML actually helps new contributors and is generally
perceived as supportive. However, UML does not seem
to have the potential to attract new contributors. Further,
we found that the UML use in open source projects is
partially similar to the industrial use. However, there are
also differences that should be considered, when joining
industrial projects with open source efforts. For example,
the fact that there seems to be barely a split of roles between
model creator and person implementing the modeled system.
Furthermore, we found that many modeled designs are only
partially followed during implementation.

Future works: We only use a part of survey responses
in this study (ignoring responses of short-time projects). In
future, we plan to compare, whether the results for these
projects are different from the ones we found. Furthermore,
we plan to use meta data to investigate, whether different
aspects such as size, active time, and the number of contrib-
utors of a project affect the model use and perceptions of
developers within the projects.

A C K N O W L E D G M E N T

We are very grateful to all participants of the study for
taking the time and sharing their experience.

C.3. PRACTICES AND PERCEPTIONS OF UML USE IN OS PROJECTS 83

R E F E R E N C E S

[1] Cristina Gacek and Budi Arief. The many meanings of open
source. IEEE software, 21(1):34–40, 2004.

[2] Kevin Carillo and Chitu Okoli. The open source movement:
a revolution in software development. Journal of Computer
Information Systems, 49(2):1–9, 2008.

[3] Brian Fitzgerald. The transformation of open source software.
Mis Quarterly, pages 587–598, 2006.

[4] Daniel M German. The gnome project: a case study of
open source, global software development. Software Process:
Improvement and Practice, 8(4):201–215, 2003.

[5] Dirk Riehle. The economic case for open source foundations.
Computer, 43(1):0086–90, 2010.

[6] Øyvind Hauge, Claudia Ayala, and Reidar Conradi. Adoption
of open source software in software-intensive organizations–
a systematic literature review. Information and Software
Technology, 52(11):1133–1154, 2010.

[7] Kevin Crowston, Kangning Wei, James Howison, and Andrea
Wiggins. Free/libre open-source software development: What
we know and what we do not know. ACM Computing Surveys
(CSUR), 44(2):7, 2012.

[8] Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and
Brian Fitzgerald. A comparative study of challenges in
integrating open source software and inner source software. In-
formation and Software Technology, 53(12):1319–1336, 2011.

[9] Diomidis Spinellis and Clemens Szyperski. How is open
source affecting software development? IEEE Software,
21(1):28, 2004.

[10] Claudia Hauff and Georgios Gousios. Matching github
developer profiles to job advertisements. In Proceedings of the
12th Working Conference on Mining Software Repositories,
pages 362–366. IEEE Press, 2015.

[11] Regina Hebig, Truong Ho-Quang, Gregorio Robles,
Michel R.V. Chaudron, and Miguel Angel Fernandez. The
quest for open source projects that use uml: Mining github.
International Conference on Model Driven Engineering
Languages and Systems (MoDELS), 2016.

[12] Gregorio Robles, Jesus M Gonzalez-Barahona, and Juan Julian
Merelo. Beyond source code: the importance of other artifacts
in software development (a case study). Journal of Systems
and Software, 79(9):1233–1248, 2006.

[13] Adrian Kuhn, Gail C Murphy, and C Albert Thompson. An
exploratory study of forces and frictions affecting large-scale
model-driven development. In International Conference on
Model Driven Engineering Languages and Systems, pages
352–367. Springer, 2012.

[14] Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessan-
dro Tiso, and Gianna Reggio. Relevance, benefits, and
problems of software modelling and model driven techniques
- A survey in the italian industry. Journal of Systems and
Software, 86(8):2110–2126, 2013.

[15] Tony Gorschek, Ewan Tempero, and Lefteris Angelis. On
the use of software design models in software development
practice: An empirical investigation. Journal of Systems and
Software, 95:176–193, 2014.

[16] Andrew Forward, Omar Badreddin, and Timothy C Lethbridge.
Perceptions of software modeling: a survey of software
practitioners. In 5th workshop from code centric to model
centric: evaluating the effectiveness of MDD, 2010.

[17] Paul Baker, Shiou Loh, and Frank Weil. Model-driven
engineering in a large industrial contextmotorola case study.
In International Conference on Model Driven Engineering
Languages and Systems, pages 476–491. Springer, 2005.

[18] Ariadi Nugroho and Michel RV Chaudron. Evaluating the
impact of uml modeling on software quality: An industrial
case study. In International Conference on Model Driven
Engineering Languages and Systems, pages 181–195. 2009.

[19] Omar Badreddin, Timothy C. Lethbridge, and Maged Elassar.
Modeling Practices in Open Source Software, pages 127–139.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[20] Wei Ding, Peng Liang, Anthony Tang, Hans Van Vliet, and
Mojtaba Shahin. How do open source communities document
software architecture: An exploratory survey. In Engineering
of Complex Computer Systems (ICECCS), 2014 19th Interna-
tional Conference on, pages 136–145. IEEE, 2014.

[21] Koji Yatani, Eunyoung Chung, Carlos Jensen, and Khai N
Truong. Understanding how and why open source contributors
use diagrams in the development of ubuntu. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, pages 995–1004. ACM, 2009.

[22] Mohd Hafeez Osman and Michel R. V. Chaudron. UML
usage in open source software development : A field study. In
Proceedings of the 3rd International Workshop on Experiences
and Empirical Studies in Software Modeling co-located with
16th International Conference on Model Driven Engineering
Languages and Systems (MoDELS), pages 23–32, 2013.

[23] R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and
G. Valetto. Evaluating the effects of architectural documenta-
tion: A case study of a large scale open source project. IEEE
Transactions on Software Engineering, 42(3):220–260, 2016.

[24] Eunyoung Chung, Carlos Jensen, Koji Yatani, Victor Kuechler,
and Khai N Truong. Sketching and drawing in the design
of open source software. In Visual Languages and Human-
Centric Computing (VL/HCC), 2010 IEEE Symposium on,
pages 195–202. IEEE, 2010.

[25] Philip Langer, Tanja Mayerhofer, Manuel Wimmer, and Gerti
Kappel. On the usage of uml: Initial results of analyzing open
uml models. In Modellierung, volume 19, page 21, 2014.

[26] Georgios Gousios and Diomidis Spinellis. Ghtorrent: Github’s
data from a firehose. In Mining software repositories (msr),
2012 9th IEEE working conference on, pages 12–21. 2012.

[27] Hudson Borges, André C. Hora, and Marco Tulio Valente.
Understanding the factors that impact the popularity of github
repositories. CoRR, abs/1606.04984, 2016.

[28] Gregorio Robles, Jesús M González-Barahona, Daniel
Izquierdo-Cortazar, and Israel Herraiz. Tools for the study
of the usual data sources found in libre software projects.
International Journal of Open Source Software and Processes
(IJOSSP), 1(1):24–45, 2009.

[29] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif
Singer, Daniel M. German, and Daniela Damian. The promises
and perils of mining github. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR
2014, pages 92–101, New York, NY, USA, 2014. ACM.

[30] Igor Scaliante Wiese, Igor Steinmacher, Christoph Treude,
Jose Teodoro Da Silva, and Marco Gerosa. Who is who in
the mailing list? comparing six disambiguation heuristics to
identify multiple addresses of a participant. In Proceedings of
the 32nd International Conference on Software Maintenance
and Evolution, 2016.

[31] Carolyn B. Seaman. Qualitative methods in empirical studies
of software engineering. IEEE Transactions on software
engineering, 25(4):557–572, 1999.

[32] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlsson,
Björn Regnell, and Anders Wesslén. Experimentation in
software engineering. Springer Science & Business Media,
2012.

84 APPENDIX C. PUBLISHED PAPERS

	Introduction
	Context
	Free/Libre/Open-Source Software
	Structure of the thesis

	Objectives
	State of the art
	Python
	Git
	GitHub
	GHTorrent
	GrimoireLab and Perceval
	MySQL

	Design and implementation
	Preliminary phase
	Data extraction
	Data filtering
	Data analysis
	Extract extended repository information
	Building the database

	Results
	Case of study: UML models in GitHub projects
	Case of study: Software Architecture documents & extended UML models in GitHub projects

	Conclusions
	Achieved objectives
	Knowledge application
	Learning outcomes
	Future work
	Personal assessment

	Bibliography
	Definitions
	Git objects definitions
	Commit
	Tree
	Branch

	API
	GitHub API
	API token

	Essential freedoms of Free/Libre Software

	Code of the tool
	Published papers
	The Quest for OS Projects that use UML: Mining GitHub
	An extensive dataset of UML models in GitHub
	Practices and Perceptions of UML Use in OS Projects

