
Mining student repositories to gain learning analytics
An experience report

Gregorio Robles
GSyC/LibreSoft

Universidad Rey Juan Carlos
Madrid, Spain

grex@gsyc.urjc.es

Jesús M. González-Barahona
GSyC/LibreSoft

Universidad Rey Juan Carlos
Madrid, Spain

jgb@gsyc.urjc.es

Pre-print version of Gregorio Robles, Jesús M. González-Barahona: Mining student repositories to gain learning analytics. An
experience report. EDUCON 2013: 1249-1254.

Abstract—Engineering students often have to deliver small
computer programs in many engineering courses. Instructors
have to evaluate these assignements according to the learning
goals and their quality, but ensure as well that there is no
plagiarism. In this paper, we report the experience of using
mining software repositories techniques in a multimedia
networks course where students have to submit several software
programs. We show how we have proceeded, the tools that we
have used and provide some useful links and ideas that other
lecturers may use.

Keywords-component; mining software repositories; software
analytics; e-learning; plagiarism; automatic assessment;

I. INTRODUCTION

Many engineering courses include in their syllabus
programming tasks that students have to submit. These tasks
are usually small programs that have to fulfill certain criteria.
Sometimes students have to create these programs from
scratch, but there are as well assignments where students make
use of some code that is provided by the instructors and that
they have to modify.

Once submitted, instructors have to evaluate these tasks
according to some rules: if the programs fulfill some functional
requirements and, usually, some other characteristics such as
the quality of the code. In addition, instructors have to check if
students have done their work on their own or if they have
copied someone else's work, a circumstance known as
plagiarism. If it is a group assignment, the additional problem
exists of verifying if all the components of the team have been
active. Nonetheless, instructors generally face the problematic
that they only have access to the student's final output, the
submitted assignment. The process followed by the student to
obtain the final result is in general not taken into consideration
due to the difficulty to gain access to such information.

In this paper, we present our experience from introducing
techniques from the mining software repositories (MSR)
research field in this type of scenarios. MSR is a field that
"analyzes the rich data available in software repositories to
uncover interesting and actionable information about software

systems and projects"1. MRS has been a very active software
engineering field for the last ten years with a specific working
conference on the topic, but that has had great impact in other
areas such as program comprehension, software processes,
empirical software engineering, automated software
engineering, among others. A modern term for MSR is
software analytics.

We have used as a case study a third year computer
networks course where students have to submit several
programs to show the possibilities that MSR techniques
introduce in the educational environments.

The contributions of this paper are following:

1. It presents experiences and ideas related to MSR that
have already been used in educational environments.

2. It introduces MSR techniques that can be used in
programming course assignments. Hence, methodologies and
tools are presented and evaluated.

3. It provides and discusses an educational experience of
using such techniques in an educational environment by the
authors of the paper.

The structure of this paper is as follows: in the next section,
we will show the related research. Then, we will introduce the
methodology and tools used in the subject used as case study.
The fourth section contains the evaluation of our educational
experience, while the following one discusses the method, its
benefits and limitations. Finally, conclusions are drawn.

II. RELATED RESEARCH

We have grouped the related research into four different
categories: first, we show experiences of using version control
systems in education. Then, the use in teaching of the next-
generation distributed version control systems is presented. A
third group of papers discusses some approaches to obtain
integrated development environments for educational
environments. Finally, we present those papers that have a
similar point of view to this study: the study and analysis of

1 http://msrconf.org

http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gonz=aacute=lez=Barahona:Jes=uacute=s_M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/educon/educon2013.html#RoblesG13

information obtained from students to enhance the learning
experience and improve the learning outcomes.

A. Version control system

The use of versioning systems in educational environments
has been discussed in several papers in the research literature.

Glassy [1] reports an educational experience using the
Subversion version control system, presenting benefits and
drawbacks. Among the first ones he noticed that version
control systems are used in industrial scenarios, and that
students acquire skills that will be valuable in future by
learning them. In addition, instructors could track the student
work better, and whether the student progressed incrementally
or waited until the deadline. On the negative side, their
experience showed that introducing version control systems did
not change the temporal behavior of students by its own;
milestones had to be introduced so that the work was more
distributed and not shifted towards the final deadline. In
addition, the use of versioning systems supposed more work on
the side of instructors and students as new concepts had to be
introduced and understood by students.

Milentijevic et al. [2] report the experience of the use of a
version control system to support project-based learning (PBL)
environment. The study shows that activities that are
sometimes difficult to perform in PBL-learning such as
mentoring and monitoring are improved considerably, as
instructors can control the process and how students cooperate.
In addition, they note that the solution is cost-effective using
free software and that the inclusion of web interfaces lowers
some adoption barriers both by students and by fellow
instructors.

Jones [3] explores the use of versioning systems in
evaluating the contributions of individual students in group
coding assignments.

B. Distributed versioning systems

A new generation of versioning systems has become widely
used in the last years, gaining in popularity tools such as git or
Mercurial.

Rocco and Lloyd [5] discuss the benefits of using
distributed versioning system in education against the older,
centralized systems. In the experience of the authors, the
simplicity and velocity with which students can set up a new
project is a major advantage, aside from the fact that a lot of
concepts usually not related to the subject can be omitted.
Submission can also be simplified to the extreme, as students
can just zip their repositories and submit them in a single file
without requiring any (centralized) infrastructure with its
related issues: space, permissions, security, etc.

Laadan et al. [6] use a distributed version control system in
an operating systems course. The authors note that the use of
an advanced distributed system has several advantages.

 A first one was the optimization of the repository space, as
all the assignments included modifications to the Linux kernel,
but only a single copy of it was required. They note that being
distributed, offline work is not problematic as each repository
is self-contained and independent. Nonetheless, the lecturers

had to use logging of the submissions to the central repository
as the students may tamper tamper with submission dates and
times.

C. Integrated environments

A third set of efforts is devoted to the creation of integrated
environments for the fulfillment of programming tasks by
students.

Chen and Marx [7] report an integrated teamwork
enablement and management system that they have labeled
ITEAM (from Integrated Teamwork Enablement And
Management). This system groups Course Management
System (CMS), Source Configuration Management (SCM) and
public teleconference services into a unique platform.

Helmick presents an integrated online courseware for
computer science courses [8], a web-based online courseware
system for the management of computer science courses
developed by the Miami University. By means of using a
versioning system, the system allows rapid feedback. It uses
PMD2 to check the style of the submitted Java code and has
capabilities for automatic grading. Authentication mechanisms
among the various components are shared using LDAP.

Inspired by the now defunct Google Wave communication
service, Vandeventer and Barbour created a real-time,
collaborative IDE for enhanced learning in computer science,
which they named CodeWave [9]. CodeWave combines
features of IDEs such as syntax highlighting with others such
as integrated messaging and logged playback, a feature that
puts the granularity of the changes at the keystroke level. The
authors state that by adding this logging feature, instructors are
able to "answer the question of whether or not a student is
commenting during development or waiting until afterward",
among others. Workload statistics that include the percentage
of code contributed per user, the amount of time editing and the
distribution of ownership are also offered.

D. Software learning analytics

The final set of papers is the one that is closer to the
perspective of this paper. In them, the main goal is centered in
the knowledge that can be acquired from the analysis of data
and traces left by students when doing their programming
assignments.

Liu et al. present a way to track the progress of students
using historical information from a versioning system,
presenting and analyzing the information, so that the instructor
obtains them in a variety of forms [10]. They provide in their
study some insight into the type of information that could be
gathered from applying such techniques on the student's
assignments. The approach that this study presents is similar to
the one in this paper, although its infrastructure is limited to
obtaining information only from the versioning system logs.

Mierle et al. [4] have studied over 200 student assignments
that used a versioning system and have analyzed if there is any
correlation between some measures such as student behavior or
code quality and the grades that students have obtained. The

2 http://pmd.sourceforge.net/

results obtained showed that no predictor was found to be
stronger than simple lines-of-code-written.

Poncin et al. mine students capstone projects, a group
project in industry that students have to take at the end of their
studies [11]. The authors note that while "traditionally such
projects solely focused on the software product to be
developed, in more recent work importance of the development
process has been stressed". They use therefore two tools:
FRASR [12], that extracts information from the software
repositories and integrates it in a unique log, and ProM [13],
that analyzes the previous log and offers several visualizations
to understand the process.

III. INFRASTRUCTURE

The course for which we have set-up a softwarelearning
analytics environment is a third-year multimedia networks
course. In this course, students learn about multimedia
protocols such as Session Initiation Protocol (SIP), Real-time
Transport Protocol (RTP), Real-time Streaming Protocol
(RTSP), Synchronized Multimedia Integration Language
(SMIL) and streaming multimedia over IP networks.

The theory is complemented with several practical lessons,
for which students have to create small programs that handle
with these protocols.

The technologies that are used are:

• Python: Python has been selected as programming
language as it is simple and high-level language that
allows students to create complex programs without
major effort. Students attending this course have basic
programming knowledge from previous courses,
although they have not been introduced to object-
oriented programming.

• git: We use this distributed versioning system for the
programming assignments. In the first practical lesson
we introduced the program and its basics: creating a
repository, adding and committing files, inspecting
the log, etc. Each programming assignment requires
as first task to build a new, local repository. The
instructors collect the repositories automatically from
the student's home directories at our teaching
laboratories for their evaluation.

• pep8: PEP 83 is the name of the proposal that contains
a style guide for Python. One of the goals of the
course is that students get used to this style guide.
Python scripts may be checked against the style guide
by means of the "pep8" command line tool.

• wireshark4: Wireshark is a graphical network protocol
analyzer.

 As the programs that students have to create mainly
include the communication between clients and servers using
the above mentioned protocols, the assignments usually include

3 http://www.python.org/dev/peps/pep-0008/
4 http://www.wireshark.org

a live capture with the result of a scenario.

As instructors, we have tried to automatize the process of
retrieving, analyzing and evaluating the assignments as much
as possible. The complete process has been divided in several
steps, and is described next:

1. Retrieval

The retrieval of the assignments is done through a web
interface, that the sysadmins of the computer labs offer. This
allows to collect specific directories in all the homes of the
students at a specified time. These directories are copied to a
location in the home of the instructor.

2. Preprocess

The preprocess step consists of several substeps for each
student. The output of the preprocess step is a text file per
student with all the information n a structured way, suitable for
being parsed in a later step.

a) Cloning of the repository

We use git to retrieve the working copy that contains the
last version of the student's program. Instructors provide a
check script for students so that they can ensure that they have
done this step correctly.

b) Checking if the files with the assignment exist are have
been correctly named

A Python script checks if the files that are included in the
working copy correspond to the ones specified in the
assignment. The number of files delivered should be exactly
the same as specified. The checking script provided by the
instructors includes as well some instructions to allow students
to verify if they follow these rules.

c) Checking if the style guide has been followed (with
pep8)

All Python files are assessed against pep8. We use the "-q
--statistics" parameters to obtain statistical information for the
compliance of the scripts. As feedback for the student we also
run pep8 with following parameters: "--repeat --show-source
--statistics".

d) Evaluating the quality of the code

Almost all programming languages have programs that
evaluate some quality attributes of the code in a static manner
(i.e., they look exclusively at the source code). The most
notable program for Python is PyChecker. But in our
experiment we have used a different one, Pylint5, as it offers
some more features, such as verifying if declared interfaces are
really implemented. Pylint can be configured to omit some
tests (in our case, we omit following conventions and
warnings: C0103, W0231, W0621) and offers a numerical
mark at the end summarizing the quality of the script. We use
this mark as a factor of the final grade for the submission.

e) Extraction of some software metrics

5 http://www.logilab.org/project/pylint

A number of traditional software metrics is obtained from
the source code, such as lines of code, number of classes,
number of functions/methods, McCabe complexity measures
etc. In addition, we look for docstrings and to what extent
classes and functions/methods have been documented in the
source code. All this is done with the help of the pymetrics6

script.

f) Retrieving of the git log and analysis

There is plenty of information that can be obtained from the
analysis of the log of a versioning system. This is because, in
addition to the commit message, the versioning systems store
information on the committer (and author, if they are different),
the timestamp, the file, etc. Mining versioning logs has been a
major research are of the MSR field and there are several tools
that have been designed to perform this task. In our approach,
we use CVSAnalY [14].

g) Treatment of the wireshark capture

A task included in many computer network programming
assignments is a network capture with the traffic that the agents
(clients and servers) have exchanged. There are several
programs that students may use for the capture, as for instance
wireshark, from the GUI, or tcpdump, from the command line.
These captures are stored in a specific binary format, called
libpcap, which is difficult to parse. With the help of a
command-line script, called tshark, we transform the pcap
(packet capture), an application programming interface (API)
for capturing network traffic, captures into the Packet Details
Markup Language (PDML), an XML specification.

 PDML files can therefore be easily parsed and analyzed.

 In the evaluation of the assignments, we parse them to
obtain information such as the correct exchange of protocol-
consistent messages, the use of the correct IP addresses and
ports, etc.

3. Plagiarism detection

There exist several programs with the objective of
assessing student programming assignments for unauthorized
copying (plagiarism). Although it is not free software, we have
made use of the MOSS7 tool, which can be used (gratis) by
instructors via a web interface, or paying a license on a local
machine.

We plan to use a different tool, similarity_tester8, in the
future for this task, in order to have a completely free software
infrastructure.

Plagiarism detection tools usually offer a percentage of
similarity among programs. Above a given threshold (which
depends on the assignment), assignements get marked as
suspicious. In our quest for copied assignements, we use as
well programs from previous courses.

4. Functional assessment

6 http://sourceforge.net/projects/pymetrics/
7 http://theory.stanford.edu/~aiken/moss/
8 http://packages.debian.org/similarity-tester

The functional assessment is concerned with the
requirements that a software program has to fulfill. We
therefore use a type of black box testing, based on the
specifications of the program to be evaluated, so that we
provide inputs and examine the output produced by the
program. A battery of tests has been designed from the
guidelines for each of the assignments.

5. Post-process

The text file with information from all previous steps is
parsed, and final grades for the assignment are calculated. This
script also serves to obtain a text file with feedback for the
student, with input information from all the steps. Students
have therefore a detailed report of their assignment, how it has
been graded and how they could improve their programming.

 Instructors get, in addition, of a report of the whole
process, including assignements suspicious of plagiarism, and
errors during the whole process.

6. Creation of a personalized exam

The system is able to automatically create a personalized
exam for each student based on the submitted assignment.
Questions are introduced into a database and displayed with a
web interface. This personal exam has as main goal to verify
that the student is the original author of the assignment, but it
serves as well as a way of ascertain to what extent the student
is aware of what he/she has been done. The reason for the
second goal is that in programming tasks students often lose
the big picture in favor of the programming details. Therefore,
the student is asked several type of questions:

a. Code snippets: The students gets displayed code snippets
of his/her own assignment and from other students, and is
asked if she/he recognizes the code as her/his own, and in that
case, from what source code file it has been extracted.

b. Black box questions: In a similar fashionto functional
assessment, the student is asked for the outputs that the
program would produce given a specified input.

c. Questions about specific scenarios: The student is
presented with a change to a part of the code orto the
configuration, and is asked for the consequences this would
result.

Personalized exams take from 10 to 20 minutes and can be
done simultaneously by many students. Usually, we perform
these exams only for the last assignment, which is a larger
program. A screenshot of the personalized exam is shown in
Figure 1.

Figure 1. Screenshot of a personalized exam (in Spanish).

IV. EXPERIENCE REPORT

The infrastructure has been used for the submission of 5
assignments during a four month period. We have used it in
two consecutive courses so far with relative success.

Four out of the five assignments where small programs that
account for 50 to 100 lines of Python code for which students
had two weeks (around 10 hours of total work by the student).
The fifth one is the final assignment, a more complex program
that comprehends between 300 and 600 lines of code for which
one month is allocated (around 35-30 hours of total work by
students).

A. Learning experience for students

The experience with this method shows that students
welcome feedback and introduce enhancements in the
following assignments. From the perspective of the students,
this is the most satisfactory output of our method as they are
provided with high detail feedback for each assignment. This
affects non-functional and functional requirements.

Regarding non-functional requirements, we have seen that
they make better use of git, introduce better git log comments
and become aware of the benefits of the continuous
development model that a versioning system offers. In
addition, they get used to the style guide with large sauces.
Even if we have observed that they only pass the pep8 tool just
before the submission (even in the final assignments), we have
found that the intermediate state of the code improvesnotably
in the last assignments. The code submitted in the last
assignments is of better quality as well, measured from the
quality attributes (such as short try-except exception
statements, readable variable names, etc.) considered from
pylint.

Regarding functional requirements, we had the experience
from previous years that students have difficulties in
understanding that (computer network) standards provide over
a limited amount of possibilities in the communication
exchange: the semantics and syntactics of the protocols have to

be followed in detail, as minor changes may produce a non-
standard exchange and hence an error. As a result of using
automatic tests already in the first assignments, they
understand this problem early in the semester.

B. Experience by instructors

Although we, as instructors, promised ourselves complete
automatization of our experiment, we are aware that this is
hardly possible. For each of the assignments there has been
always manual inspection and manual evaluation on our part.
This is because there are always cases that are outsiders, such
as wrong submissions, wrong code structure, etc. that are
difficult to integrate in a completely automated environment.
The good news, however, is that this is only necessary for a
small amount of cases, specifically for those student
assignments that after manual inspection by the instructors are
noted to be suspicious of having being evaluated wrongly. Out
of the 164 total submissions in the first year, this accounted for
46 cases, while in the current semester out of the 110
submissions this has only been the case for 22 of them. Part of
the improvement is due to assignment instructions better
documented.

We have also noted that students require some time to get
used to the environment. In this way, the use of git is
introduced prior to the first submission. Even if a script is
provided that allows students to verify if the assignment has
been submitted correctly, students are asked to submit it
through traditional means (a file up-load in the Moodle course)
just in case they did not use git in a proper way.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have presented the experience of using an
almost automated infrastructure that allows to gather software
analytics data from programming assignments by students.

The first benefit that offers such an approach is that, even if
it has been shown to be not fully automatable, it is scalable to
the point that it allows for continuous evaluation for large
groups of students. We have seen that having continuous
evaluation offers some benefits that can be seen in the learning
results at the end of the semester. Basically, students obtain
continuous feedback of their work, and thanks to the tools used
this feedback is very detailed.

One of the main outcomes of our experience as instructors
is that no evaluation system of this complexity can be made
completely automatic. We have seen that refining the
infrastructure is an iterative process, and that there will always
be elements that will be outside the means of instructors. There
are some efforts that can be done to minimize the manual parts
of the process, the most important one being that students
attend the instructions properly.

In addition, the domain of the programming tasks is very
important. For instance, our approach is suited specifically on
multimedia computer network programming assignments. This
implies to have specific functional requirements that are
completely different to be met than in other domains. If the
learning goals or the area are different, other tools and

processes may be better choices than the ones presented in this
paper.

Although our assignments have to be done on an individual
basis, our method could be increased easily (and we think that
with success) to group projects. It is our understanding that
much of our approach could be reused as is, and that the main
efforts should be to integrate means to analyze the
communication exchange among the team members.
Nonetheless, if properly used, the log analysis of the versioning
system offers detailed information of the amount of work by
each participant in the group, as some research papers have
pointed out [2, 3, 10].

We have built our infrastructure integrating external tools.
A positive side effect is that this makes students learn many of
the tools that they may use in their professional careers, such as
a distributed versioning system or a style-checking tool.

A possibility that we have thought of is using an integrated
development environment (IDE) such as Eclipse and use or
develop external plugins to achieve our goals. By using an IDE
we could augment the collection of information such as it is
done in CodeWave, at the point of logging the keystrokes that
students perform. The problem of this solution is that it is too
IDE-centric, meaning that it is difficult to integrate all the
external tools. We plan to keep on working on our
insfrastructure in the near future.

ACKNOWLEDGMENT

This research has been partially supported by eMadrid,
S2009/TIC-1650, "Investigación y Desarrollo de tecnologías
para el e-learning en la Comunidad de Madrid" funded by the
Region of Madrid. We would like to thank all the students from
the Escuela Técnica Superior de Ingeniería de
Telecomunicación who have participated in this teaching
experience and have provided feedback and suggestions.

REFERENCES

[1] Louis Glassy. 2006. Using version control to observe student software
development processes. J. Comput. Small Coll. 21, 3 (February 2006),
99-106.

[2] Ivan Milentijevic, Vladimir Ciric, and Oliver Vojinovic. 2008. Version
control in project-based learning. Comput. Educ. 50, 4 (May 2008),
1331-1338. DOI=10.1016/j.compedu.2006.12.010
http://dx.doi.org/10.1016/j.compedu.2006.12.010

[3] Curt Jones. 2010. Using subversion as an aid in evaluating individuals
working on a group coding project. J. Comput. Small Coll. 25, 3
(January 2010), 18-23.

[4] Keir Mierle, Kevin Laven, Sam Roweis, and Greg Wilson. Mining
Student CVS Repositories for Performance Indicators. In 2nd Int.
Workshop in Mining Software Repositories, pp. 41-46, May 2005.

[5] Daniel Rocco and Will Lloyd. 2011. Distributed version control in the
classroom. In Proceedings of the 42nd ACM technical symposium on
Computer science education (SIGCSE '11). ACM, New York, NY,
USA, 637-642. DOI=10.1145/1953163.1953342
http://doi.acm.org/10.1145/1953163.1953342

[6] Oren Laadan, Jason Nieh, and Nicolas Viennot. 2010. Teaching
operating systems using virtual appliances and distributed version
control. In Proceedings of the 41st ACM technical symposium on
Computer science education (SIGCSE '10). ACM, New York, NY,
USA, 480-484. DOI=10.1145/1734263.1734427
http://doi.acm.org/10.1145/1734263.1734427

[7] Zhixiong Chen and Delia Marx. 2007. ITEAM integrated teamwork
enablement and management. J. Comput. Sci. Coll. 22, 6 (June 2007),
117-125.

[8] Michael T. Helmick. 2007. Integrated online courseware for computer
science courses. In Proceedings of the 12th annual SIGCSE conference
on Innovation and technology in computer science education (ITiCSE
'07). ACM, New York, NY, USA, 146-150.
DOI=10.1145/1268784.1268828
http://doi.acm.org/10.1145/1268784.1268828

[9] Jason Vandeventer and Benjamin Barbour. 2012. CodeWave: a real-
time, collaborative IDE for enhanced learning in computer science. In
Proceedings of the 43rd ACM technical symposium on Computer
Science Education (SIGCSE '12). ACM, New York, NY, USA, 75-80.
DOI=10.1145/2157136.2157160
http://doi.acm.org/10.1145/2157136.2157160

[10] Liu, Y, E. Stroulia, K. Wong, and D. German, "Using CVS historical
information to understanding how students develop software," in 1st Int.
Workshop in Mining Software Repositories, pp. 32-36, May 2004.

[11] Wouter Poncin, Alexander Serebrenik, and Mark van den Brand. Mining
student capstone projects with FRASR and ProM. SPLASH '11
Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion

[12] Wouter Poncin, Alexander Serebrenik, and Mark van den Brand.
Process mining software repositories. In European Conf. on Softw.
Maintenance and Reeng., pages 7–15. IEEE, 2011.

[13] Boudewijn F. van Dongen, Ana Karla Alves de Medeiros, Eric Verbeek,
Ton Weijters, and Wil M. P. van der Aalst. The ProM framework: A
new era in process mining tool support. In

[14] Int. Conf. on App. and Theory of Petri Nets, volume 3536 of Lecture
Notes in Computer Science, pages 444–454. Springer, 2005.

[15] Gregorio Robles, Stefan Koch and Jesús M. González-Barahona.
Remote analysis and measurement of libre software systems by means
of the CVSAnalY tool. 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems. May 2004

	I. Introduction
	II. Related Research
	III. Infrastructure
	IV. Experience report
	V. Conclusions and Discussion

