
1.
ACTIVIDAD INVESTIGADORA

1.A.
CALIDAD Y DIFUSIÓN DE

RESULTADOS DE LA ACTIVIDAD
INVESTIGADORA

1.A.1.
PUBLICACIONES CIENTÍFICAS

INDEXADAS DE ACUERDO CON UN
ÍNDICE DE CALIDAD RELATIVO

..................mm e........ I
Computer Science
Classes

In 1993, the
authors began us-

ing 386BSD to
teach computer

science classes at
Madrid’s Carlos
III University, in

Spain. Seven years
later, NetBSD and

GNU/Linux are
the operating sys-
tems of choice for

several of the Uni-
versity’s computer

science teaching
laboratories.

Jesus M. ConxirlmBarahona, Pedro delaeHeras-Quiibs, Jose Centeno&mhIez,
Vicente Matdhn-Oliverr, and Francisco 1. Ballesteros, i h g]tian C U ~ O S Universzty, S ~ U W Z

uring 1991 and 1992, the landscape of libre software, and of
software development in general, was ready for a change. In two
different communities, two very exciting events were taking D place: 386BSD, a libre derivative of the BSD code, was born, and

Linus Torvalds distributed the first versions of the Linux kernel. Soon after,
the software community had two libre operating systems at its disposal (for
some basic references to online information on libre products and distribu-
tion, see the “Online Resources” and “Terminology” sidebars).

In late 1992 at Carlos I11 University, we
were introducing new computer science
studies and planning a distributed systems
course. We were looking for a software
platform suitable for practical lectures on
distributed systems (our practical lectures
take place in a computer lab and usually in-
volve a programming exercise). Unfortu-
nately, we couldn’t afford workstations-
we could only share a PC laboratory run-
ning MS-DOS, used to teach other
computer science subjects. Therefore, we
were pleased to discover that 386BSD could
run on those PCs and already had the com-
plete environment we needed for the practi-
cal lectures. We decided to give the new, ex-
citing libre operating systems a chance-

both GNU/Linux and 386BSD were reason-
ably stable platforms.

History of the Unix Lab
After a testing period, we established a sta-

ble environment that several students helped
us maintain and improve. When the semester
started, a small group of around 20 students
used 3 86BSD to learn to build client-server
applications. The experiment was a success.
The students, using the environment, were
productive and fulfilled the goal we had set:
to build simple RPC-based applications.
386BSD exposed them to a system similar to
Unix workstations but at a fraction of the
cost and with many new features-such as
access to source code.

7 6 I E E E S O F T W A R E M a v N u n e 2000 n 7 ~ n - 7 ~ ~ q i n n i f f i n nn a 7nnn I F F F

There are also institutional barriers to libre
software. Many departments within universi-
ties are reluctant to use or directly oppose libre
software, not on technical grounds, but based
on their unfamiliarity with the software.
Though less common, we also experienced
problems regarding a lack of support for cer-
tain hardware devices.

Another problem is that finding technical
staff well trained in the installation and ad-
ministration of libre software is still not easy.

Many of these disadvantages are not di-
rectly related to libre software characteris-
tics, but rather to its current situation and
perception. Should this situation change in
the future, many of these problems will dis-
appear or else turn into advantages.

n October 1999, our team moved to the
King Juan Carlos University, and we
have already started implementing the

lessons learned at the Carlos I11 University. In
addition, we are exploring the suitability of
libre software for teleteaching and for imple-
menting virtual campus facilities. We are also
holding discussions in which we explain to

students the benefits of a lab based on libre
software.

Both in Carlos I11 University and King Juan
Carlos University, we have helped create
Linux users groups, which are a good source
of informal support for both students and
teachers using libre software. In those groups,
we can also find well-trained technical staff to
help maintain the lab.

We are very interested in the use of libre
software for teaching computer science and
welcome any comments you have about your
experiences in this area. @

Acknowledgments
This article, and the experiences it describes, has

only been possible thanks to the outstanding work of
hundreds of libre software developers. We are very
grateful to all of them.

References
1. G.R. Wright and W.R. Stevens, TCPIIP Illustrated, Addi-

son-Wesley, Reading, Mass., 1995.
2. M.K. McKusick et al., The Design and Implementation

of the 4.4 BSD Operating System, Addison-Wesley,
Reading, Mass., 1996.

s t your company’s
Link to career se

M a y N u n e 2000 I E E E S O F T W A R E 79

Beyond source code: The importance of other artifacts
in software development (a case study)

Gregorio Robles a,*, Jesus M. Gonzalez-Barahona a, Juan Julian Merelo b

a Grupo de Sistemas y Comunicacciones, Departamento de Ingenieria Telematica y Tecnologia Electronica, Universidad Rey Juan Carlos,

Tulipan s/n, 28933 Mostoles, Madrid, Spain
b Grupo Geneura, Universidad de Granada, Campus Aynadamar, Daniel Saucedo Aranda s/n, 18071 Granada, Spain

Received 24 February 2006; accepted 25 February 2006
Available online 21 April 2006

Abstract

Current software systems contain increasingly more elements that have not usually been considered in software engineering research
and studies. Source artifacts, understood as the source components needed to obtain a binary, ready to use version of a program,
comprise in many systems more than just the elements written in a programming language (source code). Especially when we move apart
from systems-programming and enter the realm of end-user applications, we find files for documentation, interface specifications, inter-
nationalization and localization modules and multimedia data. All of them are source artifacts in the sense that developers work directly
with them, and that applications are built automatically using them as input. This paper discusses the differences and relationships
between source code (usually written in a programming language) and these other files, by analyzing the KDE software versioning repos-
itory (with about 6,800,000 commits and 450,000 files). A comprehensive study of those files, and their evolution in time, is performed,
looking for patterns and trying to infer from them the related behaviors of developers with different profiles, from where we conclude
that studying those ‘other’ source artifacts can provide a great deal of insight on a software system.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Mining software repositories; Source code analysis; Source code management systems

1. Introduction

Software systems have evolved during the last decades
from command-line programs to huge end-user applica-
tions full of graphics and multimedia elements. Besides, a
piece of software has nowadays to be adapted to different
cultural environments (language and notational conven-
tions) if it aims to become mainstream. All this has caused
that software development is an endeavor that is no longer
carried out only by software developers. In many cases it
has become an activity that requires the coordinated work
of several groups, with different backgrounds and that per-
form different tasks such as internationalization and local-

ization (from now on i18n, short for internationalization

and l10n, short for localization1), graphic design, user inter-
face design, writing of technical and end-user documenta-
tion and creation of multimedia elements.

During the software construction process these diverse
elements are handled together, conforming an integral
body that has to be developed, managed and maintained.
Despite this new environment, ‘classical’ source code anal-
ysis is still focused on the output of the work performed by
software developers: source code written in a programming
language. The rest of the elements mentioned above are

0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.02.048

* Corresponding author. Tel.: +34 91 488 81 06; fax: +34 91 664 74 94.
E-mail address: grex@gsyc.escet.urjc.es (G. Robles).
URL: http://gsyc.escet.urjc.es/~grex (G. Robles).

1 Internationalization is the process of designing applications so that
they can be adapted to various languages and regions without engineering
changes. Localization is the process of adapting software for a specific
region or language by adding locale-specific components and translating
text.

www.elsevier.com/locate/jss

The Journal of Systems and Software 79 (2006) 1233–1248

mailto:grex@gsyc.escet.urjc.es
http://gsyc.escet.urjc.es/~grex

Massey, B., 2005. Longitudinal analysis of long-timescale Open Source
repository data. In: Proceedings of the International Workshop on
Predictor Models in Software Engineering (PROMISE 2005), St.
Louis, MI, USA.

Mockus, A., Votta L.G., 2000. Identifying reasons for software changes
using historic databases. In: Proceedings of the International Confer-
ence on Software Maintenance, San Jose, CA, USA, pp. 120–130.

Mockus, A., Fielding, R.T., Herbsleb, J.D., 2002. Two case studies of Open
Source software development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology 11 (3), 309–346.

Parnas, D.L., 1994. Software aging. In: Proceedings of the International
Conference on Software Engineering, Sorrento, Italy, pp. 279–287.

Purushothaman, R., Perry, D.E., 2005. Toward understanding the
rhetoric of small source code changes. IEEE Transactions on Software
Engineering 31 (6), 511–526.

Robles, G., Koch, S., Gonzalez-Barahona, J.M., 2004. Remote analysis
and measurement of libre software systems by means of the
CVSAnalY tool. In: Proceedings of the 2nd ICSE Workshop on

Remote Analysis and Measurement of Software Systems (RAMSS),
Edinburg, Scotland, UK, pp. 51–55.

Robles, G., Amor, J.J., Gonzalez-Barahona, J.M., Herraiz, I., 2005.
Evolution and growth in large libre software projects. In: Proceedings
of the International Workshop on Principles in Software Evolution,
Lisbon, Portugal, pp. 165–174.

Robles, G., Gonzalez-Barahona, J.M., Herraiz, I., 2005. An empirical
approach to software archaeology. In: Poster Proceedings of the
International Conference on Software Maintenance, Budapest,
Hungary, pp. 47–50.

Turski, W.M., 1996. Reference model for smooth growth of software
systems. IEEE Transactions on Software Engineering 22 (8), 599–600.

Zimmermann, T., Weigerber, P., 2004. Processing CVS data for fine-
grained analysis. In: Proceedings of the International Workshop on
Mining Software Repositories, Edinburg, Scotland, UK, pp. 2–6.

Zimmermann, T., Weigerber, P., Diehl, S., Zeller, A., 2005. Mining
version histories to guide software changes. IEEE Transactions on
Software Engineering 31 (6), 429–445.

1248 G. Robles et al. / The Journal of Systems and Software 79 (2006) 1233–1248

Jesus M. Gonzalez-
Barahona

[PDF]

Authors

Publication date

Journal

Volume

Issue

Pages

Publisher

Description

Total citations

Scholar articles

Beyond source code: the importance of other artifacts in software development (a
case study)

Gregorio Robles, Jesus M Gonzalez-Barahona, Juan Julian Merelo

2006/9/30

Journal of Systems and Software

79

9

1233-1248

Elsevier

Current software systems contain increasingly more elements that have not usually been
considered in software engineering research and studies. Source artifacts, understood as
the source components needed to obtain a binary, ready to use version of a program,
comprise in many systems more than just the elements written in a programming language
(source code). Especially when we move apart from systems-programming and enter the
realm of end-user applications, we find files for documentation, interface specifications, ...

Cited by 56

Beyond source code: the importance of other artifacts in software development (a case study)
G Robles, JM Gonzalez-Barahona, JJ Merelo - Journal of Systems and Software, 2006
Cited by 56 - Related articles - All 8 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

My Citations Help About Google Scholar Privacy & Terms

2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/09/2014 01:23 AM

Geographic origin of libre software developers q

Jesus M. Gonzalez-Barahona a,*, Gregorio Robles a, Roberto Andradas-Izquierdo a,
Rishab Aiyer Ghosh b

a GSyC/LibreSoft, Departamento de Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, C/Tulipan s/n, 28903 Mostoles, Spain
b Collaborative Creativity Group, United Nations University (UNU-MERIT), Keizer Karelplein 19, 6211TC Maastricht, The Netherlands

a r t i c l e i n f o

Article history:
Available online 29 July 2008

JEL classification:
C81
L17

Keywords:
Geographical location
Data mining
Libre software
Free software
Open source software

a b s t r a c t

This paper examines the claim that libre (free, open source) software involves global devel-
opment. The anecdotal evidence is that developers usually work in teams including indi-
viduals residing in many different geographical areas, time zones and even continents
and that, as a whole, the libre software community is also diverse in terms of national ori-
gin. However, its exact composition is difficult to capture, since there are few records of the
geographical location of developers. Past studies have been based on surveying a limited
(and sometimes biased) sample and extrapolating that sample to the global distribution
of developers. In this paper we present an alternate approach in which databases are ana-
lyzed to create traces of information from which the geographical origin of developers can
be inferred. Applying this technique to the SourceForge users database and the mailing lists
archives from several large projects, we have estimated the geographical origin of more
than one million individuals who are closely related to the libre software development pro-
cess. The paper concludes that the result is a good proxy for the actual distribution of libre
software developers working on global projects.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

One of the most well known claims about libre (free, open source) software1 is that it is based on an internationally dis-
tributed pool of developers. Most of these projects are open to participation by any interested individual with Internet access
who has sufficient knowledge and skills to make a contribution. There are apparently few barriers to participation that are
due to the geographical location of a developer. However, the distribution of those developers in the different regions of the
globe is extremely uneven, showing that barriers do exist, even when they are not built by the projects themselves. Obtain-
ing a clear picture of the actual geographical distribution of libre software developers is a precondition to analyzing the nat-
ure and source of barriers and their effect on the participation of specific populations in this global phenomenon. The

0167-6245/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infoecopol.2008.07.001

q This work has been funded in part by the European Commission, under the FLOSSMETRICS and FLOSSWorld projects (IST program, Contract Numbers
015722 and 033982). This work is based on in part on the SourceForge database provided by University of Notre Dame, see details at http://www.nd.edu/
oss/Data/data.html. This work is based in part in the contribution ‘‘Geographic Location of Developers at SourceForge”, by Gregorio Robles and Jesus M.
Gonzalez-Barahona, presented in the Mining Software Repositories Workshop, Shanghai, May 2006.

* Corresponding author.
E-mail addresses: jgb@gsyc.es (J.M. Gonzalez-Barahona), grex@gsyc.es (G. Robles), randradas@gsyc.es (R. Andradas-Izquierdo), ghosh@merit.unu.edu

(R.A. Ghosh).
1 Through this paper we will use the term libre software to refer both to free software (according to the Free Software Foundation) and to open source

software (according to the Open Source Initiative).

Information Economics and Policy 20 (2008) 356–363

Contents lists available at ScienceDirect

Information Economics and Policy

journal homepage: www.elsevier .com/locate / iep

http://www.nd.edu/oss/Data/data.html
http://www.nd.edu/oss/Data/data.html
mailto:jgb@gsyc.es
mailto:grex@gsyc.es
mailto:randradas@gsyc.es
mailto:ghosh@merit.unu.edu
http://www.sciencedirect.com/science/journal/01676245
http://www.elsevier.com/locate/iep

5. Conclusions and further research

In this paper we have shown a more complete and detailed landscape of the geographical distribution of libre software
developers around the world than previous studies. The combined analysis of SourceForge users data and mailing list ar-
chives also offers a more complete perspective on participation.

It is important to emphasize that this research is focused on global development (that is, projects not targeted in partic-
ular to a specific geographical or cultural community), and for that reason, developers participating only in regional or local
projects are not considered. These developer groups can form sizable communities in some areas of the world.7 In addition,
and despite the large size and representativeness of our samples, some bias might remain. For instance, projects that are not
present in SourceForge may have a different geographical distribution. However, since SourceForge hosted projects and the
other projects we studied account for a sizable fraction of all libre software available, we believe this bias is inconsequential.

All of the results presented are the result of heuristics and (educated) assumptions, and are therefore inexact. We have
worked with sources having rather different error margins, and we have used heuristics that are sound, but they are subject
to a certain error rate in identifying locations. To assess the validity of the methodology for estimating the national origin, it
would be desirable to check (probably by contacting developers themselves) a large fraction of SourceForge users. The re-
sults could then be compared with those of our study. However, the validations we have performed seem to indicate that
the results are statistically sound, and that the figures shown are good estimators of the reality.

Our methodology is not focused on identifying the geographical location of single developers (although in many cases
that is done), but on finding the aggregate numbers of developers of a certain national origin. In many cases, therefore,
we use algorithmically driven estimations to infer the proportion of nationals of a certain country in a population of users
having certain characteristics. This is certainly a limitation of the proposed approach, especially if we were interested in
(individual) developer identification methods as proposed in other works (e.g., Robles and Gonzalez-Barahona, 2005).

Acknowledgements

We thank the SourceForge team, and Greg Madey from the University of Notre Dame, for providing access to the Source-
Forge data. Thanks to Martin Michlmayr for his help with the Debian mail archives. Also, a big thank you goes to our col-
leagues from GSyC/LibreSoft for their help in verifying the validity of the data. Last, but not least, thanks to the
anonymous reviewers; their comments have helped to improve this paper.

References

David, P.A., Waterman, A., Arora, S., 2003. FLOSS-US. The free/libre/open source software survey for 2003. Technical Report, Stanford Institute for Economic
and Policy Research, Stanford, CA, USA.

Dempsey, B.J., Weiss, D., Jones, P., Greenberg, J., 2002. Who is an open source software developer? Communications of the ACM 45 (2), 67–72.
Ghosh, R.A., Glott, R., Krieger, B., Robles, G., 2002. Survey of developers (free/libre and open source software: survey and study). Technical Report,

International Institute of Infonomics, University of Maastricht, The Netherlands.
Hertel, G., Niedner, S., Herrmann, S., 2003. Motivation of software developers in open source projects: an internet-based survey of contributors to the linux

kernel. Research Policy (32), 1159–1177.
Lancashire, D., 2001. Code, culture and cash: the fading altruism of open source development. First Monday 6 (12).
Robles, G., Gonzalez-Barahona, J.M., 2005. Developer identification methods for integrated data from various sources. In: Proceedings of the International

Workshop on Mining Software Repositories, St. Louis, Missouri, USA, pp. 106–110.
Robles, G., Gonzalez-Barahona, J.M., 2006. Geographic location of developers at SourceForge. In: Proceedings of the Mining Software Repositories Workshop,

Shanghai, China.
Robles, G., Scheider, H., Tretkowski, I., Weber, N., 2001. Who is doing it? A research on libre software developers. Technical Report, Technische Universitt

Berlin, Berlin, Germany.
Tuomi, I., 2004. Evolution of the Linux credits file: methodological challenges and reference data for open source research. First Monday 9 (6).

7 A separate research in which the authors are also working shows that important regional communities, with little relationship with the global community,
exist in regions such as East Asia and Brazil.

J.M. Gonzalez-Barahona et al. / Information Economics and Policy 20 (2008) 356–363 363

Jesus M. Gonzalez-
Barahona

Authors

Publication date

Journal

Volume

Issue

Pages

Publisher

Description

Total citations

Scholar articles

Geographic origin of libre software developers

Jesus M Gonzalez-Barahona, Gregorio Robles, Roberto Andradas-Izquierdo, Rishab Aiyer Ghosh

2008/12/31

Information Economics and Policy

20

4

356-363

North-Holland

This paper examines the claim that libre (free, open source) software involves global
development. The anecdotal evidence is that developers usually work in teams including
individuals residing in many different geographical areas, time zones and even continents
and that, as a whole, the libre software community is also diverse in terms of national origin.
However, its exact composition is difficult to capture, since there are few records of the
geographical location of developers. Past studies have been based on surveying a limited ...

Cited by 23

Geographic origin of libre software developers
JM Gonzalez-Barahona, G Robles… - Information Economics and Policy, 2008
Cited by 23 - Related articles - All 5 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 09:40 AM

Empir Software Eng (2009) 14:262–285
DOI 10.1007/s10664-008-9100-x

Macro-level software evolution: a case study
of a large software compilation

Jesus M. Gonzalez-Barahona · Gregorio Robles ·
Martin Michlmayr · Juan José Amor ·
Daniel M. German

Published online: 29 November 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com
Editors: Ahmed Hassan, Stephan Diehl and Harald Gall

Abstract Software evolution studies have traditionally focused on individual prod-
ucts. In this study we scale up the idea of software evolution by considering software
compilations composed of a large quantity of independently developed products,
engineered to work together. With the success of libre (free, open source) software,
these compilations have become common in the form of ‘software distributions’,
which group hundreds or thousands of software applications and libraries into an
integrated system. We have performed an exploratory case study on one of them,
Debian GNU/Linux, finding some significant results. First, Debian has been doubling
in size every 2 years, totalling about 300 million lines of code as of 2007. Second,
the mean size of packages has remained stable over time. Third, the number of
dependencies between packages has been growing quickly. Finally, while C is still
by far the most commonly used programming language for applications, use of the
C++, Java, and Python languages have all significantly increased. The study helps not

J. M. Gonzalez-Barahona (B) · G. Robles · J. J. Amor
Universidad Rey Juan Carlos, Madrid, Spain
e-mail: jgb@gsyc.es

G. Robles
e-mail: grex@gsyc.es

J. J. Amor
e-mail: jjamor@gsyc.es

M. Michlmayr
Open Source Program Office, HP, Innsbruck, Austria
e-mail: martin@michlmayr.org

D. M. German
University of Victoria, Victoria, Canada
e-mail: dmgerman@uvic.ca

Empir Software Eng (2009) 14:262–285 285

Juan José Amor has a M.Sc. in Computer Science from the Universidad Politécnica de Madrid
and he is currently pursuing a Ph.D. at the Universidad Rey Juan Carlos, where he is also a
project manager. His research interests are related to libre software engineering, mainly effort and
schedule estimates in libre software projects. Since 1995 he has collaborated in several libre software
organizations; he is also co-founder of LuCAS, the best known libre software documentation
portal in Spanish, and Hispalinux, the biggest spanish Linux user group. He also collaborates with
Barrapunto.com and Linux+.

Daniel M. German is associate professor of computer science at the University of Victoria, Canada.
His main areas of interest are software evolution, open source software engineering and intellectual
property.

http://www.Barrapunto.com

Jesus M. Gonzalez-
Barahona

[HTML] from springer.com

Authors

Publication date

Journal

Volume

Issue

Pages

Publisher

Description

Total citations

Scholar articles

Macro-level software evolution: a case study of a large software compilation

Jesus M Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr, Juan José Amor, Daniel M German

2009/6/1

Empirical Software Engineering

14

3

262-285

Springer US

Abstract Software evolution studies have traditionally focused on individual products. In this
study we scale up the idea of software evolution by considering software compilations
composed of a large quantity of independently developed products, engineered to work
together. With the success of libre (free, open source) software, these compilations have
become common in the form of 'software distributions', which group hundreds or thousands
of software applications and libraries into an integrated system. We have performed an ...

Cited by 62

Macro-level software evolution: a case study of a large software compilation
JM Gonzalez-Barahona, G Robles, M Michlmayr… - Empirical Software Engineering, 2009
Cited by 62 - Related articles - All 18 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 09:45 AM

Empir Software Eng (2012) 17:75–89
DOI 10.1007/s10664-011-9181-9

On the reproducibility of empirical software
engineering studies based on data retrieved
from development repositories

Jesús M. González-Barahona · Gregorio Robles

Published online: 18 October 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com
Editors: Martin Shepperd and Tim Menzies

Abstract Among empirical software engineering studies, those based on data re-
trieved from development repositories (such as those of source code management,
issue tracking or communication systems) are specially suitable for reproduction.
However their reproducibility status can vary a lot, from easy to almost impossible
to reproduce. This paper explores which elements can be considered to characterize
the reproducibility of a study in this area, and how they can be analyzed to better
understand the type of reproduction studies they enable or obstruct. One of the
main results of this exploration is the need of a systematic approach to asses the
reproducibility of a study, due to the complexity of the processes usually involved,
and the many details to be taken into account. To address this need, a methodology
for assessing the reproducibility of studies is also presented and discussed, as a tool to
help to raise awareness about research reproducibility in this field. The application
of the methodology in practice has shown how, even for papers aimed to be
reproducible, a systematic analysis raises important aspects that render reproduction
difficult or impossible. We also show how, by identifying elements and attributes
related to reproducibility, it can be better understood which kind of reproduction
can be done for a specific study, given the description of datasets, methodologies and
parameters it uses.

Keywords Repeatable results · Mining software repositories · Reproducibility

J. M. González-Barahona
Universidad Rey Juan Carlos, Mostoles, Spain

G. Robles (B)
Universidad Rey Juan Carlos, Fuenlabrada, Spain
e-mail: grex@gsyc.urjc.es

Empir Software Eng (2012) 17:75–89 89

Gregorio Robles is Associate Professor at the Universidad Rey Juan Carlos, which has several campi
distributed in the region of Madrid (Spain). He earned his PhD in 2006 and currently has mainly
teaching duties in the field of computer networks, although he teaches in a master on libre software
as well introductory computer courses to journalism students. Regarding research, he works in two
fields: a) technology enhanced learning, which means that he tries to use technology to improve
the learning processes, and b) software engineering research on Free/Libre/Open Source Software
systems with special focus on empirical issues.

Jesus M. Gonzalez-
Barahona

[HTML] from springer.com

Authors

Publication date

Journal

Volume

Issue

Pages

Publisher

Description

Total citations

Scholar articles

On the reproducibility of empirical software engineering studies based on
data retrieved from development repositories

Jesús M González-Barahona, Gregorio Robles

2012/2/1

Empirical Software Engineering

17

1-2

75-89

Springer US

Abstract Among empirical software engineering studies, those based on data retrieved from
development repositories (such as those of source code management, issue tracking or
communication systems) are specially suitable for reproduction. However their
reproducibility status can vary a lot, from easy to almost impossible to reproduce. This paper
explores which elements can be considered to characterize the reproducibility of a study in
this area, and how they can be analyzed to better understand the type of reproduction ...

Cited by 27

On the reproducibility of empirical software engineering studies based on data retrieved from development repositories
JM González-Barahona, G Robles - Empirical Software Engineering, 2012
Cited by 27 - Related articles - All 7 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 09:47 AM

28

The Evolution of the Laws of Software Evolution: A Discussion
Based on a Systematic Literature Review

ISRAEL HERRAIZ, Technical University of Madrid, Spain
DANIEL RODRIGUEZ, University of Alcala, Madrid, Spain
GREGORIO ROBLES and JESUS M. GONZALEZ-BARAHONA, GSyC/Libresoft,
University Rey Juan Carlos, Madrid, Spain

After more than 40 years of life, software evolution should be considered as a mature field. However, despite
such a long history, many research questions still remain open, and controversial studies about the validity
of the laws of software evolution are common. During the first part of these 40 years, the laws themselves
evolved to adapt to changes in both the research and the software industry environments. This process of
adaption to new paradigms, standards, and practices stopped about 15 years ago, when the laws were revised
for the last time. However, most controversial studies have been raised during this latter period. Based on a
systematic and comprehensive literature review, in this article, we describe how and when the laws, and the
software evolution field, evolved. We also address the current state of affairs about the validity of the laws,
how they are perceived by the research community, and the developments and challenges that are likely to
occur in the coming years.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement

General Terms: Management

Additional Key Words and Phrases: Laws of software evolution, software evolution

ACM Reference Format:
Herraiz, I., Rodriguez, D., Robles, G., and Gonzalez-Barahona, J. M. 2013. The evolution of the laws of
software evolution: A discussion based on a systematic literature review. ACM Comput. Surv. 46, 2, Article 28
(November 2013), 28 pages.
DOI: http://dx.doi.org/10.1145/2543581.2543595

1. INTRODUCTION

In 1969, Meir M. Lehman did an empirical study (originally confidential, later pub-
lished [Lehman 1985b]) within IBM, with the idea of improving the company’s pro-
gramming effectiveness. The study received little attention in the company and had
no impact on its development practices. This study, however, started a new and prolific
field of research: software evolution.

Software evolution deals with the process by which programs are modified and
adapted to their changing environment. The aim of Lehman’s research was to for-
mulate a scientific theory of software evolution. As any sound theory, it was meant to
be based on empirical results and aimed at finding invariant properties to be observed
on entire classes of software development projects. As a result of his research, some
invariants were found, which were first described in Lehman [1974] as the laws of
software evolution.

Author’s address: israel.herraiz@upm.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0360-0300/2013/11-ART28 $15.00

DOI: http://dx.doi.org/10.1145/2543581.2543595

ACM Computing Surveys, Vol. 46, No. 2, Article 28, Publication date: November 2013.

28:28 I. Herraiz et al.

SHULL, F., CARVER, J., VEGAS, S., AND JURISTO, N. 2008. The role of replications in empirical software engineering.
Empirical Software Eng. 13, 2, 211–218.

SIEBEL, N. T., COOK, S., SATPATHY, M., AND RODRGUEZ, D. 2003. Latitudinal and longitudinal process diversity.
J. Software Maintenance Evol. Res. Pract. 15, 1, 9–25.

SJØBERG, D. I. K., DYBÅ, T., ANDA, B. C. D., AND HANNAY, J. E. 2008. Building theories in software engineering.
In Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer, and D. I. K. Sjberg, Eds.,
Springer, London, 312–336.

SMITH, N., CAPILUPPI, A., AND RAMIL, J. F. 2005. A study of open source software evolution data using qualitative
simulation. Software Process: Improve. Pract. 10, 3, 287–300.

TEMPERO, E., ANSLOW, C., DIETRICH, J., HAN, T., LI, J., LUMPE, M., MELTON, H., AND NOBLE, J. 2010. Qualitas
corpus: A curated collection of Java code for empirical studies. In Proceedings of the Asia Pacific Software
Engineering Conference.

TURSKI, W. M. 1996. Reference model for smooth growth of software systems. IEEE Trans. Software Eng. 22,
8, 599–600.

TURSKI, W. M. 2002. The reference model for smooth growth of software systems revisited. IEEE Trans.
Software Eng. 28, 8, 814–815.

VASA, R. 2010. Growth and Change Dynamics in Open Source Software Systems. Ph.D. thesis, Swinburne
University of Technology, Melbourne, Australia.

WERNICK, P. AND LEHMAN, M. M. 1999. Software process white box modelling for FEAST/1. J. Syst. Software
46, 2–3, 193–201.

WOODSIDE, C. M. 1980. A mathematical model for the evolution of software. J. Syst. Software 1, 4, 337–345.
WOODSIDE, C. M. 1985. A mathematical model for the evolution of software. In Program Evolution. Processes

of Software Change, M. M. Lehman and L. A. Belady, Eds., Academic Press, San Diego, CA, 339–354.

Received April 2012; revised October 2012; accepted June 2013

ACM Computing Surveys, Vol. 46, No. 2, Article 28, Publication date: November 2013.

38 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Understanding
How Companies
Interact with
Free Software
Communities
Jesus M. Gonzalez-Barahona, Universidad Rey Juan Carlos

Daniel Izquierdo-Cortazar, Bitergia

Stefano Maffulli, OpenStack

Gregorio Robles, Universidad Rey Juan Carlos

// When free, open source software development

communities work with companies that use their output,

it’s especially important for both parties to understand how

this collaboration is performing. The use of data analytics

techniques on software development repositories can improve

factual knowledge about performance metrics. //

Free, libre, open source soft-
ware (FLOSS) communities can be
very complex and difficult to under-
stand, so quantitative, neutral infor-
mation about them becomes valuable,

especially when they’re large and in-
volve competing companies.1 For-
tunately, many FLOSS projects op-
erate in open, public development
repositories, which has facilitated the

progress of new analytics techniques
to study them. In turn, these tech-
niques have started to produce useful
results for both practitioners and other
stakeholders.2

In particular, studies of com-
pany participation in large projects
have started to raise industrial inter-
est: FLOSS foundations want to learn
about company participation in their
projects, and the companies want to
know more about corporate activity in
the projects on which they rely. Here,
we present two studies in this area—
by LibreSoft, a research group special-
izing in the quantitative analysis of
software development, and Bitergia, a
LibreSoft spin-off company focused on
software analytics services—into com-
pany activity in OpenStack and the
fairness of WebKit’s review process.

Characterizing Company
participation
Although corporate contributions have
always played a role in FLOSS proj-
ects, the emergence of “communities
of companies” is driving an interest
in analyzing company behavior. Al-
though this new kind of community
admits individual contributions, it
clearly prioritizes corporate interests,
and participating companies, which
can be commercial competitors, em-
ploy most of the developers.3 Re-
searchers can study several aspects of
this participation:

• activity, or how companies contrib-
ute to the project in code changes,
bug fixes, or participation in
discussions;

• neutrality, or how neutral the proj-
ect stays with respect to accepting
contributions from or fixing bugs
reported by companies; and

• collaboration, or how companies
work in the same areas, collaborate
to fix bugs, or take joint decisions.

FOCUS: The Many Faces oF soFTware analyTics

 SEptEmbEr/octobEr 2013 | IEEE SoftwarE 45

linuxfoundation.org/sites/main/files/
publications/whowriteslinux.pdf.

 5. H. Kagdi, M.L. Collard, and J.I. Maletic, “A
Survey and Taxonomy of Approaches for Min-
ing Software Repositories in the Context of
Software Evolution,” J. Software Maintenance
and Evolution: Research and Practice, vol. 19,
no. 2, 2007, pp. 77–131.

 6. E. Kouters et al., “Who’s Who in Gnome:
Using lsa to Merge Software Repository Iden-
tities,” Proc. 28th IEEE Int’l Conf. Software
Maintenance (ICSM 2012 ERA), IEEE, 2012,
pp. 592–595.

 7. C. Bird and N. Nagappan, “Who? Where?
What? Examining Distributed Development
in Two Large Open Source Projects,” Proc.
9th IEEE Working Conf. Mining Software
Repositories (MSR 12), IEEE, 2012, pp.
237–246.

 8. P. Rigby et al., “Contemporary Peer Review in
Action: Lessons from Open Source Develop-
ment,” IEEE Software, vol. 29, no. 6, 2012,
pp. 56–61.

 9. J.M. Gonzalez-Barahona and G. Robles, “On
the Reproducibility of Empirical Software
Engineering Studies Based on Data Retrieved
from Development Repositories,” Empirical
Software Eng., vol. 17, nos. 1–2, 2012, pp.
75–89.

IEEE Software seeks practical, readable

articles that will appeal to experts and nonexperts

alike. The magazine aims to deliver reliable

information to software developers and managers

to help them stay on top of rapid technology

change. Submissions must be original and no

more than 4,700 words, including 200 words

for each table and fi gure.

Author guidelines:
www.computer.org/software/author.htm
Further details: software@computer.org

www.computer.org/software

Call Articles
 for

Newsletters
Stay Informed on Hot Topics

computer.org/newsletters

Studying the laws of software evolution in a long-lived FLOSS
project

Jesus M. Gonzalez-Barahona1,*,†, Gregorio Robles1, Israel Herraiz2 and Felipe Ortega1

1GSyC/LibreSoft, Universidad Rey Juan Carlos, Fuenlabrada, Spain
2Universidad Politécnica de Madrid, Madrid, Spain

SUMMARY

Some free, open-source software projects have been around for quite a long time, the longest living ones
dating from the early 1980s. For some of them, detailed information about their evolution is available in
source code management systems tracking all their code changes for periods of more than 15 years. This pa-
per examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it
evolved and how it matched Lehman’s laws of software evolution. As a result, we have developed a meth-
odology for studying the evolution of such long-lived projects based on the information in their source code
management repository, described in detail several aspects of the history of glibc, including some activity
and size metrics, and found how some of the laws of software evolution may not hold in this case.
© 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

Received 17 March 2012; Revised 3 July 2013; Accepted 12 July 2013

KEY WORDS: free software; open source software; software evolution; source code management system;
mining software repositories

1. INTRODUCTION

Large, long-lived software projects are difficult to study. Until some years ago, having access to one of them
was very difficult and time-consuming. In addition, reliable information about them has to be available for
all the period under study. If available, it still has to be found, extracted, and analyzed to produce
meaningful time series and other data artifacts that can be studied to gain knowledge about its evolution.

This situation changed during the last years with the public availability of mature free, open-source
software (FLOSS) projects, some of which now feature more than 15 or even 20years of history. Many
have been supported by source code management (SCM) systems over a large fraction of their life, and
the corresponding repositories have been maintained carefully enough to still have much of the historical
information available, with enough reliability and detail to allow for the derivation of significant conclusions.

In this paper, we study one of those long-lived FLOSS projects, glibc, with over 20 years of history
in its SCM repository. Evolution in this kind of large, long-lived projects has many edges: all of them
should be considered to understand the whole story. Our purpose is to analyze this wealth of
information using a repeatable methodology that allows for the analysis of several aspects of the
evolution of the project. In the process, we have also identified several problems and shortcomings
of the available data that have to be taken into account for such analysis. More in particular, the
main goal of the study can be summarized as follows:

*Correspondence to: Jesus M. Gonzalez-Barahona, GSyC/LibreSoft, Universidad Rey Juan Carlos, Fuenlabrada, Spain.
†E-mail: jgb@gsyc.es
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly cited.

© 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2014; 26:589–612
Published online 14 October 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1615

http://creativecommons.org/licenses/by/3.0/

31. Madhavji NH, Fernandez-Ramil J, Perry DE (eds.). Software Evolution and Feedback. Theory and Practice. Wiley,
Chichester, UK 2006.

32. Lehman MM, Perry DE, Ramil JF. Implications of evolution metrics on software maintenance. Proceedings of Inter-
national Conference on Software Maintenance. IEEE Computer Society, 1998; 208–217.

33. Herraiz I, Gonzalez-Barahona JM, Robles G. Towards a theoretical model for software growth. International Work-
shop on Mining Software Repositories, IEEE Computer Society: Minneapolis, MN, USA, 2007; 21–30.

34. Gonzalez-Barahona JM, Robles G. On the reproducibility of empirical software engineering studies based on data
retrieved from development repositories. Empirical Software Engineering 2012; 17(1-2):75–89.

AUTHORS’ BIOGRAPHIES

Jesus M. Gonzalez-Barahona teaches and researches at the Universidad Rey Juan
Carlos and collaborates with Bitergia, a software development analytics company. He
is interested in understanding free/open source software development, in finding ways
to improve its efficiency, and in sharing this knowledge. He is a member of the Computer
Society of the Institute of Electrical and Electronics Engineers and of the Asociacion de
Técnicos en Informática.

Gregorio Robles is an associate professor at the Universidad Rey Juan Carlos. His re-
search interests involve software engineering in free/libre open source software, mining
software repositories, and technology enhanced learning. He is a member of the Institute
of Electrical and Electronics Engineers.

Israel Herraiz is an assistant professor at the Technical University of Madrid. He holds a
PhD degree with European Mention on Computer Science from the Universidad Rey
Juan Carlos. He has been a visiting scholar to the University of California at Davis,
the Queen’s University and University of Victoria (Canada), and the Open University
and Oxford University (UK).

Felipe Ortega is a researcher in the Department of Statistics and Operations Research at
the University Rey Juan Carlos. He got a PhD degree in Computer Science from the
same institution. He studies open online communities and open collaboration from a
quantitative perspective, applying data science methods and technologies. He has been
visiting scholar at Télécom Bretagne (France) and has been an invited speaker at the
Gerogia Institute of Technology, Xerox PARC and Instituto Cervantes.

612 J. M. GONZALEZ-BARAHONA ET AL.

© 2013 The Authors. Journal of Software: Evolution and Process published by
John Wiley & Sons Ltd.

J. Softw. Evol. and Proc. 2014; 26:589–612
DOI: 10.1002/smr

1.A.2.
PUBLICACIONES CIENTÍFICAS NO
INDEXADAS DE ACUERDO CON UN

ÍNDICE DE CALIDAD RELATIVO

1

UPGRADE is the European Online Magazine
for the Information Technology Professional,
published bimonthly at
http://www.upgrade-cepis.org/

Publisher
UPGRADE is published on behalf of CEPIS (Council of
European Professional Informatics Societies,
http://www.cepis.org/) by Novática (http://www.ati.es/novatica/)
and Informatik/Informatique (http://www.svifsi.ch/revue/)

Chief Editors
François Louis Nicolet, Zurich <nicolet@acm.org>
Rafael Fernández Calvo, Madrid <rfcalvo@ati.es>

Editorial Board
Peter Morrogh, CEPIS President
Prof. Wolffried Stucky, CEPIS President-Elect
Fernando Sanjuán de la Rocha and
Rafael Fernández Calvo, ATI
Prof. Carl August Zehnder and François Louis Nicolet, SVI/FSI

English Editors: Mike Andersson, Richard Butchart, David
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn,
Rodney Fennemore, Hilary Green Roger Harris, Michael Hird,
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss,
Phil Parkin, Brian Robson

Cover page designed by Antonio Crespo Foix, © ATI 2001

Layout: Pascale Schürmann

E-mail addresses for editorial correspondence:
<nicolet@acm.org> and <rfcalvo@ati.es>

E-mail address for advertising correspondence:
<novatica@ati.es>

Copyright
© Novática and Informatik/Informatique. All rights reserved.
Abstracting is permitted with credit to the source. For copying,
reprint, or republication permission, write to the editors.

The opinions expressed by the authors are their exclusive
responsibility.

The European Online Magazine for the IT Professional
http://www.upgrade-cepis.org
Vol. II, No. 6, December 2001

Joint issue with NOVÁTICA and INFORMATIK/INFORMATIQUE

2 Presentation – Joe Ammann, Jesús M. González-Barahona,
Pedro de las Heras Quirós, Guest Editors

4 Free Software Today
 – Pedro de las Heras Quirós and Jesús M. González-Barahona
The position of many major companies with regard to Free Software is changing. New
companies are becoming giants. It is vital for the data on which we base this idea to be right
up to date. Any impression based on data from a few months ago will very possibly be wrong.

12 Should Business Adopt Free Software?
 – Gilbert Robert and Frédéric Schütz
We explain what Free Software is, and what its advantages are for users, and provide an
overview of its status in business, in particular by looking at the obstacles which still stand in
the way of its use.

20 Harm from The Hague – Richard Stallman
The proposed Hague Treaty threatens to subject software developers in Europe to U.S.
software patents. The consequence is that you could be sued about information you distributed
under the laws of any country, and the judgement would be inforced by your country.

23 Software Patentability with Compensatory Regulation: a Cost Evaluation – Jean
Paul Smets and Hartmut Pilch
The European Patent Office has proposed to remove limitations on patentability, such as the
exclusion of computer programs. The French Academy of Technologies suggests additional
regulation measures in order to reduce potential abuses of software patents.

33 Open Source in a Major Swiss Bank
 – Klaus Bucka-Lassen and Jan Sorensen
This article highlights which advantages and disadvantages of Open Source Software are of
significance for a financial services provider. It describes the problems that arose, and what
convinced management to use Struts for Web application developments.

36 European Initiatives Concerning the Use of Free Software in the Public Sector
– Juan Jesús Muñoz Esteban
The European Commission is beginning to make use of Free Software for some of their
strategic initiatives. A study of the use of Free Software in several administrations of different
countries analyses the reasons for adopting it.

41 GNU Enterprise Application Software – Neil Tiffin and Reinhard Müller
GNUe is a set of integrated business applications and tools to support accounting, supply
chain, human resources, sales, manufacturing, and other business processes. We describe the
project, the idea and motivation for developers and users behind it.

45 The Debian GNU/Linux Project – Javier Fernández-Sanguino Peña
The Debian GNU/Linux project is one of the most ambitious Free Software projects, involving
a large number of developers creating a totally free operating system.

50 Journal File Systems in Linux – Ricardo Galli
Linux buffer/cache is really impressive and affected, positively, all the figures of my
compilations, copies and random reads and writes.

57 The Crisis of Free Scientific Software – David Santo Orcero
The scientific world was among the pioneers in creating Free Software. In the 1990s Free
Software started to spread into other areas. In certain fields this reached a point where there
are either no free tools available, or no more free tools are being actively developed.

60 Counting Potatoes: the Size of Debian 2.2
 – Jesús M. González-Barahona, Miguel A. Ortuño Pérez, Pedro de las Heras
Quirós, José Centeno González and Vicente Matellán Olivera
Debian is the largest Free Software distribution, with more than 4,000 source packages in the
release currently in preparation. We show that the Debian development model is at least as
capable as other development methods to manage distributions of this size.

Open Source / Free Software: Towards Maturity
Guest Editors: Joe Ammann, Jesús M. González-Barahona, Pedro de las Heras Quirós

Coming issue:
“Knowledge Management”

Open Source / Free Software: Towards Maturity

60 UPGRADE Vol. II, No. 6, December 2001 © Novática and Informatik/Informatique

Counting Potatoes: the Size of Debian 2.2

Jesús M. González-Barahona, Miguel A. Ortuño Pérez, Pedro de las Heras Quirós, José Centeno González and
Vicente Matellán Olivera

Debian is the largest Free Software distribution, with well over 2,800 source packages in the latest stable
release (Debian 2.2) and more than 4,000 source packages in the release currently in preparation. But, how
large is “the largest”? In this paper, we use David Wheeler’s sloccount system to determine the number of
physical source lines of code (SLOC) of Debian 2.2 (aka Potato). We show that Debian 2.2 includes over
56,000,000 physical SLOC (almost twice than Red Hat 7.1, released about 8 months later), showing that the
Debian development model (based on the work of a large group of voluntary developers spread around the
world) is at least as capable as other development methods (like the more centralized one, based on the work
of employees, used by Red Hat or Microsoft) to manage distributions of this size.

Keywords: Debian, Free Software, Libre Software, SLOC,
Lines of Code, Linux

Introduction
On August 14th of 2000 the Debian Project announced

Debian GNU/Linux 2.2, the “Joel ‘Espy’ Klecker” release
[Debian22Ann] [Debian22Rel]. Code named “Potato”, it is the
latest (to date) release of the Debian GNU/Linux Operating
System. In this paper, we have counted this distribution, show-
ing its size, and comparing it to other distributions.

Debian is not only the largest GNU/Linux distribution, it is
also one of the more reliable, and enjoys several awards based
on users preferences. Although its user base is difficult to esti-
mate, since the Debian Project does not sell CDs or other media
with the software, it is for sure important within the Linux
market. It also takes special care to benefit from one of the
freedoms that Free Software provides to users: the availability
of source code. Therefore, source packages are carefully craft-
ed for easy compilation and reconstruction of original (up-
stream) sources. This makes it also convenient to measure and
in general, to get statistics about it.

The idea of this paper came after reading David Wheeler’s
fine paper [Wheeler 01]. We encourage the reader to at least
browse it, and compare the data it offers for Red Hat Linux with
the ones found here.

The structure of this paper is as follows. Next section pro-
vides some background about the Debian Project and the Debi-
an 2.2 GNU/Linux distribution. After that, we discuss the
method we have used for collecting the data shown in this
paper. Later on, we offer the results of counting Debian 2.2 (in-
cluding total counts, counts by language, counts for the largest
packages, etc.). The following section offers some comments
on the numbers and how they should be understood, and some
comparisons with Red Hat Linux and other operating systems.
To finish, we include some conclusions and references.

Some Background about Debian
The Debian 2.2 GNU/Linux distribution is put together

and maintained by the Debian project. In this section, we offer
some background data about Debian as a project, and about the
Debian 2.2 release.

1

2

Jesús M. González Barahona is a lecturer at the Universidad
Rey Juan Carlos, and collaborator of BarraPunto.Com. He began
working on the promotion of Free Software in 1991, in the PD-
SOFT group (later the Sobre group). Since then he has been
involved in many activities in this field, such as the organisation
of seminars, giving courses and taking part in Free Software
working groups. He is currently collaborating on several Free
Software projects (Debian and The Espiral among others), he
takes part in the Working Group on Free software promoted by the
DG-INFO of the European Commission, he collaborates with
associations like Hispalinux and EuroLinux, he writes for several
publications about Free Software, and he advises companies in
their strategies regarding this subject. Co-editor of the Free Soft-
ware section of Novática. <jgb@gsyc.escet.urjc.es>

Miguel A. Ortuño Pérez is engineer in informatics, professor at
the Universidad Rey Juan Carlos in Madrid where his domains of
interests are mobile computation and Free Software. Previously
he worked at the University of Oviedo in various projects related
to remote teaching.

José Centeno González is professor at the Universidad Rey
Juan Carlos in Madrid. He joined the Informatics department of
the Universidad Carlos III in Madrid in 1993 where he worked
until 1999. His research interests include distributed systems pro-
gramming, communications protocols and mobility. He is also in-
terested in the impact of Free Software in the domain of software
engineering and industry. He holds a degree in telecommunica-
tion engineering from the Universidad Politécnica de Madrid
where he expects to obtain the doctor’s degree this year.

Vicente Matellán Oliveras is professor at the Universidad Rey
Juan Carlos in Madrid. He has been active in the fields of Free
Software, among others in the creation of OpenResources.com
and BarraPunto.com.

Open Source / Free Software: Towards Maturity

66 UPGRADE Vol. II, No. 6, December 2001 © Novática and Informatik/Informatique

For instance, the Linux kernel amounts for 1,780,000 SLOC
(release 2.2.19) in Debian 2.2, while the same package it
amounts for 2,437,000 SLOC (release 2.4.2) in Red Hat 7.1, or
XFree includes 1,270,000 SLOC (release 3.3.6) in Debian 2.2,
while the release included in Red Hat 7.1 amounts for
1,838,000 (XFree 4.0.3). This differences in releases make it
difficult to directly compare the figures for Red Hat and Debi-
an.

The reader should also note that there is a methodological
difference between the study on Red Hat and ours on Debian.
The former extracts all the source code, and uses MD5 check-
sums to avoid duplicates across the whole distribution source
code. In the case of Debian, we have extracted the packages one
by one, only checking for duplicates within packages. How-
ever, the total count should not be very affected for this differ-
ence.

Conclusions and Related Work
It is important to notice that these counts may represent

roughly the whole collection of stable Free Software packages
available on GNU/Linux at the time of the Debian 2.2 release
(August 2000). Of course, there is Free Software not included
in Debian, but when we come to popular, stable and usable
packages, most of them have been packaged by a Debian devel-
oper and included in the Debian distribution. Therefore, with
some care, it could be said that this kind of software amounted
for about 60,000,000 SLOC around the summer of 2001. Using
the COCOMO model, this implies a cost (using traditional,
proprietary software development models) close to 2,000 mil-
lion USD and effort of more than 170,000 person-months.

We can also compare this count to that of other Linux-based
distributions, notably Red Hat. Roughly speaking, Debian 2.2
is about twice the size of Red Hat 7.1, which was released
about eight months later. It is also larger than the latest Micro-
soft operating systems (although, as is discussed in the corre-
sponding section, this comparisons could be misleading).

When coming to the details, some interesting data can be
shown. For instance, the most popular language in the distribu-
tion is C (more than 70%), followed by C++ (close to 10%),
LISP and Shell (about 5%), and Perl and FORTRAN (about
2%). The largest packages in Debian 2.2 are Mozilla (about
2,000,000 SLOC), the Linux kernel (about 1,800,000 SLOC),
XFree86 (1,250,000), and PM3 (more than 1,100,000).

There are not many detailed studies of the size of modern,
complete operating systems. Of them, the work by David
Wheeler, counting the size of Red Hat 6.2 and Red Hat 7.1 is
the most comparable. Other interesting paper, with some inter-
section with this paper is [Godfrey/Tu 00], an study on the
evolution over time of the Linux kernel. Some other papers,

already referenced, provide total counts of some Sun and
Microsoft operating systems, but they are not detailed enough,
except for providing estimations for the whole of the system.

Finally, we find it important to repeat once more that we are
offering only estimations, not actual figures. They depend too
much on the selection of the software to measure, and on some
other factors which were already discussed. But we believe
they are accurate enough to draw some conclusions, and to
compare with other systems.

Acknowledgements
This paper is obviously inspired by “More Than a Gigabuck: Esti-

mating GNU/Linux’s Size;”, by David Wheeler [Wheeler 01]. We
have also used his tool sloccount. Without his work, this paper would
have been completely unthinkable.

We would also like to thank the comments and suggestions of many
Debian developers, which have helped to improve this paper.

Bibliography
[Boehm 81]

Barry W. Boehm, 1981, Software Engineering Economics,
Prentice Hall.

[ComWorld 00]
Computer World, Salary Survey 2000,
http://www.computerworld.com/cwi/careers/surveysandreports.

[Debian22Ann]
Debian Project, Debian GNU/Linux 2.2, the “Joel ‘Espy’ Kleck-
er” release, is officially released,
http://www.debian.org/News/2000/20000815.

[DebianPol]
Debian Project, Debian Policy Manual,
http://www.debian.org/doc/debian-policy/.

[Debian22Rel]
Debian Project, Debian GNU/Linux 2.2 release information,
http://www.debian.org/releases/2.2/.

[DFSG]
Debian Project, Debian Free Software Guidelines,
http://www.debian.org/social_contract#guidelines.

[Godfrey/Tu 00]
Michael W. Godfrey, Qiang Tu, Software Architecture Group
(SWAG), Department of Computer Science, University of Water-
loo, August 3–4, 2000, Evolution in Open Source Software: A
Case Study, 2000 Intl Conference on Software Maintenance
http://plg.uwaterloo.ca/~migod/papers/icsm00.pdf.

[Lucovsky 00]
Mark Lucovsky, August 3–4, 2000, From NT OS/2 to Windows
2000 and Beyond – A Software-Engineering Odyssey, 4th
USENIX Windows Systems Symposium, http://www.usenix.org/
events/usenix-win2000/invitedtalks/lucovsky_html/.

[Schneier 00]
Bruc Schneier, March 15, 2000, Software Complexity and
Security, Crypto-Gram Newsletter,
http://www.counterpane.com/crypto-gram-0003.html.

[Wheeler 01]
David A. Wheeler, More Than a Gigabuck: Estimating GNU/
Linux’s Size, http://www.dwheeler.com/sloc.

6

Jesus M. Gonzalez-
Barahona

[PDF] from gsyc.es

Authors

Publication date

Journal

Volume

Issue

Pages

Total citations

Scholar articles

Counting potatoes: the size of Debian 2.2

Jesús M González-Barahona, MA Ortuno Perez, Pedro de las Heras Quirós, José Centeno González, Vicente Matellán
Olivera

2001/12

Upgrade Magazine

2

6

60-66

Cited by 77

Counting potatoes: the size of Debian 2.2
JM González-Barahona, MAO Perez… - Upgrade Magazine, 2001
Cited by 77 - Related articles - All 2 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 10:53 AM

1

UPGRADE

 is the European Journal for the
Informatics Professional, published bimonthly at
<http://www.upgrade-cepis.org/>

Publisher

UPGRADE is published on behalf of CEPIS (Council of
European Professional Informatics Societies,
<http://www.cepis.org/>) by NOVÁTICA
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS
society ATI (Asociación de Técnicos de Informática
<http://www.ati.es/>).
UPGRADE is also published in Spanish (full issue printed, some
articles online) by NOVÁTICA, and in Italian (abstracts and some
articles online) by the Italian CEPIS society ALSI
<http://www.alsi.it> and the Italian IT portal Tecnoteca
<http://www.tecnoteca.it/>.
UPGRADE was created in October 2000 by CEPIS and was first
published by NOVÁTICA and INFORMATIK/INFORMATIQUE,
bimonthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>).

Editorial Team

Chief Editor: Rafael Fernández Calvo, Spain <rfcalvo@ati.es>
Associate Editors:
• François Louis Nicolet, Switzerland, <nicolet@acm.org>
• Roberto Carniel, Italy, <carniel@dgt.uniud.it>

Editorial Board

Prof. Wolffried Stucky, CEPIS President
Fernando Piera Gómez and
Rafael Fernández Calvo, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

English Editors:

 Mike Andersson, Richard Butchart, David
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn,
Rodney Fennemore, Hilary Green, Roger Harris, Michael Hird,
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss,
Phil Parkin, Brian Robson.

Cover page

 designed by Antonio Crespo Foix, © ATI 2003

Layout:

 Pascale Schürmann

E-mail addresses for editorial correspondence:
<nicolet@acm.org> and <rfcalvo@ati.es>

E-mail address for advertising correspondence:
<novatica@ati.es>

Upgrade Newslist

 available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright

© NOVÀTICA 2003. All rights reserved. Abstracting is permitted
with credit to the source. For copying, reprint, or republication
permission, write to the editors.

The opinions expressed by the authors are their exclusive
responsibility.

ISSN 1684-5285

Vol. IV, No. 4, August 2003

Joint issue with N

OVÁTICA

2 Presentation: Software Engineering. A Dream Coming True?
–

Luis Fernández-Sanz

The guest editor presents the issue, that focuses on a really broad field like Software Engineering
(SE) which has been driving the evolution of software development since the late sixties of the past
century. The papers cover different areas of interest related to the application of engineering
principles to software development and maintenance. As usual, a list of useful references is also
included for those interested in knowing more about this subject.

5 Software Project Management. Adding Stakeholder Metrics to Agile Projects

 – Tom Gilb

In this article the author offers an analysis of the implications of the new agile methods in the field
of software development.

10 Model-Driven Development and UML 2.0. The End of Programming as We
Know It?

 – Morgan Björkander

This paper focuses on the idea of a truly model-driven software and analyses the influence that the
new version of UML (Unified Modeling Language) is having on this process.

15 Component-Based Software Engineering

 – Alejandra Cechich and Mario
Piattini-Velthuis

This paper studies the important role that components play in the field of Software Engineering.

21 An Overview of Software Quality

 – Margaret Ross

The author reviews important issues concerning quality in software development and also deals with
the issues of users with disabilities and the influence of legislation regulating this aspect.

26 Lessons Learned in Software Process Improvement

 – José-Antonio Calvo-
Manzano Villalón, Gonzalo Cuevas-Agustín, Tomás San Feliu-Gilabert, Antonio
de Amescua-Seco, Mª Magdalena Arcilla-Cobián, and José-Antonio Cerrada-
Somolinos

This paper describes the lessons learned by SOMEPRO, a Software Engineering R & D group in the
Universidad Politécnica de Madrid, in more than ten software process improvement projects.

30 A New Method for Simultaneous Application of ISO/IEC 15504 and ISO
9001:2000 in Software SME’s

 – Antònia Mas-Pichaco and Esperança
Amengual-Alcover

The authors offer their view, based on practical experiences, of the always thorny problem of
applying best software development practices to organizations where resources are especially
limited.

37 Empirically-based Software Engineering

 – Martin Shepperd

This paper presents an overview of empirical Software Engineering and its implications for
practitioners and researchers in four areas (object-orientation, inspections, formal specification
and project failure factors.)

42 Software Engineering Professionalism

 – Luis Fernández-Sanz and María-José
García-García

The aim of this paper is to provide a brief overview of what goes into making up our true perception
of software engineers as specialised professionals within the field of Information Technologies.

47 Searching for the Holy Grail of Software Engineering

 – Robert L. Glass

In this article, the author defends eclecticism in development methods and the contribution that
Software Engineering should make in this respect whenever the nature of a project demands flexible
methods in order to be successful.

49 Free Software Engineering: A Field to Explore

 – Jesús M. González-Barahona
and Gregorio Robles

This article analises the existing points of contact between Software Engineering and the
development of free software, and puts forward a few future lines of research in this respect.

Software Engineering – State of an Art

Guest Editor:

Luis Fernández-Sanz

Next issue (Oct. 2003):
“e-Learning – Borderless
Education”

http://www.upgrade-cepis.org
http://www.ati.es/novatica/infonovatica_eng.html

Software Engineering – State of an Art

© Novática UPGRADE Vol. IV, No. 4, August 2003 49

Free Software Engineering: A Field to Explore

Jesús M. González-Barahona and Gregorio Robles

The challenge of free software is not that of a new competitor who, under the same rules, produces software
faster, cheaper and of a better quality. Free software differs from ‘traditional’ software in more fundamental
aspects, starting with philosophical reasons and motivations, continuing with new economic and market
rules and ending up with a different way of producing software. Software Engineering cannot ignore this
phenomenon, and the last five years or so has seen ever more research into all these issues. This article takes
a look at the most significant studies in this field and the results they are producing, with a view to providing
the reader with a vision of the state of the art and the future prospects of what we have come to call free
Software Engineering.

Keywords: Software Engineering, free Software Engineer-
ing, free software.

Introduction
Although free software1 has been developed for several

decades, only for the last few years have we begun to pay atten-
tion to its development models and processes from the point of
view of Software Engineering. Just as there is no single devel-
opment model for proprietary software, neither is there only
one in the free software world [11], but, that said, some inter-
esting features are shared by a large number of the projects we
have looked at, features which may be at the root of free soft-
ware.

In 1997 Eric S. Raymond published his first, widely read
article “The cathedral and the bazaar” [18], in which he
describes some characteristics of free software development
models, laying great stress on what differentiates these models
from proprietary development models. Since then that article
has become one of the best known (and most criticised) in the
free software world, and to a certain extent, was the starting
pistol for the development of free Software Engineering.

The Cathedral and the Bazaar
Raymond makes an analogy between the way mediaeval

cathedrals were built and the classic way of producing soft-
ware. He argues that in both cases there is a clear distribution
of tasks and roles, with the designer on top of everything,
controlling the process from beginning to end. Planning is
strictly controlled in both cases, giving rise to clearly defined
processes in which, ideally, everyone taking part in the activity
has a very limited and specific role to play.

Included in what Raymond views as the cathedral building
model are not only the heavyweight processes of the software
industry (the classic cascade model, the different aspects of the
Rational Unified Process, etc.), but also some free software
projects, as is the case of GNU, <http://www.gnu.org/>, and
NetBSD, <http://www.NetBSD.org/>. According to Raymond,
these projects are highly centralized, since only a few people
are responsible for the design and implementation of the soft-
ware. The tasks these people perform and the roles they play
are perfectly defined, and anyone wanting to join the develop-
ment team would need to be assigned a task and a role accord-
ing to the needs of the project. Another feature is that releases
of this type of programme tend to be spaced out over time,
following a fairly strict schedule. This leads to having few
releases of the software with lengthy intervals between each

1. Note from the Editor of Upgrade: Our editorial policy is to
continue to use, in English, the term ‘free software’, though we
are aware that the term ‘open source software’, or simply ‘open
source’, appears to be winning the battle; ‘libre software’ is also
gaining popularity because it avoids the ambiguity of the English
word ‘free’.

1

2

Jesús M. González Barahona is a professor at the Universidad
Rey Juan Carlos, Madrid, Spain. He researches in the field of
distributed systems and large scale peer to peer computing. He is
also interested in free / open source Software Engineering. He
began working on the promotion of free software in 1991. He is
currently collaborating on several free software projects (includ-
ing Debian), and he collaborates with associations such as His-
palinux and EuroLinux, writes in several media on free software
related matters, and advises companies on their strategies related
to these issues. He is a member of ATI, coordinator of the Free
Software section of Novática, and has also been a guest editor of
several monographs in Novática and Upgrade.
<jgb@gsyc.escet.urjc.es>

Gregorio Robles is a professor at the Universidad Rey Juan
Carlos, Madrid, Spain. His research work is centred on the study
of free software development from an engineering point of view
and especially with regard to quantitative issues. He has devel-
oped or collaborated on the design of programmes to automate
the analysis of free software and the tools used to produce them.
He was also involved in the FLOSS study of free software
financed by the European Commission IST programme.
<grex@gsyc.escet.urjc.es>

http://www.ati.es/novatica/infonovatica_eng.html
http://www.upgrade-cepis.org/issues/2003/4/upgrade-vIV-4.html

Software Engineering – State of an Art

54 UPGRADE Vol. IV, No. 4, August 2003 © Novática

References
[1]

Antoniades Ioannis, Samoladas Ioannis, Stamelos Ioannis, and
G. L. Bleris. Dynamical simulation models of the Open Source
Development process, 2003, pending publication in Free/Open
Source Software Development, published by Stefan Koch, Idea
Inc, Vienna.

[2]
Nikolai Bezroukov. A Second Look at the Cathedral and the Ba-
zaar, December 1998. <http://www.firstmonday.dk/issues/
issue4_12/bezroukov/index.html>.

[3]
Barry W. Boehm, 1981. Software Engineering Economics,
Prentice Hall.

[4]
Frederick P. Brooks Jr., 1975. The Mythical Man-Month: Essays
on Software Engineering, Addison-Wesley.

[5]
Justin R. Ehrenkrantz. Release Management Within Open Source
Projects, May 2003. <http://opensource.ucc.ie/icse2003/3rd-
WS-on-OSS-Engineering.pdf>.

[6]
Jesús M. González Barahona, Miguel A. Ortuño Pérez, Pedro de
las Heras Quirós, José Centeno González, and Vicente Matellán
Olivera. Counting potatoes. The size of Debian 2.2, Upgrade, vol.
2, issue 6, December 2001. <http://upgrade-cepis.org/issues/
2001/6/up2-6Gonzalez.pdf>. Also available at <http://people.
debian.org/~jgb/debian-counting/>.

[7]
Jesús M. González Barahona and Gregorio Robles. Unmounting
the code god assumption, Mayo 2003, Proceedings of the Fourth
International Conference on eXtreme Programming and Agile
Processes in Software Engineering (Genoa, Italia). <http://
libresoft.dat.escet.urjc.es/html/downloads/xp2003-barahona-
robles.pdf>.

[8]
Jesús M. González Barahona, Gregorio Robles, Miguel A.
Ortuño Pérez, Luis Rodero Merino, José Centeno González,
Vicente Matellán Olivera, Eva M. Castro Barbero, and Pedro de
las Heras Quirós. Anatomy of two GNU/Linux distributions,
2003”, pending publication in “Free/Open Source Software
Development, published by Stefan Koch, Idea Inc, Vienna.

[9]
Daniel Germán and Audris Mockus. Automating the Measure-
ment of Open Source Projects, May 2003. <http://
opensource.ucc.ie/icse2003/3rd-WS-on-OSS-Engineering.pdf >.

[10]
Rishab Aiyer Ghosh and Vipul Ved Prakash, The Orbiten Free
Software Survey, May 2000.
<http://www.firstmonday.dk/issues/issue5_7/ghosh/index.html>.

[11]
Kieran Healy and Alan Schussman, The Ecology of Open Source
Software Development, January 2003.
<http://opensource.mit.edu/papers/healyschussman.pdf>.

[12]
Paul Jones. Brooks’ Law and open source: The more the merrier?,
May 2000, <http://www-106.ibm.com/developerworks/
opensource/library/os-merrier.html?dwzone=opensource>.

[13]
Stefan Koch and Georg Schneider. Results from Software Engi-
neering Research into Open Source Development Projects Using
Public Data, 2000. <http://wwwai.wu-wien.ac.at/~koch/
forschung/sw-eng/wp22.pdf >.

[14]
Sandeep Krishnamurthy. Cave or Community? An Empirical
Examination of 100 Mature Open Source Projects, May 2002.
<http://opensource.mit.edu/papers/krishnamurthy.pdf>.

[15]
Jesús M. González Barahona and Gregorio Robles Martínez.
Libre Software Engineering. <http://libresoft.dat.escet.urjc.es/>.

[16]
Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two
Case Studies of Open Source Software Development: Apache
and Mozilla, Junio 2000. <http://www.research.avayalabs.com/
techreport/ALR-2002-003-paper.pdf>.

[17]
Alessandro Narduzzo and Alessandro Rossi. Modularity in
Action: GNU/Linux and Free/Open Source Software Develop-
ment Model Unleashed, May 2003.
<http://opensource.mit.edu/papers/narduzzorossi.pdf >.

[18]
Eric S. Raymond. The Cathedral and the Bazaar, Musings on
Linux and Open Source by an Accidental Revolutionary, May
1997. <http://catb.org/~esr/writings/cathedral-bazaar/>.

[19]
Christian Robottom Reis and Renata Pontin de Mattos Fortes. An
Overview of the Software Engineering Process and Tools in the
Mozilla Project, February 2002.
<http://opensource.mit.edu/papers/reismozilla.pdf>.

[20]
Gregorio Robles, Jesús González Barahona, José Centeno
González, Vicente Matellán Olivera, and Luis Rodero Merino.
Studying the evolution of libre software projects using publicly
available data, May 2003, Proceedings of the 3rd Workshop on
Open Source Software Engineering at the 25th International Con-
ference on Software Engineering. <http://opensource.ucc.ie/
icse2003/3rd-WS-on-OSS-Engineering.pdf >.

[21]
Ilkka Tuomi. Internet, Innovation, and Open Source: Actors in the
Network, 2001.
<http://www.firstmonday.dk/issues/issue6_1/tuomi/>.

[22]
Paul Vixie. Software Engineering, 1999.
<http://www.oreilly.com/catalog/opensources/book/vixie.html>.

[23]
David A. Wheeler. Estimating Linux’s Size, July 2000.
<http://www.dwheeler.com/sloc>.

[24]
David A. Wheeler. More Than a Gigabuck: Estimating
GNU/Linux’s Size, June 2001.
<http://www.dwheeler.com/sloc>.

http://www.ati.es/novatica/infonovatica_eng.html
http://www.upgrade-cepis.org/issues/2003/4/upgrade-vIV-4.html

Jesus M. Gonzalez-
Barahona

[PDF] from ifipwg213.org

Authors

Publication date

Journal

Volume

Issue

Pages

Description

Total citations

Scholar articles

Free software engineering: A field to explore

Jesús M González-Barahona, Gregorio Robles

2003/8

Upgrade

4

4

49-54

The challenge of free software is not that of a new competitor who, under the same rules,
produces software faster, cheaper and of a better quality. Free software differs from
'traditional'software in more fundamental aspects, starting with philosophical reasons and
motivations, continuing with new economic and market rules and ending up with a different
way of producing software. Software Engineering cannot ignore this phenomenon, and the
last five years or so has seen ever more research into all these issues. This article takes a ...

Cited by 23

Free software engineering: A field to explore
JM González-Barahona, G Robles - Upgrade, 2003
Cited by 23 - Related articles - All 12 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2004 2005 2006 2007 2008 2009 2010 2011

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 10:51 AM

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>, and in Italian (online edition only, containing summary,
abstracts, and some articles) by the Italian CEPIS society ALSI (Associazione nazionale Laureati in Scienze
dell’informazione e Informatica) and the Italian IT portal Tecnoteca at <http://www.tecnoteca.it>.

 Vol. VI, issue No. 3, June 2005

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly

at <http://www.upgrade-cepis.org/>

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Pro Dialog, journal from the Polish CEPIS society PTI-PIPS

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Professional
Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version printed; summary,
abstracts and some articles online) by Novática, and in Italian (summary, abstracts and
some articles online) by the Italian CEPIS society ALSI (Associazione nazionale
Laureati in Scienze dell’informazione e Informatica, <http://www.alsi.it>) and the
Italian IT portal Tecnoteca <http://www.tecnoteca.it/>

UPGRADE was created in October 2000 by CEPIS and was first published by
Novática and INFORMATIK/INFORMATIQUE, bimonthly journal of SVI/FSI (Swiss
Federation of Professional Informatics Societies, <http://www.svifsi.ch/>)

Editorial Team
Chief Editor: Rafael Fernández Calvo, Spain, <rfcalvo@ati.es>
Associate Editors:
François Louis Nicolet, Switzerland, <nicolet@acm.org>
Roberto Carniel, Italy, <carniel@dgt.uniud.it>
Zakaria Maamar, Arab Emirates, <Zakaria. Maamar@ zu.ac.ae>
Soraya Kouadri Mostéfaoui, Switzerland,
<soraya.kouadrimostefaoui@unifr.ch>

Editorial Board
Prof. Wolffried Stucky, CEPIS Past President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and
Rafael Fernández Calvo, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Franco Filippazzi (Mondo Digitale, Italy)
Rafael Fernández Calvo (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)

English Editors: Mike Andersson, Richard Butchart, David Cash, Arthur Cook,
Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore, Hilary Green,
Roger Harris, Michael Hird, Jim Holder, Alasdair MacLeod, Pat Moody, Adam
David Moss, Phil Parkin, Brian Robson

Cover page designed by Antonio Crespo Foix, © ATI 2005
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Rafael Fernández Calvo <rfcalvo@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2005 (for the monograph and the cover page)
© CEPIS 2005 (for the sections MOSAIC and UPENET)
All rights reserved. Abstracting is permitted with credit to the source. For copying,
reprint, or republication permission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (August 2005):
"Normalisation & Standardisation

in IT Security"
(The full schedule of UPGRADE

is available at our website)

Monograph: Libre Software as A Field of Study
 (published jointly with Novática*, in cooperation with the

European project CALIBRE)
Guest Editors: Jesús M. González-Barahona and Stefan Koch

2 Presentation
Libre Software under The Microscope — Jesús M. González-Barahona
and Stefan Koch

5 CALIBRE at The Crest of European Open Source Software Wave —
Andrea Deverell and Par Agerfalk

6 Libre Software Movement: The Next Evolution of The IT Production
Organization? — Nicolas Jullien

13 Measuring Libre Software Using Debian 3.1 (Sarge) as A Case Study:
Preliminary Results — Juan-José Amor-Iglesias, Jesús M. González-
Barahona, Gregorio Robles-Martínez, and Israel Herráiz-Tabernero

17 An Institutional Analysis Approach to Studying Libre Software
‘Commons’ — Charles M. Schweik

28 About Closed-door Free/Libre/Open Source (FLOSS) Projects: Lessons
from the Mozilla Firefox Developer Recruitment Approach — Sandeep
Krishnamurthy

33 Agility and Libre Software Development — Alberto Sillitti and Giancarlo
Succi

38 The Challenges of Using Open Source Software as A Reuse Strategy —
Christian Neumann and Christoph Breidert

43 Computational Linguistics
Multilingual Approaches to Text Categorisation — Juan-José García-
Adeva, Rafael A. Calvo, and Diego López de Ipiña

52 Software Engineering
A Two Parameter Software Reliability Growth Model with An Im-
plicit Adjustment Factor for Better Software Failure Prediction — S.
Venkateswaran, K. Ekambavanan, and P. Vivekanandan

59 News & Events: Proposal of Directive on Software Patents Rejected
by The European Parliament

61 From Pliroforiki (CCS, Cyprus)
Informatics Law
Security, Surveillance and Monitoring of Electronic Communications
at The Workplace — Olga Georgiades-Van der Pol

66 From Mondo Digitale (AICA, Italy)
Evolutionary Computation
Evolutionary Algorithms: Concepts and Applications — Andrea G. B.
Tettamanzi

UPENET (UPGRADE European NETwork)

MOSAIC

UPGRADE Vol. VI, No. 3, June 2005 13© Novática

Libre Software as A Field of Study

Keywords: COCOMO, Debian, Libre Software, Libre Soft-
ware Engineering, Lines of Code, Linux.

1 Introduction
On June 6, 2005, the Debian Project announced the of-

ficial release of the Debian GNU/Linux version 3.1,
codenamed "Sarge", after almost three years of develop-
ment [6]. The Debian distribution is produced by the Debian
project, a group of nearly 1,400 volunteers (a.k.a.
maintainers) whose main task is to adapt and package all
the software included in the distribution [11]. Debian
maintainers package software which they obtain from the
original (upstream) authors, ensuring that it works smoothly
with the rest of the programs in the Debian system. To en-
sure this, there is a set of rules that a package should com-
ply with, known as the Debian Policy Manual [5].

Debian 3.1 includes all the major libre software pack-
ages available at the time of its release. In its main distribu-
tion alone, composed entirely of libre software (according
to Debian Free Software Guidelines), there are more than
8,600 source packages. The whole release comprises almost
15,300 binary packages, which users can install easily from
various media or via the Internet.

In this paper we analyse the system, showing its size
and comparing it to other contemporary GNU/Linux sys-
tems1. We decided to write this paper as an update of Count-
ing Potatoes (see [8]), and Measuring Woody (see [1]) which
were prompted by previous Debian releases. The paper is
structured as follows. The first section briefly presents the
methods we used for collecting the data used in this paper.
Later, we present the results of our Debian 3.1 count (in-
cluding total counts, counts by language, counts for the larg-
est packages, etc.). The following section provides some
comments on these figures and how they should be inter-
preted and some comparisons with Red Hat Linux distribu-
tions and other free and proprietary operating systems. We
close with some conclusions and references.

2 Collecting The Data
In this work we have considered only the main distri-

bution, which is the most important and by far the largest

Measuring Libre Software Using Debian 3.1 (Sarge)
as A Case Study: Preliminary Results

Juan-José Amor-Iglesias, Jesús M. González-Barahona, Gregorio Robles-Martínez, and Israel Herráiz-Tabernero

 This paper is copyrighted under the CreativeCommons Attribution-NonCommercial-NoDerivs 2.5 license available at <http://
creativecommons.org/licenses/by-nc-nd/2.5/>

The Debian operating system is one of the most popular GNU/Linux distributions, not only among end users but also as
a basis for other systems. Besides being popular, it is also one of the largest software compilations and thus a good
starting point from which to analyse the current state of libre (free, open source) software. This work is a preliminary study
of the new Debian GNU/Linux release (3.1, codenamed Sarge) which was officially announced recently. In it we show the
size of Debian in terms of lines of code (close to 230 million source lines of code), the use of the various programming
languages in which the software has been written, and the size of the packages included within the distribution. We also
apply a ‘classical’ and well-known cost estimation method which gives an idea of how much it would cost to create
something on the scale of Debian from scratch (over 8 billion USD).

Juan-José Amor-Iglesias has an MSc in Computer Science from
the Universidad Politecnica de Madrid, Spain, and he is currently
pursuing a PhD at the Universidad Rey Juan Carlos in Madrid,
Spain. Since 1995 he has collaborated in several free software
related organizations: he is a a co-founder of LuCAS, the best
known free documentation portal in Spanish, and Hispalinux,
and collaborates with Barrapunto.com. <jjamor@
gsyc.escet.urjc.es>

Jesús M. González-Barahona teaches and researches at the
Universidad Rey Juan Carlos, Madrid, Spain. He started working
in the promotion of libre software in the early 1990s. Since then
he has been involved in several activities in this area, such as
the organization of seminars and courses, and the participation
in working groups on libre software. He currently collaborates
in several libre software projects (including Debian), and
participates in or collaborates with associations related to libre
software. He writes in several media about topics related to li-
bre software, and consults for companies on matters related to
their strategy regarding these issues. His research interests
include libre software engineering and, in particular, quantitative
measures of libre software development and distributed tools
for collaboration in libre software projects. He is editor of the
Free Software section of Novática since 1997 and has been guest
editor of several monographs of Novática and UPGRADE on
the subject. <jgb@gsyc.escet.urjc.es>

Gregorio Robles-Martínez is a PhD candidate at the Universi-
dad Rey Juan Carlos in Madrid, Spain. His main research interest
lies in libre software engineering, focusing on acquiring
knowledge of libre software and its development through the
study of quantitative data. He was formerly involved in the
FLOSS project and now participates in the CALIBRE
coordinated action and the FLOSSWorld project, all European
Commission IST-program sponsored projects. <grex@gsyc.
escet.urjc.es>

Israel Herráiz-Tabernero has an MSc in Chemical and
Mechanical Engineering, a BSc in Chemical Engineering and
he is currently pursuing his PhD in Computer Science at the
Universidad Rey Juan Carlos in Madrid, Spain. He ‘discovered’
free software in 2000, and has since developed several free tools
for chemical engineering. <herraiz@gsyc.escet.urjc.es>1 GNU/Linux systems are also known as 'distributions'.

part of any Debian release. It is composed exclusively of
free software (according to Debian Free Software Guide-
lines, DFSG [7]). Other sections, such as non-free or

16 UPGRADE Vol. VI, No. 3, June 2005 © Novática

Libre Software as A Field of Study

distributions in general, and Debian 3.1 in particular, are
some of the largest pieces of software ever put together by a
group of maintainers.

5 Conclusions and Related Work
Debian is one of the largest software systems in the world,

probably the largest. Its size has grown with every release,
3.1 being twice the size of 3.0. For the last few releases, the
main languages used to develop packages included in Debian
are C and C++. In fact C, C++ and Shell represent more
than 75% of all source code in Debian. The number of
packages continues to grow steadily, doubling almost every
two years.

The Debian GNU/Linux distribution, put together by a
group of volunteers dispersed all over the world, would, at first
sight, appear to show a healthy and fast-growing trend. Despite
its enormous size it continues to deliver stable releases.
However, there are some aspects that put into doubt the future
sustainability of this progress. For instance, mean package size
is showing an unstable behaviour, probably due to the number
of packages growing faster than the number of maintainers.
Nor can we forget that we have had to wait almost three years
for a new stable release and that the release date has been seri-
ously delayed on several occasions.

Regarding other software systems, there are few detailed
studies of the size of modern, complete operating systems.
The work by David A. Wheeler, counting the size of Red
Hat 6.2 and Red Hat 7.1 is perhaps the most comparable.
Some other references provide total counts of some Sun and
Microsoft operating systems, but while they do provide
estimates for the system as a whole, they are not detailed
enough. Debian is by far the largest of them, although this
comparison has to be taken with a degree of caution.

To conclude, it is important to stress that this paper aims
to provide estimations based only on a preliminary study
(since the release is not yet officially published). However,
we believe they are accurate enough to allow us to draw
some conclusions and compare them with other systems.

 Acknowledgements
This work has been funded in part by the European Commission,

under the CALIBRE CA, IST program, contract number 004337, in part
by the Universidad Rey Juan Carlos under project PPR-2004-42, and in
part by the Spanish CICyT under project TIN2004-07296.

References
[1] Juan José Amor, Gregorio Robles y Jesús M. González-Barahona.

Measuring Woody: The size of Debian 3.0 (pending publication).
Will be available at <http://people.debian.org/~jgb/debian-
counting/>.

[2] Barry W. Boehm. Software Engineering Economics, Prentice Hall,
1981.

[3] Computer World, Salary Survey 2000. <http://www.
computerworld.com/cwi/careers/surveysandreports>.

[4] Jesús M. González Barahona, Gregorio Robles, and Juan José
Amor, Debian Counting. <http://libresoft.urjc.es/debian-
counting/>.

[5] Debian Project, Debian Policy Manual. <http://www. debian. org/
doc/debian-policy/>.

[6] Debian Project, Debian GNU/Linux 3.1 released (June 6th 2005).
<http://www.debian.org/News/2005/20050606>.

[7] Debian Project, Debian Free Software Guidelines (part of the
Debian Social Contract). <http://www.debian.org/
social_contract>.

 [8] Jesús M. González Barahona, Miguel A. Ortuño Pérez, Pedro de
las Heras Quirós, José Centeno González, and Vicente Matellán
Olivera. Counting potatoes: The size of Debian 2.2. UPGRADE,
vol. 2, issue 6, December 2001, <http://upgrade-cepis.org/issues/
2001/6/up2-6Gonzalez. pdf>; Novática, nº 151 (nov.-dic. 2001),
<http://www.ati.es/novatica/2001/154/154-30.pdf> (in Spanish).

[9] Jesús M. González-Barahona, Gregorio Robles, Miguel Ortuño-
Pérez, Luis Rodero-Merino, José Centeno-González, Vicente
Matellán-Olivera, Eva Castro-Barbero, and Pedro de-las-Heras-
Quirós. Anatomy of two GNU/Linux distributions. Chapter in
book "Free/Open Source Software Development" edited by
Stefan Koch and published by Idea Group, Inc., 2004.

[10] Gregorio Robles, Jesús M. González-Barahona, Luis López, and
Juan José Amor, Toy Story: an analysis of the evolution of Debian
GNU/Linux, November 2004 (pending publication). Draft
available at <http://libresoft.urjc.es/debian-counting/>.

[11] Gregorio Robles, Jesús M. González-Barahona, and Martin
Michlmayr. Evolution of Volunteer Participation in Libre
Software Projects: Evidence from Debian, julio 2005, Proceed-
ings of the First International Conference on Open Source
Systems. Genova, Italy, pp. 100-107. <http://gsyc.escet.urjc.es/
~grex/volunteers-robles-jgb-martin. pdf>.

[12] David Wheeler. SLOCCount. <http://www.dwheeler.com/
sloccount/>.

[13] David A. Wheeler. More Than a Gigabuck: Estimating GNU/
Linux’s Size. <http://www.dwheeler.com/sloc>.

Table 2: Size Comparison of Several Operating Systems.

Source Lines
Operating System of Code

 (SLOC)

Microsoft Windows 3.1 (April 1992) 3,000,000

Sun Solaris (October 1998) 7,500,000

Microsoft Windows 95 (August 1995) 15,000,000

Red Hat Linux 6.2 (March 2000) 17,000,000

Microsoft Windows 2000 (February 2000) 29,000,000

Red Hat Linux 7.1 (April 2001) 30,000,000

Microsoft Windows XP (2002) 40,000,000

Red Hat Linux 8.0 (September 2002) 50,000,000

Fedora Core 4 (previous version; May 2005) 76,000,000

Debian 3.0 (July 2002) 105,000,000

Debian 3.1 (June 2005) 229,500,000

Jesus M. Gonzalez-
Barahona

[PDF] from thalix.com

Authors

Publication date

Journal

Description

Total citations

Scholar articles

Measuring libre software using Debian 3.1 (Sarge) as a case study: preliminary
results

Juan-José Amor-Iglesias, Jesús M González-Barahona, Gregorio Robles-Martínez, Israel Herráiz-Tabernero

2005/6

Upgrade Magazine, August

On June 6, 2005, the Debian Project announced the official release of the Debian
GNU/Linux version 3.1, codenamed" Sarge", after almost three years of development [6].
The Debian distribution is produced by the Debian project, a group of nearly 1,400
volunteers (aka maintainers) whose main task is to adapt and package all the software
included in the distribution [11]. Debian maintainers package software which they obtain
from the original (upstream) authors, ensuring that it works smoothly with the rest of the ...

Cited by 42

Measuring libre software using Debian 3.1 (Sarge) as a case study: preliminary results
JJ Amor-Iglesias, JM González-Barahona… - Upgrade Magazine, August, 2005
Cited by 42 - Related articles - All 8 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 10:49 AM

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

ABSTRACT

Source code management repositories of large, long-lived libre (free, open source) software
projects can be a source of valuable data about the organizational structure, evolution, and
knowledge exchange in the corresponding development communities. Unfortunately, the sheer
volume of the available information renders it almost unusable without applying methodologies
which highlight the relevant information for a given aspect of the project. Such methodology
is proposed in this article, based on well known concepts from the social networks analysis
field, which can be used to study the relationships among developers and how they collaborate
in different parts of a project. It is also applied to data mined from some well known projects
(Apache, GNOME, and KDE), focusing on the characterization of their collaboration network
architecture. These cases help to understand the potentials of the methodology and how it is
applied, but also shows some relevant results which open new paths in the understanding of the
informal organization of libre software development communities.

Keywords: community-driven development; mining software repositories; social networks
analysis; software understanding

Applying Social Network Analysis
Techniques to Community-Driven

Libre Software Projects
Luis López-Fernández, Universidad Rey Juan Carlos, Spain

Gregorio Robles, Universidad Rey Juan Carlos, Spain
Jesus M. Gonzalez-Barahona, Universidad Rey Juan Carlos, Spain

Israel Herraiz*, Universidad Rey Juan Carlos, Spain

INTRODUCTION
Software projects are usually the collective

work of many developers. In most cases, and
especially in the case of large projects, those
developers are formally organized in a well
defined (usually hierarchical) structure, with
clear guidelines about how to interact with each

other, and the procedures and channels to use.
Each team of developers is assigned certain
modules of the project, and only in rare cases do
they work outside that realm. However, this is
usually not the case with libre software1 projects,
where only loose (if any) formal structures are
acknowledged. On the contrary, libre software

48 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Luis López obtained his PhD in electrical and electronic engineering at Universidad Rey Juan
Carlos in 2003 and his MS in electrical and electronic engineering at Universidad Politécnica
de Madrid and at ENST Télécom-Paris in 1998. He is author of more than 50 publications
including 10 papers published in different research international journals and 20 contributions
to conferences and workshops.

Gregorio Robles received his Telecommunication Engineering degree from the Universidad Poli-
técnica de Madrid (2001) and has recently defended his PhD thesis at the Universidad Rey Juan
Carlos (2006). His research work is centered on the empirical study of libre software development,
especially from but not limited to a software engineering perspective. He has developed or col-
laborated in the design and implementation of software programmes to automate the analysis of
libre software and the tools used to produce them. He has also been involved in several projects
related to the study and promotion of libre software financed by the European Commission IST
programmes, such as FLOSS (2000-1), CALIBRE (2004-6) or FLOSSWorld (2005-7).

Jesus M. Gonzalez-Barahona teaches and researches in Universidad Rey Juan Carlos, Mostoles
(Spain). He started to be involved in the promotion of libre software in 1991. Since then, he has
carried on several activities in this area, including the organization of seminars and courses, and
the participation in working groups on libre software, both at the Spanish and European levels.
Currently he collaborates with several libre software projects (including Debian) and associations,
writes in several media about topics related to libre software, and consults for companies and
public administrations on issues related to their strategy on these topics. His research interests
include libre software engineering, and in particular quantitative measures of libre software
development and distributed tools for collaboration in libre software projects. In this area, he
has published several papers, and is participating in some international research projects (more
info in http://libresoft.urjc.es). He is also one of the promoters of the idea of an European master
program on libre software, and has specific interest in the education in that area.

Israel Herraiz holds a MSc in chemical and mechanical engineering, a BSc in chemical engi-
neering and he is currently pursuing his PhD in computer science at the Universidad Rey Juan
Carlos in Madrid, Spain. He discovered free software in 2000, and has since then developed
several free tools for chemical engineering.

Computing journals sorted by alphabetical title

ERA Journal List
February 2010

CORE Extract of Journals
allocated codes
 of 08 to 0899 p16 of 58

32087 C Interna2onal Journal of Informa2on Technology and Management 0806
32088 Not ranked Interna2onal Journal of Informa2on Technology and the Systems Approach 0806

31261 C Interna2onal Journal of Informa2on Technology and Web Engineering 0805

32089 C Interna2onal Journal of Informa2on Technology Educa2on 0899

41255 C Interna2onal Journal of Innova2ve Compu2ng and Applica2ons 0801

40913 Not ranked Interna2onal Journal of Intelligent Defence Support Systems 1099

41257 C Interna2onal Journal of Intelligent Informa2on and Database Systems 0801

31262 C Interna2onal Journal of Intelligent Informa2on Technologies 08

17950 B Interna2onal Journal of Intelligent Systems 0801

40428 B Interna2onal Journal of Intelligent Systems Technologies and Applica2ons 0906

32091 C Interna2onal Journal of Intelligent Technology 0801

31263 C Interna2onal Journal of Internet and Enterprise Management 0805

32092 C Interna2onal Journal of Internet Protocol Technology 0805

32093 C Interna2onal Journal of Internet Science 0899

41260 C Interna2onal Journal of Internet Technology and Secured Transac2ons 0804

32094 C Interna2onal Journal of Interoperability in Business Informa2on Systems 0806
32095 C Interna2onal Journal of IT Standards and Standardiza2on Research 0806

20201 C Interna2onal Journal of Knowledge and Learning 0807

17951 C Interna2onal Journal of Knowledge Management 0804

31264 C Interna2onal Journal of Knowledge Management Studies 0806

17183 C Interna2onal Journal of Law and Informa2on Technology 0899

42185 C Interna2onal Journal of Man‐Machine Studies 0806
42184 C Interna2onal Journal of Management and Systems 0806

41273 Not ranked Interna2onal Journal of Medical Engineering and Informa2cs 0806

13602 A Interna2onal Journal of Medical Informa2cs 0807

32097 C Interna2onal Journal of Metadata Seman2cs and Ontologies 0804
32098 C Interna2onal Journal of Mobile Communica2ons 0805

41277 C Interna2onal Journal of Mobile Network Design and Innova2on 0805

17955 C Interna2onal Journal of Modelling and Simula2on 0802

41278 C Interna2onal Journal of Modelling, Iden2fica2on and Control 0801

5087 C Interna2onal Journal of Network Management 1005

32099 B Interna2onal Journal of Neural Systems 0801

17957 A Interna2onal Journal of Parallel Programming 0805

18101 B Interna2onal Journal of Parallel, Emergent and Distributed Systems 0802

17958 B Interna2onal Journal of Pa]ern Recogni2on and Ar2ficial Intelligence 0801

Free Content

Sample Issue: IJITWE4(1)

More Information

Search this Journal

Call for Papers

Guidelines for Submission

Subscribe

Current Issue

Recommend

Send to a librarian

Send to a colleague

Available In

InfoSciJournals

Browse Subjects

Browse

Individual Articles

$30.00
Purchase individual articles
from this journal and receive a
PDF download link upon order
completion.

Fulltext search over 55,000
research articles and chapters.

Full text search term(s)

All Subjects

Related Journals

Journal of Electronic
Commerce in
Organizatio...
© 2003

Information
Technology
Management
© 1988

International Journal
of GameBased
Learning ...
© 2011

International Journal
of Knowledge
Management...
© 2005

International Journal
of Digital Literacy
and...
© 2010

Digital
Communications

Shopping Cart | Login | Register | Language: English Search title, author, ISBN...

Me gusta 5 TweetTweet 0 0 5

International Journal of Information Technology and Web
Engineering (IJITWE)
An Official Publication of the Information Resources Management Association

Ghazi I. Alkhatib (Princess Sumaya University for Technology, Jordan) and Ernesto Damiani
(University of Milan, Italy)
Published Quarterly. Est. 2006.

Select a Format: Subscription Year:

2013 $595.00 Add to Cart

DOI: 10.4018/IJITWE, ISSN: 15541045, EISSN: 15541053

Cite Journal Favorite

Description | Contents | Mission | Reviews & Testimonials | Indices | Topics Covered | Editor(s)inChief Bio | Editorial Board

Institutions: Print

Top

Top

Top

Top

Description
Organizations are continuously overwhelmed by a variety of new information technologies, many are Web
based. These new technologies are capitalizing on the widespread use of network and communication
technologies for seamless integration of various issues in information and knowledge sharing within and
among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross
platform and multidisciplinary strategy to research and practice.

Journal Contents
Volume 7: 2 Issues (2012)
Volume 6: 4 Issues (2011)
Volume 5: 4 Issues (2010)
Volume 4: 4 Issues (2009)
Volume 3: 4 Issues (2008)
Volume 2: 4 Issues (2007)
Volume 1: 4 Issues (2006)

View Complete Journal Contents Listing

Mission
The main objective of the International Journal of Information Technology and Web Engineering (IJITWE)
is to publish refereed papers in the area covering information technology (IT) concepts, tools, methodologies,
and ethnography in the contexts of global communication systems and Web engineered applications. In
accordance with this emphasis on the Web and communication systems, this journal publishes papers on IT
research and practice that support seamless endtoend information and knowledge flow among individuals,
teams, and organizations. This endtoend strategy for research and practice requires emphasis on
integrated research among the various steps involved in data/knowledge (structured and unstructured)
capture (manual or automated), classification and clustering, storage, analysis, synthesis, dissemination,
display, consumption, and feedback. The secondary objective is to assist in the evolving and maturing of IT
dependent organizations, as well as individuals, in information and knowledge based culture and commerce,
including ecommerce.

Reviews and Testimonials

With the increasing reliance on Webbased systems, individuals and organizations, and developing societies
in general are looking for new ways to share experiences, knowledge, and innovative methodologies
through the different technologies and innovations of Web engineering. Researchers, practitioners, and
academicians will find in the International Journal of IT and Web Engineering an outlet to publish and share
their original work and experiences on the use of current IT in engineering Web systems. This journal can
also be a source for current and uptodate processes, models, and techniques for the different types of Web
based systems such as integrating transactions processing and operations in inter and intraenterprise
systems. The journal can promote previously wellstudied critical concepts of integration with a more
innovative and dynamic approach to seamless information services management in gross platform and gross
organizational systems that are either Webbased or Webenabled. In global economies, where the Web
now plays such a major role in linking enterprises and governments together, this journal advocates a much
needed strategy in research and applications that emphasizes exchange of data, information, and
knowledge to foster intelligent and innovative cooperation. Moreover, the Journal advocates an increased
efficiency in using and maintaining information and knowledge as a major resource and technology in
organizations. The International Journal of IT and Web Engineering will lead to the development of
systematic and disciplined approaches to data, information and knowledge capture, storage, access, and
dissemination across and among different systems deployed disparately over the Web and within and
among all entities in information economies. The journal is timely for assisting, through new ideas, the
prevention of many systems that are deployed over the Web from becoming problematic legacy systems.

– Moataz Ahmed, LEROS Technologies Corporation and SONEX Enterprises Inc., USA

BOOKS JOURNALS ERESOURCES TEACHING CASES OnDEMAND TOPIC COLLECTIONS RESOURCES

MEDIA

Business Technologies

Database Technologies

EGovernment

Educational Technologies

Intelligent Technologies

Knowledge Management

Medical Technologies

Multimedia Technologies

Security Technologies

Social Technologies

Software & Engineering

http://www.igi-global.com/sample-journal-issue/international-journal-information-technology-web/1093
http://www.igi-global.com/search-journal/international-journal-information-technology-web/1093
http://www.igi-global.com/calls-for-papers/international-journal-information-technology-web/1093
http://www.igi-global.com/journals/guidelines-for-submission.aspx
http://www.igi-global.com/rss/journals/feed.aspx?titleid=1093
http://www.igi-global.com/rss/currentissue/feed.aspx?titleid=1093
http://www.igi-global.com/forms/refertolibrarian.aspx?titleid=1093
http://www.igi-global.com/forms/refertocolleague.aspx?titleid=1093
http://www.igi-global.com/e-resources/infosci-databases/infosci-journals/
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#contents
javascript:__doPostBack('ctl00$ctl00$cphMain$cphSidebarRightTop$ucInfoSciOnDemandSidebar$lnkSearch','')
http://www.igi-global.com/journal/journal-electronic-commerce-organizations-jeco/1076
http://www.igi-global.com/journal/information-technology-management/1074
http://www.igi-global.com/journal/international-journal-game-based-learning/41019
http://www.igi-global.com/journal/international-journal-knowledge-management-ijkm/1083
http://www.igi-global.com/journal/international-journal-digital-literacy-digital/1170
http://www.igi-global.com/infosci-ondemand/search/
http://www.igi-global.com/featured-titles/digital-communications
http://www.igi-global.com/shopping-cart/
https://www.igi-global.com/login/?returnurl=%2fjournal%2finternational-journal-information-technology-web%2f1093
https://www.igi-global.com/login/create-account/
javascript:__doPostBack('ctl00$ctl00$ucBookstoreSearchTop$lnkSearch','')
http://www.igi-global.com/
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fwww.igi-global.com%2Fjournal%2Finternational-journal-information-technology-web%2F1093&source=tweetbutton&text=IGI%20Global%3A%20International%20Journal%20of%20Information%20Technology%20and%20Web%20Engineering%20(IJITWE)%20(1554-1045)(1554-1053)%3A%20Ghazi%20I.%20Alkhatib%2C%20Ernesto%20Damiani%3A%20Journals%3A&url=http%3A%2F%2Fwww.igi-global.com%2Fjournal%2Finternational-journal-information-technology-web%2F1093%23.UJpCoP8YiDM.twitter&via=igiglobal
http://twitter.com/search?q=http%3A%2F%2Fwww.igi-global.com%2Fjournal%2Finternational-journal-information-technology-web%2F1093
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.irma-international.org/membership/
http://www.igi-global.com/affiliate/ghazi-i-alkhatib/766/
http://www.igi-global.com/affiliate/ernesto-damiani/196743/
javascript:__doPostBack('ctl00$ctl00$cphMain$cphFeatured$lnkAddToCart','')
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#description
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#contents
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#mission
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#reviews-and-testimonials
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#indices
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#topics-covered
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#editor-in-chief-biography
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#editorial-board
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal-contents/international-journal-information-technology-web/1093
http://www.igi-global.com/books.aspx
http://www.igi-global.com/journals.aspx
http://www.igi-global.com/e-resources/
http://www.igi-global.com/cases.aspx
http://www.igi-global.com/e-resources/infosci-ondemand/
http://www.igi-global.com/topic-collections/

Top

There is growing interest in Web engineered systems and these are the basis of next generation enterprise
IT systems with a grid architecture. This approach is being applied across commerce, entertainment,
government, industry, education, and research. The new International Journal of Information Technology and
Web Engineering should see many important papers in such areas as how distributed systems are
transformed by Web technology. I look forward to publishing in this journal.

– Geoffrey Fox, Indiana University, USA

Top

Bacon's Media Directory
Burrelle's Media Directory
Cabell's Directories
Compendex (Elsevier Engineering Index)
CSA Illumina
DBLP

Gale Directory of Publications & Broadcast Media
GetCited
Google Scholar

INSPEC
JournalTOCs
MediaFinder

SCOPUS

The Index of Information Systems Journals
The Standard Periodical Directory
Ulrich's Periodicals Directory

Indices

Topics Covered
Topics to be discussed in this journal include (but are not limited to) the following:

Case studies validating Webbased IT solutions

Competitive/intelligent information systems

Data analytics for business and government organizations

Data and knowledge capture and quality issues

Data and knowledge validation and verification

Human factors and cultural impact of ITbased systems

Information filtering and display adaptation techniques for wireless devices

Integrated heterogeneous and homogeneous workflows and databases within and across organizations,
suppliers, and customers

Integrated user profile, provisioning, and contextbased processing

IT education and training

IT readiness and technology transfer studies

Knowledge structure, classification, and search algorithms or engines

Metricsbased performance measurement of ITbased and Webbased organizations

Mobile, locationaware, and ubiquitous computing

Ontology and Semantic Web studies

Quality of service and service level agreement issues among integrated systems

Radio frequency identification (RFID) research and applications in Web engineered systems

Security, integrity, privacy, and policy issues

Software agentbased applications

Strategies for linking business needs and IT

http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.cabells.com/directories.aspx
http://dblp.uni-trier.de/
http://scholar.google.com/
http://www.theiet.org/resources/inspec/
http://www.journaltocs.hw.ac.uk/
http://mediafinder.com/
http://www.scopus.com/home.url

Top

Top

Strategies for linking business needs and IT

Virtual teams and virtual enterprises: communication, policies, operation, creativity, and innovation

Web systems architectures, including distributed grid computers and communication systems processing

Web systems engineering design

Web systems performance engineering studies

Web user interfaces design, development, and usability engineering studies

Editor(s)inChief Biography
Ghazi I. Alkhatib
Ghazi Alkhatib is an assistant professor of software engineering at the College of Computer Science and
Information Technology, Applied Science University (Amman, Jordan). In 1984, he obtained his Doctor of
Business Administration from Mississippi State University in information systems with minors in computer
science and accounting. Since then, he has been engaged in teaching, consulting, training and research in
the area of computer information systems in the US and gulf countries. In addition to his research interests in
databases and systems analysis and design, he has published several articles and presented many papers
in regional and international conferences on software processes, knowledge management, ebusiness, Web
services and agent software, workflow and portal/grid computing integration with Web services.

Ernesto Damiani
Ernesto Damiani is a professor at the Dept. of Information Technology, University of Milan, where he leads
the Software Architectures Lab. Prof. Damiani holds/has held visiting positions at several international
institutions, including George Mason University (Fairfax, VA, US) and LaTrobe University (Melbourne,
Australia). Prof. Damiani is an Adjunct Professor at the Sydney University of Technology (Australia). He has
written several books and filed international patents; also, he coauthored more than two hundred research
papers on advanced secure serviceoriented architectures, open source software and business process
design, software reuse and Web data semantics. Prof. Damiani is the Vice Chair of IFIP WG 2.12 on Web
Data Semantics and the secretary of IFIP WG 2.13 on Open Source Software Development. He coordinates
several research projects funded by the Italian Ministry of Research and by private companies including
Siemens Mobile, Cisco Systems, ST Microelectronics, BT Exact, Engineering, Telecom Italy.

Editorial Board
Editorial Board Coordinator
Zakaria Maamar, Zayed University, UAE

Publicity Coordinator
Wael Toghuj, Isra University, Jordan

Associate Editors
Michael Berger, Siemens Corporate Technology, Germany
Walter Binder, EPFL, Switzerland
Schahram Dustdar, Vienna University of Technology, Austria
N.C. Narendra, IBM Software Labs, India
Andres Iglesias Prieto, University of Cantabria, Spain
David Taniar, Monash University, Australia

International Editorial Review Board
Jamal Bentahar, Concordia University, Canada
Sara Comai, Politecnico di Milano, Italy
MariePierre Gleizes, IRIT Université Paul Sabatier, France
YihFeng Hwang, America On Line (AOL), USA
Ali Jaoua, Qatar University, Qatar
Leon Jololian, Zayed University, UAE
Seokwon Lee, The University of North Carolina, USA
Farid Meziane, The University of Salford, UK
Soraya Kouadri Mostéfaoui, The British Open University, UK
Michael Mrissa, Claude Bernard Lyon 1 University, France
Manuel Nunez, Universidad Complutense de Madrid, Spain
Quan Z. Sheng, Adelaide University, Australia
Amund Tveit, Norwegian University of Science and Technology, Norway
Leandro Krug Wives, Federal University of Rio Grande do Sul, Brazil

KokWai Wong, Murdoch University, Australia
Hamdi Yahyaoui, King Fahd University of Petroleum and Minerals, Saudi Arabia

LEARN MORE:
About IGI Global | Contact | Careers | Sitemap | FAQ

RESOURCES FOR:
Librarians | Authors/Editors | Distributors | Instructors | Translators

MEDIA CENTER:
Online Symposium | Blogs | Catalogs | Newsletters

Privacy Policy | Content Reuse Policy | Ethics and Malpractice
IGI Global All Rights Reserved

http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/journal/international-journal-information-technology-web/1093#
http://www.igi-global.com/about/
http://www.igi-global.com/contact/
http://www.igi-global.com/careers/
http://www.igi-global.com/sitemap/sitemap.aspx
http://www.igi-global.com/faq/
http://www.igi-global.com/librarians.aspx
http://www.igi-global.com/publish/
http://www.igi-global.com/distributors.aspx
http://www.igi-global.com/course-adoption/
http://www.igi-global.com/translators/
http://www.igi-global.com/symposium/
http://www.igi-global.com/newsroom/
http://www.igi-global.com/catalogs/
http://www.igi-global.com/newsletters/
http://www.facebook.com/pages/IGI-Global/138206739534176?ref=sgm
http://twitter.com/igiglobal
http://www.igi-global.com/policies/privacy/
http://www.igi-global.com/policies/content-reuse/
http://www.igi-global.com/policies/ethics-and-malpractice/

Jesus M. Gonzalez-
Barahona

[PDF] from flosshub.org

Authors

Publication date

Journal

Volume

Issue

Pages

Publisher

Description

Total citations

Scholar articles

Applying social network analysis techniques to community-driven libre
software projects

Luis López-Fernández, Gregorio Robles, Jesus M Gonzalez-Barahona, Israel Herraiz

2006

International Journal of Information Technology and Web Engineering (IJITWE)

1

3

27-48

IGI Global

Abstract Source code management repositories of large, long-lived libre (free, open source)
software projects can be a source of valuable data about the organizational structure,
evolution, and knowledge exchange in the corresponding development communities.
Unfortunately, the sheer volume of the available information renders it almost unusable
without applying methodologies which highlight the relevant information for a given aspect
of the project. Such methodology is proposed in this article, based on well known ...

Cited by 56

Applying social network analysis techniques to community-driven libre software projects
L López-Fernández, G Robles, JM Gonzalez-Barahona… - International Journal of Information Technology and …, 2006
Cited by 56 - Related articles - All 12 versions

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects
L LÃ³pez-FernÃ, G Robles, JM Gonzalez-Barahona… - International Journal of Information Technology and …, 1993

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2006 2007 2008 2009 2010 2011 2012 2013 2014

*

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 10:40 AM

2� International Journal of Open Source Software & Processes, 1(1), 2�-��, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

AbStrAct

Due to the open nature of Free/Libre/Open Source software projects, researchers have gained access to a
rich set of development-related information. Although this information is publicly available on the Internet,
obtaining and analyzing it in a convenient way is not an easy task and many considerations have to be
taken into account. In this paper we present the most important data sources that can be found in libre
software projects and that are studied by the research community: source code, source code management
systems, mailing lists and bug tracking systems. We will give advice for the problems that can be found
when retrieving and preparing the data sources for a posterior analysis, as well as provide information
about the tools that support these tasks.

Keywords: bug tracking; mailing list; open source software; software metrics; software repository
mining; source code management

INtrODUctION

The fact that communication and organization
are heavily tied in libre software1 projects to
the use of telematic means and that these in-
teractions are, in general, stored and publicly
offered over the Internet makes the number of
data sources where development information
can be extracted from grow beyond source code.

In addition, the ability of having memory (as
data from activities in the past can be obtained)
offers the possibility of performing longitudi-
nal analysis as well. Research groups from all
around the world have already taken benefit
from the availability of such a rich amount of
data sources in the last years. Nonetheless, the
access, retrieval and fact extraction is by no
means a simple task and many considerations

tools for the Study of the
Usual Data Sources found in

Libre Software Projects
Gregorio Robles, Universidad Rey Juan Carlos, Spain

Jesús M. González-Barahona, Universidad Rey Juan Carlos, Spain

Daniel Izquierdo-Cortazar, Universidad Rey Juan Carlos, Spain

Israel Herraiz, Universidad Rey Juan Carlos, Spain

IGI PUBLISHING

This paper appears in the publication, International Journal of Open Source Software & Processes, Volume 1, Issue 1
edited by Stefan Koch © 2008, IGI Global

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com

ITJ 4505

International Journal of Open Source Software & Processes, 1(1), 2�-��, January-March 2009 ��

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

libre software projects (including Debian) and associations, writes in several media about topics related
to libre software, and consults for companies and public administrations on issues related to their strategy
on these topics. His research interests include understanding libre software development, where he has
published several papers, and is participating in some international research projects. He is also one of
the promoters of the idea of an European master program on libre software, and has specific interest in
the education in that area.

Daniel Izquierdo-Cortazar is a PhD student at the Universidad Rey Juan Carlos in Móstoles, Spain. He
earned a degree in computer science from the same university and obtained his master’s degree in computer
networks and computer science systems in 2006. His research work is centered in the assesment of libre
software communities from an engineering point of view and especially with regard to quantitative and
empirical issues. Right now he holds a grant from the Universidad Rey Juan Carlos to dedicate part of
his time to his PhD thesis. He is also involved in European-funded projects such as QualOSS or FLOSS-
World. He has also had the opportunity of attending to Wirtschaftsuniversität Wien (3 months in 2007) as
a research visitor.

Israel Herraiz is a PhD student at the Universidad Rey Juan Carlos in Móstoles, Spain. Israel Herraiz holds
a bachelor’s degree in chemical engineering and master’s degree in chemical and mechanical engineering
from University of Cadiz (Spain). Right now he holds a grant from the Government of Madrid, to dedicate
his full time to his PhD thesis, whose main topic is “Software Evolution of Large Libre Software Projects”.
In particular, he is using time series analysis and other statistical methods to characterize the evolution of
software projects. He has participated in several research projects funded by the Framework Programme
of the European Commision such as QualOSS or CALIBRE. He has also collaborated on other projects
funded by companies such as Vodafone and Telefonica. He has participated in the writing of manuals about
managing and starting libre software projects.

Free Content

Sample Issue: IJOSSP3(3)

More Information

Search this Journal

Call for Papers

Guidelines for Submission

Subscribe

Current Issue

Recommend

Send to a librarian

Send to a colleague

Available In

InfoSciJournals

Browse Subjects

Browse

Individual Articles

$30.00
Purchase individual articles
from this journal and receive a
PDF download link upon order
completion.

Fulltext search over 55,000
research articles and chapters.

Full text search term(s)

All Subjects

Related Journals

International Journal
of Information
Systems ...
© 2009

International Journal
of Robotics
Application...
© 2013

International Journal
of Privacy and Health
I...
© 2013

International Journal
of Adult Vocational
Edu...
© 2010

International Journal
of Synthetic Emotions
(...
© 2010

Shopping Cart | Login | Register | Language: English Search title, author, ISBN...

Me gusta 1 TweetTweet 2 0

International Journal of Open Source Software and Processes
(IJOSSP)
An Official Publication of the Information Resources Management Association

Stefan Koch (Bogazici University, Turkey)
Published Quarterly. Est. 2009.

Select a Format: Subscription Year:

2013 $595.00 Add to Cart

DOI: 10.4018/IJOSSP, ISSN: 19423926, EISSN: 19423934

Cite Journal Favorite

Description | Contents | Mission | Indices | Topics Covered | Editor(s)inChief Bio | Editorial Board

Institutions: Print

Top

Top

Top

Top

Description
The International Journal of Open Source Software and Processes (IJOSSP) publishes highquality peer
reviewed and original research articles on the large field of open source software and processes. This wide
area entails many intriguing question and facets, including the special development process performed by a
large number of geographically dispersed programmers, community issues like coordination and
communication, motivations of the participants, and also economic and even legal issues. Even beyond this
topic, open source software is an example of a highly distributed innovation process led by the users. Many
aspects therefore have relevance even beyond the realm of software and its development. In this tradition,
IJOSSP also publishes papers on these topics. IJOSSP is a multidisciplinary outlet, and welcomes
submissions from all relevant fields of research and applying a multitude of research approaches.

Journal Contents
Volume 3: 4 Issues (2011)
Volume 2: 4 Issues (2010)
Volume 1: 4 Issues (2009)

View Complete Journal Contents Listing

Mission
The International Journal of Open Source Software and Processes (IJOSSP) publishes highquality
original research articles on the large field of open source software and processes. The primary mission is to
enhance our understanding of this field and neighbouring areas by providing a focused outlet for rigorous
research employing a multitude of approaches.

Top

Bacon's Media Directory
Cabell's Directories
Compendex (Elsevier Engineering Index)
DBLP

GetCited
Google Scholar

INSPEC
JournalTOCs
MediaFinder

Norwegian Social Science Data Services (NSD)
SCOPUS

The Index of Information Systems Journals
The Standard Periodical Directory
Ulrich's Periodicals Directory

Indices

Topics Covered
IJOSSP adopts an inclusive approach in its coverage. Therefore papers from software engineering,
management, sociology, and other areas, as well as different research approaches are welcome. Possible

BOOKS JOURNALS ERESOURCES TEACHING CASES OnDEMAND TOPIC COLLECTIONS RESOURCES

MEDIA

Business Technologies

Database Technologies

EGovernment

Educational Technologies

Intelligent Technologies

Knowledge Management

Medical Technologies

Multimedia Technologies

Security Technologies

Social Technologies

Software & Engineering

http://www.igi-global.com/sample-journal-issue/international-journal-open-source-software/1123
http://www.igi-global.com/search-journal/international-journal-open-source-software/1123
http://www.igi-global.com/calls-for-papers/international-journal-open-source-software/1123
http://www.igi-global.com/journals/guidelines-for-submission.aspx
http://www.igi-global.com/rss/journals/feed.aspx?titleid=1123
http://www.igi-global.com/rss/currentissue/feed.aspx?titleid=1123
http://www.igi-global.com/forms/refertolibrarian.aspx?titleid=1123
http://www.igi-global.com/forms/refertocolleague.aspx?titleid=1123
http://www.igi-global.com/e-resources/infosci-databases/infosci-journals/
http://www.igi-global.com/journal/international-journal-open-source-software/1123#contents
javascript:__doPostBack('ctl00$ctl00$cphMain$cphSidebarRightTop$ucInfoSciOnDemandSidebar$lnkSearch','')
http://www.igi-global.com/journal/international-journal-information-systems-service/1099
http://www.igi-global.com/journal/international-journal-robotics-applications-technologies/63435
http://www.igi-global.com/journal/international-journal-privacy-health-information/41027
http://www.igi-global.com/journal/international-journal-adult-vocational-education/1131
http://www.igi-global.com/journal/international-journal-synthetic-emotions-ijse/1144
http://www.igi-global.com/infosci-ondemand/search/
http://www.igi-global.com/shopping-cart/
https://www.igi-global.com/login/?returnurl=%2fjournal%2finternational-journal-open-source-software%2f1123
https://www.igi-global.com/login/create-account/
javascript:__doPostBack('ctl00$ctl00$ucBookstoreSearchTop$lnkSearch','')
http://www.igi-global.com/
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fwww.igi-global.com%2Fjournal%2Finternational-journal-open-source-software%2F1123&source=tweetbutton&text=IGI%20Global%3A%20International%20Journal%20of%20Open%20Source%20Software%20and%20Processes%20(IJOSSP)%20(1942-3926)(1942-3934)%3A%20Stefan%20Koch%3A%20Journals%3A&url=http%3A%2F%2Fwww.igi-global.com%2Fjournal%2Finternational-journal-open-source-software%2F1123%23.UJpKJ1Wlk54.twitter&via=igiglobal
http://twitter.com/search?q=http%3A%2F%2Fwww.igi-global.com%2Fjournal%2Finternational-journal-open-source-software%2F1123
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.irma-international.org/membership/
http://www.igi-global.com/affiliate/stefan-koch/640/
javascript:__doPostBack('ctl00$ctl00$cphMain$cphFeatured$lnkAddToCart','')
http://www.igi-global.com/journal/international-journal-open-source-software/1123#description
http://www.igi-global.com/journal/international-journal-open-source-software/1123#contents
http://www.igi-global.com/journal/international-journal-open-source-software/1123#mission
http://www.igi-global.com/journal/international-journal-open-source-software/1123#indices
http://www.igi-global.com/journal/international-journal-open-source-software/1123#topics-covered
http://www.igi-global.com/journal/international-journal-open-source-software/1123#editor-in-chief-biography
http://www.igi-global.com/journal/international-journal-open-source-software/1123#editorial-board
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.cabells.com/directories.aspx
http://dblp.uni-trier.de/
http://scholar.google.com/
http://www.theiet.org/resources/inspec/
http://www.journaltocs.hw.ac.uk/
http://mediafinder.com/
http://www.scopus.com/home.url
http://www.igi-global.com/journal-contents/international-journal-open-source-software/1123
http://www.igi-global.com/books.aspx
http://www.igi-global.com/journals.aspx
http://www.igi-global.com/e-resources/
http://www.igi-global.com/cases.aspx
http://www.igi-global.com/e-resources/infosci-ondemand/
http://www.igi-global.com/topic-collections/

Top

Top

management, sociology, and other areas, as well as different research approaches are welcome. Possible
topics include, but are not limited to, the following:

Business models for open source and other communitycreated artifacts

Case studies of open source projects, their participants and/or their development process

Characteristics of open source software projects, products, and processes

Communication and coordination in open source projects

Customer cocreation and user participation in (software) design

Economic analyses of open source

Economics of a distributed innovation process

Evolution of both open source software artifacts and open source communities

Implications of open source software for functional areas like public administration or teaching

Legal issues of open source software

Motivation of participants in open source projects and other distributed development efforts

Open science and open knowledge

Open source adoption and quality

Open source software development processes

Usage and adoption of open source software in different application areas and/or countries

Usercentered innovation processes

Please note that despite the title, IJOSSP acknowledges, embraces, and covers other respective forms and
definitions of similar nature, like free software or libre software. Therefore, each occurrence of open source
should be read as free/libre/open source.

Editor(s)inChief Biography

Stefan Koch
Stefan Koch is Professor and Chair at Bogazici University, Department of Management. His research
interests include user innovation, cost estimation for software projects, the open source development model,
the evaluation of benefits from information systems and ERP systems. He has published over 20 papers in
peerreviewed journals, including Information Systems Journal, Information Economics and Policy, Decision
Support Systems, Empirical Software Engineering, Electronic Markets, Information Systems Management,
Journal of Database Management, Journal of Software Maintenance and Evolution, Enterprise Information
Systems and Wirtschaftsinformatik, and over 30 in international conference proceedings and book
collections. He has also edited a book titled Free/Open Source Software Development for an international
publisher in 2004 and serves as EditorinChief of the International Journal on Open Source Software and
Processes.

Editorial Board
Editorial Advisory Board
Paul David, Stanford University, USA and The University of Oxford, UK
Jesus GonzalezBarahona, Universidad Rey Juan Carlos, Spain
Brian Fitzgerald, University of Limerick, Ireland
Joachim Henkel, Technische Universitaet Muenchen, Germany
Karim Lakhani, Harvard Business School, USA
Eric von Hippel, MIT Sloan School of Management, USA
Georg von Krogh, ETH Zurich, Switzerland

Associate Editors
JeanMichel Dalle, Universite ParisDauphine (Paris IX), France
Ernesto Damiani, University of Milan, Italy
Joe Feller, University College Cork, Ireland
Scott Hissam, Carnegie Mellon, USA
Greg Madey, University of Notre Dame, USA
Dirk Riehle, SAP Labs LLC, USA
Gregorio Robles, Universidad Rey Juan Carlos, Spain
Walt Scacchi, University of California Irvine, USA
Sebastian Spaeth, ETH Zurich, Switzerland
Ioannis Stamelos, Aristotle University of Thessaloniki, Greece

Editorial Review Board
Ioannis Antoniadis, Aristotle University of Thessaloniki, Greece
Evangelia Berdou, University of Sussex, UK
Cornelia Boldyreff, University of Lincoln, UK
Andrea Capiluppi, University of Lincoln, UK
Carlo Daffara, Conecta Research, Italy
Marina Fiedler, LudwigMaximiliansUniversitaet Munich, Germany
Daniel German, University of Victoria, Canada
Stefan Haefliger, ETH Zurich, Switzerland
Michael Hahsler, Southern Methodist University Dallas, USA
Israel Herraiz, Universidad Rey Juan Carlos, Spain
Nicolas Jullien, TELECOM Bretagne, France
Sandeep Krishnamurthy, University of Washington, USA
George Kuk, Nottingham University Business School, UK
Jan Ljungberg, Gothenburg University, Sweden
Bjoern Lundell, University of Skoevde, Sweden
Martin Michlmayr, HewlettPackard, Austria
Sandro Morasca, Universita degli Studi dell'Insubria, Italy
Gustaf Neumann, Vienna University of Economics and BA, Austria
Bulent Ozel, Istanbul Bilgi University, Turkey
Barbara Russo, Free University of Bolzano/Bozen, Italy
Kirk St. Amant, East Carolina University, USA
Sulayman K. Sowe, Aristotle University of Thessaloniki, Greece
Megan Squire, Elon University, USA
Brian Still, Texas Tech University, USA

http://www.igi-global.com/journal/international-journal-open-source-software/1123#
http://www.igi-global.com/journal/international-journal-open-source-software/1123#

Brian Still, Texas Tech University, USA
Stefan Strecker, University DuisburgEssen, Germany
Giancarlo Succi, Free University of Bolzano/Bozen, Italy

Frank van der Linden, Philips Medical Systems, The Netherlands
Andreas Wiebe, Vienna University of Economics and BA, Austria
Donald Wynn Jr., University of Dayton, USA

LEARN MORE:
About IGI Global | Contact | Careers | Sitemap | FAQ

RESOURCES FOR:
Librarians | Authors/Editors | Distributors | Instructors | Translators

MEDIA CENTER:
Online Symposium | Blogs | Catalogs | Newsletters

Privacy Policy | Content Reuse Policy | Ethics and Malpractice
IGI Global All Rights Reserved

http://www.igi-global.com/about/
http://www.igi-global.com/contact/
http://www.igi-global.com/careers/
http://www.igi-global.com/sitemap/sitemap.aspx
http://www.igi-global.com/faq/
http://www.igi-global.com/librarians.aspx
http://www.igi-global.com/publish/
http://www.igi-global.com/distributors.aspx
http://www.igi-global.com/course-adoption/
http://www.igi-global.com/translators/
http://www.igi-global.com/symposium/
http://www.igi-global.com/newsroom/
http://www.igi-global.com/catalogs/
http://www.igi-global.com/newsletters/
http://www.facebook.com/pages/IGI-Global/138206739534176?ref=sgm
http://twitter.com/igiglobal
http://www.igi-global.com/policies/privacy/
http://www.igi-global.com/policies/content-reuse/
http://www.igi-global.com/policies/ethics-and-malpractice/

Jesus M. Gonzalez-
Barahona

[PDF] from herraiz.org

Authors

Publication date

Journal

Volume

Issue

Pages

Publisher

Description

Total citations

Scholar articles

Tools for the study of the usual data sources found in libre software projects

Gregorio Robles, Jesús M González-Barahona, Daniel Izquierdo-Cortazar, Israel Herraiz

2009

International Journal of Open Source Software and Processes (IJOSSP)

1

1

24-45

IGI Global

Abstract Due to the open nature of Free/Libre/Open Source software projects, researchers
have gained access to a rich set of development-related information. Although this
information is publicly available on the Internet, obtaining and analyzing it in a convenient
way is not an easy task and many considerations have to be taken into account. In this paper
we present the most important data sources that can be found in libre software projects and
that are studied by the research community: source code, source code management ...

Cited by 41

Tools for the study of the usual data sources found in libre software projects
G Robles, JM González-Barahona… - International Journal of Open Source Software and …, 2009
Cited by 41 - Related articles - All 9 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 10:34 AM

1.A.3.
LIBROS Y CAPÍTULOS DE LIBROS

37. Hosting of Libre Software Projects:
A Distributed Peer-to-Peer Approach∗

Jesús M. González-Barahona and Pedro de-las-Heras-Quirós

Universidad Rey Juan Carlos, Grupo de Sistemas y Comunicaciones
Móstoles, Spain
{jgb,pheras}@gsyc.escet.urjc.es

Summary. While current hosting systems for libre software projects are mainly centralized or
client-server systems, several benefits arise from using distributed peer-to-peer architectures. The
peculiarities of libre software projects make them a perfect test-bed for experimenting with this
architecture. Among those peculiarities we can mention: the clear need for decentralization, the
highly distributed nature of the user base, the high reliability requirements and the rich set of inter-
actions among users and developers. Here we present a first attempt to describe the characteristics
and complexities of this application area, and the expected future developments.

37.1 Hosting Services for Libre Software Projects

Libre software1 projects are unique in several ways. One of the most noticeable is the
distributed nature of their developer and user base. Most libre software projects are
managed by groups of geographically distributed developers who design, build and
maintain the software. They use Internet, almost exclusively, for communication and
coordination.

Traditionally, libre software projects set up and maintained their own tools and
resources for the management of the software, including communication systems (mail
list managers, IRC servers), information downloading systems (ftp and www servers),
version control systems (usually CVS), bug tracking systems, etc.

During the last few years, the trend has been to move to centralized hosting services
for libre software projects. They provide the same set of resources, and integrate them
as much as possible. Some of them are really huge (for instance, SourceForge had in
early 2002 more than 32,000 registered projects and well above 300,000 registered users,
mostly developers [37.1]), and suffer the usual problems of centralized services: unique
point of control and failure, bottlenecks, etc.

Due both to technical and ‘political’ reasons [37.2]) some groups have begun to
explore how to make those systems more distributed using peer-to-peer models [37.3]),
evolving towards a network of nodes providing hosting services. There are several ad-
vantages in this approach, and the model fits well with the common practices in the libre

∗ Work supported in part by CICYT grants No. TIC-98-1032-C03-03 and TIC2001-0447 and by
Comunidad Autónoma de Madrid, grant No. 07T/0004/2001

1 We use the term libre software to refer to software which complies with the usual definitions
for free software and open source software.

A. Schiper et al. (Eds.): Future Directions in DC 2002, LNCS 2584, pp. 207–211, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

37. Hosting of Libre Software Projects 211

References

37.1 SourceForge. SourceForge.Net update. 2002-01-22 edition, January 2002.
37.2 Loïc Dachary. SourceForge drifting, 2001.

http://fsfeurope.org/news/article2001-10-20-01.en.html.
37.3 Loïc Dachary. Savannah the next generation, September 2001.

http://savannah.gnu.org/docs/savannah-plan.html.
37.4 Clip2. The Gnutella protocol specification 0.4. Document revision 1.2.

http://www.clip2.com/GnutellaProtocol04.pdf.
37.5 Sean Rhea, Chris Wells, Patrick Eaton, Dennis Geels, Ben Zhao, Hakim Weatherspoon,

and John Kubiatowicz. Maintenance-free global data storage. IEEE Internet Computing,
5(5):40–49, September/October 2001.

37.6 Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area
cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles, Chateau Lake Louise, Banff, Canada, October 2001.

37.7 P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utility.
In HotOS VIII, Schloss Elmau, Germany, May 2001.

37.8 Brian Hayes. Collective wisdom. American Scientist, March-April 1998.
37.9 Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb, and Matt Lebofsky.

SETI@Home: Massively distributed computing for SETI. Computing in Science and
Engineering, 3(1), 2001.

37.10 J. Miller, P. Saint-Andre, and J. Barry. Jabber. Internet draft, February 2002.
http://www.jabber.org/ietf/draft-miller-jabber-00.html.

37.11 SourceForge. SourceForge services, 2001.
http://sourceforge.net/docman/display_doc.php?docid=
753&group_id=1.

37.12 Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandbergand, and Brandon Wiley.
Protecting free expression online with Freenet. IEEE Internet Computing, pages 40–49,
January-February 2002.

37.13 Thomas Lord. The arch revision control system, 2001.
http://regexps.com/src/docs.d/arch/html/arch.html.

37.14 Jonathan S. Shapiro and John Vanderburgh. CPCMS: A configuration management system
based on cryptographic names. In 2002 USENIX Annual Technical Conference, FREENIX
Track, 2002.

37.15 Grant Bowman, MJ Ray, Loic Dachary, and Michael Erdmann. A conceptual framework
for the distribution of software projects over the Internet, 2001.
http://home.snafu.de/boavista/coopx/coopx.html.

37.16 Li Gong. JXTA: A network programming environment. Internet Computing Online,
5(3):88–95, May-June 2001.

37.17 Bernard Traversat, Mohamed Abdelaziz, Mike Duigou, Jean-Christophe Hugly, Eric Pouy-
oul, and Bill Yeager. Project JXTA virtual network, February 2002.
http://www.jxta.org/docs/JXTAprotocols.pdf.

Analyzing the anatomy of GNU/Linux distributions:
methodology and case studies (Red Hat and Debian)

Jeśus M. Gonźalez-Barahona Gregorio Robles Miguel Ortuño-Ṕerez
Luis Rodero-Merino Jośe Centeno-Gonźalez Vicente Matelĺan-Olivera

Eva Castro-Barbero Pedro de-las-Heras-Quirós

August 2003

Legal Notice

Copyright (c) 2003 Jeśus M. Gonźalez-Barahona et al.

Contact author: jgb@gsyc.escet.urjc.es

Abstract

GNU/Linux distributions are probably the largest coordinated pieces of software ever put to-
gether. Each one is in some sense a snapshot of a large fraction of the libre software development
landscape at the time of the release, and therefore its study is important to understand the appear-
ance of that landscape. They are also the working proof of the possibility of releasing reliable
software systems in the range of 50-100 millions of lines of code, even when the components
of such systems are built by hundreds of independent groups of developers, with no formal con-
nection to the group releasing the whole system. In this chapter, we provide some quantitative
information about the software included in two such distributions: Red Hat and Debian. Dif-
ferences in policy and organization of both distributions will show up in the results, but some
common patterns will also arise. For instance, both are doubling their size every two years, and
both present similar patterns in programming language usage and package size distributions. All
in all, this study pretends to show how GNU/Linux distributions are with respect to to their source
code, and how they evolve over time. A methodology of how to make comparable and automated
studies on this kind of distributions is also presented.

1 Introduction

Libre software1 provides software engineering with a unique opportunity: to make detailed character-
izations of software projects which can be complete, detailed and reproducible, since the source code
is available for anyone to read. This makes it possible to build complete models based on public and

1Through this chapter, we use “libre software” as a way of referring both to free software and open source software.
Though open source software and free software communities are very different, the software is not, since almost all
licenses considered to be “free” are also considered “open source”, and the other way around.

[Lucovsky2000] From NT OS/2 to Windows 2000 and Beyond - A Software-Engineering
Odyssey, Mark Lucovsky, 4th USENIX Windows Systems Sympo-
sium, http://www.usenix.org/events/usenix-win2000/
invitedtalks/lucovsky_html/ .

[McGraw] Building Secure Software: How to avoid security problems the right way, Gary
McGraw, Briefing cited by David A. Wheeler inhttp://www.dwheeler.
com/sloc/ .

[Michlmayr2003] Quality and the Reliance on Individuals in Free Software Projects, Mar-
tin Michlmayr and Benjamin Mako Hill,http://opensource.ucc.ie/
icse2003/3rd-WS-on-OSS-Engineering.pdf .

[Mockus2002] Two case studies of open source software development: Apache and Mozilla, Au-
dris Mockus, Roy T. Fielding, and James D. Herbsleb,http://doi.acm.
org/10.1145/567793.567795 .

[RedHatNames] The Truth Behind Red Hat Names, Stephen John Smoogen,http://www.
smoogespace.com/documents/behind_the_names.html .

[Robles2001] WIDI - Who Is Doing It? A research on Libre Software developers, Gregorio
Robles, Henrik Scheider, Ingo Tretkowski, and Niels Weber,http://widi.
berlios.de/paper/study.pdf .

[SLOCCount] SLOCCount, David A. Wheeler, http://www.dwheeler.com/
sloccount/ .

[SLOCCountCh] SLOCCount ChangeLog, David A. Wheeler,http://www.dwheeler.com/
sloccount/ChangeLog .

[Scach2002] , Steve Scach, Bo Jin, David Wright, Gillian Z. Heller, and Jeff Offut, 2002, IEE
Proceedings Journal: Special Issue on Open Source Software Engineeringhttp:
//opensource.ucc.ie/icse2002/SchachOffutt.pdf .

[Schneier2000] Software Complexity and Security, Bruce Schneier, March 15, 2000, Crypto-Gram
Newsletter, http://www.counterpane.com/crypto-gram-0003.
html .

[SunPressRelease]Sun Microsystems Announces Availability of StarOffice(TM) Source Code on
OpenOffice.org, SUN Microsystems,http://www.collab.net/news/
press/2000/openoffice_live.html .

[Wheeler2000] Estimating Linux’s Size, David A. Wheeler,http://www.dwheeler.com/
sloc/ .

[Wheeler2001] More Than a Gigabuck: Estimating GNU/Linux’s Size, David A. Wheeler,http:
//www.dwheeler.com/sloc .

[Young1999] Giving It Away. How Red Hat Software Stumbled Across a New Economic Model
and Helped Improve an Industry, Robert Young,http://www.oreilly.
com/catalog/opensources/book/young.html .

26

http://www.usenix.org/events/usenix-win2000/invitedtalks/lucovsky_html/
http://www.usenix.org/events/usenix-win2000/invitedtalks/lucovsky_html/
http://www.dwheeler.com/sloc/
http://www.dwheeler.com/sloc/
http://opensource.ucc.ie/icse2003/3rd-WS-on-OSS-Engineering.pdf
http://opensource.ucc.ie/icse2003/3rd-WS-on-OSS-Engineering.pdf
http://doi.acm.org/10.1145/567793.567795
http://doi.acm.org/10.1145/567793.567795
http://www.smoogespace.com/documents/behind_the_names.html
http://www.smoogespace.com/documents/behind_the_names.html
http://widi.berlios.de/paper/study.pdf
http://widi.berlios.de/paper/study.pdf
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/ChangeLog
http://www.dwheeler.com/sloccount/ChangeLog
http://opensource.ucc.ie/icse2002/SchachOffutt.pdf
http://opensource.ucc.ie/icse2002/SchachOffutt.pdf
http://www.counterpane.com/crypto-gram-0003.html
http://www.counterpane.com/crypto-gram-0003.html
http://www.collab.net/news/press/2000/openoffice_live.html
http://www.collab.net/news/press/2000/openoffice_live.html
http://www.dwheeler.com/sloc/
http://www.dwheeler.com/sloc/
http://www.dwheeler.com/sloc
http://www.dwheeler.com/sloc
http://www.oreilly.com/catalog/opensources/book/young.html
http://www.oreilly.com/catalog/opensources/book/young.html

Jesus M. Gonzalez-
Barahona

Authors

Publication date

Journal

Pages

Publisher

Description

Total citations

Scholar articles

Analyzing the anatomy of GNU/Linux distributions: methodology and case studies (Red Hat and
Debian)

Jesús M González-Barahona, Gregorio Robles, M Ortuno Pérez, Luis Rodero-Merino, J Centeno González, Vicente Matellan-
Olivera, Eva Castro-Barbero, Pedro de-las Heras-Quirós

2004

Free/Open Source Software Development

27-58

Hershey, PA, USA: Idea Group Publishing

GNU/Linux distributions are probably the largest coordinated pieces of software ever put
together. Each one is in some sense a snapshot of a large fraction of the libre software
development landscape at the time of the release and, therefore, its study is important to
understand the appearance of that landscape. They are also the working proof of the
possibility of releasing reliable software systems in the range of 50-100 millions of lines of
code, even when the components of such systems are built by hundreds of independent ...

Cited by 26

Analyzing the anatomy of GNU/Linux distributions: methodology and case studies (Red Hat and Debian)
JM González-Barahona, G Robles, MO Pérez… - Free/Open Source Software Development, 2004
Cited by 26 - Related articles - All 2 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/27/2014 07:23 PM

Volunteers �n Large L�bre Software Projects �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.I

Volunteers.in.Large.Libre.
Software.Projects:

A.Quantitative.Analysis.Over.Time

Mart�n M�chlmayr, Un�vers�ty of Cambr�dge, UK

Gregor�o Robles, Un�vers�dad Rey Juan Carlos, Spa�n

Jesus M. Gonzalez-Barahona, Un�vers�dad Rey Juan Carlos, Spa�n

Abstract

Most libre (free, open source) software projects rely on the work of volunteers.
Therefore, attracting people who contribute their time and technical skills is of
paramount importance, both in technical and economic terms. This reliance on
volunteers leads to some fundamental management challenges: Volunteer contribu-
tions are inherently difficult to predict, plan, and manage, especially in the case of
large projects. In this chapter we present an analysis of the evolution over time of
the human resources in large libre software projects, using the Debian project, one
of the largest and most complex libre software projects based mainly in voluntary
work, as a case study. We have performed a quantitative investigation of data cor-
responding to roughly seven years, studying how volunteer involvement has affected
the software released by the project, and the developer community itself.

�� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Proceedings of the 1st International Conference on Open Source Systems,
Genoa, Italy (pp. 100-107).

Endnotes

1 In this chapter we will use the term “libre software” to refer to any software
licensed under terms compliant with the Free Software Foundation definition
of “free software,” and the Open Source Initiative definition of “open source
software,” thus avoiding the controversy between those two terms.

2 http://popcon.debian.org
3 All the code used has been released as libre software, and can be obtained

from http://libresoft.dat. escet.urjc.es/index.php?menu=Tools
4 The Gini coefficient is a normalized measure of inequality; values near 0

point out equal distributions while values close to 1 are indicative for high
inequalities.

Jesus M. Gonzalez-
Barahona

Authors

Publication date

Journal

Pages

Description

Total citations

Scholar articles

Volunteers in large libre software projects: A quantitative analysis over time

Martin Michlmayr, Gregorio Robles, Jesus M Gonzalez-Barahona

2007

Emerging Free and Open Source Software Practices

1-24

Abstract Most libre (free, open source) software projects rely on the work of volunteers.
Therefore, attracting people who contribute their time and technical skills is of paramount
importance, both in technical and economic terms. This reliance on volunteers leads to
some fundamental management challenges: Volunteer contributions are inherently difficult
to predict, plan, and manage, especially in the case of large projects. In this chapter we
present an analysis of the evolution over time of the human resources in large libre ...

Cited by 13

Volunteers in large libre software projects: A quantitative analysis over time
M Michlmayr, G Robles, JM Gonzalez-Barahona - Emerging Free and Open Source Software Practices, 2007
Cited by 13 - Related articles - All 2 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/28/2014 05:59 PM

1.A.5.
CONGRESOS

Studying the evolution of libre software projects
using publicly available data

Gregorio Robles-Martínez, Jesús M. González-Barahona,
José Centeno-González, Vicente Matellán-Olivera, and Luis Rodero-Merino

GSyC, Universidad Rey Juan Carlos
{grex,jgb,jcenteno,vmo,lrodero}@gsyc.escet.urjc.es

Abstract

Libre software projects offer abundant information about
themselves in publicly available storages (source code
snapshots, CVS repositories, etc), which are a good source
of quantitative data about the project itself, and the software
it produces. The retrieval (and partially the analysis) of all
those data can be automated, following a simple method-
ology aimed at characterizing the evolution of the project.
Since the base information is public, and the tools used are
libre and readily available, other groups can easily repro-
duce and review the results. Since the characterization of-
fers some insight on the details of the project, it can be used
as the basis for qualitative analysis (including correlations
and comparative studies). In some cases, this methodology
could also be used for proprietary software (although usu-
ally losing the benefits of peer review). This approach is
shown, as an example, applied to MONO, a libre software
project implementing parts of the .NET framework.

1 Introduction

Since its birth, software engineering has been trying
to gain knowledge on the software development process
in order to quantify the timing, human costs and techni-
cal resources that lead to a successful software develop-
ment. Even so, in most cases experience has been acquired
by studying in detail a handful of software projects that
were accessible only to the researcher doing the study (due
to intellectual propriety constraints). Important facts, like
the detailed evolution of the source code or the developers
working in the project at any given time were not publicly
available for peer review. Quantitative characterization of
those projects were, usually, rather incomplete, making it
difficult to compare and correlate data.
However, since several years ago we have at our dis-

posal a good quantity of data about thousands of libre (free,

open source) software projects. Most of them provide the
researcher with very rich and complete information about
their state at any given time1. Being the number of projects
and data about them so huge, it seems important to use a
consistent and as much automated as possible methodology
to go from the data available to the characterization. This
should make the analysis of a large fraction of the available
information possible, and simplify comparative analysis.
On the other hand, focusing on libre software engineer-

ing, there is little work on the quantitative characterization
of libre software projects2. To be able of getting some con-
clusions about libre software development, a lot of work on
merely retrieving data about the projects has to be done.
Fortunately, it can be performed on an uniform and semi-
automated way.
From the different data available for libre software

projects, we propose a methodology based on the analysis
of the source code in CVS repositories, from three differ-
ent points of view: source code size, interaction with the
versioning system and authorship information. The combi-
nation of these approaches provide a detailed and complete
picture of the project and its historical evolution.

2 Tools and methodology

The proposed methodology is based on the use of CVS3.
Fortunately, there are a lot of projects in this situation: for

1In addition to the source code itself, several systems are used which
store historical and well structured information. The most relevant among
them is CVS (and its derivatives), but there are others: bug tracking sys-
tems, mailing lists, release snapshots, etc.

2There are several well known papers trying to cast libre software
projects from a more qualitative point of view (being [12] probably the
most popular), but they have to face a lot of criticism due to the lack of
quantitative data and methodology on which to base the analysis [1]

3Concurrent Version System, the versioning system most popular in the
libre software community. Many libre software projects use a repository
where all the source code and documentation are stored. Developers inter-
act with the central repository by checking out the latest version, modifying
it and committing back the changes. With every commit some information
is stored in the CVS log files: the committer, the date, the lines that have

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 10 20 30 40 50 60 70 80 90

(p
hy

sic
al

) S
LO

Cs

Time (in weeks)

SLOCs (obtained with SLOCCount)

mcs
mono

gtk-sharp

Figure 6. Source lines of code vs. time

4 Conclusions and further work

Libre software development permit analysis of unprece-
dent depth and detail for a fully reviewable and repeatable
software engineering study [8]. The huge amount of infor-
mation available for lots of libre software projects, with a
great variety in size, programming language, programming
tools, programming methods, etc. offers the possibility of
creating a comparison framework from which knowledge
and experience can be gained. The qualitative comparisons
that are nowadays usually made could be completed with
quantitative data taken at any given point of the life of a
project. This allows for the having realistic pictures of the
status of a project and its evolution, which should be very
valuable to the managers and developers of the project. In
addition, data crossing and comparisons between the differ-
ent sources used in the described methodology gives soft-
ware engineers a wider perspective of the studied projects.

Many work has still to be done to enhance the tools used
to implement the methodology, and the methodology itself,
in order to obtain more insight on the process of creating
libre software. In this respect, although this paper gives an
idea of a methodological approach, it is in fact very limited.
Future research should include many other parameters that
have not been taken into account yet. For instance, the use
of complexitymeasures (McCabe [9] or Halstead [6]) is one
of the considerations that are missing and should be intro-
duced. From other point of view, more specific correlations
should be studied so that characterization of a project from
some points of view would permit the inference of other
information more difficult to obtain.

References

[1] N. Bezroukov. A second look at the cathedral and the bazar.
First Monday, 1997.
http://www.firstmonday.dk/issues/issue4_12/
bezroukov/.

[2] Codd.
http://codd.berlios.de/.

[3] R. A. Ghosh and V. V. Prakash. The orbiten free software
survey, May 2000.
http://www.firstmonday.dk/issues/issue5_7/
ghosh/.

[4] R. A. Ghosh, G. Robles, and R. Glott. Software source
code survey (free/libre and open source software: Survey
and study). Technical report, International Institute of In-
fonomics. University of Maastricht, The Netherlands, June
2002.
http://www.infonomics.nl/FLOSS/report.

[5] J. M. González-Barahona, M. A. Ortuño Pérez, P. de las
Heras Quirós, J. Centeno González, and V. Matellán Oliv-
era. Counting potatoes: The size of Debian 2.2. Upgrade
Magazine, II(6):60–66, Dec. 2001.
http://people.debian.org/~jgb/debian-counting/
counting-potatoes/.

[6] M. H. Halstead. Elements of Software Science. Elsevier,
New York, USA, 1977.

[7] K. Healy and A. Schussman. The ecology of open-source
software development. Technical report, University of
Arizona, USA, Jan. 2003.
http://opensource.mit.edu/papers/
healyschussman.pdf.

[8] S. Koch and G. Schneider. Results from software engi-
neering research into open source development projects
using public data. Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, (22),
2000.
http://wwwai.wu-wien.ac.at/~koch/forschung/
sw-eng/wp22.pdf.

[9] T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 1976.

[10] Mono.
http://www.go-mono.com/.

[11] .NET developer framework.
http://msdn.microsoft.com/library/default.asp?
url=/nhp/default.asp?cont%entid=28000519.

[12] E. S. Raymond. The cathedral and the bazar. First Monday,
1997.
http://www.firstmonday.dk/issues/issue3_3/
raymond/.

[13] Sloccount.
http://www.dwheeler.com/sloccount/.

[14] D. A. Wheeler. More than a gigabuck: Estimating
gnu/linux’s size, June 2001.
http://www.dwheeler.com/sloc/redhat71-v1/
redhat71sloc.html.

115

Jesus M. Gonzalez-
Barahona

Authors

Publication date

Journal

Total citations

Scholar articles

Studying the evolution of libre software projects using publicly available data

Gregorio Robles, Jesús M González Barahona, José Centeno González, Vicente Matellán Olivera, Luis Rodero Merino

2003/5/3

Proceedings of the 3rd Workshop on Open Source Software Engineering at the 25th International Conference on Software
Engineering

Cited by 52

Studying the evolution of libre software projects using publicly available data
G Robles, JM González Barahona… - Proceedings of the 3rd Workshop on Open Source …, 2003
Cited by 50 - Related articles

Studying the evolution of libre software projects using publicly available data
V Matellán Olivera - 2012
Cited by 2 - Related articles - All 7 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

*

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/29/2014 06:11 PM

Unmounting the �ode gods� assumption

Jesús M. González-Barahona, Gregorio Robles-Martínez

GSyC, Universidad Rey Juan Carlos {jgb,grex}�gsy.eset.urj.es

Abstrat

The all for ontributions of this workshop states: �The best known F/OSS projets appear

to have sueeded beause of a single person/small group who did the original development and

supervised the subsequent evolution. Is it neessary to have a single strong leader or a small

leadership team? What an be done to make F/OSS work without unusually-gifted leaders?�

When reading it, our thought was not to deal with the questions, but to hek the introdution:

do libre software projets usually have those �ode gods�?. While trying to answer this latter

question, we ame out with a methodology that ould be used to study the evolution of the ore

of developers of any projet, given the information in its CVS repository.

1 The methodology

There are several assumptions about how libre software projets evolve. One of them is that a ore

of key developers guide the projet, usually from its very beginning, and that their ontributions

remain of paramount importane during the life of the projet. In some sense, that ore team would

�ontrol� the evolution of the projet. Of ourse, it is easy to �nd projets where this model seems

not to be followed, but we wondered how one ould tell from publi data about a given projet to

whih extent this �ode gods� pattern was found in it.

Our approah has been to analyze the information in the CVS repository of the projet, and

more preisely, the log history of the CVS repository. For the purposes of analyzing the information,

we split the duration of the projet in several intervals of the same duration. For eah interval, we

identify the 20% of developers (rounded by exess) who have ontributed with more ommits during

it (the �ore� during that interval). We then study the evolution of the ommits made by the di�erent

ores during the whole history of the projet. It is important to notie that a given ore an have

developers in ommon with the ore of any other interval (in general, they will, and in some ases,

the ore for several intervals an be exatly the same).

For visualizing the evolution of the projet, we have plotted the resulting data in three di�erent

graphs: absolute number of ommits by eah ore for eah interval vs. time (absolute graph);

aggregated number of ommits by eah ore sine the beginning of the projet vs. time (aggregated

graph); and fration of the total ommits during an interval done by eah ore for eah interval vs.

time (frational graph). It is worth to mention that the aggregated graph is just the integral of

the absolute graph, while the frational graph is the absolute graph normalized by the number of

ommits during eah period.

When looking at the resulting graphs, it is usually simple to deide whether the same ore group

rides the projet from its beginning to urrent days.

2 Some ase examples

• A ase with ode gods: GnomeMeeting. GnomeMeeting (a videoonferene program,

part of the GNOME projet) is probably a anonial example of a projet with �ode gods�. It

1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters (by time intervals)

Main developers in 1st period
Main developers in 2nd period
Main developers in 3rd period
Main developers in 4th period
Main developers in 5th period
Main developers in 6th period
Main developers in 7th period
Main developers in 8th period
Main developers in 9th period

Main developers in 10th period

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters (summed up)

Main developers in 1st period
Main developers in 2nd period
Main developers in 3rd period
Main developers in 4th period
Main developers in 5th period
Main developers in 6th period
Main developers in 7th period
Main developers in 8th period
Main developers in 9th period

Main developers in 10th period

Figure 5: Absolute and aggregated graphs for the FreeBSD kernel

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its
 (

in
 %

)

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters (by percentages in time intervals)

Main developers in 1st period
Main developers in 2nd period
Main developers in 3rd period
Main developers in 4th period
Main developers in 5th period
Main developers in 6th period
Main developers in 7th period
Main developers in 8th period
Main developers in 9th period

Main developers in 10th period

Figure 6: Frational graph for the FreeBSD kernel

C Graphs for the BSD kernel

Data obtained from sr/sr diretory of root module of the FreeBSD projet CVS. First ommit:

1993.03.21. Eah interval: about 1 year. 528,601 ommits in total.

5

Jesus M. Gonzalez-
Barahona

Authors

Publication date

Journal

Total citations

Scholar articles

Unmounting the code god assumption

Jesús M González Barahona, Gregorio Robles

2003

En: Proceedings of the Fourth International Conference on eXtreme Programming and Agile Processes in Software
Engineering. Genoa, Italy

Cited by 21

Unmounting the code god assumption
JM González Barahona, G Robles - En: Proceedings of the Fourth International Conference …, 2003
Cited by 21 - Related articles

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2003 2004 2005 2006 2007 2008 2009 2010

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/29/2014 10:35 PM

Applying Social Network Analysis to the Information in CVS Repositories

Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona
GSyC, Universidad Rey Juan Carlos
{llopez,grex,jgb}@gsyc.escet.urjc.es

Abstract

The huge quantities of data available in the CVS reposi-
tories of large, long-lived libre (free, open source) software
projects, and the many interrelationships among those data
offer opportunities for extracting large amounts of valuable
information about their structure, evolution and internal
processes. Unfortunately, the sheer volume of that informa-
tion renders it almost unusable without applying method-
ologies which highlight the relevant information for a given
aspect of the project. In this paper, we propose the use of
a well known set of methodologies (social network anal-
ysis) for characterizing libre software projects, their evo-
lution over time and their internal structure. In addition,
we show how we have applied such methodologies to real
cases, and extract some preliminary conclusions from that
experience.

Keywords: source code repositories, visualization tech-
niques, complex networks, libre software engineering

1 Introduction

The study and characterization of complex systems is an
active research area, with many interesting open problems.
Special attention has been paid recently to techniques based
on network analysis, thanks to their power to capture some
important characteristics and relationships. Network char-
acterization is widely used in many scientific and techno-
logical disciplines, ranging from neurobiology [14] to com-
puter networks [1] [3] or linguistics [9] (to mention just
some examples). In this paper we apply this kind of analy-
sis to software projects, using as a base the data available in
their source code versioning repository (usually CVS). For-
tunately, most large (both in code size and number of devel-
opers) libre (free, open source) software projects maintain
such repositories, and grant public access to them.

The information in the CVS repositories of libre soft-
ware projects has been gathered and analyzed using several
methodologies [12] [5], but still many other approaches are
possible. Among them, we explore here how to apply some

techniques already common in the traditional (social) net-
work analysis. The proposed approach is based on consider-
ing either modules (usually CVS directories) or developers
(commiters to the CVS) as vertices, and the number of com-
mon commits as the weight of the link between any two ver-
tices (see section 3 for a more detailed definition). This way,
we end up with a weighted graph which captures some rela-
tionships between developers or modules, in which charac-
teristics as information flow or communities can be studied.

There have been some other works analyzing social net-
works in the libre software world. [7] hypothesizes that the
organization of libre software projects can be modeled as
self-organizing social networks and shows that this seems
to be true at least when studying SourceForge projects.
[6] proposes also a sort of network analysis for libre soft-
ware projects, but considering source dependencies be-
tween modules. Our approach explores how to apply those
network analysis techniques in a more comprehensive and
complete way. To expose it, we will start by introducing
some basic concepts of social network analysis which are
used later (section 2), and the definition of the networks we
consider 3. In section 4 we introduce the characterization
we propose for those networks, and later, in section 5, we
show some examples of the application of that characteri-
zation to Apache, GNOME and KDE. To finish, we offer
some conclusions and discuss some future work.

2 Basic concepts on Social Network Analysis

The Theory of Complex Networks is based on repre-
senting complex systems as graphs. There are many ex-
amples in the literature where this approach has been suc-
cessfully used in very different scientific and technologi-
cal disciplines, identifying vertices and links as relevant for
each specific domain. For example, in ecological networks
each vertex may represent a particular specie, with a link
between two species if one of them “eats” the other. When
dealing with social networks, we may identify vertices with
persons or groups of people, considering a link when there
is some kind of relationship between them.

Among the different kinds of networks that can be con-

Degree
0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

8

Degree
0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

Degree
0 10 20 30 40 50 60 70 80 90

0

2

4

6

8

10

12

14

Degree
0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

Figure 4. Connection degree of modules in
Apache circa February from 2001 (top) to 2004
(bottom) (distribution)

usual in small-world and other social networks.
We feel that these research paths will allow for the more

complete understanding of how libre software projects dif-
ferentiate from each other, and also will help to identify
common patterns and invariants.

References

[1] R. Albert, A. L. Barabsi, H. Jeong, and G. Bianconi. Power-
law distribution of the world wide web. Science, 287, 2000.

[2] J. Anthonisse. The rush in a directed graph. Technical report,
Stichting Mathemastisch Centrum, Amsterdam, The Nether-
lands, 1971.

[3] Cancho and R. Sole. The small world of human language.
Proceedings of the Royal Society of London. Series B, Bio-
logical Sciences, 268:2261–2265, Nov. 2001.

[4] C. Freeman. A set of measures of centrality based on be-
tweenness. Sociometry 40, 35-41, 1977.

[5] D. Germn and A. Mockus. Automating the measurement of
open source projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, Portland, Oregon, 2003.

[6] R. A. Ghosh. Clustering and dependencies in free/open
source software development: Methodology and tools. First
Monday, 2003.
http://www.firstmonday.dk/issues/issue8_4/
ghosh/index.html.

[7] V. F. Greg Madey and R. Tynan. The open source develop-
ment phenomenon: An analysis based on social network the-
ory. In Americas Conference on Information Systems (AM-
CIS2002), pages 1806–1813, Dallas, TX, USA, 2002.
http://www.nd.edu/˜oss/Papers/amcis_oss.pdf.

[8] S. Koch and G. Schneider. Effort, cooperation and coordina-
tion in an open source software project: Gnome. Information
Systems Journal, 12(1):27–42, 2002.

[9] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
The web and social networks. IEEE Computer, 35(11):32–
36, 2002.

[10] V. Latora and M. Marchiori. Economic small-world behav-
ior in weighted networks. Euro Physics Journal B 32, 249-
263, 2003.

[11] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: The Apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, 2000.

[12] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, pages 111–115, Portland,
Oregon, 2003.

[13] G. Sabidussi. The centrality index of a graph. Psychometirka
31, 581-606, 1996.

[14] D. Watts and S. Strogatz. Collective dynamics of small-
world networks. Nature 393, 440-442, 1998.

5

Jesus M. Gonzalez-
Barahona

[PDF] from uwaterloo.ca

Authors

Publication date

Journal

Pages

Description

Total citations

Scholar articles

Applying social network analysis to the information in CVS repositories

Luis Lopez-Fernandez, Gregorio Robles, Jesus M Gonzalez-Barahona

2004/5/25

International Workshop on Mining Software Repositories

101-105

The huge quantities of data available in the CVS repositories of large, long-lived libre (free,
open source) software projects, and the many interrelationships among those data offer
opportunities for extracting large amounts of valuable information about their structure,
evolution and internal processes. Unfortunately, the sheer volume of that information
renders it almost unusable without applying methodologies which highlight the relevant
information for a given aspect of the project. We propose the use of a well known set of ...

Cited by 133

Applying social network analysis to the information in CVS repositories
L Lopez-Fernandez, G Robles, JM Gonzalez-Barahona - International Workshop on Mining Software …, 2004
Cited by 133 - Related articles - All 22 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/29/2014 11:01 PM

GlueTheos: Automating the Retrieval and Analysis of Data from Publicly
Available Software Repositories

Gregorio Robles
Universidad Rey Juan Carlos

grex@gsyc.escet.urjc.es

Jesus M. González-Barahona
Universidad Rey Juan Carlos

jgb@gsyc.escet.urjc.es

Rishab A. Ghosh
MERIT - Univ. Maastricht
rishab@merit.unimaas.nl

Abstract

For efficient, large scale data mining of publicly avail-
able information about libre (free, open source) software
projects, automating the retrieval and analysis processes is
a must. A system implementing such automation must have
into account the many kinds of repositories with interesting
information (each with its own structure and access meth-
ods), and the many kinds of analysis which can be applied to
the retrieved data. In addition, such a system should be ca-
pable of interfacing and reusing as much existing software
for both retrieving and analyzing data as possible.

As a proof of concept of how that system could be, we
started sometime ago to implement the GlueTheos system,
featuring a modular,flexible architecture which has been
already used in several of our studies of libre software
projects. In this paper we show its structure, how it can
be used, and how it can be extended.

Keywords: Mining source code repositories, propos-
als for exchange formats, meta-models, and infrastructure
tools, integration of mined data with other project data

1 Introduction

Libre software projects1 range from very small ones
(with just one developer commited to his own toy) to large-
scale global projects whith thousands of collaborating de-
velopers [9]. Specially, most of the larger projects follow a
way of organization that has been called the ‘bazaar’-style
development [14], open to everybody willing to participate.
Thus, all elements taking part in the software development

1In an attempt to avoid any confusion regarding the meaning of free
in free software, throughout this article, the term libre software is used
instead. It was chosen because of its meaning pointing towards liberation,
and not of merely being costless. The term Open Source is refused for its
ignorance about the philosophical foundations of what free software meant
in the first place. “Libre software” is a term which is more and more usual
in some communities, among them many European and Latin American
countries.

process are as much open as possible, in the sense that the
generated information is publicly available so that it is eas-
ier for ’newcomers’ to become integrated in the project.
Fortunately, this strategy offers to researchers the chance
to access large amounts of data about the development pro-
cess, the participants and, of course, the output product: the
software.

Previous studies have taken advantage of this situation,
and several research groups have focused their attention
on the libre software phenomenon in the last years. For
instance, [6] offers a software evolution analysis of the
Linux kernel versions -without doubt the most known li-
bre software project- following the classical software evo-
lution point of view [11]. Others have paid attention to
economic parameters [10] and have investigated how well
classical software cost prediction models (as among others
COCOMO [1]) can be applied. In [13] it is shown how libre
software projects are composed usually of 10 to 15 core de-
velopers who lead the software process, a group of around
one order of magnitude larger that participate in minor de-
velopment tasks (bug fixes, etc.) and a final group around
another order of magnitude that helps by other means (bug
reports, etc.). In any case, the availability of data has proven
to be very positive for research in the libre software environ-
ment.

But the amount of data and information available for in-
spection is that big that these analysis are often regarded as
being too superficial. An example where this is common
case are source code repositories. In such systems, not only
the last state of the code is available for download but also
all previous states. The amount of information that is ready
for being extracted and analyzed is enormous and two fac-
tors become key points: automation and data mining.

When analyzing the data available in publicly accessi-
ble repositories, the automation of the data retrieval and the
quantitative analysis is of great importance[15][3]. In the
case of libre (free, open source) software projects, repos-
itories are managed with very similar software (if not the

analysis of publicly available information about libre soft-
ware projects. Currently, it can access CVS repositories
and archives of some GNU/Linux distributions. By using
external tools it can make several different analysis on the
fetched data, and produce several kinds of reports (from ta-
bles with organized data to graphs or information suitable
for being offered in a website. GlueTheos pretends to fill
the gap that exists for in-depth, fully-automated analysis.

Our group is working currently in stabilizing the sys-
tem, making it more versatile (including more downloading,
analyzing and reporting modules), and exploring data for-
mats for the exchange of information about libre software
projects. We are planning also to put a big effort in the re-
porting modules, so that information from different sources
can be integrated and correlated giving a wider picture than
the one that a unique tool may offer. Special attention is be-
ing given in showing the huge amount of data in a way that
it is comprehensible avoiding the problem of information
overload that is common in these scenarios.

Future plans also include to set up an interactive website
where libre software developers can request their projects to
be analyzed. Developers would have only to fill out a form
where the location of the publicly available data sources
should be specified and the system will automatically re-
trieve and analyze them, putting up a web-sites with the re-
sults and finally notifying the developers that they can see
results there.

All the GlueTheos system, and the external tools it uses,
are libre (free, open source) software.

References

[1] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[2] Codd website.
http://codd.berlios.de/.

[3] D. Germán and A. Mockus. Automating the measurement of
open source projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, Portland, Oregon, 2003.

[4] R. A. Ghosh. Clustering and dependencies in free/open
source software development: Methodology and prelimi-
nary analysis. In Open Source Workshop, Toulouse, France,
June 2002.

[5] C. Gini. On the Measure of Concentration with Espacial
Reference to Income and Wealth. Cowles Commission,
1936.

[6] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. Oct. 2000.

[7] J. M. González-Barahona, M. A. Ortuño Pérez, P. de las
Heras Quirós, J. Centeno González, and V. Matellán Oliv-
era. Counting potatoes: The size of Debian 2.2. Upgrade
Magazine, II(6):60–66, Dec. 2001.
http://people.debian.org/~jgb/debian-counting/
counting-potatoes/.

[8] M. H. Halstead. Elements of Software Science. Elsevier,
New York, USA, 1977.

[9] K. Healy and A. Schussman. The ecology of open-source
software development. Technical report, University of
Arizona, USA, Jan. 2003.
http://opensource.mit.edu/papers/
healyschussman.pdf.

[10] S. Koch and G. Schneider. Results from software engi-
neering research into open source development projects
using public data. Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, (22),
2000.
http://wwwai.wu-wien.ac.at/~koch/forschung/
sw-eng/wp22.pdf.

[11] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics and
laws of software evolution - the nineties view. 1997.

[12] T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 1976.

[13] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: The Apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, 2000.

[14] E. S. Raymond. The cathedral and the bazar. First Monday,
1997.
http://www.firstmonday.dk/issues/issue3_3/
raymond/.

[15] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, pages 111–115, Portland,
Oregon, 2003.

[16] Sloccount.
http://www.dwheeler.com/sloccount/.

[17] D. A. Wheeler. More than a gigabuck: Estimating
gnu/linux’s size, June 2001.
http://www.dwheeler.com/sloc/redhat71-v1/
redhat71sloc.html.

4

Jesus M. Gonzalez-
Barahona

[PDF] from urjc.es

Authors

Publication date

Journal

Pages

Description

Total citations

Scholar articles

Gluetheos: Automating the retrieval and analysis of data from publicly available
software repositories

Gregorio Robles, Jesus M González-Barahona, Rishab A Ghosh

2004/5

Proceedings of the International Workshop on Mining Software Repositories

28-31

For efficient, large scale data mining of publicly available information about libre (free, open
source) software projects, automating the retrieval and analysis processes is a must. A
system implementing such automation must have into account the many kinds of
repositories with interesting information (each with its own structure and access methods),
and the many kinds of analysis which can be applied to the retrieved data. In addition, such
a system should be capable of interfacing and reusing as much existing software for both ...

Cited by 31

Gluetheos: Automating the retrieval and analysis of data from publicly available software repositories
G Robles, JM González-Barahona, RA Ghosh - Proceedings of the International Workshop on Mining …, 2004
Cited by 31 - Related articles - All 15 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 10:10 AM

Community structure of modules in the Apache project

Jesús M. González-Barahona, Luis López, Gregorio Robles
Grupo de Sistemas y Comunicaciones – Universidad Rey Juan Carlos

{jgb,llopez,grex}@gsyc.escet.urjc.es

Abstract

The relationships among modules in a software
project of a certain size can give us much information
about its internal organization and a way to control and
monitor development activities and evolution of large
libre software projects. In this paper, we show how
information available in CVS repositories can be used to
study the structure of the modules in a project when they
are related by the people working in them, and how
techniques taken from the social networks fields can be
used to highlight the characteristics of that structure. As
a case example, we also show some results of applying
this methodology to the Apache project in several points
in time. Among other facts, it is shown how the project
evolves and is self-structuring, with developer
communities of modules corresponding to semantically
related families of modules.

1. Introduction

Large libre software1 projects are usually organized as
a set of modules. Each one of them can correspond to a
given program, library, or any other unit identified by the
project as distinct. It is common that developers work in
several modules, according to their interests, skills, and
constraints, and that those modules to which they
contribute change over time. The relationships among
modules due to the people working in them constitutes a
sort of social structure of the project. In some sense,
those human relationships are the glue that maintain the
whole project together, and the chains that contribute to
spread information and uses from one part of the project
to others. In this paper, we explore how those developer
connections contribute to the making of the community
structure of the project, how it can be identified and
visualized and how it evolves over time.

The study and characterization of complex systems is a
very fruitful research area nowadays with may interesting
open problems. Special attention has been paid recently to
complex networks, where graph and network analysis

1 Through this position paper we mean by libre software any
program which is either open source software (according to the
Open Source Initiative definition) or free software (according to
the Free Software Foundation definition).

plays and important role and is gaining great popularity
due to its intrinsic power to reduce a particular system to
its simple components and relationships. Thanks to this,
network characterization is widely used in many scientific
and technological disciplines as neurobiology [1],
computer networks [2][3], linguistics [4], etc.

Among complex networks, social networks appear in a
quite natural way as a method for analyzing the structure
and interactions of people and groups of people within
complex organizations [5][6][7][8][9]. To understand the
structure of those networks, we are interested in
determining how the different nodes interact and form
groups that, in turn, interact with each other giving rise to
higher order groups. The set of groups obtained, as well
as their relationships, is which we call the community
structure of the network.

All the information we need for such an analysis is
available in the CVS repository of the project. Using it,
we construct the network of modules at a given time,
considering a link when there is a common set of
developers that have contributed to both modules. Later,
we apply on it some techniques from the social networks
field.

There have been some other works analyzing social
networks in the libre software world. [10] hypothesizes
that the organization of libre software projects can be
modeled as self-organizing social networks and shows
that this seems to be true at least when studying
SourceForge projects. [11] proposes also a sort of
network analysis for libre software projects, but taking
into account this time a technical connection between
modules as code dependency is.

How libre software projects organize themselves in
subprojects is an issue that has been already discussed in
literature. For instance, in [12] it is argued that projects
that require a number of core developers that is larger
than a given amount (10 to 15 persons) create in effect
several related projects if no other means of code control
are introduced. In the conclusions of this paper we will
discuss the validity of this hypothesis.

In the rest of this paper we detail the methodology we
are using to build the network of modules, and how we
identify communities in that network. Later, we show
some results of applying this methodology to the Apache

The GN algorithm is based on a parameter called the
betweenness of edges, which measures the number of
shortest paths connecting pairs of nodes which go through
that edge [5]. Edges connecting high clustered
communities must have higher betweenness. So, the GN
algorithm proceeds by calculating the betweenness of all
edges and eliminating the edge with the highest
betweenness. These steps are repeated until the network is
split into two connected components. After that, the
process is recursively executed on each of the two
separate components. To represent the splitting process,
we use a binary tree which is built in the following way:
each time a split is carried out, we add a virtual node in
the tree (marked with numbers in Figure A-2) which is
connected to the two novel components. When these
components are single vertices of the original network,
we add them as terminal nodes of the tree (marked with
letters in Figure A-2).

10. References

[1] D.J. Watts and S.H. Strogatz, Collective dynamics of
small-world networks, Nature 393, 440-442, 1998 .

[2] R. Albert, A.-L. Barabasi, H. Jeong, and G. Bianconi,
Power-law distribution of the World Wide Web, Science
287 2115a (2000).

[3] R.F. Cancho and R. Sole, The small world of human
languaje, Proc. R. Soc. 268, 2261-2265, 2001.

[4] R. Kunar, P. Raghavan, S. Rajagopalan, and A.
Tomkins, The Web and social networks, IEEE Computer
35(11) 32-36, 2002.

[5] M.E.J. Newman, Scientific collaboration networks: I.
Network construction and fundamental results, Phys. Rev.
E 64, 016131 (2001).

[6] M.E.J. Newman, Scientific collaboration networks: II.
Shortest paths, weighted networks, and centrality, Phys.
Rev. E 64, 016132, 2001.

[7] R. Guimera, A. Daz-Aguilera, F. Vega-Redondo, A.
Cabrales, and A. Arenas, Optimal network topologies for
local search with congestion, Phys. Rev. Let. 89, 248701,
2002.

[8] L. Lopez and M.A.F. Sanjuan, Relation between
structure and size in social networks, Phys. Rev. E. 65,
036107, 2002.

[9] L. Lopez, J.F. Mendes, and M.A.F. Sanjuan,
Hierarchical social networks and information flow,
Physica A, 316, 591-604, 2002.

[10] Greg Madey, V. Freeh, and R. Tynan, The Open
Source Software Development Phenomenon: An Analysis
Based on Social Network Theory, 2002,
http://www.nd.edu/~oss/Papers/amcis_oss.pdf.

[11] Rishab Aiyer Ghosh, Clustering and dependencies in
free/open source software development: Methodology
and tools, Abril 2003,
http://www.firstmonday.dk/issues/issue8_4/ghosh/index.h
tml.

[12] Audris Mockus, Roy T. Fielding, and James D.
Herbsleb, Two Case Studies of Open Source Software
Development: Apache and Mozilla,
http://www.research.avayalabs.com/techreport/ALR-
2002-003-paper.pdf.

[13] Gregorio Robles, Jesús González-Barahona, José
Centeno-González, Vicente Matellán-Olivera, and Luis
Rodero-Merino. http://opensource.ucc.ie/icse2003/3rd-
WS-on-OSS-Engineering.pdf.

[14] M. Girvan and M. E. J. Newman, Community
structure in social and biological networks, Proc. Natl.
Acad. Sci. USA 99, 7821-7826, 2002.

[15] M.E.J. Newman, Detecting community structure in
networks., Eur. Phys. J. B, in press.
http://www.santafe.edu/~mark/pubs.html.

[16] M.E.J. Newman and M. Girvan, Finding and
evaluating community structure in networks., Phys. Rev.
E, in press. http://www.santafe.edu/~mark/pubs.html.

[17] R. Guimera, L. Danon, A. Daz-Aguilera, F. Giralt,
and A. Arenas, Self-similar community structure in
organizations, http://arxiv.org/pdf/cond-mat/0211498.

Illustration 10Example of the GN algorithm: output tree

Illustration 9 Example of GN algorithm: output network

Jesus M. Gonzalez-
Barahona

[PDF] from ifipwg213.org

Authors

Publication date

Journal

Description

Total citations

Scholar articles

Community structure of modules in the apache project

Jesús M González-Barahona, Luis López, Gregorio Robles

2004/5/25

Proceedings of the 4th Workshop on Open Source Software Engineering. 26th International Conference on Software
Engineering, Edinburgh, Scotland, UK

The relationships among modules in a software project of a certain size can give us much
information about its internal organization and a way to control and monitor development
activities and evolution of large libre software projects. In this paper, we show how
information available in CVS repositories can be used to study the structure of the modules
in a project when they are related by the people working in them, and how techniques taken
from the social networks fields can be used to highlight the characteristics of that structure. ...

Cited by 49

Community structure of modules in the apache project
JM González-Barahona, L López, G Robles - Proceedings of the 4th Workshop on Open Source …, 2004
Cited by 49 - Related articles - All 9 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/29/2014 10:51 PM

Remote analysis and measurement of libre software systems by means of the
CVSAnalY tool

Gregorio Robles
Universidad Rey Juan Carlos

grex@gsyc.escet.urjc.es

Stefan Koch
Wirtschaftsuniversität Wien
stefan.koch@wu-wien.ac.at

Jesús M. González-Barahona
Universidad Rey Juan Carlos

jgb@gsyc.escet.urjc.es

Abstract

Libre (free, open source) software is one of the paradig-
matic cases where heavy use of telematic tools and user-
driven software development are key points. This paper
proposes a methodology for measuring and analyzing re-
motely big libre software projects using publicly-available
data from their version control repositories. By means of a
tool called CVSAnalY that has been implemented following
this methodology, measurements and analyses can be made
in an automatic and non-intrusive way, providing real-time
and historical data about the project and its contributors.

Keywords: Mining source code repositories, empirical
software engineering, libre software engineering

1 Introduction

The way software is produced has changed radically in
the last two decades. Among other circumstances, the arise
of the Internet has brought a change in software production
paradigms and an increase in the number of end users. That
way, it is not uncommon that software development is done
with a distributed team and that fast user feedback is possi-
ble, both things by means of telematic tools. Also, versions
of the software are released often in order to gain momen-
tum from user’s feedback.

One of the software production fields where all the afore-
mentioned characteristics are given is the libre (free/open
source) software world. In that area there exists a big syn-
ergy between developers and users to the point that some-
times it is often not possible to distinguish these groups. In
fact, many (if not all) developers are really power-users that
have the required programming capabilities to find a solu-
tion to their software needs [15]. Hence, the study of libre
software can be seen as a paradigmatic case of a produc-
tion environment where users have a big implication, even
leading the development.

Due to the distributed nature of this development
paradigm, cooperation and communication needs to be

achieved using telematic tools. Data from these sources al-
lows for an almost-automatic remote analysis and measure-
ment of both software product and underlying processes. In
fact, remote analysis is necessary, as a central authority or
location like office is absent, preventing on-site evaluations.
In addition, all interested parties including users and devel-
opers are distributed, and therefore need to perform and also
access all measurements and analyses remotely.

Libre software projects go from very small ones with one
developer commited to his program to large-scale global
projects where thousands of developers interact [10]. Es-
pecially most of the bigger projects follow a way of organi-
zation that has been called the "bazaar"-style development
[15] whose aim is to be as near to the end user as possible,
giving users even a co-developer status. In [14] it is shown
that such big libre software projects are composed mostly
of 10 to 15 core developers who lead the software process,
a group of around one order of magnitude larger that par-
ticipate in minor development tasks (bug fixes, etc.) and a
final group around another order of magnitude that helps by
other means (bug reports, etc.).

Several research groups have focused their attention to
the libre software phenomenon in the last years, so that sev-
eral views of this paradigm can be found. For instance, [7]
offers a software evolution analysis of the Linux kernel -
without doubt the most known libre software project- fol-
lowing the classical software evolution point of view [13].
Others have paid attention to economic parameters [12] and
have investigated how well classical software cost predic-
tion models as among others [2] can be applied.

This paper presents an empirical analysis of libre
software projects that can be made automatically, non-
intrusively and remotely from public-available data. The
source of the data that is measured and afterwards analyzed
is taken from the source versioning systems that most libre
software projects use, the CVS (Concurrent Versions Sys-
tem). The CVS contains the current state of the source code
as well as all the previous versions of the code. It serves as
a basis for developer interaction and group work.

Further possible publicly available data sources would

different and total numbers of modules they are active, the
most common filetypes, and of course measures for their
participation like commits or changed LOCs. Table 5 shows
briefly what kind of data we are able to get from a commiter.
Notice that commiters have to have write permission into
CVS, so that the analysis of commits in CVS may differ
from the one of usual changelogs [3].

Table 5. Statistics for commiter ’acs’
Module Commits LOC First Last

mrproject 181 5402 02.03.22 02.07.31
libmrproject 39 496 02.03.24 02.07.09

6 Conclusions and further work

As this paper and the presented implementation show,
insights into both the current state and the evolution of libre
software systems can indeed be gained on a remote basis,
even without personal involvement in a project. The infor-
mation that can be gathered from publicly-available version
control systems allows us to have a global perspective of
the project and the human resources commited to it not only
in present times but also in any point in time since the be-
ginning of the project (or at least the establishment of the
source code repository).

This information can also of course be used to try to pre-
dict a project’s future evolution for control, management
and releasing policies [4]. Although some interesting facts
on the human resources of these type of projects have been
shown as for instance the assumption of ’generations’ of
leading groups that guide the project temporarily, an enor-
mous research effort should be invested in the near future to
gain insight into the dynamics of developer integration into
libre software projects. In this sense, there are some propos-
als that try to use ideas from other knowledge areas as for
instance the study and characterization of complex systems
[8] and the application of classical (social) network analysis
in order to understand them.

In addition, it has to be regarded that software is in any
case an important valuable good and that all measurements
are key points for the calculation of economic parameters. It
has be to noted that if cost estimation is already a problem-
atic task in classical (proprietary) software environments
where human and technical resources (and their disposal)
are known, in the libre software world this is by far more
complex [12]. Any attempt with the aim of solving this
lack of knowledge is welcome and having accurate data and
information on the process is a good start.

Finally, it should be remembered that the source code
repository is not the only public information source avail-
able for libre software projects. There exist others that may

provide with complementary data. One suite that looks for
the integration of software measurement and analysis sys-
tems has been proposed by the authors of this paper [16].

References

[1] A. Atkinson. On the measurement of inequality. Journal of
Economic Theory, (2):244–263, 1970.

[2] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[3] A. Capiluppi, P. Lago, and M. Morisio. Evidences in the
evolution of os projects through changelog analyses. 2003.

[4] J. R. Ehrenkranzt. Release management within open source
projects. 2003.

[5] D. Germán and A. Mockus. Automating the measurement
of open source projects. Portland, Oregon, 2003.

[6] C. Gini. On the Measure of Concentration with Espacial
Reference to Income and Wealth. Cowles Commission,
1936.

[7] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. 2000.

[8] J. M. González-Barahona, L. López-Fernández, and G. Rob-
les. Community structure of modules in the apache project.
2004.

[9] J. M. González-Barahona and G. Robles. Unmounting the
”code gods” assumption. Technical report, 2003.

[10] K. Healy and A. Schussman. The ecology of open-source
software development. Technical report, University of
Arizona, USA, Jan. 2003.
http://opensource.mit.edu/papers/
healyschussman.pdf.

[11] O. Herfindahl. Copper Costs and Prices: 1870 - 1957. Bal-
timore: The John Hopkins Press, 1959.

[12] S. Koch and G. Schneider. Results from software engi-
neering research into open source development projects
using public data. Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, (22),
2000.
http://wwwai.wu-wien.ac.at/~koch/forschung/
sw-eng/wp22.pdf.

[13] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics and
laws of software evolution - the nineties view. 1997.

[14] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: The Apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, 2000.

[15] E. S. Raymond. The cathedral and the bazar. First Monday,
1997.
http://www.firstmonday.dk/issues/issue3_3/
raymond/.

[16] G. Robles, J. M. Gonzalez-Barahona, and R. A. Ghosh.
Gluetheos: Automating the retrieval and analysis of data
from publicly available software repositories. 2004.

[17] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. Portland, Oregon, 2003.

5

Jesus M. Gonzalez-
Barahona

[PDF] from researchgate.net

Authors

Publication date

Journal

Pages

Description

Total citations

Scholar articles

Remote analysis and measurement of libre software systems by means of
the CVSAnalY tool

Gregorio RoBlES, Stefan KoCH, Jesús M GonZÁlEZ-BARAHonA, Juan Carlos

2004/5/24

Proceedings of the 2nd ICSE Workshop on Remote Analysis and Measurement of Software Systems (RAMSS)

51-55

Libre (free, open source) software is one of the paradigmatic cases where heavy use of
telematic tools and user-driven software development are key points. This paper proposes a
methodology for measuring and analyzing remotely big libre software projects using publicly-
available data from their version control repositories. By means of a tool called CVSAnalY
that has been implemented following this methodology, measurements and analyses can be
made in an automatic and non-intrusive way, providing real-time and historical data about ...

Cited by 94

Remote analysis and measurement of libre software systems by means of the CVSAnalY tool
G RoBlES, S KoCH, JM GonZÁlEZ-BARAHonA… - Proceedings of the 2nd ICSE Workshop on Remote …, 2004
Cited by 94 - Related articles - All 9 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/29/2014 10:46 PM

Evolution and Growth in Large Libre Software Projects∗

Gregorio Robles, Juan Jose Amor, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jjamor,jgb,herraiz}@gsyc.escet.urjc.es

Abstract

Software evolution research has recently focused on
new development paradigms, studying whether laws

found in more classic development environments also
apply. Previous works have pointed out that at least
some laws seem not to be valid for these new environ-
ments and even Lehman has labeled those (up to the
moment few) cases as anomalies and has suggested that
further research is needed to clarify this issue. In this
line, we consider in this paper a large set of libre (free,
open source) software systems featuring a large commu-
nity of users and developers. In particular, we analyze
a number of projects found in literature up to now, in-
cluding the Linux kernel. For comparison, we include
other libre software kernels from the BSD family, and for
completeness we consider a wider range of libre soft-
ware applications. In the case of Linux and the other
operating system kernels we have studied growth pat-
terns also at the subsystem level. We have observed
in the studied sample that super-linearity occurs only
exceptionally, that many of the systems follow a linear
growth pattern and that smooth growth is not that com-
mon. These results differ from the ones found generally
in classical software evolution studies. Other behaviors
and patterns give also a hint that development in the li-
bre software world could follow different laws than those
known, at least in some cases.

1. Introduction and research goals

The number of studies on software evolution is rel-

atively low, despite being a field opened more than 30

years ago. The lessons learned are many, and are sum-

marized in a set of laws, stated by Lehman, which have

∗This work has been funded in part by the European Commission,

under the CALIBRE CA, IST program, contract number 004337, in

part by the Universidad Rey Juan Carlos under project PPR-2004-42

and in part by the Spanish CICyT under project TIN2004-07296.

grown to eight in their latest version [17]. These laws
have been validated empirically with some large indus-

trial software projects. Recent research is exploring

whether they are applicable to other domains, such as

systems developed using eXtreme Programming mod-

els, based on the COTS paradigm, etc.

One of this ‘other’ domains is libre software1. Al-

though its basic difference with ‘traditional’ software

lies in the licensing terms, many argue that there are also

significant differences in the way they are built. For in-

stance, most of the procedures in libre software are open

and public, targeted to ease the followup and joining by

new developers, with the aim of forming a developer

community in which individuals can play several roles

(from core developers to casual bug report submitters).

Although there is some literature showing that projects

with a surrounding community are exceptions if we con-

sider the whole libre software landscape [13], they are

still the most notorious, larger in size and user popula-

tion, and those which have featured most attention by the

public, the industry and the research community (con-

sider for instance Mozilla [6, 18, 19], Linux [9, 19, 21],

Apache [18], GNOME [14, 8], or FreeBSD [4]).

For the study presented in this paper, we have con-

sidered exactly this kind of libre software projects: large

in size (at least in the order of 100K lines of code), and

with a large user and developer community. Our inten-

tion is to explore how they behave in the context of the

laws of software evolution, specially regarding software

growth. For this matter, we started by reproducing (with

current data) the classical study performed five years ago

on the Linux kernel [9], which seemed to question the

conformance of libre software projects to some of those

laws. Later, we extended the study by doing a similar

analysis on other libre software systems in the same do-

main (operating system kernels): the *BSD family. Fi-

1Through this paper we will use the term “libre software” to refer

to any code that conforms either to the definition of “free software”

(according to the Free Software Foundation) or “open source software”

(according to the Open Source Initiative).

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

ware systems, and even if that were the case (as it seems

from our study), why that happens, and to which extent

that contradicts Fourth Lehman’s Law. Therefore, more

projects should be studied, to improve the evidence (or

find cases where growth is not linear), and detailed anal-

ysis should be performed of how human resources are

allocated in libre software projects, with the aim of ex-

plaining the linear growth we have found.

8. Acknowledgments

We thank Juan Antonio Almendral, from the Mathe-

matics, Physics and Natural Sciences Department of the

Universidad Rey Juan Carlos for his invaluable help with

the statistics of this paper.

References

[1] E. Burd and M. Munro. Evaluating the evolution of a C

application. In Intl Workshop on Principles of Software

Evolution, Fukuoka, Japan, June 1999.

[2] A. Capiluppi. Models for the evolution of os projects. In

Proceedings of the Intl Conf on Software Maintenance,

pages 65–74, Amsterdam, The Netherlands, 2003.

[3] A. Capiluppi, M. Morisio, and P. Lago. Evolution of un-

derstandability in oss projects. In Proceedings of the 8th

European Conf on Software Maintenance and Reengi-

neering, Tampere, Finland, 2004.

[4] T. Dinh-Trong and J. M. Bieman. Open source software

development: A case study of freebsd. In Proceedings

of the 10th Intl Software Metrics Symposium, Chicago,

IL, USA, September 2004.

[5] J. R. Ehrenkranzt. Release management within open

source projects. In Proceedings 3rd Workshop on Open

Source Software Engineering, Portland, Oregon, 2003.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release

history database from version control and bug tracking

systems. In Proceedings of the Intl Conf on Software

Maintenance, pages 23–32, Amsterdam, The Nether-

lands, September 2003.

[7] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Soft-

ware evolution observations based on product release

history. In Proceedings of the Intl Conf on Software

Maintenance, pages 160–170, 1997.

[8] D. Germán. The GNOME project: a case study of open

source, global software development. J of Softw Pro-

cess: Improvement and Practice, 8(4):201–215, 2004.

[9] M. Godfrey and Q. Tu. Evolution in Open Source soft-

ware: A case study. In Proceedings of the Intl Conf

on Software Maintenance (ICSM 2000), pages 131–142,

San Jose, California, 2000.

[10] M. Godfrey and Q. Tu. Growth, evolution, and struc-

tural change in open source software. In Intl Workshop

on Principles of Software Evolution, Vienna, Austria,

September 2001.

[11] J. M. Gonzalez-Barahona, M. A. Ortuño Perez, P. de las

Heras Quiros, J. Centeno Gonzalez, and V. Matel-

lan Olivera. Counting potatoes: the size of Debian 2.2.

Upgrade Magazine, II(6):60–66, Dec. 2001.

[12] J. M. Gonzalez-Barahona, G. Robles, M. Ortuño Pérez,

L. Rodero-Merino, J. Centeno-Gonzalez, V. Matellan-

Olivera, E. Castro-Barbero, and P. de-las Heras-Quirós.

Analyzing the anatomy of GNU/Linux distributions:

methodology and case studies (Red Hat and Debian).

In S. Koch, editor, Free/Open Source Software Devel-

opment, pages 27–58. Idea Group, Hershey, PA, 2004.

[13] K. Healy and A. Schussman. The ecology of open-

source software development. Technical report, Univer-

sity of Arizona, USA, January 2003.

[14] S. Koch and G. Schneider. Effort, cooperation and co-

ordination in an open source software project: Gnome.

Information Systems Journal, 12(1):27–42, 2002.

[15] M. Lehman and J. F. Ramil. Rules and tools for software

evolution planning and management. Annals of Software

Engineering, 11(1):15–44, 2001.

[16] M. Lehman, J. F. Ramil, and U. Sandler. An approach to

modelling long-term growth trends in software systems.

In Intl Conf on Software Maintenance, pages 219–228,

Florence, Italy, November 2001.

[17] M. Lehman, J. F. Ramil, P. Wernick, and D. Perry. Met-

rics and laws of software evolution - the nineties view.

In Proceedings of the Fourth Intl Software Metrics Sym-

posium, Portland, Oregon, 1997.

[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case

studies of Open Source software development: Apache

and Mozilla. ACM Transactions on Software Engineer-

ing and Methodology, 11(3):309–346, 2002.

[19] J. W. Paulson, G. Succi, and A. Eberlein. An empirical

study of open-source and closed-source software prod-

ucts. Transactions on Softw Eng, 30(4), April 2004.

[20] G. Robles, J. M. Gonzalez-Barahona, and R. A. Ghosh.

Gluetheos: Automating the retrieval and analysis of

data from publicly available software repositories. In

Proceedings of the Intl Workshop on Mining Software

Repositories, Edinburg, Scotland, UK, 2004.

[21] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and

A. J. Offutt. Maintainability of the linux kernel. IEE

Proceedings–Software, 149:18–23, 2002.

[22] G. Succi, J. Paulson, and A. Eberlein. Preliminary re-

sults from an empirical study on the growth of open

source and commercial software products. In EDSER-

3 Workshop, Toronto, Canada, May 2001.

[23] W. M. Turski. Reference model for smooth growth of

software systems. IEEE Transactions on Software Engi-

neering, 22(8):599–600, 1996.

[24] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue.

Measuring similarity of large software systems based on

source code correspondence. In 6th Intl PROFES (Prod-

uct Focused Software Process Improvement) conference,

PROFES 2005, Oulu, Finland, June 2005.

10

Proceedings of the 2005 Eighth International Workshop on Principles of Software Evolution (IWPSE’05)
1550-4077/05 $20.00 © 2005 IEEE

Jesus M. Gonzalez-
Barahona

[PDF] from herraiz.org
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Evolution and growth in large libre software projects

Gregorio Robles, Juan Jose Amor, Jesus M Gonzalez-Barahona, Israel Herraiz

2005/9/5

Principles of Software Evolution, Eighth International Workshop on

165-174

IEEE

Abstract Software evolution research has recently focused on new development paradigms,
studying whether laws found in more classic development environments also apply.
Previous works have pointed out that at least some laws seem not to be valid for these new
environments and even Lehman has labeled those (up to the moment few) cases as
anomalies and has suggested that further research is needed to clarify this issue. In this line,
we consider in this paper a large set of libre (free, open source) software systems ...

Cited by 102

Evolution and growth in large libre software projects
G Robles, JJ Amor, JM Gonzalez-Barahona, I Herraiz - Principles of Software Evolution, Eighth International …, 2005
Cited by 102 - Related articles - All 10 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 12:43 PM

Developer identification methods for integrated data from
various sources

Gregorio Robles, Jesus M. Gonzalez-Barahona
{grex, jgb}@gsyc.escet.urjc.es

Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos

Madrid, Spain

ABSTRACT
Studying a software project by mining data from a sin-
gle repository has been a very active research field in soft-
ware engineering during the last years. However, few efforts
have been devoted to perform studies by integrating data
from various repositories, with different kinds of informa-
tion, which would, for instance, track the different activities
of developers. One of the main problems of these multi-
repository studies is the different identities that developers
use when they interact with different tools in different con-
texts. This makes them appear as different entities when
data is mined from different repositories (and in some cases,
even from a single one). In this paper we propose an ap-
proach, based on the application of heuristics, to identify
the many identities of developers in such cases, and a data
structure for allowing both the anonymized distribution of
information, and the tracking of identities for verification
purposes. The methodology will be presented in general,
and applied to the GNOME project as a case example. Pri-
vacy issues and partial merging with new data sources will
also be considered and discussed.

1. INTRODUCTION
Most research in the area of mining software repositories

has been performed on a single source of data. The reason
for this is that tools are usually targeted towards accessing
a specific kind of data, which can be retrieved and analyzed
uniformly. Data mining for control versioning systems [11],
bug-tracking systems, mailing lists and other sources is cur-
rently state of the art. The focus of these studies is more on
the analysis than in the data extraction process, which can
be automated, as has already been discussed [2, 9].

However, there is a wide interest in considering data from
several sources and integrating them into a single database,
getting richer evidence from the observed matter [5]. The
data gathered following this approach can be used for study-
ing several kinds of artifacts relevant to the software develop-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

ment process, such as source code files or, as we will discuss
in this paper, developers.

As an example of the usefulness of this approximation,
let’s consider collaboration in libre software1 projects, which
is an active research field. Libre software is produced in part
(in many cases a large part) by volunteers, which makes it
difficult to predict the future evolution. However, it has
at least in some cases produced high-quality software, used
by millions of persons around the world. It has been shown
that this collaboration follows a Pareto law for commits [11],
source code contributions [4], bug reports [8] or mailing
list posts [6]; i.e. a small amount of developers of around
20% is responsible for a huge amount of the produced ar-
tifacts (around 80%). But although this research on dif-
ferent sources coincide in results, there is still no evidence
of coherence. In other words, although it is known that
the Pareto distribution appears in several data sources for
a given project, are the most active actors for each of those
sources (mailing lists, code repositories, bug report systems,
etc.) the same ones?

In the specific case of merging information about develop-
ers from different repositories, the main difficulty is caused
by the many identities that they use from repository to
repository, and even for the same one, making tracking diffi-
cult. That is the reason why we need methods and tools that
can find the different identities of a given developer. These
methods, and the data they produce, should be designed to
be sharable among research groups, not only for validation
purposes but also for enabling the merging of partial data
obtained by different teams from different sources.

In general, any study considering individuals in libre soft-
ware projects, even when using a single data source, is sen-
sible to identity variety. Before performing any analysis on
the data set, it is necessary to merge the identities corre-
sponding to the same person. This is for instance the case
in the promising case of clustering [3] and social network
analysis [7], which are trying to get insight in the structure
of libre software projects.

The structure of this paper is as follows. The next section
deals with the kinds of identities which are usually found in
software-related repositories. The third section is devoted to
the extraction of data, its structure and verification. Section

1Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

1

development landscape.

7. ACKNOWLEDGEMENTS
This work has been funded in part by the European Com-

mission, under the CALIBRE CA, IST program, contract
number 004337, by the Universidad Rey Juan Carlos un-
der project PPR-2004-42 and by the Spanish CICyT under
project TIN2004-07296.

8. REFERENCES
[1] A. Capiluppi, P. Lago, and M. Morisio. Evidences in

the evolution of os projects through changelog
analyses. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, 2003.

[2] D. German and A. Mockus. Automating the
measurement of open source projects. In Proceedings
of the 3rd Workshop on Open Source Software
Engineering, Portland, USA, 2003.

[3] R. A. Ghosh. Clustering and dependencies in
free/open source software development: Methodology
and tools. First Monday, 8(4), Apr. 2003.

[4] R. A. Ghosh and V. V. Prakash. The orbiten free
software survey. First Monday, 7(5), May 2002.

[5] J. M. Gonzalez-Barahona and G. Robles. Getting the
global picture. In Proceedings of the Oxford Workshop
on Libre Software 2004, Oxford, UK, June 2004.

[6] S. Koch and G. Schneider. Effort, cooperation and
coordination in an open source software project:
Gnome. Information Systems Journal, 12(1):27–42,
2002.

[7] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in
cvs repositories. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburg,
UK, 2004.

[8] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of Open Source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[9] G. Robles, J. M. Gonzalez-Barahona, J. Centeno,
V. Matellan, and L. Rodero. Studying the evolution of
libre software projects using publicly available data. In
Proceedings of the 3rd Workshop on Open Source
Software Engineering, pages 111–115, Portland, USA,
2003.

[10] G. Robles, J. M. Gonzalez-Barahona, and R. A.
Ghosh. Gluetheos: Automating the retrieval and
analysis of data from publicly available software
repositories. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburg,
Scotland, UK, 2004.

[11] G. Robles, S. Koch, and J. M. Gonzalez-Barahona.
Remote analysis and measurement of libre software
systems by means of the cvsanaly tool. In Proceedings
of the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS),
Edinburg, Scotland, UK, 2004.

APPENDIX
A. A CASE STUDY: GNOME

To debug and complete our methodology, we have applied
it to the data from several real libre software repositories.
One of the most complete studies we have performed to
date has been on the GNOME project, retrieving data from
mailing lists, bug tracking system (including bug reports
and comments) and from the CVS repository. Next, we
offer some results from this study:

• 464,953 messages from 36,399 distinct e-mail addresses
have been fetched and analyzed.

• 123,739 bug reports, from 41,835 reporters, and 382,271
comments from 10,257 posters have been retrieved from
the bug tracking system.

• Around 2,000,000 commits, made by 1,067 different
commiters have been found in the CVS repository.

• From these data, 108,170 distinct identities have been
identified.

• For those distinct identities, 47,262 matches have been
found, of which 40,003 were distinct (therefore, our
Matches table contains that number of entries).

• Using the information in the Matches table, we have
been able of finding 34,648 unique persons.

This process has been statistically verified by selecting
a sample of identities, looking by hand for matches and
comparing the results to the corresponding entries in the
Matches table. Currently we are completing the Persons
table, and performing gender and nationality analysis.

B. AUTOMATIC (POST-IDENTIFICATION)
ANALYSIS

The reader has probably noted that the Persons table in
Figure 2 includes some fields with personal information. We
have devised some heuristics to infer some of them from data
in the repositories, usually from the structure of identities.
For instance, nationality can be guessed by several means:

• Analyzing the top level domain (TLD) of the various
e-mail addresses found in the identities could be a first
possibility. The algorithm in this case consists of listing
all e-mail addresses, extracting the TLD from them, re-
jecting those TLD that cannot be directly assigned to
a country (.com, .net, .org, etc.) or those who are from
“fake” countries (.nu, etc.), and finally looking at the
remaining TLDs and count how often they occur. The
TLD that is more frequent gives a hint about the na-
tionality of the person. Of course this heuristic is spe-
cially bad for US-based actors (since they are not likely
to use the US TLD), and for those using .org or .com
addresses, quite common in libre software projects.

• Another approach is to us whois data for the second
level domain in e-mail address, considering that the
whois contact information (which includes a physical
mail address) is valid as an estimator of the country of
the actor. Of course, this is not always the case.

Other case example of information which can be obtained
from identities is the gender. Usually we can infer the gen-
der from the name of the person. However, in some cases
it depends on the nationality, since some names may be as-
signed to males in one country and to females in another.
This is for instance the case for Andrea, which in Italy is a
male name while in Germany, Spain and other countries is
usually for females.

5

Jesus M. Gonzalez-
Barahona

[PDF] from flosshub.org
Texto completo para UC3M

Authors

Publication date

Journal

Volume

Issue

Pages

Publisher

Description

Total citations

Scholar articles

Developer identification methods for integrated data from various sources

Gregorio Robles, Jesus M Gonzalez-Barahona

2005/7/1

ACM SIGSOFT Software Engineering Notes

30

4

1-5

ACM

Abstract Studying a software project by mining data from a single repository has been a very
active research field in software engineering during the last years. However, few efforts have
been devoted to perform studies by integrating data from various repositories, with different
kinds of information, which would, for instance, track the different activities of developers.
One of the main problems of these multi-repository studies is the different identities that
developers use when they interact with different tools in different contexts. This makes ...

Cited by 60

Developer identification methods for integrated data from various sources
G Robles, JM Gonzalez-Barahona - ACM SIGSOFT Software Engineering Notes, 2005
Cited by 60 - Related articles - All 16 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 10:59 AM

Evolution of Volunteer Participation in Libre Software Projects:
Evidence from Debian

Gregorio Robles, Jesus M. Gonzalez-Barahona
Grupo de Sistemas y Comunicaciones

Universidad Rey Juan Carlos (Madrid, Spain)
{grex,jgb}@gsyc.escet.urjc.es

Martin Michlmayr
Centre for Technology Management

University of Cambridge
martin@michlmayr.org

Abstract— Most libre software projects rely on the work of
volunteers. Therefore, attracting people who contribute their
time and technical skills is of paramount importance, both
in technical and economic terms. This reliance on volunteers
leads to some fundamental management challenges: volunteer
contributions are inherently difficult to predict, plan and
manage, especially in the case of large projects. In this paper
we analyze the evolution in time of the human resources
of one of the largest and most complex libre software
projects composed primarily of volunteers, the Debian project.
Debian currently has around 1300 volunteers working on
several tasks: much activity is focused on packaging software
applications and libraries, but there is also major work related
to the maintenance of the infrastructure needed to sustain the
development. We have performed a quantitative investigation
of data from almost seven years, studying how volunteer
involvement has affected the software released by the project
and the developer community itself.

Index Terms— libre software engineering, human resources,
volunteer developers, software evolution.

I. INTRODUCTION

Volunteer contributions are the base of most libre soft-
ware projects1. However, the characteristics and way of
working of volunteers can be quite different from those
of employees, which are the main force behind traditional
software development. Volunteers can contribute with the
amount of effort they want, can commit for the time period
they consider convenient, and can devote their time to
the tasks they may prefer, given that the context of the
project allows them to do so. Despite of this, some libre
software projects have produced software which has gained
significant popularity. This shows that the unstructured col-
laboration of volunteers is a viable software development
strategy, even if it is associated with certain challenges
related to project management and quality. In this paper
we will explore how these voluntary contributions have
been working in the specific case of a large libre software
project, to have some actual data about their behavior.
We started the study stating some questions, for some of
which we thought we already knew the answer. To our
surprise, we found out that, even with the high knowledge
we thought we had about the history of the project, the data
told a different tale.

We define in this paper volunteers as those who col-
laborate in libre software projects in their free time not
profiting economically in a direct way from their effort.

1In this paper we will use the term “libre software” to refer to any
software licensed under terms compliant with the FSF definition of “free
software”, and the OSI definition of “open source software”, thus avoiding
the controversy between those two terms. However, in the specific case of
Debian, the project has its own definition of “free software”, the Debian
Free Software Guidelines, from which the OSI definition originated later.

Volunteers can be IT-related professionals or not, but their
professional activity is not the one they perform on a
given libre software project. Although the vast majority
of participants in libre software projects are following our
definition volunteers there also exist non-volunteers (also
known as paid employees), i.e. those whose professional
activity is to work on that specific project. In a study on
the GNOME project [1], German states that paid employees
from various companies are usually responsible for less
attractive tasks, such as project design and coordination,
testing, documentation and bug fixing. Also, “[m]ost of the
paid developers in GNOME were, at some point, volun-
teers. Essentially for the volunteers, their hobby became
their job” [1].

The involvement of volunteers, of course, raises new
economic issues that have to be taken into account for
business strategies around libre software. Collaboration
from volunteers is difficult to predict, but if it is given
it may add value to a software system in very economic
terms for a software company.

The structure of this paper is as follows. The next section
briefly explains the nature of maintainers in the Debian
project, and of the Debian operating system. Then we state
the questions we aimed to answer before starting this study,
including possible answers we expected at that time. After
that, we explain the methodology we devised and followed
to answer those questions, and the data sources we used.
We later show the actual results obtained from the empirical
analysis, and contrast them with what we had expected. The
paper ends with some conclusions and lessons learned.

II. MAINTAINERS IN THE DEBIAN PROJECT

Debian is an operating system completely based on libre
software [2], [3]. It includes a large number of applications,
such as the GNU tools and Mozilla, and the system
is known for its solid integration of different software
components. Debian’s most popular distribution, Debian
GNU/Linux, is based on the Linux kernel. Ports to other
kernels, such as the Hurd and FreeBSD, are in development.

One of the main characteristics of the Debian distribution
is that during the whole life of the project it has been
maintained by a group of volunteers, which has grown to
quite a substantial number. These individuals devote their
own time and technical skills to the creation and integration
of software packages, trying to supply users with a robust
system which provides a lot of functionality and technical
features.

One of the main characteristics of the Debian distribution
is that the bulk of work has always been performed by vol-
unteers; furthermore, the project has grown to substantial

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107

no means for forcing any single developer to do any given
task or may leave the project during important development
phases. It is impossible to infer the behavior of volunteer
developers just from the study of a single project, but given
the size and relevance of the Debian project, at least some
conclusions can be exposed as hypothesis for validating in
later research efforts.

One of them is the stability of volunteer work over time.
The mean life of volunteers in the project is probably larger
than in many software companies, which would have a
clear impact on the maintenance of the software (it would
be likely that developers with experience in a module be
available for its maintenance over long periods of time).
Another one is that volunteers tend to take over more
work with the passing of time if they manage to stay in
the project: in other words, they voluntarily increase their
responsibilities in the project. Whether this is because it
is easier for them because of their experience, or because
they devote more effort to the project, is for now an open
question. Yet a third one is the stability of the voluntary
effort when some individuals leave the project: most of
their work is taken over by other developers. Therefore,
despite being completely based on volunteers, the project
organizes itself rather well with respect to leavings, which
is an interesting lesson about how the project can survive
in the long term.

As a final summary, we have found that given that there
are no formal ways of forcing a developer to assume any
given task, voluntary efforts seem to be more stable over
time, and more reliable with respect to individuals leaving
the project than we had expected in advance.

VII. ACKNOWLEDGEMENTS

The work of Gregorio Robles and Jesus M. Gonzalez-
Barahona has been funded in part by the European Com-
mission under the CALIBRE CA, IST program, contract
number 004337, in part by the Universidad Rey Juan Carlos
under project PPR-2004-42 and in part by the Spanish
CICyT under project TIN2004-07296. The work of Martin
Michlmayr has been funded in part by Fotango, the NUUG
Foundation and the EPSRC. We also want to thank the
anonymous reviewers for their extensive comments.

REFERENCES

[1] D. M. German, “Decentralized Open Source global software de-
velopment, the GNOME experience,” Journal of Software Process:
Improvement and Practice, vol. 8, no. 4, pp. 201–215, 2004.

[2] M. Monga, “From Bazaar to Kibbutz: How freedom deals with
coherence in the Debian project,” in Proc 4th Workshop on Open
Source Software Engineering, Edinburg, UK, 2004.

[3] S. O’Mahony, “Guarding the commons: how community managed
software projects to protect their work,” Research Policy, no. 32, pp.
1179–1198, 2003.

[4] “Debian Social Contract,” http://www.debian.org/social contract.
[5] G. Garzarelli and R. Galoppini, “Capability coordination in modular

organization: Voluntary FS/OSS production and the case of Debian
GNU/Linux,” November 2003.

[6] M. Michlmayr and B. M. Hill, “Quality and the reliance on
individuals in free software projects,” in Proc 3rd Workshop on
Open Source Software Engineering, Portland, USA, 2003, pp.
105–109. [Online]. Available: http://www.cyrius.com/publications/
michlmayr hill-reliance.pdf

[7] M. Michlmayr, “Managing volunteer activity in free software
projects,” in Proc USENIX 2004 Annual Technical Conference,
FREENIX Track, Boston, USA, 2004, pp. 93–102. [Online].
Available: http://www.cyrius.com/publications/michlmayr-mia.pdf

[8] J. M. González-Barahona, G. Robles, M. Ortuño Pérez, L. Rodero-
Merino, J. Centeno González, V. Matellan-Olivera, E. Castro-
Barbero, and P. de-las Heras-Quirós, “Analyzing the anatomy of
GNU/Linux distributions: methodology and case studies (Red Hat
and Debian),” in Free/Open Source Software Development, S. Koch,
Ed. Hershey, PA, USA: Idea Group Publishing, 2004, pp. 27–58.

[9] M. Lehman, J. Ramil, P. Wernick, and D. Perry, “Metrics and laws of
software evolution - the nineties view,” in Proceedings of the Fourth
International Software Metrics Symposium, Portland, Oregon, 1997.

[10] C. Lameter, “Debian GNU/Linux: The past, the present and the
future,”
http://telemetrybox.org/tokyo/, 2002.

[11] J. M. Gonzalez-Barahona, M. A. Ortuño Perez, P. de las
Heras Quiros, J. Centeno Gonzalez, and V. Matellan Olivera, “Count-
ing potatoes: the size of Debian 2.2,” Upgrade Magazine, vol. II,
no. 6, pp. 60–66, Dec. 2001.

[12] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software
developers in open source projects: an Internet-based survey of
contributors to the Linux kernel,” Research Policy, vol. 32, no. 7,
pp. 1159–1177, 2003.

[13] “The Open Source maturity model: A methology for assessing open
source software,”
http://www.navicasoft.com/pages/osmm.htm.

[14] B. Golden, Succeeding with Open Source. Addison-Wesley Profes-
sional, 2004.

Proceedings of the First International Conference on Open Source Systems
Genova, 11th-15th July 2005

Marco Scotto and Giancarlo Succi (Eds.), pp. 100-107

Jesus M. Gonzalez-
Barahona

[PDF] from cyrius.com

Authors

Publication date

Journal

Pages

Description

Total citations

Scholar articles

Evolution of volunteer participation in libre software projects: evidence from
Debian

Gregorio Robles, Jesus M Gonzalez-Barahona, Martin Michlmayr

2005/7/11

Proceedings of the 1st International Conference on Open Source Systems

100-107

Abstract—Most libre software projects rely on the work of volunteers. Therefore, attracting
people who contribute their time and technical skills is of paramount importance, both in
technical and economic terms. This reliance on volunteers leads to some fundamental
management challenges: volunteer contributions are inherently difficult to predict, plan and
manage, especially in the case of large projects. In this paper we analyze the evolution in
time of the human resources of one of the largest and most complex libre software projects ...

Cited by 58

Evolution of volunteer participation in libre software projects: evidence from Debian
G Robles, JM Gonzalez-Barahona, M Michlmayr - Proceedings of the 1st International Conference on …, 2005
Cited by 58 - Related articles - All 16 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 12:20 PM

Self-organized development in libre software projects: a model based on the
stigmergy concept∗

Gregorio Robles
Universidad Rey Juan Carlos

grex@gsyc.escet.urjc.es

Juan Julian Merelo
Universidad de Granada
jmerelo@geneura.ugr.es

Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos

jgb@gsyc.escet.urjc.es

Extended Abstract

Keywords: Process modeling and simulation, libre
(free/open) source software, self-organization, software
evolution

Abstract

Libre software development is difficult (if not impossible)
to explain by using traditional techniques of software engi-
neering. We propose an stigmergy-based model which ex-
plains some behaviors usual in it, specially the selection by
developers of the projects where they work, and the growth
of those projects. We have also verified it comparing its
predictions to the results of studies of real projects.

1. Introduction

Libre (free/open source) software 1 is becoming an in-
creasingly important component of today’s software indus-
try. While many studies have focused on the inner working
of a few, usually successful, projects, few have paid atten-
tion to explain the big picture of how these projects have be-
come successful. This is probably due to its distributed and
mostly self-organized development nature, which makes it
difficult to understand and research.

One of the most surprising assumptions for the libre soft-
ware phenomenon is that its development process does not
obey a ‘classical’ software engineering development pro-
cess: there are no (or few) pre-defined requirements, no
detailed design at all and a lack of inter-process documen-
tation [10]. Last but not least, libre software projects do
not follow a clear predefined hierarchical structure where a
central authority shows the way to go. In short, they show
trends of being self-regulated and self-organized.

∗The work of Gregorio Robles and Jesus M. Gonzalez-Barahona has
been funded in part by the European Commission, under the CALIBRE
CA, IST program, contract number 004337.

1Through this extended abstract we will use the term “libre software”
to refer to any code that conforms either to the definition of “free software”
(according to the FSF) or “open source software” (according to the OSI).

In this paper, an analogy between the libre software phe-
nomenon and the way some social insects perform large-
scale works is proposed. The analogy is based on the stig-
mergy concept, which states that communication (by means
of stimuli) does not happen directly among entities (in our
case developers) but through changes in the environment.
Stigmergy makes an autocatalytic reaction possible as it has
been observed in bazaar-driven self-organized libre soft-
ware projects.

We have built a model based upon these ideas, imple-
mented a simulation software, calibrated the model with
data from previous studies and finally verified its output
comparing it to results from investigations performed on li-
bre software.

2. Self-organization through stigmergy

In the late 1950s the french biologist P.P.-GrassÃ c© re-
alized while studying the construction of termites nests that
the product of certain behaviors was consequence of the ef-
fects produced in the local environment by previous behav-
iors (of possibly other termites). He called this phenomenon
stigmergy2 [5].

GrassÃ c© observed that when termites build their nest
they start in a randomly manner without any coordination.
Once a given point is achieved an area becomes a signifi-
cant stimulus for other termites which then collaborate in
the construction of the nest.

Stigmergy appears mainly in social insects such as ter-
mites, ants and some kinds of spiders. Their activity does
not depend on the direct interactions with other insect-
workers, but on the structure of the environment. Individual
behavior is controlled and guided by previous work, i.e. the
changes in the environment are dynamically used for self-
organization and coordination of the colony. An insect cre-
ates, by means of its activity, a structure which stimulates
other members of the colony, causing them to perform an
specific activity.

2From the Greek ‘stigma’ (mark/sign) and ‘ergos’ (work)

model. Data from previous research studies and surveys
performed on libre software developers have been used for
this purpose. So, for instance, the mean time spent on a
project by libre software developers has been taken from
several surveys and the productivity has been measured in
SLOC in order to be comparable with the COCOMO cost
prediction model [1].

Verification of the model has been performed against re-
sults obtained by other research studies. We can classify
these results in two sets: facts about developer contribu-
tions, and evidences about the software produced. In both
cases, with the former calibration, our model shows similar
trends to the one obtained in these studies.

Regarding developer contributions we have observed
whether the model shows inequality patterns for developer
contribution to projects, as reported by Koch et al. [7] and
if projects are led throughout the lifetime of the project by
several generations of core groups [3]. [6] showed that the
number of developers in projects follows a power-law distri-
bution, so we also checked for that. Other contribution pat-
terns as stated by Mockus et al. on Apache and Mozilla [9]
are also compared with the results we have obtained.

Regarding the size of the developed software, we test if
the mean size of software projects remains constant in time
and if we obtain a power-law for project size as some stud-
ies on GNU/Linux distributions have thrown [4]. Finally,
we looked at the software evolution patterns that our model
provides and compare it to the current state of the art [2, 8].

5. Conclusions and further work

Our primary conclusion is that the libre software phe-
nomenon can indeed be modeled as a stigmergic one. This
means, for instance, that the individual productivity may not
be as important as the total production as a community; or
that stigmergic mechanisms should be used in order to in-
crease productivity.

The model we propose here shows patterns similar to
those reported in real world studies on libre software, al-
though finer calibration and further discussion on the vari-
ables and threshold values is necessary.

If this model shows to be valuable, future research could
focus on researching how the change of some parameters
may affect the development of software in the libre soft-
ware world. This could be the case of a company wanting
to hire developers for a libre software project. An interest-
ing extension could be to study how other ‘communities’
present in libre software development (i.e. translators, doc-
umenters, etc.) can be included in a model like the one
presented. A reality check of the project could also be nec-
essary, with elimination of artifacts or identification with
real-life aspects of software development.

References

[1] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[2] M. W. Godfrey and Q. Tu. Evolution in Open Source soft-
ware: A case study. In Proceedings of the International
Conference on Software Maintenance (ICSM 2000), pages
131–142, San Jose, California, 2000.

[3] J. M. Gonzalez-Barahona and G. Robles. Unmounting the
”code gods” assumption. In Proceedings of the Fourth In-
ternational Conference on eXtreme Programming and Agile
Processes in Software Engineering, 2003.

[4] J. M. Gonzalez-Barahona, G. Robles, M. Ortuño-Perez,
L. Rodero-Merino, J. Centeno-Gonzalez, V. Matellan-
Olivera, E. Castro-Barbero, and P. de-las Heras-Quirós.
Free/Open Source Software Development, chapter Analyz-
ing the anatomy of GNU/Linux distributions: methodology
and case studies (Red Hat and Debian). Idea Group Inc.,
2004.

[5] P.-P. GrassÃ c©. La reconstruction du nid et les coordinations
inter-individuelles chez bellicositermes natalensis et cubiter-
mes sp. la thÃ c©orie de la stigmergie: Essai d’interpretation
du comportement des termites constructeurs. Insectes Soci-
aux, (6):41–81, 1959.

[6] K. Healy and A. Schussman. The ecology of open-source
software development. Technical report, University of Ari-
zona, USA, Jan. 2003.

[7] S. Koch and G. Schneider. Effort, cooperation and coordi-
nation in an open source software project: GNOME. Infor-
mation Systems Journal, 12(1):27–42, 2002.

[8] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics
and laws of software evolution - the nineties view. In Pro-
ceedings of the Fourth International Software Metrics Sym-
posium, Albuquerque, NM, USA, 1997.

[9] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309–346, 2002.

[10] E. S. Raymond. The cathedral and the bazar. First Monday,
3(3), 2000.

[11] T. Susi and T. Ziemke. Social cognition, artefacts and stig-
mergy: A comparative analysis of theoretical frameworks
for the understanding of artefact-mediated collaborative ac-
tivity. Journal of Cognitive Systems Research, (2):273–290,
2001.

Jesus M. Gonzalez-
Barahona

[PDF] from simula.no

Authors

Publication date

Journal

Pages

Description

Total citations

Scholar articles

Self-organized development in libre software: a model based on the stigmergy
concept

Gregorio Robles, Juan Julian Merelo, Jesus M Gonzalez-Barahona

2005/5/14

ProSim'05

16

Abstract—Libre (free, open source) software projects are lately getting increasing attention
from the research community; for instance, several studies have focused on the inner
working of some successful projects. However, there is still little emphasis on trying to
explain the landscape of libre software development at large, maybe due to the distribution
of developers, to the (in many cases) non-compulsory nature of their relationships, and to
the extreme importance of motivation to attract resources to a project. In this paper we ...

Cited by 35

Self-organized development in libre software: a model based on the stigmergy concept
G Robles, JJ Merelo, JM Gonzalez-Barahona - ProSim'05, 2005
Cited by 35 - Related articles

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 12:35 PM

Comparison between SLOCs and number of files as size metrics for software
evolution analysis

Israel Herraiz, Gregorio Robles, Jesús M. González-Barahona
Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos, SPAIN∗

{herraiz, grex, jgb}@gsyc.escet.urjc.es

Andrea Capiluppi
Dipartimento di Automatica e Informatica

Politecnico di Torino, ITALY
Andrea.Capiluppi@polito.it†

Juan F. Ramil
Computing Department

Faculty of Maths and Computing
The Open University, UK

J.F.Ramil@open.ac.uk

Abstract

There are some concerns in the research community
about the convenience of using low-level metrics (such
as SLOC, source lines of code) for characterizing the
evolution of software, instead of the more traditional
higher lever metrics (such as the number of modules
or files). This issue has been raised in particular after
some studies that suggest that libre (free, open source)
software evolves differently than ‘traditional’ software,
and therefore it does not conform to Lehman’s laws of
software evolution. Since those studies on libre software
evolution use SLOCs as the base metric, while Lehman’s
and other traditional studies use modules or files, it is
difficult to compare both cases. To overcome this diffi-
culty, and to explore the differences between SLOC and
files/modules counts in libre software projects, we have
selected a large sample of programs and have calculated
both size metrics over time. Our study shows that in
those cases the evolution patterns in both cases (count-
ing SLOCs or files) is the same, and that some patterns
not conforming to Lehman’s laws are indeed apparent.

Keywords: metrics, software evolution, libre soft-
ware, empirical studies

1. Introduction and aims

Thirty years of research on software evolution have
resulted in a set of empirical observations, known as

Lehman’s Laws of Software Evolution [6]. Although
the number of laws has grown from three (in the sev-
enties) to eight (in their latest version [5]), all of them
have been empirically proved, by studying projects de-
veloped in traditional industrial software development
environments.

In recent times, the rise of a new development phe-
nomenon, libre software1, has opened new horizons to
the analysis of software evolution, at least with respect to
two issues. The first one is whether the laws of software
evolution apply to these new environments, where man-
agement is loose and contributions from third parties,
mainly volunteers, are fostered. The second one derives
from the fact that this type of projects make available to
researchers a large quantity of public information about
the development process which can be retrieved and an-
alyzed. This offers the possibility of having a general
view of the landscape instead of just the results of a
small number of selected case studies.

Several authors have analyzed the evolution of libre

∗The work by the researchers at URJC has been funded in part by
the European Commission, under the CALIBRE CA, IST program,
contract number 004337, and by the Spanish CICyT under project
TIN2004-07296. Israel Herraiz has been funded in part by Conseje-
ria de Educación of Comunidad de Madrid and European Social Fund,
under grant number 01/FPI/0582/2005. Part of this work has been de-
veloped while Israel Herraiz was visiting The Open University.

†Visiting researcher at The Open University, UK
1. Through this paper we will use the term “libre software” to refer

code that conforms to either the definition of “free software” (accord-
ing to the Free Software Foundation) or of “open source software”
(according to the Open Source Initiative).

complexity makes more difficult to add functionality to
a project, and causes it to slow down. Developers can
not improve their productivity forever, as an increasing
number of developers working in the same artifact pro-
vokes inefficiencies.

Therefore, more studies are needed to enlighten some
of this doubts, and to better understand the fast growth
of libre software. With time, even the formulation of a
theoretical framework to explain this behavior should be
possible.

References

[1] J. J. Amor-Iglesias, J. M. González-Barahona, G. Rob-
les, and I. Herraiz. Measuring libre software using de-
bian 3.1 (sarge) as a case study: Preliminary results. Up-
grade, VI(3), June 2005.

[2] M. Godfrey and Q. Tu. Growth, evolution, and structural
change in open source software. In Internation Work-
shop on Principles of Software Evolution, Vienna, Aus-
tria, September 2001.

[3] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages 131–
142, San Jose, California, 2000.

[4] S. Koch. Evolution of open source system software sys-
tems - a large scale investigation. In Proceedings of the
First International Conference on Open Source Systems,
2005.

[5] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics
and laws of software evolution - the nineties view. In
Proceedings of the Fourth International Software Met-
rics Symposium, 1997.

[6] M. M. Lehman and L. A. Belady, editors. Program evo-
lution: processes of software change. Academic Press
Professional Inc., 1985.

[7] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implica-
tions of evolution metrics on software maintenance. In
ICSM, pages 208–218, 1998.

[8] M. M. Lehman, J. F. Ramil, and U. Sandler. An ap-
proach to modelling long-term growth trends in soft-
ware systems. In Software Maintenance, 2001. Proceed-
ings. IEEE International Conference on, pages 219–228,
2001.

[9] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and
I. Herraiz. Evolution and growth in large libre software
projects. In Proceedings of the 8th International Work-
shop on Principles of Software Evolution, pages 165–
174, Lisbon, September 2005. IEEE Computer Society.

[10] G. Robles, J. M. Gonzalez-Barahona, and R. A. Ghosh.
Gluetheos: Automating the retrieval and analysis of data
from publicly available software repositories. In Pro-
ceedings of the International Workshop on Mining Soft-
ware Repositories, pages 28–31, Edinburg, Scotland,
UK, 2004.

[11] G. Robles, J. M. Gonzalez-Barahona, and
M. Michlmayr. Evolution of volunteer participa-
tion in libre software projects: evidence from Debian.
In Proceedings of the 1st International Conference on
Open Source Systems, Genova, Italy, July 2005. To
appear.

[12] Sloccount.
http://www.dwheeler.com/sloccount/.

[13] G. Succi, J. Paulson, and A. Eberlein. Preliminary re-
sults from an empirical study on the growth of open
source and commercial software products. In EDSER-3
Workshop, co-located with ICSE 2001, Toronto, Canada,
May 2001.

8

Jesus M. Gonzalez-
Barahona

[PDF] from herraiz.org
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Comparison between SLOCs and number of files as size metrics for
software evolution analysis

Israel Herraiz, Gregorio Robles, Jesús M González-Barahona, Andrea Capiluppi, Juan F Ramil

2006/3/22

Software Maintenance and Reengineering, 2006. CSMR 2006. Proceedings of the 10th European Conference on

8 pp.-213

IEEE

Abstract There are some concerns in the research community about the convenience of
using low-level metrics (such as SLOC, source lines of code) for characterizing the evolution
of software, instead of the more traditional higher lever metrics (such as the number of
modules or files). This issue has been raised in particular after some studies that suggest
that libre (free, open source) software evolves differently than 'traditional'software, and
therefore it does not conform to Lehman's laws of software evolution. Since those studies ...

Cited by 43

Comparison between SLOCs and number of files as size metrics for software evolution analysis
I Herraiz, G Robles, JM González-Barahona… - … Maintenance and Reengineering, 2006. CSMR 2006. …, 2006
Cited by 43 - Related articles - All 9 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 12:58 PM

Effort Estimation by Characterizing Developer Activity∗

Juan Jose Amor
jjamor@gsyc.escet.urjc.es

Gregorio Robles
grex@gsyc.escet.urjc.es

Jesus M. Gonzalez-
Barahona

jgb@gsyc.escet.urjc.es
Grupo de Sistemas y Comunicaciones

Universidad Rey Juan Carlos
Mostoles, Spain

ABSTRACT
During the latest years libre (free, open source) software
has gained a lot of attention from the industry. Following
this interest, the research community is also studying it.
For instance, many teams are performing quantitative anal-
ysis on the large quantity of data which is publicly avail-
able from the development repositories maintained by libre
software projects. However, not much of this research is fo-
cused on cost or effort estimations, despite its importance
(for instance, for companies developing libre software or col-
laborating with libre software projects), and the availability
of some data which could be useful for this purpose. Our
position is that classical effort estimation models can be im-
proved from the study of these data, at least when applied
to libre software. In this paper, we focus on the character-
ization of developer activity, which we argue can improve
effort estimation. This activity can be traced with a lot of
detail, and the resulting data can also be used for validation
of any effort estimation model.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Cost esti-
mation, productivity

General Terms
Measurement, Economics

Keywords
effort estimation, open source software, mining software
repositories, developer characterization, software economics

∗This work has been funded in part by the European Com-
mission under the CALIBRE CA, IST program, contract
number 004337.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDSER’06, May 27, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. INTRODUCTION
Libre software1 has gained a lot of attention from the soft-

ware industry and from software users in general. Following
that interest, the research community has also paid atten-
tion to the different models of development which have pro-
duced the huge quantity of libre software available today.
Some findings of this effort have proven to be interesting
from a software engineering point of view, such as the fast
growth patterns [8] or the low defect density [14] found in
several libre software systems.

Many companies and public administrations have been in-
volved in libre software development for several years, and
a lot more are entering that way. Their involvement can
be quite different: hiring developers to continue their work
in successful libre software projects, releasing some of their
own programs as libre software or sponsoring the result-
ing project, promoting the creation of new libre software
projects, among others. Companies of all sizes and in all
markets are exploring with these approaches, from large
multinationals such as Novell, Sun Microsystems or IBM
to very small SMEs. Recently many public administrations,
whether at national, regional or local level have also shown
interest in this kind of software.

However, and despite its significative importance for com-
panies (and for libre software projects themselves), the work
on effort estimation in this area is rare. While many classical
estimation models take the size of code as one of the main
parameters for estimating costs, we argue that a better es-
timation can be achieved by taking into consideration other
metrics based in a detailed characterization of developer ac-
tivity. In other words, instead of basing the estimation on
the characteristics of artifacts produced by the project, bet-
ter results could be obtained if the starting point is the study
of the behavior of the actors involved.

In the case of libre software this approach is specially in-
teresting because the effort can not be easily tracked from,
e.g., company records, for the reason that such records do
usually not exist. Volunteer work is an important factor
in most projects, and the effort contributed by agents out-
side the development team (for instance, in the form of bug
fixes, feedback on design decisions, or patches) can be of
great importance. All this effort cannot be tracked by look-

1Through this paper the term “libre software” will be used
to refer to code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or of “open source software” (according to the Open Source
Initiative).

3

• SLOCCount8 is a tool that performs advanced count-
ing of physical source lines of source code. It uses
several heuristics to determine the programming lan-
guage, to filter out comments, etc. SLOCCount has
been used to analyze the evolution of the Debian
GNU/Linux distribution over the last years [1].

6. CONCLUSIONS
In this position paper, classical effort estimations have

been briefly reviewed, showing the problems they present
when applied to libre software development. It has been
argued that in libre software projects there are several pub-
lic sources of additional information, which may help in the
characterization of developer activity. Several results and
tools have been outlined, showing how libre software devel-
oper activity can be deeply traced. By using these data,
effort and cost can be better estimated.

7. ACKNOWLEDGMENTS
The main ideas presented in this paper have been dis-

cussed with many researchers, of which we want to mention
Paul David (Oxford and Stanford Univ.), Jean-Michel Dalle
(Univ. Pierre and Marie Curie) and Rishab Ghosh (MERIT,
Univ. of Maastricht).

8. REFERENCES
[1] J. J. Amor, G. Robles, J. M. González-Barahona, and

I. Herraiz. From pigs to stripes: A travel through
debian. In Proceedings of the DebConf5 (Debian
Annual Developers Meeting), Helsinki, Finland, July
2005.

[2] B. B. Boehm. Software Engineering Economics.
Prentice Hall, 1981.

[3] B. W. Boehm, E. Horowitz, R. Madachy, D. Reifer,
B. K. Clark, B. Steece, W. A. Brown, S. Chulani, and
C. Abts. Software Cost Estimation with Cocomo II.
Prentice Hall PTR, January 2000.

[4] S. D. Conte, H. E. Dunsmore, and V. Y. Shen.
Software Engineering Metrics and Models. Menlo
Park, Calif. : Benjamin/Cummings Pub. Co., 1986.

[5] J. J. Cuadrado, A. Amescua, L. Garćıa, O. Marbán,
and M. I. Sánchez. Revision and classification of
current software cost estimation models. In 6th World
multi-conference on systemics, cybernetics and
informatics. Orlando, FL, pages 339–341, July 2002.

[6] D. M. Germán. An empirical study of fine-grained
software modifications. In Proceedings of the
International Conference in Software Maintenance,
Chicago, IL, USA, 2004.

[7] R. A. Ghosh, G. Robles, and R. Glott. Software
source code survey (free/libre and open source
software: Survey and study). Technical report,
International Institute of Infonomics. University of
Maastricht, The Netherlands, June 2002.
http://www.infonomics.nl/FLOSS/report.

[8] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the

8We use an enhanced version of the soft-
ware originally authored by David A. Wheeler:
http://www.dwheeler.com/sloccount/

International Conference on Software Maintenance,
pages 131–142, San Jose, California, 2000.

[9] J. M. González-Barahona, L. López-Fernández, and
G. Robles. Community structure of modules in the
apache project. In Proceedings of the 4th Workshop on
Open Source Software Engineering, Edinburg,
Scotland, UK, 2004.

[10] J. M. González-Barahona and G. Robles. Unmounting
the “code gods” assumption. Technical report, Grupo
de Sistemas y Comunicaciones, Universidad Rey Juan
Carlos, Madrid, Spain, 2003.
http://libresoft.urjc.es/html/downloads/

xp2003-barahona-robles.pdf.

[11] K. Healy and A. Schussman. The ecology of
open-source software development. Technical report,
University of Arizona, USA, Jan. 2003.
http://opensource.mit.edu/papers/healyschussman.pdf.

[12] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and
J. M. Gonzalez-Barahona. The processes of joining in
global distributed software projects. Accepted in
Global Software Development for the Practitioner
Workshop 2006. Available from the authors at request.

[13] L. López, J. M. González-Barahona, and G. Robles.
Applying social network analysis to the information in
CVS repositories. In Proceedings of the International
Workshop on Mining Software Repositories, pages
101–105, Edinburg, UK, 2004.

[14] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of Open Source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[15] A. Mockus and L. G. Votta. Identifying reasons for
software changes using historic databases. In
Proceedings of the International Conference on
Software Maintenance, pages 120–130, October 2000.

[16] G. Robles, J. M. González-Barahona,
J. Centeno-González, V. Matellán-Olivera, and
L. Rodero-Merino. Studying the evolution of libre
software projects using publicly available data. In
Proceedings of the 3rd Workshop on Open Source
Software Engineering, pages 111–115, Portland,
Oregon, USA, 2003.

[17] G. Robles, J. M. González-Barahona, and R. A.
Ghosh. Gluetheos: Automating the retrieval and
analysis of data from publicly available software
repositories. In Proceedings of the International
Workshop on Mining Software Repositories, pages
28–31, Edinburg, Scotland, UK, 2004.

[18] G. Robles, J. M. González-Barahona, and I. Herraiz.
An empirical approach to Software Archaeology. In
Proceedings of the International Conference on
Software Maintenance (poster session), Budapest,
Hungary, September 2005.

[19] G. Robles, S. Koch, and J. M. González-Barahona.
Remote analysis and measurement of libre software
systems by means of the CVSAnalY tool. In
Proceedings of the 2nd ICSE Workshop on Remote
Analysis and Measurement of Software Systems
(RAMSS), pages 51–56, Edinburg, Scotland, UK,
2004.

6

Jesus M. Gonzalez-
Barahona

[PDF] from urjc.es
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Effort estimation by characterizing developer activity

Juan Jose Amor, Gregorio Robles, Jesus M Gonzalez-Barahona

2006/5/27

Proceedings of the 2006 international workshop on Economics driven software engineering research

3-6

ACM

Abstract During the latest years libre (free, open source) software has gained a lot of
attention from the industry. Following this interest, the research community is also studying it.
For instance, many teams are performing quantitative analysis on the large quantity of data
which is publicly available from the development repositories maintained by libre software
projects. However, not much of this research is focused on cost or effort estimations, despite
its importance (for instance, for companies developing libre software or collaborating with ...

Cited by 24

Effort estimation by characterizing developer activity
JJ Amor, G Robles, JM Gonzalez-Barahona - Proceedings of the 2006 international workshop on …, 2006
Cited by 24 - Related articles - All 10 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 01:33 PM

The Processes of Joining in Global Distributed Software
Projects

Israel Herraiz, Gregorio Robles, Juan José Amor, Teófilo Romera and Jesús M.
González Barahona∗

Universidad Rey Juan Carlos
Madrid, Spain

{herraiz, grex, jjamor, teo, jgb}@gsyc.escet.urjc.es

ABSTRACT
Libre (free / open source) software is a good example of
global software development. Thousands of projects, in a
wide range of domains which involve hundreds of thousands
of developers and contributors from all around the world.
Some large (both in size and developer community) libre
software projects have shown evidence of producing code
with complete functionality and fast evolution (with linear
or superlinear growth), while maintaining low defect den-
sity. Many companies are exploring how to benefit from
this situation, considering several approaches related to li-
bre software development. For instance, some of them have
hired full-time developers, focusing their work on some libre
software projects they consider strategic.

However, before joining the core development team of the
project, these hired developers have to follow a process of
software comprehension, and get used to the rules and com-
munication mechanisms used in the project. We were inter-
ested in the differences between this case and that of volun-
teer developers working in the same project, Therefore, we
studied the duration and basic characteristics of this joining
process for the developers of GNOME (a well known, large,
libre software project). In our analysis, we have found two
groups with clearly different joining patterns. Moreover,
we have related those patterns to the different behaviors of
volunteer and hired developers: volunteers tend to follow a
step-by-step joining process, while hired developers usually
experience a “sudden” integration. Some reasons for this
different behavior are also discussed.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-

∗This work has been funded in part by the European Com-
mission, under the CALIBRE CA, IST program, contract
number 004337. Israel Herraiz has been supported in part by
Consejeria de Educación of Comunidad de Madrid and Eu-
ropean Social Fund, under grant number 01/FPI/0582/2005

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GSD’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

ming teams, time estimation; K.6.3 [Management of com-
puting and information systems]: Software Manage-
ment—software development, software process

General Terms
Management, Measurement, Human Factors

Keywords
global software development, libre software, membership in-
tegration, empirical studies, onion model

1. INTRODUCTION
Libre (free, open source)1 software has gained a lot of

attention from the public and the software engineering com-
munity during the last years. Libre software development
processes seem to be better in the sense of fast growth [4] and
low defect density [8]. Because of these and other reasons,
some companies are interested in libre software projects,
maybe allocating employees to contribute in a libre software
project which is strategic for the company, maybe outsourc-
ing the development and trying to spin off a new community
around a product released as libre software.

We have focused on the first case, and have analyzed the
situation in GNOME, a well known and studied [3, 7] libre
software project. GNOME is sponsored by several compa-
nies via its foundation2. These companies are interested in
the success of GNOME, and in most cases contribute to the
development with full time employees.

In order to be able of improving and increasing the func-
tionality (in other words, to be able of writing code), these
hired developers must comprehend a large software arti-
fact, and learn the communication mechanisms used by the
project. As it is often found in libre software projects, the
main communication stream in GNOME is its collection of
mailing lists. Most of the feedback is managed through a
bug tracking system (Bugzilla), and all the code is stored
in a version control system (CVS, at the time of writing
this paper, switching to Subversion). Therefore, these de-
velopers must read the source code of the module they are
1Through out this paper we will use the term “libre soft-
ware” to refer to any code that conforms either to the def-
inition of “free software” (according to the Free Software
Foundation) or “open source software” (according to the
Open Source Initiative).
2See http://foundation.gnome.org.

Developer 1st message 1st report 1st fix 1st commit # commits # messages # bugs # comments
20 11/13/96 07/18/01 02/24/01 09/02/99 5753 8673 6 19

Table 6: Some statistics about the selected developers (rest)

Samples t to commit sd. dev. t to bug report sd. dev. t to bug fix sd. dev.
Whole sample 13.49 19.86 21.92 18.29 22.42 16.48

Group 1 29.58 17.58 29.35 16.18 35.01 13.69
Group 2 0.19 6.75 12.57 12.52 13.11 8.727

Table 7: Progress metrics for each group (in months)

Figure 4: Activity diagram for some developers in
Group 2

Therefore, in short, we can say that the onion model is
followed only by the volunteer developers in our sample, but
not by those working for the project as employees. However,
for all the developers following the model, the observed join-
ing pattern is quite similar.

Although the sample selected for the study could seem
tiny at first sight, it is important to notice that it has been
designed to cover one of the most interesting cases of de-
velopers joining a project. However, our selection criteria
leaves outside very interesting cases, such as the developers
of Ximian (now Novell), probably the company with most
influence in the development of GNOME, because many of
them belong to the group that was active in the first stages
of the project. It would be of course worthwhile to design
another sample including at least some of them. Those de-
velopers, in our opinion, are the best candidates to be hired
for companies interested in the project, as they have been
contributing since its beginning.

It is for sure also interesting to extend this study to other
large, long-term libre software projects, such as KDE, Apache,
etc, to find out whether the conclusions shown here are par-
ticular for the GNOME project or general for the libre soft-
ware phenomenon.

Finally we think that companies can learn an important
lesson from these results. When one is interested in con-
tributing to a libre software project which is strategic for
them, hired developers can gain enough knowledge of the
project as to begin to contribute in a short time, even if
they did not have a previous contact with it.

7. ACKNOWLEDGMENTS

We thank Carlos Perelló, who is part of the GNOME com-
munity, for his assistance and suggestions.

8. REFERENCES
[1] K. Crowston and J. Howison. The social structure of open

source software development teams. In Proceedings of the
International Conference on Information Systems, Seattle,
WA, USA, 2003.

[2] T. Dinh-Trong and J. M. Bieman. Open source software
development: A case study of FreeBSD. In Proceedings of the
10th International Software Metrics Symposium, Chicago, IL,
USA, 2004.

[3] D. German. The GNOME project: a case study of open source,
global software development. Journal of Software Process:
Improvement and Practice, 8(4):201–215, 2004.

[4] M. W. Godfrey and Q. Tu. Evolution in Open Source software:
A case study. In Proceedings of the International Conference
on Software Maintenance, pages 131–142, San Jose,
California, 2000.

[5] J. M. Gonzalez-Barahona and G. Robles. Unmounting the
”code gods” assumption. Technical report, Universidad Rey
Juan Carlos, 2003.
http://libresoft.urjc.es/html/downloads/
xp2003-barahona-robles.pdf.

[6] C. Jensen and W. Scacchi. Modeling recruitment and role
migration processes in OSSD projects. In Proceedings of 6th
International Workshop on Software Process Simulation and
Modeling, St. Louis, May 2005.

[7] S. Koch and G. Schneider. Effort, cooperation and
coordination in an open source software project: Gnome.
Information Systems Journal, 12(1):27–42, 2002.

[8] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309–346, 2002.

[9] G. Robles and J. M. Gonzalez-Barahona. Developer
identification methods for integrated data from various sources.
In Proceedings of the International Workshop on Mining
Software Repositories, St. Louis, Missouri, USA, May 2005.

[10] G. Robles, S. Koch, and J. M. Gonzalez-Barahona. Remote
analysis and measurement of libre software systems by means
of the CVSAnalY tool. In Proceedings of the 2nd ICSE
Workshop on Remote Analysis and Measurement of Software
Systems (RAMSS), Edinburg, Scotland, UK, 2004.

[11] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in open source software innovation:
A case study. MIT Sloan Working Paper No. 4413-03, 2003.

[12] Y. Ye, K. Nakakoji, Y. Yamamoto, and K. Kishida. The
co-evolution of systems and communities in free and open
source software development. In S. Koch, editor, Free/Open
Source Software Development, pages 59–82. Idea Group
Publishing, Hershey, PA, USA, 2004.

Jesus M. Gonzalez-
Barahona

[PDF] from researchgate.net
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

The processes of joining in global distributed software projects

Israel Herraiz, Gregorio Robles, Juan JosÉ Amor, Teófilo Romera, Jesús M González Barahona

2006/5/23

Proceedings of the 2006 international workshop on Global software development for the practitioner

27-33

ACM

Abstract Libre (free/open source) software is a good example of global software
development. Thousands of projects, in a wide range of domains which involve hundreds of
thousands of developers and contributors from all around the world. Some large (both in
size and developer community) libre software projects have shown evidence of producing
code with complete functionality and fast evolution (with linear or superlinear growth), while
maintaining low defect density. Many companies are exploring how to benefit from this ...

Cited by 49

The processes of joining in global distributed software projects
I Herraiz, G Robles, JJÉ Amor, T Romera… - Proceedings of the 2006 international workshop on …, 2006
Cited by 49 - Related articles - All 11 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 01:22 PM

Geographic Location of Developers at SourceForge∗

Gregorio Robles
grex@gsyc.escet.urjc.es

Jesus M. Gonzalez-Barahona
jgb@gsyc.escet.urjc.es

Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos

Mostoles, Spain

ABSTRACT
The development of libre (free/open source) software is usu-
ally performed by geographically distributed teams. Partic-
ipation in most cases is voluntary, sometimes sporadic, and
often not framed by a pre-defined management structure.
This means that anybody can contribute, and in principle
no national origin has advantages over others, except for
the differences in availability and quality of Internet con-
nections and language. However, differences in participa-
tion across regions do exist, although there are little studies
about them. In this paper we present some data which can
be the basis for some of those studies. We have taken the
database of users registered at SourceForge, the largest libre
software development web-based platform, and have inferred
their geographical locations. For this, we have applied sev-
eral techniques and heuristics on the available data (mainly
e-mail addresses and time zones), which are presented and
discussed in detail. The results show a snapshot of the re-
gional distribution of SourceForge users, which may be a
good proxy of the actual distribution of libre software de-
velopers. In addition, the methodology may be of interest
for similar studies in other domains, when the available data
is similar (as is the case of mailing lists related to software
projects).

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Human Factors

∗This work has been funded in part by the Euro-
pean Commission, under the CALIBRE CA, IST pro-
gram, contract number 004337 and under the FLOSS-
World SA, IST program, contract number 015722.
This work is based on the SourceForge database pro-
vided by University of Notre Dame, see details at
http://www.nd.edu/ oss/Data/data.html.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

Keywords
Geographical location, mining software repositories, libre
software, free software, open source software

1. INTRODUCTION
One of the most well known characteristics of libre (free,

open source) software1 is the worldwide distributed pool of
developers that collaborate in tens of thousands of projects,
using Internet-based tools for coordination. These projects
are usually open to participation by anyone, from any corner
of the globe, provided Internet access is granted; those with
enough knowledge and skills can, in principle, join them.
This openness, and the underlying informality, has resulted
in an environment where participation is difficult to control,
or even understand. One of the most significative examples
of open issues in this respect is the geographical distribution
of the aforementioned pool of developers. The answer to the
question “where do developers live?” is not only interesting
for academic reasons; it is also important from both strategic
and economic points of view.

In this paper, we present a first approach to deal with
this question by analyzing data about a huge sample of de-
velopers. We describe how we have mined the database of
the largest libre software development supporting platform
(SourceForge) looking for indicators to estimate the geo-
graphic location of the developers registered in it. Since the
number of users of the SourceForge platform is well over
one million, we can assume it is a reasonably good and rep-
resentative proxy of the whole population of libre software
developers (although for sure it presents some bias, as will
be discussed later, for instance in terms of language knowl-
edge).

The main goals of this paper are two: to show a method-
ology to estimate country of residence (as a simple quantifier
of geographic location) using the indicators available in the
SourceForge database, and to obtain a first estimation of
the location of libre software developers.

With respect to the first goal, it is noteworthy to mention
that SourceForge does not store specific information about
the geographical location of developers, which therefore has
to be inferred from other indicators, such as the domains in
the e-mail address, or the time zone information developers
introduce when registering at SourceForge. We believe that

1Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

144

many cases statistical relationships to infer the proportion of
nationals of a certain country in a population of users with
some characteristics. This is certainly a limitation of the
proposed approach, specially if we were interested in (in-
dividual) developer identification methods as proposed in
other works [10].

A future line of research could be to relate our findings
with the activity of developers in the projects they are in-
volved. This could be done by tracking developers in control
versioning systems, mailing lists, forums, etc., and studying
their activity by national origin. This could be an impor-
tant issue, since previous research has shown that activity
in libre software tends to be highly skewed towards a mi-
nority group responsible for the vast majority of the work
performed. The authors of this work have started to ana-
lyze the CVS versioning system logs of all the SourceForge
projects with the CVSAnalY tool [11], and the FLOSSMole
project [1] has also information related to projects in the
site. Both data sets could be used for this matter.

An interesting issue is how representative this study is of
the whole population of libre software developers. Source-
Forge is not the only development platform: large libre soft-
ware projects usually administrate their own infrastructure,
and also many other SourceForge-like sites exist, in some
cases linked to language or national communities. This
means on one hand that we are not considering a lot of
libre software which is being developed outside SourceForge
(although many of the developers of that software are prob-
ably also users of this site), and on the other that the study
could be skewed by ignoring some communities which are
not represented in SourceForge, but in other facilities. Fur-
ther studies should address this issue, and determine how
good the SourceForge population is as a proxy of the devel-
oper population.

On a more socio-economic perspective, the findings pre-
sented in this paper could be related to other parameters
characterizing the countries, looking for correlations which
could explain the different quantities of developers, such as
the GDP, the GDP per capita, Nielsen/Netratings, or other
economic and technological parameters.

Especially interesting is also the issue of finding projects
that are driven by local activity, i.e. projects whose contrib-
utors are from the same country, region or cultural environ-
ment. This could be a way of finding possible splits of the
libre software community, and a first step towards identify-
ing parameters leading to collaboration between developers.
Cultural, language and other barriers should also be con-
sidered. In this sense, a recent change in the SourceForge
platform has been the inclusion of a language field (although
up to the moment less than 25% have specified a different
language from the default ’English’).

All of this could also be extended to a social network anal-
ysis, such as performed on libre software developers [8, 7, 9],
but taking into account geographical information.

7. ACKNOWLEDGMENTS
We thank the SourceForge team, and Greg Madey from

the University of Notre Dame, for providing access to the
SourceForge data. Also, a big thank you goes to our col-
leagues from GSyC/LibreSoft for their help verifying the
validity of the data.

8. REFERENCES
[1] M. Conklin, J. Howison, and K. Crowston.

Collaboration using OSSmole: A repository of FLOSS
data and analyses. In Proceedings of the International
Workshop on Mining Software Repositories, pages
126-130, St. Louis, Missouri, USA, May 2005.

[2] P. A. David, A. Waterman, and S. Arora. FLOSS-US.
The Free/Libre/Open Source Software Survey for
2003. Technical report, Stanford Institute for
Economic and Policy Research, Stanford, USA, 2003.

[3] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg.
A quantitative profile of a community of Open Source
Linux developers. Technical report, October 1999.

[4] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles.
Survey of developers (free/libre and open source
software: Survey and study). Technical report,
International Institute of Infonomics. University of
Maastricht, The Netherlands, June 2002.

[5] K. Healy and A. Schussman. The ecology of
open-source software development. Technical report,
University of Arizona, USA, Jan. 2003.

[6] D. Lancashire. Code, culture and cash: The fading
altruism of Open Source development. First Monday,
6(12), 2001.

[7] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in
CVS repositories. In Proc Intl Workshop on Mining
Software Repositories, pages 101-105, Edinburg, UK,
2004.

[8] G. Madey, V. Freeh, and R. Tynan. The open source
development phenomenon: An analysis based on social
network theory. In Americas Conf on Information
Systems, pages 1806-1813, Dallas, TX, USA, 2002.

[9] M. Ohira, N. Ohsugi, T. Ohoka, and K.-I. Matsumoto.
Accelerating cross-project knowledge collaboration
using collaborative filtering and social networks. In
Proceedings Intl Workshop on Mining Software
Repositories, St. Louis, Missouri, USA, May 2005.

[10] G. Robles and J. M. Gonzalez-Barahona. Developer
identification methods for integrated data from
various sources. In Proceedings of the International
Workshop on Mining Software Repositories, pages
106-110, St. Louis, Missouri, USA, May 2005.

[11] G. Robles, S. Koch, and J. M. Gonzalez-Barahona.
Remote analysis and measurement of libre software
systems by means of the CVSAnalY tool. In Proc 2nd
Workshop on Remote Analysis and Measurement of
Software Systems, pages 51-56, Edinburg, UK, 2004.

[12] G. Robles, H. Scheider, I. Tretkowski, and N. Weber.
Who is doing it? A research on libre software
developers. Technical report, Technische Universitaet
Berlin, Berlin, Germany, Aug. 2001.

[13] I. Tuomi. Evolution of the Linux Credits file:
Methodological challenges and reference data for Open
Source research. First Monday, 9(6), 2004.

150

Jesus M. Gonzalez-
Barahona

[PDF] from irisa.fr
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Geographic location of developers at sourceforge

Gregorio Robles, Jesus M Gonzalez-Barahona

2006/5/22

Proceedings of the 2006 international workshop on Mining software repositories

144-150

ACM

Abstract The development of libre (free/open source) software is usually performed by
geographically distributed teams. Participation in most cases is voluntary, sometimes
sporadic, and often not framed by a pre-defined management structure. This means that
anybody can contribute, and in principle no national origin has advantages over others,
except for the differences in availability and quality of Internet connections and language.
However, differences in participation across regions do exist, although there are little ...

Cited by 32

Geographic location of developers at sourceforge
G Robles, JM Gonzalez-Barahona - Proceedings of the 2006 international workshop on …, 2006
Cited by 32 - Related articles - All 9 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 01:15 PM

Mining Large Software Compilations over Time:
Another Perspective of Software Evolution∗

Gregorio Robles, Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos
{grex,jgb}@gsyc.escet.urjc.es

Martin Michlmayr
University of Cambridge

martin@michlmayr.org

Juan Jose Amor
Universidad Rey Juan Carlos

jjamor@gsyc.escet.urjc.es

ABSTRACT
With the success of libre (free, open source) software, a new
type of software compilation has become increasingly com-
mon. Such compilations, often referred to as ‘distributions’,
group hundreds, if not thousands, of software applications
and libraries written by independent parties into an inte-
grated system. Software compilations raise a number of
questions that have not been targeted so far by software
evolution, which usually focuses on the evolution of sin-
gle applications. Undoubtedly, the challenges that software
compilations face differ from those found in single software
applications. Nevertheless, it can be assumed that both, the
evolution of applications and that of software compilations,
have similarities and dependencies.

In this sense, we identify a dichotomy, common to that
in economics, of software evolution in the small (micro-
evolution) and in the large (macro-evolution). The goal
of this paper is to study the evolution of a large software
compilation, mining the publicly available repository of a
well-known Linux distribution, Debian. We will therefore
investigate changes related to hundreds of millions of lines
of code over seven years. The aspects that will be covered
in this paper are size (in terms of number of packages and
of number of lines of code), use of programming languages,
maintenance of packages and file sizes.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Distribution, Mainte-
nance, and Enhancement

∗The work of Gregorio Robles, Jesus M. Gonzalez-Barahona
and Juan Jose Amor has been funded in part by the Euro-
pean Commission under the CALIBRE CA, IST program,
contract number 004337. The work of Martin Michlmayr
has been funded in part by Google, Intel and the EPSRC.
We would also like to thank the anonymous reviewers for
their extensive comments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

General Terms
Measurement, languages

Keywords
Mining software repositories, large software collections, soft-
ware evolution, software integrators

1. INTRODUCTION
Large systems based on libre software1 are developed in

a manner that is quite different to traditional systems. In
traditional large systems, such as operating systems, most
work is done in-house, with only few pieces licensed from
other sources and little work contracted to other companies.
Such work is also performed in close cooperation with the
organization and under tightly defined requirements. Libre
software, on the other hand, is typically written by small,
independent teams of volunteers, sometimes collaborating
with paid staff from one or more companies. While various
projects interact with each other, in particular where depen-
dencies between the software exist, there is no central coor-
dination between the individual projects. The main task
of vendors (i.e. distributions) of libre operating systems is
therefore not to write software but to group existing soft-
ware, taken from several sources, together and to make that
collection easy to install, configure and administer.

Since users of libre software have no incentive to download
software from hundreds of sites and installing them individ-
ually, distributions play an important role by providing an
integrated system that is easy to install. Unsurprisingly, a
number of companies have seen this as a business opportu-
nity and offer such distributions among with related services,
such as support. There are also a number of community
projects which operate on a non-profit basis like other libre
software projects. Given their open way of collaboration,
these are a good target for in-depth study of extremely large
software compilations. While some commercial entities have
recently started their own community projects in addition
to their enterprise offerings, most notably Fedora (Red Hat)
and OpenSUSE (Novell), we will take Debian as the source

1Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

Lang. Deb. 2.0 Deb. 2.1 Deb. 2.2 Deb. 3.0 Deb. 3.1

C 262.88 268.42 268.64 283.33 276.36
C++ 142.50 158.62 169.22 184.22 186.65
Lisp 394.82 393.99 394.19 383.60 349.56
shell 98.65 116.06 163.66 288.75 338.25
Yacc 789.43 743.79 762.24 619.30 599.23

Mean 228.49 229.92 229.46 243.35 231.6

Table 5: Mean file size for some programming lan-

guages.

problems for the management of the future evolution of the
system, something that has probably influenced the delays
in the release process of the last stable versions.

A specific problem in this realm comes from the fact that
until now the mean size of packages has remained almost
constant, which means that the system has more and more
packages (growing linearly with the size of the system in
SLOCs). Since there is a certain level of complexity related
to the specifics of each package, which imposes a limit on
the number of packages per developer, this means that the
project would need to grow in terms of developers at the
same pace. However, such a growth is not easy, and causes
problems of its own, specially in the area of coordination.

With respect to the absolute figures, it can be noted that
Debian 3.1 is probably one of the largest coordinated soft-
ware collections in history, and almost for sure the largest
one in the domain of general-purpose software for desktops
and servers. This means that the human team maintaining
it, which has also the peculiarity of being completely formed
by volunteers, is exploring the limits of how to assemble and
coordinate such a huge quantity of software. Therefore, the
techniques and processes they employ to maintain a certain
level of quality, a reasonable speed of updating, and a release
process that delivers stable versions quite usable, are worth
studying, and can for sure be of use in other domains which
have to deal with large, complex collections of software.

As far as the programming languages are concerned, C
is the most used language, although it is gradually losing
importance. Scripting languages, C++ and Java are those
that seem to have a higher growth in the newer releases,
whereas the traditional compiled languages have even infe-
rior growth rates than C. These variations also imply that
the Debian team has to include developers with new skills
in programming languages in order to maintain the evolving
proportions. By looking at the trends in languages use with-
ing the distribution, the project could estimate how many
developers fluent in a given language it will need. In ad-
dition, this evolution of the different languages can also be
considered as an estimation of how libre software is evolving
in terms of languages used, although some of them are for
sure misrepresented (for instance, Java is underrepresented,
possibly because of licensing issues).

The evolution shown in this paper should also be put in
the context of the activity of the volunteers doing all the
packaging work. While some work has been done in this
area [9], more research needs to be performed before a link
can be established between the evolution of the skills and
size of the developer population, the complexity and size
of the distribution, the processes and activities performed
by the project, and the quality of the resulting product.
Only by understanding the relationships between all these

parameters can reasonable measures be proposed to improve
the quality of the software distribution, or shorten the re-
lease cycle without harming reliability and stability of the
releases.

All in all, the study of distributions such as Debian can be
of great interest not only for understanding their evolution,
but also to be used as good case studies which can help to
understand large, complex software systems which are more
and more common in many domains.

6. REFERENCES
[1] J. J. Amor, J. M. Gonzalez-Barahona, G. Robles, and

I. Herraiz. Measuring libre software using Debian 3.1
(Sarge) as a case study: preliminary results. Upgrade
Magazine, Aug. 2005.

[2] H. Gall, M. Jazayeri, R. Klosch, and G. Trausmuth.
Software evolution observations based on product
release history. In Proc Intl Conference on Software

Maintenance, pages 160-170, 1997.

[3] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the

International Conference on Software Maintenance,
pages 131-142, San Jose, California, 2000.

[4] J. M. Gonzalez-Barahona, M. A. Ortuno Perez, P. de
las Heras, J. Centeno, and V. Matellan. Counting
potatoes: the size of Debian 2.2. Upgrade Magazine,
II(6):60-66, Dec. 2001.

[5] M. M. Lehman and L. A. Belady, editors. Program
evolution: Processes of software change. Academic

Press Professional, Inc., San Diego, CA, USA, 1985.

[6] M. M. Lehman and J. F. Ramil. Implications of laws
of software evolution on continuing successful use of
cots software. Technical report, Imperial College, 1998.

[7] M. M. Lehman and J. F. Ramil. Rules and tools for
software evolution planning and management. Annals

of Software Engineering, 11(1):15-44, 2001.

[8] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and laws of software
evolution - the nineties view. In METRICS’97:

Proceedings of the 4th International Symposium on

Software Metrics, page 20, nov 1997.

[9] M. Michlmayr and B. M. Hill. Quality and the
reliance on individuals in free software projects. In
Proceedings 3rd Workshop on Open Source Software

Engineering, pages 105-109, Portland, USA, 2003.

[10] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and
I. Herraiz. Evolution and growth in large libre
software projects. In Proceedings of the International

Workshop on Principles in Software Evolution, pages
165-174, Lisbon, Portugal, September 2005.

[11] G. Succi, J. W. Paulson, and A. Eberlein. Preliminary
results from an empirical study on the growth of open
source and commercial software products. In
EDSER-3 Workshop, Toronto, Canada, May 2001.

[12] E. B. Swanson. The dimensions of maintenance. In
Proceedings of the 2nd International conference on

Software Engineering, pages 492-497, 1976.

[13] W. M. Turski. Reference model for smooth growth of
software systems. IEEE Transactions on Software

Engineering, 22(8):599-600, 1996.

[14] D. A. Wheeler. More than a gigabuck: Estimating
GNU/Linux’s size. Technical report, June 2001.

Jesus M. Gonzalez-
Barahona

[PDF] from irisa.fr
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Mining large software compilations over time: another perspective of
software evolution

Gregorio Robles, Jesus M Gonzalez-Barahona, Martin Michlmayr, Juan Jose Amor

2006/5/22

Proceedings of the 2006 international workshop on Mining software repositories

3-9

ACM

Abstract With the success of libre (free, open source) software, a new type of software
compilation has become increasingly common. Such compilations, often referred to as'
distributions', group hundreds, if not thousands, of software applications and libraries written
by independent parties into an integrated system. Software compilations raise a number of
questions that have not been targeted so far by software evolution, which usually focuses on
the evolution of single applications. Undoubtedly, the challenges that software ...

Cited by 60

Mining large software compilations over time: another perspective of software evolution
G Robles, JM Gonzalez-Barahona, M Michlmayr… - Proceedings of the 2006 international workshop on …, 2006
Cited by 60 - Related articles - All 24 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2006 2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 01:10 PM

Contributor Turnover in Libre Software
Projects

Gregorio Robles and Jesus M. Gonzalez-Barahona

GSyC/LibreSoft, Universidad Rey Juan Carlos, Spain
{grex,jgbJQgsyc.escet.urj c.es

Abstract. A common problem that management faces in software
companies is the high instability of their staff. In libre (free, open source)
software projects, the permanence of developers is also an open issue,
with the potential of causing problems amplified by the self-organizing
nature that most of them exhibit. Hence, human resources in libre soft
ware projects are even more difficult to manage: developers are in most
cases not bound by a contract and, in addition, there is not a real
management structure concerned about this problem. This raises some
interesting questions with respect to the composition of development
teams in libre software projects, and how they evolve over time. There
are projects lead by their original founders (some sort of "code gods"),
while others are driven by several different developer groups over time
(i.e. the project "regenerates" itself). In this paper, we propose a quan
titative methodology, based on the analysis of the activity in the source
code management repositories, to study how these processes (developers
leaving, developers joining) affect libre software projects. The basis of
it is the analysis of the composition of the core group, the group of de
velopers most active in a project, for several time lapses. We will apply
this methodology to several large, well-known libre software projects,
and show how it can be used to characterize them. In addition, we will
discuss the lessons that can be learned, and the validity of our proposal.
Keywords: open source, human resources, turnover, mining software
repositories

1 Introduction

Employee turnover (the ratio of the number of workers replaced in a given period
to the average number of workers), is known to be high in the (proprietary)
software industry [1]. In the libre software world^ the study of turnover has
not been a research target (at least to the knowledge of the authors) profusely.
Most of the attention has been focused on the organizational structure of the

In this paper we will use the term "libre software" to refer to any software licensed
under terms compliant with the FSF definition of "free software", and the OSI
definition of "open source software", thus avoiding the controversy between those
two terms.

Please use the following format when citing this chapter:
Robles, G., and Gonzalez-Barahona, J.M., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 273-286

286 Gregorio Robles and Jesus M. Gonzalez-Barahona

^̂ . . i U \ ; X f̂'̂ -V%v , -
1̂

A 1r

/ \ I

" > / V

1 ^^

i f

•

.- .\ /

,L-u»»«

'

^

'

I

*̂

/**•

)S*

/'

*) OU .V .« ' „,i . , ™ ^

• • . \ • - , : ' • ~ -

\
\

i , 1

; - / . /
•^., •^ 7

/

1 W /

/ / ^ /

:_.^--i

/ /

Table 6. 2x4 matrix with fractional generation plots for 8 libre software systems.
Projects with heavy generational turn-over have been situated at the top. More infor
mation can be found in table 4.

Jesus M. Gonzalez-
Barahona

[PDF] from flosshub.org

Authors

Publication date

Book

Pages

Publisher

Description

Total citations

Scholar articles

Contributor turnover in libre software projects

Gregorio Robles, Jesus M Gonzalez-Barahona

2006/1/1

Open Source Systems

273-286

Springer US

Abstract A common problem that management faces in software companies is the high
instability of their staff. In libre (free, open source) software projects, the permanence of
developers is also an open issue, with the potential of causing problems amplified by the
self-organizing nature that most of them exhibit. Hence, human resources in libre software
projects are even more difficult to manage: developers are in most cases not bound by a
contract and, in addition, there is not a real management structure concerned about this ...

Cited by 59

Contributor turnover in libre software projects
G Robles, JM Gonzalez-Barahona - Open Source Systems, 2006
Cited by 59 - Related articles - All 8 versions

Contributor Turnover in Libre Software Projects
JM Gonzalez-Barahona, G Robles - IFIP International Federation for Information Processing, 2010

Contributor Turnover in Libre Software
G Robles, JM Gonzalez-Barahona

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2007 2008 2009 2010 2011 2012 2013 2014

*

*

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 01:39 PM

On the prediction of the evolution of libre software projects∗

Israel Herraiz, Jesus M. Gonzalez-Barahona, Gregorio Robles

GSyC/LibreSoft - Libre Software Engineering Lab

Universidad Rey Juan Carlos (Spain)

{herraiz, jgb, grex}@gsyc.escet.urjc.es

Daniel M. German

Department of Computer Science

University of Victoria (Canada)

dmg@uvic.ca

Abstract

Libre (free / open source) software development is a

complex phenomenon. Many actors (core developers, ca-

sual contributors, bug reporters, patch submitters, users,

etc.), in many cases volunteers, interact in complex pat-

terns without the constrains of formal hierarchical struc-

tures or organizational ties. Understanding this complex

behavior with enough detail to build explanatory models

suitable for prediction is an open challenge, and few re-

sults have been published to date in this area. Therefore

statistical, non-explanatory models (such as the traditional

regression model) have a clear role, and have been used in

some evolution studies. Our proposal goes in this direction,

but using a model that we have found more useful: time se-

ries analysis. Data available from the source code manage-

ment repository is used to compute the size of the software

over its past life, using this information to estimate the fu-

ture evolution of the project. In this paper we present this

methodology and apply it to three large projects, showing

how in these cases predictions are more accurate than re-

gression models, and precise enough to estimate with little

error their near future evolutions.

1 Introduction

Libre software1 projects are usually based on a commu-

nity of many different actors, ranging from core developers

to casual contributors, and even users (who may contribute

for instance with bug reports). Most of them behave ac-

cording to their own interests, in many cases on a volunteer

basis. The community formed by those actors shows some

∗This work has been funded in part by the European Commission, un-

der the FLOSSMETRICS (FP6-IST-5-033982) and QUALOSS (FP6-IST-

5-033547) projects. Israel Herraiz has been funded in part by Consejerı́a

de Educación of Comunidad de Madrid and European Social Fund, under

grant number 01/FPI/0582/2005.
1In this paper we will use the term “libre software” to refer both to “free

software” (as defined by the Free Software Foundation) and “open source

software” (as defined by the Open Source Initiative).

structure [8, 22] with different levels of involvement and ex-

pertise that may change over time. The management of the

project is usually distributed (to some extent), and decisions

are difficult to impose, since no formal organizational links

or hierarchies are recognized by all the actors. Therefore,

developers can not be compelled to do some tasks if they do

not want to (even if those tasks are urgent): they may be in-

volved in non fundamental activities, while not contributing

to some others with higher priority for the project. There is

also usually a lack of predefined requirements, undetailed

designs and absence of interprocess documentation [27].

Together with volunteer contributors, some others hired by

companies can also be present, in some cases with their own

agenda, which usually complicates the picture even more.

In many cases, and despite the lack of apparent plans,

these forces and interests result in reliable and mature soft-

ware which satisfies the needs of many users. Many libre

software projects grow continuously over time, and they

seem to satisfy most of the requirements of their users.

Well-known examples are the Apache web server, the Linux

kernel or the Mozilla Firefox web browser.

The problems for forecasting the evolution of the prod-

ucts produced by those projects are clear. If forecasting

is already a risky business in traditional software devel-

opment, where the environment is more constrained, it is

even more difficult in these more complex scenarios. How-

ever, having a predictive model is undoubtedly a fundamen-

tal tool for those interested in the future evolution of those

products.

There are several studies proposing models for how cer-

tain aspects of libre software products evolve, in some cases

including prediction capabilities [3, 10, 26]. However, they

fail to provide a comprehensive view of the evolution, prob-

ably due to the inherent complexity of the phenomenon

and the many different interactions among involved actors.

Each individual decision, even when based on self-interest,

may seem to the observer as a random event. Therefore, if

we focus only on the “low-level” interactions of the commu-

nity, it is difficult to find meaningful results for the global

landscape.

1-4244-1256-0/07/$25.00 2007 IEEE ICSM 2007405

[4] G. Antoniol, G. Casazza, M. D. Penta, and E. Merlo. Mod-

eling clones evolution through time series. In Proceedings

of the International Conference on Software Maintenance,

2001.

[5] B. B. Boehm. Software Engineering Economics. Prentice

Hall, 1981.

[6] F. Caprio, G. Casazza, M. D. Penta, and U. Villano. Measur-

ing and predicting the Linux kernel evolution. In Proceed-

ings of the International Workshop of Empirical Studies on

Software Maintenance, Florence, Italy, 2001.

[7] S. D. Conte. Software Engineering Metrics and Mod-

els (Benjamin/Cummings series in software engineering).

Benjamin-Cummings Pub Co, 1986.

[8] K. Crowston and J. Howison. The social structure of free and

open source software development. First Monday, 10(2),

February 2005.

http://www.firstmonday.dk/issues/issue10 2/crowston/.

[9] J.-M. Dalle, L. Daudet, and M. den Besten. Mining cvs sig-

nals. In Proceedings of the Workshop on Public Data about

Software Development, pages 12–21, Como, Italy, 2006.

[10] J.-M. Dalle and P. A. David. The allocation of software

development resources in Open Source production mode.

Technical report, SIEPR Policy paper No. 02-027, SIEPR,

Stanford, USA, 2003.

http://siepr.stanford.edu/papers/pdf/02-27.pdf.

[11] F.-W. Duijnhouwer and C. Widdows. Open source maturity

model. Technical Report 1.5.3, Capgemini, August 2003.

[12] A. R. Fasolino, D. Natale, A. Poli, and A. Alberigi-

Quaranta. Metrics in the development and maintenance of

software: an application in a large scale environment. Jour-

nal of Software Maintence: Research and Practice, 12:343–

355, 2000.

[13] E. Fuentetaja and D. J. Bagert. Software Evolution from

a Time-Series perspective. In Proceedings of the Interna-

tional Conference on Software Maintenance, pages 226–

229, 2002.

[14] D. M. German and A. Hindle. Visualizing the evolution of

software using softChange. International Journal of Soft-

ware Engineering and Knowledge Engineering, 16(1):5–21,

2006.

[15] M. W. Godfrey and Q. Tu. Evolution in open source soft-

ware: A case study. In ICSM ’00: Proceedings of the Inter-

national Conference on Software Maintenance (ICSM’00),

pages 131–142, Washington, DC, USA, October 2000. IEEE

Computer Society.

[16] A. E. Hassan, J. Wu, and R. C. Holt. Visualizing histori-

cal data using spectrographs. In Proceedings of the Interna-

tional Software Metrics Symposium, Como, Italy, 2005.

[17] C. F. Kemerer and S. Slaughter. An empirical approach to

studying software evolution. IEEE Transactions on Software

Engineering, 25(4):493–509, 1999.

[18] S. Koch. Evolution of Open Source Software systems - a

large-scale investigation. In Proceedings of the 1st Interna-

tional Conference on Open Source Systems, Genova, Italy,

July 2005.

[19] M. M. Lehman and L. A. Belady, editors. Program Evolu-

tion. Processes of Software Change. Academic Press Inc.,

1985.

[20] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and

W. M. Turski. Metrics and laws of software evolution - the

nineties view. In METRICS ’97: Proceedings of the 4th In-

ternational Symposium on Software Metrics, page 20, nov

1997.

[21] S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman.

Forecasting: Methods and Applications. John Wiley &

Sons, Ltd., January 1998.

[22] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case

studies of Open Source software development: Apache and

Mozilla. ACM Transactions on Software Engineering and

Methodology, 11(3):309–346, 2002.

[23] Y. Peng, F. Li, and A. Mili. Modeling the evolution of oper-

ating systems: An empirical study. The Journal of Systems

and Software, 80(1):1–15, 2007.

[24] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Her-

raiz. Evolution and growth in large libre software projects.

In Proceedings of the International Workshop on Principles

in Software Evolution, pages 165–174, Lisbon, Portugal,

September 2005.

[25] G. Robles, J. M. Gonzlez-Barahona, and J.-J. Merelo.

Beyond executable source code: The importance of

other source artifacts in software development (a case

study). Journal of Systems and Software, 79(9):1233–1248,

September 2006.

[26] G. Robles, J. J. Merelo, and J. M. Gonzalez-Barahona. Self-

organized development in libre software: a model based on

the stigmergy concept. In Proceedings of the 6th Interna-

tional Workshop on Software Process Simulation and Mod-

eling (ProSim 2005), St.Louis, Missouri, USA, May 2005.

[27] W. Scacchi. Free and Open Source development practices in

the game community. IEEE Software, 21(1):59–66, 2004.

[28] R. H. Shumway and D. S. Stoffer. Time Series Analysis and

Applications. With R Examples. Springer Texts in Statistics.

Springer, 2006.

[29] W. M. Turski. Reference model for smooth growth of soft-

ware systems. IEEE Transactions on Software Engineering,

22(8):599–600, 1996.

[30] W. M. Turski. The reference model for smooth growth of

software systems revisited. IEEE Transactions on Software

Engineering, 28(8):814–815, 2002.

[31] C. C. H. Yuen. An empirical approach to the study of errors

in large software under maintenance. In Proceedings of the

International Conference on Software Maintenance, 1985.

[32] C. C. H. Yuen. A statistical rationale for evolution dynamics

concepts. In Proceedings of the International Conference on

Software Maintenance, 1987.

[33] C. C. H. Yuen. On analyzing maintenance process data at

the global and detailed levels. In Proceedings of the Inter-

national Conference on Software Maintenance, pages 248–

255, 1988.

414

Jesus M. Gonzalez-
Barahona

[PDF] from turingmachine.org
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

On the prediction of the evolution of libre software projects

Israel Herraiz, Jesus M Gonzalez-Barahona, Gregorio Robles, Daniel M German

2007/10/2

Software Maintenance, 2007. ICSM 2007. IEEE International Conference on

405-414

IEEE

Abstract Libre (free/open source) software development is a complex phenomenon. Many
actors (core developers, casual contributors, bug reporters, patch submitters, users, etc.), in
many cases volunteers, interact in complex patterns without the constrains of formal
hierarchical structures or organizational ties. Understanding this complex behavior with
enough detail to build explanatory models suitable for prediction is an open challenge, and
few results have been published to date in this area. Therefore statistical, non-explanatory ...

Cited by 27

On the prediction of the evolution of libre software projects
I Herraiz, JM Gonzalez-Barahona, G Robles… - Software Maintenance, 2007. ICSM 2007. IEEE …, 2007
Cited by 27 - Related articles - All 7 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 02:34 PM

Adapting the “Staged Model for Software Evolution”
to Free/Libre/Open Source Software

Andrea Capiluppi
Centre of Research on Open Source Software

University of Lincoln, UK
acapiluppi@lincoln.ac.uk

Jesús M. González-Barahona, Israel
Herraiz, Gregorio Robles

GsyC/LibreSoft
Universidad Rey Juan Carlos – Madrid, Spain
{jgb,herraiz,robles}@gsyc.escet.urjc.es

ABSTRACT
Research into traditional software evolution has been tack-
led from two broad perspectives: that focused on the how,
which looks at the processes, methods and techniques to
implement and evolve software; and that focused on the
what/why perspective, aiming at achieving an understand-
ing of the drivers and general characteristics of the software
evolution phenomenon.

The two perspectives are related in various ways: the
study of the what/why is for instance essential to achieve an
appropriate management of software engineering activities,
and to guide innovation in processes, methods and tools,
that is, the how. The output of the what/why studies is ex-
emplified by empirical hypotheses, such as the staged model
of software evolution,.

This paper focuses on the commonalities and differences
between the evolution and patterns in the lifecycles of tradi-
tional commercial systems and free/libre/open source soft-
ware (FLOSS) systems. The existing staged model for soft-
ware evolution is therefore revised for its applicability on
FLOSS systems.

1. INTRODUCTION
The phenomenon of software evolution has been described

in the literature (e.g., [10, 11]), with several models of differ-
ent nature ([1, 2, 12, 16]) being proposed to understand and
explain the empirical observations. Some of these models
purport to be universally applicable to all software devel-
opment processes. However, the models in the literature
were built mainly observing software developed using a tra-
ditional centrally-managed waterfall development process,
or one of its variants [20].

Research in this area has been approached from two dif-
ferent perspectives. One considers the processes, methods
and techniques to implement and evolve software (the how).
The other applies systematic observation of empirical data
to achieve an understanding of the causes and general char-
acteristics of the phenomenon (the what/why). Both per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE’07 September 3-4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-722-3/07/09 ...$5.00.

spectives are related: the study of the what/why is impor-
tant in order to achieve and appropriate plan, manage and
control the various software engineering activities; and to
guide the development of new processes, methods and tools,
that is, to guide the how.

The link between the how and the what/why perspectives
is illustrated in [13], where several guidelines are derived
from Lehman’s laws of software evolution. The output of the
what/why study is exemplified by empirical generalizations
such as Rajlich and Bennett’s model of the lifecycle [16] and
Lehman’s laws of software evolution ([11, 15]).

In this context, the present paper expands and refines
the empirical hypothesis presented in the staged model of
software evolution [16] so that it can be applied to FLOSS
projects. For this, we compare and contrast the existing em-
pirical knowledge (e.g. as derived from studies of proprietary
systems evolved under traditional processes [9]) with the
emergent FLOSS paradigm. This revision will help FLOSS
developers and practitioners to characterize any FLOSS sys-
tem, in terms of which phase it is currently undergoing, or
which phase it will more likely move to.

2. THE STAGED MODEL
The staged model for software evolution represents the

software lifecycle as a sequence of steps [16]. Based on the
traditional commercial projects, the core idea of the model
is that software systems evolve through distinct stages: -
Initial development, or alpha stage, includes all the phases
(design, first coding, testing) achieved before the first run-
ning version of the system. In this stage, usually no releases
are made public to the users.

- Evolutionary pressures enhance the system with new fea-
tures and capabilities in the phase of the evolution changes:
binary releases and individual patches are made available to
the users, and feedback is gathered to further enhance the
system.

- As long as the profitability of either new enhancements
or changes to the existing code base is overcome by the costs
of such modifications, the servicing phase is reached. The
system is considered mature, changes are added to the code
base, but no further enhancements (apart from patches) are
provided to the end users.

- When the service is discontinued and no more code
patches are released, the stage of phase-out is meant to de-
clare the system’s end. This can be associated with the
presence of a new enhanced system substituting the old one.

- The old system serves as a basis for the new one and
then it is closed down.

79

79

cle may be considered different from traditional commercial
system. The staged model for the software evolution, as in
its original form expressed in [16] model, was discussed. A
general resemblance between commercial and FLOSS evolu-
tionary behavior was recognized: initial development tend
to be superlinear or at least with sustained growth (see for
instance Figure 1). A stabilization point where fewer func-
tionalities were added has been recognized in some FLOSS
evolutionary behavior (central part of Figure 1). Apart from
the commonalities, three points of difference were detected
for enhancing the staged model.

The first is relative to availability of releases: commercial
companies make software systems available to third parties
only when they are running and are tested enough. On
the contrary, FLOSS systems are available in versioning sys-
tem repositories well before first official release, and may be
downloaded at any time. The second difference is relative
to the transition between the evolution stage and the ser-
vicing stage: we encountered several cases in which a new
development stage was achieved after a phase without ma-
jor enhancements. The third revision made to the model is
a possible transition between the phases of phase out and
evolution: a case was illustrated in which a new develop-
ment team took over the responsibility of a project that was
declared closed (Grace) . More in general, generations of
developers have been identified in several FLOSS systems,
where the most active developers (in terms of commits) get
replaced frequently along the lifecycle of a FLOSS applica-
tion. Therefore, it may be concluded that after some modifi-
cations, the original staged model for software evolution can
be extended to consider the evolution of a FLOSS project.

5. REFERENCES
[1] M. Aoyama. Metrics and analysis of software

architecture evolution with discontinuity. In IWPSE
’02: Proceedings of the International Workshop on
Principles of Software Evolution, pages 103–107, New
York, NY, USA, 2002. ACM Press.

[2] A. Capiluppi. Models for the evolution of os projects.
In ICSM ’03: Proceedings of the International
Conference on Software Maintenance, page 65,
Washington, DC, USA, 2003. IEEE Computer Society.

[3] A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. C.
Sharp, and N. Smith. An empirical study of the
evolution of an agile-developed software system. In
ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 511–518,
Washington, DC, USA, 2007. IEEE Computer Society.

[4] A. Capiluppi and M. Michlmayr. From the cathedral
to the bazaar: An empirical study of the lifecycle of
volunteer community projects. In J. Feller,
B. Fitzgerald, W. Scacchi, and A. Silitti, editors, Open
Source Development, Adoption and Innovation, pages
31–44. International Federation for Information
Processing, Springer, 2007.

[5] N. Chapin, J. E. Hale, J. F., Ramil, and W.-G. Tan.
Types of software evolution and software maintenance.
Journal of Software Maintenance and Evolution:
Research and Practice, 13(1):3–30, 2001.

[6] R. English and C. Schweik. Identifying success and
tragedy of floss commons: A preliminary classification
of sourceforge.net projects. In Proceedings of the 1st

International Workshop on Emerging Trends in
FLOSS Research and Development, Minneapolis, MN,
2007. ICSE.

[7] D. M. German and A. Mockus. Automating the
measurement of open source projects. In Proceedings
of the 3rd Workshop on Open Source Software
Engineering, Portland, Oregon, USA, 2003.

[8] M. W. Godfrey and Q. Tu. Evolution in open source
software: A case study. In ICSM ’00: Proceedings of
the International Conference on Software Maintenance
(ICSM’00), page 131, Washington, DC, USA, 2000.
IEEE Computer Society.

[9] M. Lehman and J. Ramil. Feast: Feedback evolution
and software technology.

[10] M. M. Lehman. Programs, cities, students, limits to
growth? In D. Gries, editor, Programming
Methodology, pages 42–62. 1978.

[11] M. M. Lehman and L. A. Belady, editors. Program
evolution: processes of software change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[12] M. M. Lehman, G. Kahen, and J. F. Ramil.
Behavioural modelling of long-lived evolution
processes: some issues and an example. Journal of
Software Maintenance, 14(5):335–351, 2002.

[13] M. M. Lehman and J. F. Ramil. Rules and tools for
software evolution planning and management. Ann.
Softw. Eng., 11(1):15–44, 2001.

[14] M. Michlmayr. Quality Improvement in Volunteer Free
and Open Source Software Projects – Exploring the
Impact of Release Management. PhD thesis,
University of Cambridge, UK, 2007.

[15] S. L. Pfleeger. Software Engineering: Theory and
Practice. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2001.

[16] V. T. Rajlich and K. H. Bennett. A staged model for
the software life cycle. Computer, 33(7):66–71, 2000.

[17] E. S. Raymond. The cathedral and the bazaar:
musings on Linux and open source by an accidental
revolutionary. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2001.

[18] G. Robles, J. J. Amor, J. M. González-Barahona, and
I. Herraiz. Evolution and growth in large libre
software projects. In IWPSE, pages 165–174. IEEE
Computer Society, 2005.

[19] G. Robles and J. M. González-Barahona. Contributor
turnover in libre software projects. In E. Damiani,
B. Fitzgerald, W. Scacchi, M. Scotto, and G. Succi,
editors, OSS, volume 203 of IFIP, pages 273–286.
Springer, 2006.

[20] W. W. Royce. Managing the development of large
software systems: concepts and techniques. In ICSE
’87: Proceedings of the 9th international conference on
Software Engineering, pages 328–338, Los Alamitos,
CA, USA, 1987. IEEE Computer Society Press.

[21] A. Senyard and M. Michlmayr. How to have a
successful free software project. In Proceedings of the
11th Asia-Pacific Software Engineering Conference,
pages 84–91, Busan, Korea, 2004.

[22] W. M. Turski. Reference model for smooth growth of
software systems. IEEE Trans. Softw. Eng.,
22(8):599–600, 1996.

82

82

Jesus M. Gonzalez-
Barahona

[PDF] from open.ac.uk

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Adapting the staged model for software evolution to free/libre/open source
software

Andrea Capiluppi, Jesús M González-Barahona, Israel Herraiz, Gregorio Robles

2007/9/3

Ninth international workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting

79-82

ACM

Abstract Research into traditional software evolution has been tackled from two broad
perspectives: that focused on the how, which looks at the processes, methods and
techniques to implement and evolve software; and that focused on the what/why
perspective, aiming at achieving an understanding of the drivers and general characteristics
of the software evolution phenomenon.

Cited by 31

Adapting the staged model for software evolution to free/libre/open source software
A Capiluppi, JM González-Barahona, I Herraiz… - Ninth international workshop on Principles of software …, 2007
Cited by 31 - Related articles - All 8 versions

Adapting the “Staged Model for Software Evolution” to FLOSS
A Capiluppi, JM Gonzalez, I Herraiz, G Robles
Related articles

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2008 2009 2010 2011 2012 2013

*

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 02:29 PM

Forecasting the number of changes in Eclipse using time series analysis∗

Israel Herraiz, Jesus M. Gonzalez-Barahona, Gregorio Robles

Grupo de Sistemas y Comunicaciones

Universidad Rey Juan Carlos, Spain

{herraiz, jgb, grex}@gsyc.escet.urjc.es

Libresoft team

Abstract

In order to predict the number of changes in the follow-

ing months for the project Eclipse, we have applied a statis-

tical (non-explanatory) model based on time series analy-

sis. We have obtained the monthly number of changes in

the CVS repository of Eclipse, using the CVSAnalY tool.

The input to our model was the filtered series of the num-

ber of changes per month, and the output was the number

of changes per month for the next three months. Then we

aggregated the results of the three months to obtain the to-

tal number of changes in the given period in the challenge.

1 Introduction

There have been some cases of proposals of predictive

models for libre (free / open source) software projects. In

our opinion, the phenomenon of libre software develop-

ment is quite complex as to obtain a satisfactory explana-

tory model. For instance, in spite of the proposed models

in the literature [9, 4, 1], little empirical validation of these

models have been done, so failing on the prediction of the

actual evolution of libre software projects.

Using the “low-level” approach taken by the mentioned

papers is a difficult task, because the events that happen

within a project are random-like. All the interactions (a

change made to the source code, a new message to the mail-

ing list, a new developer coming to the project, a developer

leaving the project) that we may find in a project can not

be predicted, because they involved people. However, if we

look at the macroscopic level, the aggregation of all these

random-like interactions is not random, and despite contain-

∗This work has been funded in part by the European Commission, un-

der the FLOSSMETRICS (FP6-IST-5-033547) and QUALOSS (FP6-IST-

5-033547) projects. Israel Herraiz has been funded in part by Consejerı́a

de Educación of Comunidad de Madrid and European Social Fund, under

grant number 01/FPI/0582/2005.

ing noise, can be predicted by means of statistical methods.

Think for example of the stock market. It is really difficult

to predict how individual actors will behave, because of the

many factors that may impact their actions. But when the

global stock market is considered, several statistical meth-

ods may be used to predict the near future in absence of

impacting external events.

The idea of using time series analysis to predict software

is not new. Already in the period from 1985 to 1988 several

papers [11, 12, 13] used statistical methods, including time

series analysis, to model software evolution. For instance,

in [13] time series ARIMA models are used to predict the

evolution in the maintenance phase of a software project,

using sampling periods of about one month.

Later, Kemerer and Slaughter [6] followed this line of

research proposing an ARIMA model which is able to pre-

dict the monthly number of changes of a software project.

However, they did not obtain very good results, because the

phenomenon studied (monthly number of changes, the same

than in the challenge) is quite noisy. To avoid the problems

found by Kemerer and Slaughter, we applied kernel smooth-

ing in the hope of reducing the amount of noise in the source

data.

There have been several other research papers using time

series methods to predict the evolution of software projects.

Because of the space restrictions, we just cite them here [2,

3, 5].

2 Methodology

We obtained the monthly number of changes for Eclipse,

classified by plugins (using the mapping table provided for

the challange), using the tool CVSAnalY [8]. From the

database created by CVSAnalY, we mined the revisions that

were not deletions, and added up all the revisions in each

one of the months, from the beginning of the history in the

CVS until the last of January 2007.

Therefore, we obtained a list with the number of changes

for every month since the beginning of the history of each

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

Original data

Time (month)

0 10 20 30 40 50 60 70

0
1
0
0
0

0 10 20 30 40 50 60 70

0
6
0
0

1
4
0
0

Filtered data

Time (month)

Figure 1. Original data and filtered data for the

case of org.eclipse.core. Kernel smoothing

with a bandwidth of 2.

plugin in the CVS. The data was actually obtained for each

one of the subdirectories in the CVS. We mapped subdirec-

tories to plugins adding up the changes for every subdirec-

tory being part of the same plugin, in the hope of reducing

some noise by aggregation. We needed to filter the data,

though. We filtered this data using kernel smoothing with a

bandwidth of 2, and the filtered series was the input for the

ARIMA model. Figure 1 shows the original data and the

the filtered data for the plugin org.eclipse.core. We

have used [7] as a guide. That book includes some exam-

ples and charts to select the right model based on the values

of some parameters that we describe below.

The ARIMA model has three parameters:

• d, which is the number of differences needed to make

the data stationary. In our case it was d = 1 for all the

plugins.

• p, which is the auto-regressive part of the model. The

right value is obtained by inspecting the autocorre-

lation coefficients and partial autocorrelation coeffi-

cients plots. In all the plugins, it was value was be-

tween 2 and 3.

• q, which is the moving average part of the model.

Again, it is obtained by inspecting the autocorre-

lation coefficients and partial autocorrelation coeffi-

cients plots. This time, it was 0 for all the plugins.

We inspected the autocorrelation plots and partial auto-

correlation plots for all the plugins. Then we selected the

values for p and q for each case, obtained the model, ob-

tained the predictions for the next three months.

We then added up the results for the next three months

for every plugin, and those were the results that we submit-

ted to the challenge.

For more details on how to apply this methodology we

recommend to read [7, 10].

References

[1] I. Antoniades, I. Samoladas, I. Stamelos, L. Aggelis, and

G. L. Bleris. Dynamical simulation models of the open

source development process. In S. Koch, editor, Free/Open

Source Software Development, pages 174–202. Idea Group

Publishing, Hershey, PA, 2004.
[2] G. Antoniol, G. Casazza, M. D. Penta, and E. Merlo. Mod-

eling clones evolution through time series. In Proceedings

of the International Conference on Software Maintenance,

2001.
[3] F. Caprio, G. Casazza, M. D. Penta, and U. Villano. Measur-

ing and predicting the Linux kernel evolution. In Proceed-

ings of the International Workshop of Empirical Studies on

Software Maintenance, Florence, Italy, 2001.
[4] J.-M. Dalle and P. A. David. The allocation of software

development resources in Open Source production mode.

Technical report, SIEPR Policy paper No. 02-027, SIEPR,

Stanford, USA, 2003.

http://siepr.stanford.edu/papers/pdf/02-27.pdf.
[5] E. Fuentetaja and D. J. Bagert. Software Evolution from

a Time-Series perspective. In Proceedings of the Interna-

tional Conference on Software Maintenance, pages 226–

229, 2002.
[6] C. F. Kemerer and S. Slaughter. An empirical approach to

studying software evolution. IEEE Transactions on Software

Engineering, 25(4):493–509, 1999.
[7] S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman.

Forecasting: Methods and Applications. John Wiley &

Sons, Ltd., January 1998.
[8] G. Robles, S. Koch, and J. M. González-Barahona. Re-

mote analysis and measurement of libre software systems

by means of the CVSAnalY tool. In Proceedings of the 2nd

ICSE Workshop on Remote Analysis and Measurement of

Software Systems (RAMSS), pages 51–56, Edinburg, Scot-

land, UK, 2004.
[9] G. Robles, J. J. Merelo, and J. M. Gonzalez-Barahona. Self-

organized development in libre software: a model based on

the stigmergy concept. In Proceedings of the 6th Interna-

tional Workshop on Software Process Simulation and Mod-

eling (ProSim 2005), St.Louis, Missouri, USA, May 2005.
[10] R. H. Shumway and D. S. Stoffer. Time Series Analysis and

its Applications. With R Examples. Springer Texts in Statis-

tics. Springer, 2006.
[11] C. C. H. Yuen. An empirical approach to the study of errors

in large software under maintenance. In Proceedings of the

International Conference on Software Maintenance, 1985.
[12] C. C. H. Yuen. A statistical rationale for evolution dynamics

concepts. In Proceedings of the International Conference on

Software Maintenance, 1987.
[13] C. C. H. Yuen. On analyzing maintenance process data at

the global and detailed levels. In Proceedings of the Inter-

national Conference on Software Maintenance, pages 248–

255, 1988.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

Jesus M. Gonzalez-
Barahona

[PDF] from tribler.org
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Forecasting the number of changes in Eclipse using time series analysis

Israel Herraiz, Jesus M Gonzalez-Barahona, Gregorio Robles

2007/5/20

Proceedings of the Fourth International Workshop on Mining Software Repositories

32

IEEE Computer Society

Abstract In order to predict the number of changes in the follow-ing months for the project
Eclipse, we have applied a statis-tical (non-explanatory) model based on time series analy-
sis. We have obtained the monthly number of changes in the CVS repository of Eclipse,
using the CVSAnalY tool. The input to our model was the filtered series of the num-ber of
changes per month, and the output was the number of changes per month for the next three
months. Then we aggregated the results of the three months to obtain the to-tal number of ...

Cited by 26

Forecasting the number of changes in Eclipse using time series analysis
I Herraiz, JM Gonzalez-Barahona, G Robles - Proceedings of the Fourth International Workshop on …, 2007
Cited by 26 - Related articles - All 15 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 02:07 PM

Towards a theoretical model for software growth∗

Israel Herraiz, Jesus M. Gonzalez-Barahona, Gregorio Robles

Grupo de Sistemas y Comunicaciones

Universidad Rey Juan Carlos, Spain

{herraiz, jgb, grex}@gsyc.escet.urjc.es

Abstract

Software growth (and more broadly, software evolution)

is usually considered in terms of size or complexity of source

code. However in different studies, usually different metrics

are used, which make it difficult to compare approaches and

results. In addition, not all metrics are equally easy to cal-

culate for a given source code, which leads to the ques-

tion of which one is the easiest to calculate without losing

too much information. To address both issues, in this pa-

per present a comprehensive study, based on the analysis

of about 700,000 C source code files, calculating several

size and complexity metrics for all of them. For this sample,

we have found double Pareto statistical distributions for all

metrics considered, and a high correlation between any two

of them. This would imply that any model addressing soft-

ware growth should produce this Pareto distributions, and

that analysis based on any of the considered metrics should

show a similar pattern, provided the sample of files consid-

ered is large enough.

1 Introduction

One of the goals of software engineering is to measure

different aspects of software projects, with the aim of find-

ing a small set of attributes that may characterize them.

Among those attributes, metrics of the internal attributes of

the source code are usually considered, with special atten-

tion to size and complexity.

In fact, many different metrics for size and complexity

do exist, and have been successfully used in many empirical

studies. However, due to this diversity in metrics, compar-

ison of results is not always easy, and the basic question of

which metrics are enough to understand a certain aspect of

∗This work has been funded in part by the European Commission, un-

der the FLOSSMETRICS (FP6-IST-5-033547) and QUALOSS (FP6-IST-

5-033547) projects. Israel Herraiz has been funded in part by Consejerı́a

de Educación of Comunidad de Madrid and European Social Fund, under

grant number 01/FPI/0582/2005.

the source code of a project is still largely unsolved. For ob-

taining some insight in both issues, we have studied a large

quantity of source code (about 700,000 C files) correspond-

ing to mature, stable software in use in a Unix-like software

distribution, FreeBSD.

All the software included in the study is libre (free, open

source) software, which could lead to some bias in the re-

sults, but probably they can easily be extrapolated to at least

C code of any kind, since the license of the software is not

likely to influence distributions of size or complexity. Prob-

ably the results can also be extended to other languages dif-

ferent from C, but further research is needed for that con-

clusion.

FreeBSD is of course not the only large collection of li-

bre software: there are several other projects gathering soft-

ware from many different libre software projects, adapting

it, and producing an integrated system, ready to be used.

Among them, several Linux distributions (Debian, Fedora,

Ubuntu, Mandriva, etc.) are the most well known. In our

case, we have selected FreeBSD because it is a good com-

promise between quantity of code and simplicity in pack-

aging. In FreeBSD, source code packages (called ports) are

easy to retrieve and handle automatically.

With the quantity of source code in FreeBSD (more than

1.7 millions of files, and 400 MSLOC in total, more than

40% of them corresponding to C code), it is possible to ap-

ply statistical methods to find out correlations and patterns

in the set of analyzed data. In the case of this paper, our

first motivation was to find out which independent metrics

may be used to characterize size and complexity. To our

surprise, we have also found that all metrics considered fol-

low a statistical distribution (double Pareto) that has been

deeply studied in other fields.

In this respect, it is also worth mentioning that some au-

thors have proposed models to explain why these distribu-

tions appear in some of those fields. We have found that

those models could be easily applied to the case of soft-

ware growth, and could be used to simulate the growth of

a software product and to model events in a source control

management system.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

code using the source packages of the system (ports). This

meant to obtain 1.7 millions of files, with a total size of 410

MSLOC. From this set of files, 700, 000 files were writ-

ten in C. We measured size and complexity, using different

metrics, for all these files.

We decided to focus on libre software in the study be-

cause of two main reasons: it is easily available in large

quantities, and the results of the analysis can easily be

checked by other research teams. The decission of consid-

ering only the C language has been also practical: most of

the tools available to measure code work well with C source

code.

All the metrics resulted to be highly correlated by means

of power laws. Based on this, and on the fact of the easiness

of calculation, we find it interesting to use SLOC to char-

acterize both size and complexity of software products, in

any kind of studies. For instance, to study the growth of a

software project, in the part regarding the internal attributes

of the software, it would be enough to measure only SLOC,

to obtain a landscape of the evolution of the size and com-

plexity of the project.

All the metrics were found to follow a double Pareto dis-

tribution. This distribution is formed by a lognormal dis-

tribution in the main body, and power laws distributions in

the tails for high and low values of the distribution. Some

composed metrics (such as number of comments per SLOC)

presented also double Pareto distributions.

This kind of distributions has been found also for the size

of files in a filesystem. Some theoretical models about the

growth of file systems have been proposed to explain these

cases, whcih have also been used to optimize the download

of files from web and FTP servers [2].

The most interesting model we have found is the Re-

cursive Forest File model, proposed by Michael Mitzen-

macher [12]. It can explain how files change over time, and

how they are inserted and removed from a tree of files. Be-

cause of its nature, it would be easily adaptable to the case

of a source control system, being therefore able of explain-

ing how and why software grows.

In further research, we will try to adapt this model to the

case of a control version system, and to verify it against the

actual history of a software project.

References

[1] I. Antoniades, I. Samoladas, I. Stamelos, L. Aggelis, and

G. L. Bleris. Dynamical simulation models of the open

source development process. In S. Koch, editor, Free/Open

Source Software Development, pages 174–202. Idea Group

Publishing, Hershey, PA, 2004.

[2] P. Badford, A. Bestavros, A. Bradley, and M. Crovella.

Changes in Web client access patterns: characteristics and

caching implications. World Wide Web, 2(1-2):15–28, June

1999.

[3] S. D. Conte. Software Engineering Metrics and Mod-

els (Benjamin/Cummings series in software engineering).

Benjamin-Cummings Pub Co, 1986.

[4] J.-M. Dalle and P. A. David. The allocation of software

development resources in Open Source production mode.

Technical report, SIEPR Policy paper No. 02-027, SIEPR,

Stanford, USA, 2003.

http://siepr.stanford.edu/papers/pdf/02-27.pdf.

[5] M. W. Godfrey and Q. Tu. Evolution in open source soft-

ware: A case study. In ICSM ’00: Proceedings of the Inter-

national Conference on Software Maintenance (ICSM’00),

pages 131–142, Washington, DC, USA, October 2000. IEEE

Computer Society.

[6] I. Herraiz, G. Robles, J. M. Gonzalez-Barahona,

A. Capiluppi, and J. F. Ramil. Comparison between

SLOCs and number of files as size metrics for software

evolution analysis. In Proceedings of the 10th European

Conference on Software Maintenance and Reengineering,

pages 203–210, Bari, Italy, 2006.

[7] S. H. Kan. Metrics and Models in Software Quality En-

gineering (2nd Edition). Addison-Wesley Professional,

September 2002.

[8] S. Koch. Evolution of Open Source Software systems - a

large-scale investigation. In Proceedings of the 1st Interna-

tional Conference on Open Source Systems, Genova, Italy,

July 2005.

[9] M. M. Lehman, J. F. Ramil, and U. Sandler. An approach

to modelling long-term growth trends in software systems.

In Internation Conference on Software Maintenance, pages

219–228, Florence, Italy, November 2001.

[10] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and

W. M. Turski. Metrics and laws of software evolution - the

nineties view. In METRICS ’97: Proceedings of the 4th In-

ternational Symposium on Software Metrics, page 20, nov

1997.

[11] M. Mitzenmacher. A brief history of generative models for

power law and lognormal distributions. Internet Mathemat-

ics, 1(2):226–251, 2004.

[12] M. Mitzenmacher. Dynamic models for file sizes and double

Pareto distributions. Internet Mathematics, 1(3):305–333,

2004.

[13] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Her-

raiz. Evolution and growth in large libre software projects.

In Proceedings of the International Workshop on Principles

in Software Evolution, pages 165–174, Lisbon, Portugal,

September 2005.

[14] G. Robles, J. J. Merelo, and J. M. Gonzalez-Barahona. Self-

organized development in libre software: a model based on

the stigmergy concept. In Proceedings of the 6th Interna-

tional Workshop on Software Process Simulation and Mod-

eling (ProSim 2005), St.Louis, Missouri, USA, May 2005.

[15] W. M. Turski. Reference model for smooth growth of soft-

ware systems. IEEE Transactions on Software Engineering,

22(8):599–600, 1996.

[16] W. M. Turski. The reference model for smooth growth of

software systems revisited. IEEE Transactions on Software

Engineering, 28(8):814–815, 2002.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007
Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

Jesus M. Gonzalez-
Barahona

[PDF] from researchgate.net
Texto completo para UC3M

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Towards a theoretical model for software growth

Israel Herraiz, Jesus M Gonzalez-Barahona, Gregorio Robles

2007/5/20

Proceedings of the Fourth International Workshop on Mining Software Repositories

21

IEEE Computer Society

Abstract Software growth (and more broadly, software evolution) is usually considered in
terms of size or complexity of source code. However in different studies, usually different
metrics are used, which make it difficult to compare approaches and results. In addition, not
all metrics are equally easy to cal-culate for a given source code, which leads to the ques-
tion of which one is the easiest to calculate without losing too much information. To address
both issues, in this pa-per present a comprehensive study, based on the analysis of about ...

Cited by 59

Towards a theoretical model for software growth
I Herraiz, JM Gonzalez-Barahona, G Robles - Proceedings of the Fourth International Workshop on …, 2007
Cited by 59 - Related articles - All 14 versions

Towards a theoretical model for software growth
JM Gonzalez-Barahona, G Robles - Proceedings of the 29th International Conference on …, 2007

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2007 2008 2009 2010 2011 2012 2013 2014

*

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 02:00 PM

Corporate Involvement of Libre Software:

Study of Presence in Debian Code over Time∗

Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

GSyC/LibreSoft, Universidad Rey Juan Carlos (Madrid, Spain)
{grex,sduenas,jgb}@gsyc.escet.urjc.es

Abstract. Although much of the research on the libre (free, open
source) phenomenon has been focused on the involvement of volunteers,
the role of companies is also important in many projects. In fact, during
the last years, the involvement of companies in the libre software world
seems to be raising. In this paper we present an study that shows, quan-
titatively, how important this involvement is in the production of the
largest collection of code available for Linux: the Debian GNU/Linux
distribution. By studying copyright attributions in source code, we have
identified those companies with more attributed code, and the trend of
corporate presence in Debian from 1998 to 2004.
Keywords: open source, libre software, involvement of companies, em-
pirical study, software business

1 Introduction

For companies producing computer programs, libre software2 is not yet another

competitor playing with the same rules. The production of libre software dif-

fers from traditional software development in many fundamental aspects, rang-

ing from ethical and psychological motivation to new economic and marketing

premises, to new practices and procedures in the development process itself.

One of the key differences is the different role of users. While in the clas-

sical software development environment the development team can be clearly

distinguished from the users, most of the libre software projects develop around

themselves a community [7]. This community is usually formed by people with

many different involvements, from pure users to core developers, including many

mixed roles, such as that of users contributing with patches (small modifica-

tions) to the code. Therefore, in most libre software projects we may observe

a continuum of commitment to the project which includes a wide range of

occasional contributors.

∗ This work has been funded in part by the European Commission, under the FLOSS-
METRICS (FP6-IST-5-033547) and FLOSSWORLD (FP6-IST-015722) projects.

2 Through this paper the term “libre software” will be used to refer to code that
conforms either to the definition of “free software” (according to the Free Software
Foundation) or of “open source software” (according to the Open Source Initiative).

1 2 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Workshop on Mining Software Repositories, pages 106–110, St. Louis, Missouri,
USA, May 2005.

17. Gregorio Robles, Jesús M. González-Barahona, and Martin Michlmayr. Evolution
of volunteer participation in libre software projects: evidence from Debian. In
Proceedings of the 1st International Conference on Open Source Systems, pages
100–107, Genoa, Italy, July 2005.

18. Diomidis Spinellis. Code Reading: The Open Source Perspective. Addison Wesley
Professional, 2003.

19. Ilkka Tuomi. Evolution of the Linux Credits file: Methodological challenges and
reference data for Open Source research. First Monday, 9(6), June 2004.

20. Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Community, joining,
and specialization in Open Source Software innovation: A case study. MIT Sloan
Working Paper No. 4413-03, 2003.

21. David A. Wheeler. More than a gigabuck: Estimating GNU/Linux’s size, June
2001.

3

Jesus M. Gonzalez-
Barahona

[PDF] from flosshub.org

Authors

Publication date

Book

Pages

Publisher

Description

Total citations

Scholar articles

Corporate involvement of libre software: Study of presence in Debian code
over time

Gregorio Robles, Santiago Duenas, Jesus M Gonzalez-Barahona

2007/1/1

Open Source Development, Adoption and Innovation

121-132

Springer US

Abstract Although much of the research on the libre (free, open source) phenomenon has
been focused on the involvement of volunteers, the role of companies is also important in
many projects. In fact, during the last years, the involvement of companies in the libre
software world seems to be raising. In this paper we present an study that shows,
quantitatively, how important this involvement is in the production of the largest collection of
code available for Linux: the Debian GNU/Linux distribution. By studying copyright ...

Cited by 24

Corporate involvement of libre software: Study of presence in Debian code over time
G Robles, S Duenas, JM Gonzalez-Barahona - Open Source Development, Adoption and Innovation, 2007
Cited by 24 - Related articles - All 8 versions

Corporate Involvement of Libre Software: Study of Presence in Debian Code over Time
S Dueas, G Robles, JM Gonzalez-Barahona - IFIP International Federation for Information Processing, 2010

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2007 2008 2009 2010 2011 2012 2013 2014

*

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 02:18 PM

Quantitative Analysis of the Wikipedia Community of Users

Felipe Ortega

Universidad Rey Juan Carlos.

Tulipan s/n.

28933, Mostoles. Madrid. SPAIN

jfelipe@gsyc.es

Jesus M. Gonzalez-Barahona

Universidad Rey Juan Carlos.

Tulipan s/n.

28933, Mostoles. Madrid. SPAIN

jgb@gsyc.es

Abstract

Many activities of editors in Wikipedia can be traced us-

ing its database dumps, which register detailed informa-

tion about every single change to every article. Several

researchers have used this information to gain knowledge

about the production process of articles, and about activ-

ity patterns of authors. In this analysis, we have focused on

one of those previous works, by Kittur et al. First, we have

followed the same methodology with more recent and com-

prehensive data. Then, we have extended this methodology

to precisely identify which fraction of authors are produc-

ing most of the changes in Wikipedia’s articles, and how

the behaviour of these authors evolves over time. This en-

abled us not only to validate some of the previous results,

but also to find new interesting evidences. We have found

that the analysis of sysops is not a good method for esti-

mating different levels of contributions, since it is dependent

on the policy for electing them (which changes over time

and for each language). Moreover, we have found new activ-

ity patterns classifying authors by their contributions during

specific periods of time, instead of using their total number

of contributions over the whole life of Wikipedia. Finally,

we present a tool that automates this extended methodology,

implementing a quick and complete quantitative analysis of

every language edition in Wikipedia.

Categories and Subject Descriptors H.3.7 [Information

Storage and Retrieval]: Digital Libraries—system issues

General Terms Performance

Keywords quantitative analysis, methodology, Wikipedia,

WikiXRay

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WikiSym’07, October 21–23, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-861-9/07/0010. . . $5.00

1. Introduction

Wikis present a new paradigm of website with dynamic con-

tents created by its own users. When we refer to content

development systems, wiki is now synonymous of collab-

orative, agile, powerful and even easy. They are now a core

component of what is presented as the Web 2.0, providing

tools to create contents through collaboration and interaction

of users.

Wikipedia is, by far, the most successful example of this

new paradigm of web services. With more than 200 different

language editions, and one of the biggest communities of

users of the Internet, Wikipedia has showed us the power of

collaborative content development. As of April 26th, 2007,

a total of 1,755,932 articles are already available in the

English language edition, and the top 10 language editions

(English, German, French, Japanese, Polish, Dutch, Italian,

Portuguese, Spanish and Swedish) accumulate a total sum

of 4,852,810 articles. Many scientific works are increasingly

referencing Wikipedia, and many learning systems employ

it as a primary source of information.

One of the most relevant contributions that Wikipedia has

made to the wiki community is the MediaWiki software, a li-

bre (free, open source) software that facilitates the task of

creating, configuring, maintining and using a wiki. Medi-

aWiki provides some very useful tools for wiki users and

administrators, for instance:

• Easy-to-use editing interface: A toolbar provides easy ac-

cess to the most common editing functions. This reduces

the learning curve of new users, who can get up to speed

in editing contents fastly.

• Content classification: Contents can be classified attend-

ing to their topic into several categories, presented in

special pages, thus helping users searching for a certain

topic.

• Discussion pages for every article: Each article in Medi-

aWiki is accompanied by its talk page, a special page al-

lowing users interested in editing that article to exchange

their impressions, and collaborate towards obtaining con-

sensus about the article’s contents and presentation.

75

instead of focusing on the most active contributors in

period 40 concentrating the 10% of the total number of

edits in that period, we can analyse the most popular

articles in period 40, (those obtaining the highest number

of contributions), that receive the 10% of the total number

of edits in that period. We could then use those data to

correlate them with the number of distinct authors per

article, the length of those articles, etc.

We have applied our tool to the quantitative analysis of the

English edition of Wikipedia, trying to validate some of the

results and previous methodologies we have presented so far.

We have also used it to extend those previous methodologies

to other language editions of Wikipedia and to include per

period parameters in the quantitative analysis process.

5. CONCLUSIONS AND FUTURE WORK

In this research paper, we revised previous methodologies

proposed for the quantitative analysis of Wikipedia. We

showed that, although these methodologies reveal some in-

teresting behavioral patterns, they can also hide another im-

portant phenomena that could lead us to acquire a more

complete and detailed picture of the Wikipedia’s community

of users.

Later, we presented our own proposal for enhancing these

previous methodologies to undertake the quantitative analy-

sis of Wikipedia. This extended methodology can be applied

to further language editions other than English, and it fo-

cuses on the study of per period parameters to precisely fol-

low the evolution in time of the Wikipedia community of

users.

We finally showed some graphs summarizing the most

relevant parameters that we can study with this new method-

ology using WikiXRay, a Python software tool that automates

the quantitative analysis of all Wikipedia language editions.

Further development of WikiXRay will include extending

this per period analysis method to Wikipedia articles, and

reflecting possible correlations between featured parameters

that will let us better explain the behavior of the communi-

ties of users in all language editions of Wikipedia.

References

[1] D. Anthony, S. W. Smith, and T. Williamson. Explaining qual-

ity in internet collective goods: Zealots and good samaritans.

the case of wikipedia. November 2005.

[2] L. S. Buriol, C. Castillo, D. Donato, S. Leonardi, and

S. Millozzi. Temporal evolution of the wikigraph. In

Proceedings of the Web Intelligence Conference, December

2006.

[3] C. Gini. On the measure of concentration with especial

reference to income and wealth. In Cowless Comission, 1936.

[4] A. Kittur, E. Chi, B. A. Pendleton, B. Suh, and T. Mytkowicz.

Power of the few vs. wisdom of the crowd: Wikipedia and the

rise of the bourgeoisie. In Proceedings of the 25th Annual

ACM Conference on Human Factors in Computing Systems

(CHI 2007), April-May 2007.

[5] F. B. Viegas, M. Wattenberg, and K. Dave. Studying

cooperation and conflict between authors with history flow

visualizations. In Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 575–582, April

2004.

[6] F. B. Viegas, M. Wattenberg, J. Kriss, and F. van Ham. Talk

before you type: Coordination in wikipedia. In Proceedings of

the 40th Annual Hawaii International Conference on System

Sciences (HICSS’07), page 78a. Computer Society Press,

January 2007.

[7] J. Voss. Measuring wikipedia. In Proceedings of the ISSI 2005,

July 2005.

86

Jesus M. Gonzalez-
Barahona

[PDF] from smith.edu

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Quantitative analysis of thewikipedia community of users

Felipe Ortega, Jesus M Gonzalez Barahona

2007/10/21

Proceedings of the 2007 international symposium on Wikis

75-86

ACM

Abstract Many activities of editors in Wikipedia can be traced using its database dumps,
which register detailed information about every single change to every article. Several
researchers have used this information to gain knowledge about the production process of
articles, and about activity patterns of authors. In this analysis, we have focused onone of
those previous works, by Kittur et al. First, we have followed the same methodology with
more recent and comprehensive data. Then, we have extended this methodology to ...

Cited by 84

Quantitative analysis of thewikipedia community of users
F Ortega, JM Gonzalez Barahona - Proceedings of the 2007 international symposium on …, 2007
Cited by 84 - Related articles - All 9 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 04:17 PM

On The Inequality of Contributions to Wikipedia
Felipe Ortega, Jesus M. Gonzalez-Barahona and Gregorio Robles

Libresoft Group, Universidad Rey Juan Carlos
Tulipan, s/n 28933. Mostoles.

Madrid. SPAIN.
Email: {jfelipe,jgb,grex}@gsyc.es

Abstract—Wikipedia is one of the most successful examples of
massive collaborative content development. However, many of the
mechanisms and procedures that it uses are still unknown in de-
tail. For instance, how equal (or unequal) are the contributions to
it has been discussed in the last years, with no conclusive results.
In this paper, we study exactly that aspect by using Lorenz curves
and Gini coefficients, very well known instruments to economists.
We analyze the trends in the inequality of distributions for the ten
biggest language editions of Wikipedia, and their evolution over
time. As a result, we have found large differences in the number
of contributions by different authors (something also observed in
free, open source software development), and a trend to stable
patterns of inequality in the long run.

I. INTRODUCTION

Nowadays, Wikipedia is one of the most successful ex-
amples of large-scale collaborative content development. In
just some few years, it has been able to attract an impressive
number of contributors who create content, update it, modify
it, and try to adapt it to the emerging policies that the project
is establishing. Probably one of the key factors in its success
is the low entry barrier for new authors. Thanks to the easy-
to-use and friendly user interface that Wikipedia provides to
authors, they can start to contribute even upon arrival to a
Wikipedia page for the first time.

However, the fact that anyone can contribute to the
Wikipedia does not imply that every Wikipedia visitor be-
comes an author (actually, only a very small fraction of visitors
contribute). And the fact that it is easy to contribute does not
mean that all authors contribute the same way, neither with the
same intensity. On the contrary, the number of contributions is
known to vary much from author to author [1]. But the pattern
of these differences, or, in other words, how equal or unequal
the contributions from different authors are, has not yet been
characterized in detail.

Indeed, in the last years there has been a great controversy
about this point. For instance, on September 4th, 2006, Aaron
Swartz included a quote from Wikipedia’s founder, Jimmy
Wales, in his blog [2] where Wales argued that the majority
of the total number of contributions to the Wikipedia came
from a small group of authors. Swartz used a different metric,
counting the number of characters in each contribution (rather
than the number of contributions), and searched for the text
blocks that remained in the final version of the article. He then
applied this metric to several articles picked up at random, and
showed that less frequent contributors were actually providing
much of the articles contents. Despite that, as articles continue

to evolve and change over time, we will inevitably miss some
contribution effort if we focus only in the final revision of an
article. Perhaps some contributions are removed later in the
article’s life not remaining in the final version, but we should
take it into account if we want to have a complete picture of
the mechanisms found in the Wikipedia.

To analyze what is actually happening in this respect, in
this paper we show the results of calculating the level of
inequality in the contributions to several language editions of
the Wikipedia, using the Gini coefficient (a well-known metric
to measure inequality distributions introduced by Conrado
Gini). This coefficient was originally thought to analyze the
distribution of wealth among a population, but is used in
other domains as well to provide a quantitative measure of the
inequality of a distribution under study. By comparing the Gini
coefficients of the various language editions of the Wikipedia,
and its evolution over time, we can learn not only about how
unequal the contributions by different authors are, but also if
it is converging (or not) to some value.

More in detail, we have considered the top-ten Wikipedia
language editions, according to their total number of articles
(which will allow comparison of results among different
language editions, as well as the search for peculiarities
and similarities). We calculated the sum of the number of
contributions made by authors for each language edition,
and then, obtained the Gini coefficient of this overall effort.
This coefficient will give information about the inequality
in contributions from the whole group of authors, for every
language edition considered in our study. But, taking into
account that the activity of authors may change over time, we
have also calculated the Gini coefficient for the contributions
to each edition on a monthly basis as well.

As a result, we have obtained a good picture of the evolution
of inequality of contributions over time for all the studied
editions. This picture shows interesting patterns, such as a
tendency to converge to a stable Gini coefficient after some
oscillations during the early life of the editions, despite the
tremendous growth in number of authors and articles. In
addition to this, we also found relevant differences among the
editions under study.

In the following sections, we first revisit some previous
research about the contribution of users to Wikipedia. Then,
we present our methodology for measuring the inequality
of contributions to the Wikipedia, for the top-ten language
editions, followed by results and discussion on them. Finally,

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

1530-1605/08 $25.00 © 2008 IEEE 1

basis.
Moreover, the level of inequality was not correlated, in

many cases, with other parameters like the number of ar-
ticles or the number of authors. For example, the Japanese
Wikipedia, which is in the 4th place by its number of articles,
and in the 5th place attending its total number of authors,
presented the most equal pattern regarding the aggregate
number of contributions. Other language editions, like German
and especially English, with a higher number of authors,
showed a higher level of inequality. This reflects that it is
not the number of authors producing contents or the total
number of articles being modified what determines the level of
inequality in a certain community of users. Other behavioral
and social issues could be affecting how equal or unequal those
contributions are.

The second remarkable conclusion is that the evolution over
time of this inequality level has remained almost stable over
the months in every language edition. We found that the typical
value of the Gini coefficient per month was situated between
the 80% and 85% limits in every case, at least for the last
two years period. In the ancient history of these language
editions, we found a very variable behavioral pattern at the
very beginning of the graphs. But later, we found a common
growing trend of the inequality level in every language edition,
just until it reaches the standard margin mentioned above.
This is also very interesting, because it probably points out
a stability value towards which every edition of Wikipedia
tends to evolve, thus possibly giving us a hint about the level
of maturity achieved by a certain language edition.

Thus, we have found not only that the inequality of the
aggregated number of contributions is very high, but also that
this level of inequality has remained somewhat constant in the
recent history of every language edition. We should remark
that we need both data to sustain these hypotheses, because as
we have shown previously, the Gini coefficient of the aggregate
number of contributions is merely a useful, but not definitive,
indicator of the real behavior of the communities of users we
analyzed.

Our future lines of research include considering the size
of the contributions made by each author in this analysis,
(possibly in number of characters and in number of words),
thus reflecting the real amount of data added or deleted from
the Wikipedia by an author. Hence, we would be able to offer
another interesting point of view to get insight into the inner
behavioral patterns of the Wikipedia.

REFERENCES

[1] A. Kittur, E. Chi, B. A. Pendleton, B. Suh, and T. Mytkowicz, “Power
of the few vs. wisdom of the crowd: Wikipedia and the rise of the
bourgeoisie,” in Proceedings of the 25th Annual ACM Conference on
Human Factors in Computing Systems (CHI 2007), Apr./May 2007.

[2] A. Swartz. (2006, Sep.) Who writes wikipedia. [Online]. Available:
http://www.aaronsw.com/weblog/whowriteswikipedia

[3] C. Gini, “On the measure of concentration with especial reference to
income and wealth,” in Cowless Comission, 1936.

[4] R. Dorfman, “A formula for the gini coefficient,” The Review of
Economics and Statistics, no. 61, pp. 146–149, Mar. 1979.

[5] J. A. Mills et al., “Statistical inference via bootstrapping for measures of
inequality,” Epidemiological Bulletin, vol. 22, no. 12, Mar./Apr. 1997.

[6] C. Castillo-Salgado et al., “Measuring health inequalities: Gini coeffi-
cient and concentration index,” Epidemiological Bulletin, vol. 22, no. 1,
Mar. 2001.

[7] A. Wagstaff et al., “On the measurements of inequalities in health,” Soc.
Sci. Med., vol. 33, no. 5, pp. 545–577, 1991.

[8] G. von Krogh, S. Spaeth, and K. R. Lakhani, “Community, joining, and
specialization in Open Source Software innovation: A case study,” MIT
Sloan Working Paper No. 4413-03, 2003.

[9] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of Open Source software development: Apache and Mozilla,” ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,
pp. 309–346, 2002.

[10] S. Koch and G. Schneider, “Effort, cooperation and coordination in an
open source software project: GNOME,” Information Systems Journal,
vol. 12, no. 1, pp. 27–42, 2002.

[11] J. Voss, “Measuring wikipedia,” in Proceedings of the ISSI 2005, Jul.
2005.

[12] F. B. Viegas, M. Wattenberg, and K. Dave, “Studying cooperation and
conflict between authors with history flow visualizations,” in Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
Apr. 2004, pp. 575–582.

[13] F. B. Viegas, M. Wattenberg, J. Kriss, and F. van Ham, “Talk before
you type: Coordination in wikipedia,” in Proceedings of the 40th An-
nual Hawaii International Conference on System Sciences (HICSS’07).
Computer Society Press, Jan. 2007, p. p. 78a.

[14] B. Stvilia, M. Twidale, L. Gasser, and L. Smith,
“Information quality discussions in wikipedia,” UIUCLIS,
Technical Report ISRN 2005/2+CSCW, 2005. [Online]. Available:
http://mailer.fsu.edu/b̃stvilia/papers/qualWiki.pdf

[15] ——, “Information quality in a community-based encyclopedia,” in
Knowledge Management: Nurturing Culture, Innovation, and Technol-
ogy - Proceedings of the 2005 International Conference on Knowledge
Management, S. Hawamdeh, Ed., Charlotte, NC: World Scientific Pub-
lishing Company, 2005, pp. 101–113.

[16] B. Stvilia, M. Twidale, L. Smith, and L. Gasser, “Assessing information
quality of a community-based encyclopedia,” in Proceedings of the In-
ternational Conference on Information Quality - ICIQ 2005, Cambridge,
MA, USA, 2005, pp. 442–454.

[17] ——. (2006) Information quality work organization in wikipedia.
(Under review). [Online]. Available:
http://mailer.fsu.edu/b̃stvilia/papers/stvilia wikipedia infoWork p.pdf

[18] D. M. Wilkinson and B. A. Huberman, “Assessing the
value of coooperation in wikipedia,” 2007. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0702140

[19] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer, “Se-
mantic wikipedia,” in WWW ’06: Proceedings of the 15th international
conference on World Wide Web. New York, NY, USA: ACM Press,
2006, pp. 585–594.

[20] M. Krotzsch, D. Vrandecic, and M. Volkel, “Wikipedia and the
semantic web - the missing links,” 2005. [Online]. Available:
citeseer.ist.psu.edu/krotzsch05wikipedia.html

[21] M. Strube and S. P. Ponzetto, “Wikirelate! computing semantic related-
ness using wikipedia,” in Proceedings of the 21th National Conference
on Artificial Intelligence (AAAI06), Boston, Massachusetts, USA, Jul.
16–20, 2006.

[22] T. Holloway, M. Bozicevic, and K. Borner, “Analyzing and visualizing
the semantic coverage of wikipedia and its authors,” 2005. [Online].
Available: http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0512085

[23] D. Anthony, S. W. Smith, and T. Williamson, “Explaining quality in
internet collective goods: Zealots and good samaritans. the case of
wikipedia,” Nov. 2005.

[24] R. A. Ghosh and V. V. Prakash, “The orbiten free software survey,” First
Monday, vol. 5, no. 7, May 2000,
http://www.firstmonday.dk/issues/issue5 7/ghosh/.

[25] G. Robles, J. M. Gonzalez-Barahona, and J.-J. Merelo, “Beyond exe-
cutable source code: The importance of other source artifacts in software
development (a case study),” Journal of Systems and Software, vol. 79,
no. 9, pp. 1233–1248, September 2006.

Proceedings of the 41st Hawaii International Conference on System Sciences - 2008

7

Jesus M. Gonzalez-
Barahona

[PDF] from urjc.es

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

On the inequality of contributions to Wikipedia

Felipe Ortega, Jesus M Gonzalez-Barahona, Gregorio Robles

2008/1/7

Hawaii International Conference on System Sciences, Proceedings of the 41st Annual

304-304

IEEE

Abstract—Wikipedia is one of the most successful examples of massive collaborative
content development. However, many of the mechanisms and procedures that it uses are
still unknown in detail. For instance, how equal (or unequal) are the contributions to it has
been discussed in the last years, with no conclusive results. In this paper, we study exactly
that aspect by using Lorenz curves and Gini coefficients, very well known instruments to
economists. We analyze the trends in the inequality of distributions for the ten biggest ...

Cited by 104

On the inequality of contributions to Wikipedia
F Ortega, JM Gonzalez-Barahona, G Robles - Hawaii International Conference on System Sciences, …, 2008
Cited by 104 - Related articles - All 7 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2007 2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 07:18 PM

Determinism and Evolution

Israel Herraiz
Universidad Rey Juan Carlos

Madrid, Spain
herraiz@gsyc.es

Jesus M. Gonzalez-
Barahona

Universidad Rey Juan Carlos
Madrid, Spain

jgb@gsyc.es

Gregorio Robles
Universidad Rey Juan Carlos

Madrid, Spain
grex@gsyc.es

ABSTRACT

It has been proposed that software evolution follows a Self-
Organized Criticality (SOC) dynamics. This fact is sup-
ported by the presence of long range correlations in the
time series of the number of changes made to the source
code over time. Those long range correlations imply that
the current state of the project was determined time ago. In
other words, the evolution of the software project is governed
by a sort of determinism. But this idea seems to contradict
intuition. To explore this apparent contradiction, we have
performed an empirical study on a sample of 3, 821 libre
(free, open source) software projects, finding that their evo-
lution projects is short range correlated. This suggests that
the dynamics of software evolution may not be SOC, and
therefore that the past of a project does not determine its
future except for relatively short periods of time, at least for
libre software.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Reverse engineering, Version control ;
D.2.9 [Software Engineering]: Management—Life cycle,
Software configuration management, Time estimation

General Terms

Theory

Keywords

software evolution, time series analysis, self-organized criti-
cality, long term process, short term process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08,May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

1. INTRODUCTION
Libre1 software development has been traditionally a source

of strange cases of software evolution. The first to report one
of those were Godfrey and Tu [8, 9]. Their findings suggested
that the classical Lehman’s laws of software evolution [15]
were not fulfilled in the case of Linux, because it was evolv-
ing at a growing rate (which in fact was still growing 5 years
later [21]).

Those cases raised the question of whether libre software
evolves differently than propietary software, and whether
the laws of software evolution are a valid approach for an
universal theory of software evolution.

Although these questions have been addressed many times
[14], most of the findings and models exposed on those works
have failed to provide the theoretical background needed for
a proper and universal theory of software evolution. One
study that addressed the problem was Wu, in his PhD the-
sis [26], who among other interesting findings proposed that
the evolution of libre software was governed by a Self Orga-
nized Criticality (SOC) dynamics.

This conclusion was supported by the presence of long
range correlated time series in a set of 11 projects. Re-
gardless the suitability of the selected projects for this kind
of study, the limited amount of cases studies, or even the
methodology used, we find the idea of long range correlated
processes in software evolution as contrary to common intu-
ition. Long range correlation would mean that the current
state of the project is determined (or at least, heavily in-
fluenced) by events that took place long time ago. In other
words, the evolution of libre software is governed by a sort
of determinism.

In order to explore if this kind of dynamics is a property
of libre software, we have selected a large (3, 821) sample of
projects, performing an analysis similar to the one by Wu.
We have studied the daily time series of changes, focusing
on deciding whether their profile were short or long range
correlated.

The projects were obtained out of the whole population of
projects stored in SourceForge.net, a well known hosting ser-
vice for libre software projects, that provides a web-based in-
tegrated development environment. The data was obtained
using the CVSAnalY SourceForge dataset2, maintained by
our research group.

1In this paper we will use the term “libre software” to re-
fer both to “free software”, as defined by the Free Software
Foundation, and “open source software”, as defined by the
Open Source Initiative.
2http://libresoft.es/Results/CVSAnalY SF

1

International ERCIM Symposium on Software
Evolution. ERCIM, 2007.

[4] A. Capiluppi and M. Michlmayr. Open Source
development, adoption and innovation, chapter From
the Cathedral to the Bazaar: An Empirical Study of
the Lifecycle of Volunteer Community Projects, pages
31–44. IFIP: International Federation for Information
Processing. Springer Boston, 2007.

[5] F. Caprio, G. Casazza, M. D. Penta, and U. Villano.
Measuring and predicting the Linux kernel evolution.
In Proceedings of the International Workshop of
Empirical Studies on Software Maintenance, Florence,
Italy, 2001.

[6] J.-M. Dalle and P. A. David. The allocation of
software development resources in Open
Source production mode. Technical report, SIEPR
Policy paper No. 02-027, SIEPR, Stanford, USA, 2003.
http://siepr.stanford.edu/papers/pdf/02-27.pdf.

[7] A. R. Fasolino, D. Natale, A. Poli, and
A. Alberigi-Quaranta. Metrics in the development and
maintenance of software: an application in a large
scale environment. Journal of Software Maintence:
Research and Practice, 12:343–355, 2000.

[8] M. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the
International Conference on Software Maintenance,
pages 131–142, San Jose, California, 2000.

[9] M. Godfrey and Q. Tu. Growth, evolution, and
structural change in open source software. In
Internation Workshop on Principles of Software
Evolution, Vienna, Austria, September 2001.

[10] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles.
Forecasting the number of changes in Eclipse using
time series analysis. In International Workshop on
Mining Software Repositories. IEEE Computer
Society, 2007.

[11] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, and
D. M. German. On the prediction of the evolution of
libre software projects. In IEEE International
Conference on Software Maintenance, pages 405–414.
IEEE Computer Society, 2007.

[12] J. Howison, M. Conklin, and K. Crowston.
FLOSSMole: a collaborative repository for FLOSS
research data and analyses. International Journal of
Information Technology and Web Engineering,
1(3):17–26, July-September 2006.

[13] C. F. Kemerer and S. Slaughter. An empirical
approach to studying software evolution. IEEE
Transactions on Software Engineering, 25(4):493–509,
1999.

[14] S. Koch. Evolution of Open Source Software systems -
a large-scale investigation. In Proceedings of the 1st
International Conference on Open Source Systems,
Genova, Italy, July 2005.

[15] M. M. Lehman and L. A. Belady, editors. Program
Evolution. Processes of Software Change. Academic
Press Inc., 1985.

[16] M. M. Lehman, J. F. Ramil, and U. Sandler. An
approach to modelling long-term growth trends in
software systems. In Internation Conference on
Software Maintenance, pages 219–228, Florence, Italy,
November 2001.

[17] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and laws of software
evolution - the nineties view. In METRICS ’97:
Proceedings of the 4th International Symposium on
Software Metrics, page 20, nov 1997.

[18] N. H. Madhavji, J. Fernandez-Ramil, and D. E. Perry,
editors. Software Evolution and Feedback. Theory and
Practice. Wiley, 2006.

[19] Y. Peng, F. Li, and A. Mili. Modeling the evolution of
operating systems: An empirical study. The Journal of
Systems and Software, 80(1):1–15, 2007.

[20] E. S. Raymond. The cathedral and the bazar. First
Monday, 3(3), March 1998.
http://www.firstmonday.dk/issues/issue3 3/raymond/.

[21] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and
I. Herraiz. Evolution and growth in large libre
software projects. In Proceedings of the International
Workshop on Principles in Software Evolution, pages
165–174, Lisbon, Portugal, September 2005.

[22] G. Robles, J. J. Merelo, and J. M. Gonzalez-Barahona.
Self-organized development in libre software: a model
based on the stigmergy concept. In Proceedings of the
6th International Workshop on Software Process
Simulation and Modeling (ProSim 2005), St.Louis,
Missouri, USA, May 2005.

[23] R. H. Shumway and D. S. Stoffer. Time Series
Analysis and Applications. With R Examples. Springer
Texts in Statistics. Springer, 2006.

[24] W. M. Turski. Reference model for smooth growth of
software systems. IEEE Transactions on Software
Engineering, 22(8):599–600, 1996.

[25] W. M. Turski. The reference model for smooth growth
of software systems revisited. IEEE Transactions on
Software Engineering, 28(8):814–815, 2002.

[26] J. Wu. Open Source Software evolution and its
dynamics. PhD thesis, University of Waterloo, 2006.

[27] J. Wu, R. Holt, and A. E. Hassan. Empirical evidence
for SOC dynamics in software evolution. In IEEE
International Conference on Software Maintenance,
pages 244–254. IEEE Computer Society, 2007.

[28] C. C. H. Yuen. An empirical approach to the study of
errors in large software under maintenance. In
Proceedings of the International Conference on
Software Maintenance, 1985.

[29] C. C. H. Yuen. A statistical rationale for evolution
dynamics concepts. In Proceedings of the International
Conference on Software Maintenance, 1987.

[30] C. C. H. Yuen. On analyzing maintenance process
data at the global and detailed levels. In Proceedings
of the International Conference on Software
Maintenance, pages 248–255, 1988.

9

Jesus M. Gonzalez-
Barahona

[PDF] from researchgate.net

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Determinism and evolution

Israel Herraiz, Jesus M Gonzalez-Barahona, Gregorio Robles

2008/5/10

Proceedings of the 2008 international working conference on Mining software repositories

1-10

ACM

Abstract It has been proposed that software evolution follows a Self-Organized Criticality
(SOC) dynamics. This fact is supported by the presence of long range correlations in the
time series of the number of changes made to the source code over time. Those long range
correlations imply that the current state of the project was determined time ago. In other
words, the evolution of the software project is governed by a sort of determinism. But this
idea seems to contradict intuition. To explore this apparent contradiction, we have ...

Cited by 25

Determinism and evolution
I Herraiz, JM Gonzalez-Barahona, G Robles - Proceedings of the 2008 international working …, 2008
Cited by 25 - Related articles - All 7 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 07:15 PM

Towards a Simplification of the Bug Report form in Eclipse

Israel Herraiz
Universidad Rey Juan Carlos

Madrid, Spain
herraiz@gsyc.es

Daniel M. German
University of Victoria

Canada
dmg@uvic.ca

Jesus M.
Gonzalez-Barahona

Universidad Rey Juan Carlos
Madrid, Spain

jgb@gsyc.es

Gregorio Robles
Universidad Rey Juan Carlos

Madrid, Spain
grex@gsyc.es

ABSTRACT

We believe that the bug report form of Eclipse contains too
many fields, and that for some fields, there are too many
options. In this MSR challenge report, we focus in the case
of the severity field. That field contains seven different levels
of severity. Some of them seem very similar, and it is hard to
distinguish among them. Users assign severity, and develop-
ers give priority to the reports depending on their severity.
However, if users can not distinguish well among the various
severity options, they will probably assign different priorities
to bugs that require the same priority. We study the mean
time to close bugs reported in Eclipse, and how the severity
assigned by users affects this time. The results shows that
classifying by time to close, there are less clusters of bugs
than levels of severity. We therefore conclude that there is
a need to make a simpler bug report form.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; K.6.3 [Software management]: Soft-
ware maintenance

General Terms

Management

Keywords

bug report, bug tracking system, Eclipse, MSR Challenge

1. INTRODUCTION
Bug reporting is an important task for the sustainability

of a libre software project [3]. Libre software projects rely on
their users for testing and verification: “With enough eye-
balls any bug is shallow” (also known as Linus Law) [2]. Bug

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08,May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

Severity Description

Blocker Blocks development and/or testing
work.

Critical Crashes, loss of data, severe memory
leak.

Major Major loss of function.
Normal (no description given)
Minor Minor loss of function, or other

problem where easy workaround is
present.

Trivial Cosmetic problem like misspelled
words or misaligned text

Enhancement Request for enhancement

Table 1: Types of severity for bugs. Source:
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html

reporters (those submitting bugs) are important members of
the communities behind libre projects. Hence it is impor-
tant to constantly evaluate if the defect tracking system is
satisfying the needs of both the users and the developers. In
particular, we would like to know if it is possible and nec-
essary to simplify the defect reporting form used in Eclipse
without losing its effectiveness.

Software developers are usually unable to cope with all
the bugs that are notified as they are submitted. They need
to prioritize them. They need to determine, for any partic-
ular bug, how important it is, and allocate their time and
resources according to such prioritization. Bug tracking sys-
tems allow reporters to select a severity for the bug they have
found. This information is expected to be useful to devel-
opers, who do not have to sort through every single report
to attend those with a greater severity first and those lesser
one.

Bugzilla has become one the most pervasive bug tracking
system in the libre software world. It was originally devel-
oped by the Mozilla project to help them manage and track
defects. In addition to Eclipse, Bugzilla is used by other
well-known projects such as GNOME and KDE. In Bugzilla
every bug is labeled with a severity attribute which can take
one of the seven types described in table 1. Those defini-
tions are part of the default installation of Bugzilla, and are
included in the bug reporting guidelines of Eclipse.

One of the major problems when assigning severity to a
bug is that a reporter might not be the best qualified to de-

Summarizing, some of the requirements of the method are
not completely fulfilled for the raw data used in this report.
This supposes some threats to the validity of the study. We
have tested some of the threats, and have found that the
results are similar that using the raw data. In any case,
the study should use a treatment for the data, in order to
obtain more coherent populations. Furthermore, we have
used aggregated data. The study should be repeated using
a breakdown process, hence obtaining more coherent groups
of bugs (for instance, studying each component separately).

We plan to do so and overcome the possible threats to the
validity of this study in a further work.

6. CONCLUSIONS AND FURTHERWORK
We believe that the report forms of Bugzilla (the bug

tracking system used by Eclipse) are too complex. There
are too many fields, and for each field, too many options,
and that some of these options can be removed without af-
fecting the way bugs are handled.

In this study, we have focused in the fields for severity and
priority. We demonstrate that the severity of defects can be
reduced from seven options to three, and that priority can
be reduced from five options to three.

When properly used the severity field provides valuable
information to the developers. Unfortunately not every bug
reporter is capable of using the current classification. Per-
haps a solution is to leave this responsibility to a bug master:
the report classifies the bug based on three categories (im-
portant, non-important, and request for enhancement), and
the bug master further classifies the bug using the current
seven.

While developers are using only three priorities, not all
developers are using them in a consistent manner. Some
never use priority 1 and 2, and some never use 4 and 5.
This can lead to confusion. We strongly recommend that
the number of priorities is reduced to 3: high, medium and
low.

We have also observed that there are two different pat-
terns of use of the priority field: few developers use them
to subclassify the severity field (they will classify each of
the critical types with P1, P2... etc; effectively ranking how
each of the bugs in each severity should be handled); while
others use them independently of the severity field (P1 or
P2 will always be used for highly critical bugs and P4 or
P5 will always be used for those with a very low severity).
This lack of uniformity might be confusing if one defect has
to be passed from one developer to another, and should be
addressed.

There is at least another practical implication. Bugzilla
designers tried to make Bugzilla universal. In order to ful-
fill this goal, they created many different levels of severity,
priority, etc, and created many possible fields for the report
forms. But people in Eclipse are not using them. Bugzilla
designers might not be getting any feedback on how other
projects use their system. For instance, if Bugzilla develop-
ers would find that most of the bugs severity may be labeled
only with three categories, they would have changed it time
ago (or at least make it customizable).

It is also interesting to mention that the defect tracking
system of FreeBSD has only three levels for severity and
three for priority. We would like to get access to the Bugzilla
databases of several Mozilla Foundation projects (the origi-
nal intended users of Bugzilla), and any other project using
it as its defect tracking system to evaluate and compare
how they use the bug severity and priority fields. However,
bug tracking databases are not usually made available to
researchers and third parties. This is unfortunate. Making
those databases available would help understand how they
are used, and, as this paper does, suggest improvements.

7. REFERENCES
[1] J. Maindonald and J. Braun. Data Analysis and

Graphics using R. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University
Press, 2006.

[2] E. Raymond. The Cathedral & the Bazaar. O’Reilly,
1999.

[3] L. Villa. How GNOME learned to stop worrying and
love the bug. In Talk at the Otawa Linux Symposium,
Otawa, July 2003.
http://tieguy.org/talks/OLS-2003-html/.

[4] L. Villa. Why everyone needs a bugmaster. In Talk at

linux.conf.au, Canberra, April 2005.
http://tieguy.org/talks/LCA-2005-paper-html/.

Jesus M. Gonzalez-
Barahona

[PDF] from herraiz.org

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Towards a simplification of the bug report form in eclipse

Israel Herraiz, Daniel M German, Jesus M Gonzalez-Barahona, Gregorio Robles

2008/5/10

Proceedings of the 2008 international working conference on Mining software repositories

145-148

ACM

Abstract We believe that the bug report form of Eclipse contains too many fields, and that for
some fields, there are too many options. In this MSR challenge report, we focus in the case
of the severity field. That field contains seven different levels of severity. Some of them seem
very similar, and it is hard to distinguish among them. Users assign severity, and developers
give priority to the reports depending on their severity. However, if users can not distinguish
well among the various severity options, they will probably assign different priorities to ...

Cited by 46

Towards a simplification of the bug report form in eclipse
I Herraiz, DM German, JM Gonzalez-Barahona… - Proceedings of the 2008 international working …, 2008
Cited by 46 - Related articles - All 3 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 07:26 PM

Using Social Network Analysis Techniques to

Study Collaboration between a FLOSS

Community and a Company

Juan Martinez-Romo1, Gregorio Robles2, Jesus M. Gonzalez-Barahona2,
2

1 Dpto. Lenguajes y Sistemas Informaticos, E.T.S.I. Informatica (UNED)
juaner@lsi.uned.es

2 Grupo de Sistemas y Comunicaciones, Universidad Rey Juan Carlos
{grex,jgb,mortuno}@gsyc.escet.urjc.es

Abstract. Because of the sheer volume of information available in
FLOSS repositories, simple analysis have to face the problems of fil-
tering the relevant information. Hence, it is essential to apply method-
ologies that highlight that information for a given aspect of the project.
In this paper, some techniques from the social sciences have been used
on data from version control systems to extract information about the
development process of FLOSS projects with the aim of highlighting sev-
eral processes that occur in FLOSS projects and that are difficult to ob-
tain by other means. In particular, the collaboration between the FLOSS
community and a company has been studied by selecting two projects
as case studies. The results highlight aspects such as efficiency in the
development process, release management and leadership turnover.

1 Introduction

Software projects are usually the collective work of many developers. In most
cases, and especially in the case of large projects, those developers are formally
organised in a well defined (usually hierarchical) structure, with clear guidelines
about how to interact with each other, and the procedures and channels to use.
Each team of developers is assigned to certain modules of the system, and only
in rare cases they work outside their territory. However, this is usually not
the case in FLOSS projects, where only loose (if any) formal structures can be
recognised. On the contrary, FLOSS developers usually have access to any part
of the software, and even in the case of large projects they can move more or
less freely from one module to another with only some restrictions imposed by
the common uses in the project, and the rules on which developers themselves
have agreed. A large mount of spontaneous interaction structures arise, evolve
and disappear without the intervention of a central control, yielding complex
networks.

Among complex networks, social network analysis (SNA) appear as a
method for analysing the structure and interactions of people and groups of

Please use the following format when citing this chapter:

for Information Processing, Volume 275; Open Source Development, Communities and Quality; Barbara Russo, Ernesto
Damiani, Scott Hissam, Björn Lundell, Giancarlo Succi; (Boston: Springer), pp. 171–186.

and Miguel Ortuño-Perez

Martinez-Romo, J., Robles, G., Gonzalez-Barahona, M. and Ortuño-Perez, M., 2008, in IFIP International Federation

186 Juan Martinez-Romo et al.

19. Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes
using historic databases. In Proceedings of the International Conference on Soft-
ware Maintenance, pages 120–130, October 2000.

20. Mark E. J. Newman. Scientific collaboration networks: I. network construction
and fundamental results. Phys. Rev. E 64, 016131, 2001.

21. Gregorio Robles. Empirical Software Engineering Research on Libre Software:
Data Sources, Methodologies and Results. PhD thesis, Escuela Superior de Cien-
cias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 2006.

22. Gregorio Robles, Jesus M. Gonzalez-Barahona, and Martin Michlmayr. Evolution
of volunteer participation in libre software projects: evidence from Debian. In
Proceedings of the 1st International Conference on Open Source Systems, pages
100–107, Genoa, Italy, July 2005.

23. Gregorio Robles, Stefan Koch, and Jesus M. Gonzalez-Barahona. Remote analysis
and measurement of libre software systems by means of the CVSAnalY tool. In
Proceedings of the 2nd ICSE Workshop on Remote Analysis and Measurement of
Software Systems (RAMSS), pages 51–56, Edinburgh, Scotland, UK, 2004.

24. Gregorio Robles, Juan Julian Merelo, and Jesus M. Gonzalez-Barahona. Self-
organized development in libre software: a model based on the stigmergy concept.
In Proceedings of the 6th International Workshop on Software Process Simulation
and Modeling (ProSim 2005), St.Louis, Missouri, USA, May 2005.

25. Gert Sabidussi. The centrality index of a graph. Psychometirka 31, 581-606, 1996.
26. Yuwan Ye, Kumiyo Nakakoji, Yasuhiro Yamamoto, and Kouichi Kishida. The

co-evolution of systems and communities in Free and Open Source software de-
velopment. In Stefan Koch and Stefan Koch, editors, Free/Open Source Software
Development, pages 59–82. Idea Group Publishing, Hershey, Pennsylvania, USA,
2004.

27. Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. IEEE Transactions on Soft-
ware Engineering, 31(6):429–445, June 2005.

Jesus M. Gonzalez-
Barahona

[PDF] from uned.es

Authors

Publication date

Book

Pages

Publisher

Description

Total citations

Scholar articles

Using social network analysis techniques to study collaboration between a floss
community and a company

Juan Martinez-Romo, Gregorio Robles, Jesus M Gonzalez-Barahona, Miguel Ortuño-Perez

2008/1/1

Open Source Development, Communities and Quality

171-186

Springer US

Abstract Because of the sheer volume of information available in FLOSS repositories, simple
analysis have to face the problems of filtering the relevant information. Hence, it is essential
to apply methodologies that highlight that information for a given aspect of the project. In this
paper, some techniques from the social sciences have been used on data from version
control systems to extract information about the development process of FLOSS projects with
the aim of highlighting several processes that occur in FLOSS projects and that are difficult ...

Cited by 22

Using social network analysis techniques to study collaboration between a floss community and a company
J Martinez-Romo, G Robles, JM Gonzalez-Barahona… - Open Source Development, Communities and Quality, 2008
Cited by 22 - Related articles - All 12 versions

Using Social Network Analysis Techniques to Study Collaboration between a FLOSS Community and a Company
G Robles, JM Gonzalez-Barahona, J Martinez-Romo - IFIP International Federation for Information Processing, 2010

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2010 2011 2012 2013 2014

*

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 07:37 PM

On the analysis of contributions from privileged users in virtual open
communities

Felipe Ortega, Daniel Izquierdo-Cortazar, Jesus M. Gonzalez-Barahona and Gregorio Robles
GSyC/LibreSoft

Universidad Rey Juan Carlos
Tulipan sn, 28933, Mostoles, Madrid. (SPAIN)

{jfelipe,dizquierdo,jgb,grex}@gsyc.es

Abstract

Collaborative projects built around virtual communities
on the Internet have gained momentum over the last decade.
Nevertheless, their rapid growth rate rises some questions:
which is the most effective approach to manage and orga-
nize their content creation process? Can these communities
scale, controlling their projects as their size continues to
grow over time? To answer these questions, we undertake
a quantitative analysis of privileged users in FLOSS deve-
lopment projects and in Wikipedia. From our results, we
conclude that the inequality level of user contributions in
both types of initiatives is remarkably distinct, even though
both communities present almost identical patterns regard-
ing the number of distinct contributors per file (in FLOSS
projects) or per article (in Wikipedia). As a result, totally
open projects like Wikipedia can effectively deal with faster
growing rates, while FLOSS projects may be affected by
bottlenecks on committers who play critical roles.

1. Introduction

Over the last decade, we have witnessed the advent of
radically new trends regarding the way virtual communities
start up and evolve on the Internet. The so-called Web 2.0
technologies [27] have definitely changed the way we con-
ceive and implement collaborative projects. Forums, blogs,
RSS channels, mashups, wikis, etc. have moved the focus
of the content creation process from webmasters and ser-
vice providers to final users, unleashing the real power of a
worldwide network connecting a global village.

Collaborative organization has been a key feature of
many of the most important collective initiatives and
projects along the Internet history. Almost all of them,
though, have been focused on the development of Free, Li-
bre and Open Source Software (FLOSS): GNU/FSF, Linux,

Apache, Mozilla, etc. are prominent examples of these
open, collaborative initiatives, whose working philosophy
was described in detail in a seminal work by Raymond [30],
and further explored by Coffin [9]. However, Web 2.0 tech-
nologies expanded the range of these collective initiatives
to include virtually any kind of intangible content that we
can represent in the digital world: images, sounds and mu-
sic clips, video content, information repositories, help fo-
rums, personal blogs, and even universal encyclopaedias
like Wikipedia (http://www.wikipedia.org).

Some authors [14], [4] defend the thesis that this inno-
vative approach in collaborative virtual communities will
continue to increase its influence in due course. James
Surowiecki explores in [37] the implications of collabora-
tive content creation initiatives in the way we understand
collective intelligence, and how it shapes and affects many
aspects of our new networked reality. For sure, large-scale
projects such as Wikipedia, involving millions of users con-
tributing in many different languages, compiling more than
8 million articles in its top-ten language editions, challenge
any limits previously foreseen by the original creator of the
wiki concept [22].

Presently, open content initiatives face some of the same
evolution paths already followed by FLOSS development
projects some years ago. In this context, some natural ques-
tions show up: can we find any similarities between FLOSS
development projects and collaborative, open content cre-
ation initiatives? Does the non-technical nature of open
content cause the attraction of a higher number of contribu-
tors? Does it affect the frequency and distribution of contri-
butions from project participants? Can these projects scale
effectively, in order to avoid becoming victims of their own
success?

In this paper, we tackle these questions analyzing con-
tributions from privileged users in FLOSS development
projects, as well as in Wikipedia, the epitome of open con-
tent creation initiatives at present time. With privileged

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

[7] C. Castillo-Salgado et al. Measuring health inequalities:
Gini coefficient and concentration index. Epidemiological
Bulletin, 22(1), Mar. 2001.

[8] A. Ciffolilli. Phantom authority, selfselective recruitment
and retention of members in virtual communities: The case
of wikipedia. First Monday, 8(12), December 2003.

[9] J. Coffin. Analysis of open source principles in diverse col-
laborative communities. First Monday, 11(6), 2006.

[10] M. J. Crawley. The R Book. Wiley, Chichester, June 2007.
[11] K. Crowston and J. Howison. The social structure of open

source software development teams. In Proceedings of the
International Conference on Information Systems, Seattle,
WA, USA, 2003.

[12] K. Crowston, B. Scozzi, and S. Buonocore. An explorative
study of open source software development structure. In
Proceedings of the ECIS, Naples, Italy, 2003.

[13] T. DeMarco and T. Lister. Peopleware : Productive Projects
and Teams, 2nd Ed. Dorset House Publishing Company,
Incorporated, 1999.

[14] C. Dibona, M. Stone, and D. Cooper. Open Sources 2.0 :
The Continuing Evolution. O’Reilly Media, Inc., October
2005.

[15] R. Dorfman. A formula for the gini coefficient. The Review
of Economics and Statistics, (61):146–149, Mar. 1979.

[16] K. Fogel. Producing Open Source Software : How to Run
a Successful Free Software Project. O’Reilly Media, Inc.,
2005.

[17] D. M. German. The GNOME project: a case study of open
source, global software development. Journal of Software
Process: Improvement and Practice, 8(4):201–215, 2004.

[18] D. M. German. Using software trails to reconstruct the evo-
lution of software. Journal of Software Maintenance and
Evolution: Research and Practice, 16(6):367–384, 2004.

[19] C. Gini. On the measure of concentration with especial ref-
erence to income and wealth. In Cowless Comission, 1936.

[20] P. Giuri, M. Ploner, F. Rullani, and S. Torrisi. Skills, divi-
sion of labor and performance in collective inventions. ev-
idence from the open source software. LEM Papers Se-
ries 2004/19, Laboratory of Economics and Management
(LEM), Sant’Anna School of Advanced Studies, Pisa, Italy,
Oct 2004.

[21] A. Kittur, B. A. Pendleton, B. Suh, and T. Mytkowicz. Power
of the few vs. wisdom of the crowd: Wikipedia and the rise
of the bourgeoisie. In Proceedings of the 25th Annual ACM
Conference on Human Factors in Computing Systems (CHI
2007). ACM, April 2007.

[22] B. Leuf and W. Cunningham. The Wiki Way: Collaboration
and Sharing on the Internet. Addison-Wesley Professional,
April 2001.

[23] L. Lopez, G. Robles, J. M. G. Barahona, and I. Herraiz.
Applying social network analysis techniques to community-
driven libre software projects. International Journal of In-
formation Technology and Web Engineering, 1(3):27–48,
July-September 2006.

[24] A. J. Lotka. The frequency distribution of scientific pro-
ductivity. Journal of the Washington Academy of Sciences,
16(12):317–324, 1926.

[25] M. Michlmayr. Managing volunteer activity in free software
projects. In Proceedings of the USENIX 2004 Annual Tech-
nical Conference, FREENIX Track, pages 93–102, Boston,
USA, 2004.

[26] J. A. Mills et al. Statistical inference via bootstrapping for
measures of inequality. Epidemiological Bulletin, 22(12),
Mar./Apr. 1997.

[27] T. O’Reilly. O’reilly – what is web 2.0.
[28] F. Ortega and J. M. Gonzalez-Barahona. Quantitative anal-

ysis of the wikipedia community of users. In WikiSym ’07:
Proceedings of the 2007 international symposium on Wikis,
pages 75–86, New York, NY, USA, 2007. ACM.

[29] R Development Core Team. R: A Language and Environ-
ment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

[30] E. S. Raymond. The Cathedral & the Bazaar. O’Reilly,
January 2001.

[31] B. R.B., H. S.S., T. J.E., and P. D.A. Comparison of skew-
ness coefficient, coefficient of variation, and gini coeffi-
cient as inequality measures within populations. Oecologia,
78(3):394–400, Mar. 2004.

[32] J. M. Reagle. Do as i do: authorial leadership in wikipedia.
In WikiSym ’07: Proceedings of the 2007 international sym-
posium on Wikis, pages 143–156, New York, NY, USA,
2007. ACM.

[33] G. Robles and J. M. Gonzalez-Barahona. Contributor
turnover in libre software projects. In Proceedings of the 2nd
International Conference on Open Source Systems, Como,
Italy, July 2006.

[34] F. Rullani. Dragging developers towards the core. how the
free/libre/open source software community enhances devel-
opers’ contribution. LEM Papers Series 2006/22, Labo-
ratory of Economics and Management (LEM), Sant’Anna
School of Advanced Studies, Pisa, Italy, Sep 2006.

[35] J. Sandred. Managing Open Source Projects. Wiley Com-
puter Publishing, 2001.

[36] S. Spek, E. Postma, and J. Herik. Wikipedia: organisation
from a bottom-up approach, Nov 2006.

[37] J. Surowiecki. The Wisdom of Crowds. Anchor, August
2005.

[38] V. Thomas, Y. Wang, and X. Fan. Measuring education in-
equality - gini coefficients of education. Policy Research
Working Paper Series 2525, The World Bank, Jan. 2001.

[39] W. N. Venables and B. D. Ripley. Modern Applied Statistics
with S. Springer, September 2003.

[40] J. Voss. Measuring wikipedia. In International Conference
of the International Society for Scientometrics and Informet-
rics : 10th. ISSI, July 2005.

[41] A. Wagstaff et al. On the measurements of inequalities in
health. Soc. Sci. Med., 33(5):545–577, 1991.

[42] M. Wattenberg, F. Viégas, and K. Hollenbach. Visualizing
activity on wikipedia with chromograms. pages 272–287.
2007.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

Using Software Archaeology To Measure Knowledge Loss in Software
Projects Due To Developer Turnover ∗

Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega and Jesus M. Gonzalez-Barahona
GSyC/LibreSoft

Universidad Rey Juan Carlos (Madrid, Spain)
{dizquierdo, grex, jfelipe, jgb}@gsyc.escet.urjc.es

Abstract

Developer turnover can result in a major problem
when developing software. When senior developers
abandon a software project, they leave a knowledge gap
that has to be managed. In addition, new (junior) devel-
opers require some time in order to achieve the desired
level of productivity. In this paper, we present a method-
ology to measure the effect of knowledge loss due to de-
veloper turnover in software projects. For a given soft-
ware project, we measure the quantity of code that has
been authored by developers that do not belong to the
current development team, which we define as orphaned
code. Besides, we study how orphaned code is managed
by the project. Our methodology is based on the concept
of software archaeology, a derivation of software evolu-
tion. As case studies we have selected four FLOSS (free,
libre, open source software) projects, from purely driven
by volunteers to company-supported. The application
of our methodology to these case studies will give in-
sight into the turnover that these projects suffer and how
they have managed it and shows that this methodology
is worth being augmented in future research.

Keywords: developer turnover, orphaning, software
risk management, software archaeology

1. Introduction

Software development is an activity intense in hu-
man resources. The work of many developers is re-
quired to create almost any non-trivial piece of code.

∗This work has been funded in part by the European Commission,
under the FLOSSMETRICS (FP6-IST-5-033547), QUALOSS (FP6-
IST-5-033547) and QUALIPSO (FP6-IST-034763) projects, and by
the Spanish CICyT, project SobreSalto (TIN2007-66172).

The lifespan of a software system can range from sev-
eral years to decades. In such scenarios, the develop-
ment team in charge of the software may suffer from
turnover: old developers leave while new developers
join the project. With the abandonment of old, senior
developers, projects lose human resources experienced
both with the details of the software system and with the
organizational and cultural circumstances of the project.
New developers will need some time to become famil-
iar with both issues. In this regard, the time for volun-
teers to become core contributors to FLOSS 1 projects
has been measured to be 30 months in mean, since their
first contribution [11].

Although maintaining the current development team
could be thought as a plausible solution to mitigate
this problem, turnover is usually unavoidable. Being
a highly intellectual work, developers have a tendency
to lose the original motivation on the software system as
time passes by, and they have the natural desire to search
for new objectives. In this sense, high turnovers have
been observed in most large FLOSS projects, where sev-
eral generations of successive development teams have
been identified [21]. Although these environments are
partially, if not mostly, driven by volunteers, turnover in
industrial environments is also high.

In this paper, we present a methodology to measure
the effect of developer turnover in software projects. It
is based on quantifying the knowledge that developers
contribute to a project based on the number of lines of
code written for it. In case developers leave, their lines
become orphaned. The amount of orphaned lines can
be considered as a measure of the knowledge that the

1Through this paper we will use the term FLOSS to refer to “free,
libre, open source software”, including code that conforms either to the
definition of “free software” (according to the Free Software Founda-
tion) or “open source software” (according to the Open Source Initia-
tive).

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

common situation for many managers that use, but do
not participate in FLOSS projects. Insiders could use
this information to avoid risks (e.g. modules plenty of
orphaned lines where the current core team has never
worked on) or to strengthen the maintenance activities
of a project (e.g. detecting those ”dead” modules).

All in all, the presented methodology, based on the
idea of software archaeology, provides useful informa-
tion to address the issue of developer turnover in soft-
ware projects, even if some limitations, both technical
(gate-keeper effect, granularity, etc.) and conceptual
(old code vs. young code, the effect of the quality, full
memory), have still to be dealt with in the future.

References

[1] B. W. Boehm. Software risk management: Principles
and practices. IEEE Softw., 8(1):32–41, 1991.

[2] B. W. Boehm and T. DeMarco. Guest editors’ intro-
duction: Software risk management. IEEE Software,
14(3):17–19, 1997.

[3] S. A. Conger. The New Software Engineering. Interna-
tional Thomson Publishing, 1994.

[4] T. De Marco and T. Lister. Peopleware : Productive
Projects and Teams, 2nd Ed. Dorset House Publishing
Company, Incorporated, 1999.

[5] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? Assessing the evidence
from change management data. IEEE Transactions on
Software Engineering, 27(1):1–12, 2001.

[6] K. Fogel. Producing Open Source Software : How to
Run a Successful Free Software Project. O’Reilly Media,
Inc., 2005.

[7] X. Ge, Y. Dong, and K. Huang. Shared knowledge con-
struction process in an open-source software develop-
ment community: an investigation of the gallery com-
munity. In ICLS ’06: Proceedings of the 7th interna-
tional conference on Learning sciences, pages 189–195.
International Society of the Learning Sciences, 2006.

[8] D. M. German. The GNOME project: a case study of
open source, global software development. Journal of
Software Process: Improvement and Practice, 8(4):201–
215, 2004.

[9] D. M. German. Using software trails to reconstruct the
evolution of software. Journal of Software Maintenance
and Evolution: Research and Practice, 16(6):367–384,
2004.

[10] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How
developers drive software evolution. In Proceedings of
the International Workshop on Principles in Software
Evolution, pages 113–122, Lisboa, Portugal, September
2005.

[11] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M.
González-Barahona. The processes of joining in global
distributed software projects. In GSD ’06: Proceedings

of the 2006 international workshop on Global software
development for the practitioner, pages 27–33, New
York, NY, USA, 2006. ACM Press.

[12] A. Hunt and D. Thomas. Software Archaeology. IEEE
Software, 19(2):20–22, March/April 2002.

[13] C. Hutchison. Personal knowledge, team knowledge,
real knowledge. EUROCON’2001, Trends in Communi-
cations, International Conference on., 1:247–250 vol.1,
2001.

[14] M. Michlmayr and B. M. Hill. Quality and the reliance
on individuals in free software projects. In Proceedings
of the 3rd Workshop on Open Source Software Engineer-
ing, pages 105–109, Portland, USA, 2003.

[15] M. Michlmayr, G. Robles, and J. M. Gonzalez-
Barahona. Volunteers in large libre software projects:
A quantitative analysis over time. In S. K. Sowe, I. G.
Stamelos, and I. Samoladas, editors, Emerging Free
and Open Source Software Practices, pages 1–24. Idea
Group Publishing, Hershey, Pennsylvania, USA, 2007.

[16] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source software development: Apache
and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology, 11(3):309–346, 2002.

[17] P. Oman and J. Hagemeister. Metrics for assessing
a software system’s maintainability. Software Mainte-
nance, 1992. Proceerdings., Conference on, pages 337–
344, Nov 1992.

[18] T. Otte, R. Moreton, and H. D. Knoell. Applied quality
assurance methods under the open source development
model. In COMPSAC, pages 1247–1252, 2008.

[19] D. L. Parnas. Software aging. In Proceedings of the In-
ternational Conference on Software Engineering, pages
279–287, Sorrento, Italy, May 1994.

[20] E. S. Raymond. The cathedral and the bazar. First
Monday, 3(3), March 1998.
http://www.firstmonday.dk/issues/
issue3_3/raymond/.

[21] G. Robles. Contributor turnover in libre software
projects. In Proceedings of the Second International
Conference on Open Source Systems, 2006.

[22] G. Robles, J. M. Gonzalez-Barahona, and
M. Michlmayr. Evolution of volunteer participa-
tion in libre software projects: evidence from Debian.
In Proceedings of the 1st International Conference on
Open Source Systems, pages 100–107, Genoa, Italy,
July 2005.

[23] F. V. Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history.
In International Conference on Software Maintenance,
pages 328–337, 2004.

[24] J. Sandred. Managing Open Source Projects. Wiley
Computer Publishing, 2001.

[25] L. Yu. Indirectly predicting the maintenance effort of
open-source software: Research articles. J. Softw. Maint.
Evol., 18(5):311–332, 2006.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

Jesus M. Gonzalez-
Barahona

[PDF] from ifipwg213.org

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Using software archaeology to measure knowledge loss in software projects
due to developer turnover

Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega, Jesus M Gonzalez-Barahona

2009/1/5

System Sciences, 2009. HICSS'09. 42nd Hawaii International Conference on

1-10

IEEE

Abstract Developer turnover can result in a major problem when developing software. When
senior developers abandon a software project, they leave a knowledge gap that has to be
managed. In addition, new (junior) developers require some time in order to achieve the
desired level of productivity. In this paper, we present a methodology to measure the effect of
knowledge loss due to developer turnover in software projects. For a given software project,
we measure the quantity of code that has been authored by developers that do not belong ...

Cited by 17

Using software archaeology to measure knowledge loss in software projects due to developer turnover
D Izquierdo-Cortazar, G Robles, F Ortega… - System Sciences, 2009. HICSS'09. 42nd Hawaii …, 2009
Cited by 17 - Related articles - All 10 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2008 2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 07:56 PM

Evolution of the core team of developers in libre software projects

Gregorio Robles, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC/LibreSoft, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jgb,herraiz}@gsyc.urjc.es

Abstract

In many libre (free, open source) software projects, most
of the development is performed by a relatively small num-
ber of persons, the “core team”. The stability and perma-
nence of this group of most active developers is of great im-
portance for the evolution and sustainability of the project.
In this position paper we propose a quantitative methodol-
ogy to study the evolution of core teams by analyzing in-
formation from source code management repositories. The
most active developers in different periods are identified,
and their activity is calculated over time, looking for core
team evolution patterns.

1. Introduction

Employee turnover is known to be high in the traditional
software industry since many years ago [1]. However, in
libre software1 projects the study of developer turnover has
not been an active research topic. Most of the attention in
this area has been focused on the organizational structure of
the projects [2], with little attention to the dynamics of the
developers.
A noteworthy contribution in this sense, although it does

not address the evolution of developer communities, is the
onion model [3], which shows how developers and users are
positioned in communities. In this model, it is possible to
differentiate among core developers (those who have a high
involvement in the project), codevelopers (with specific but
frequent contributions), active users (contributing only oc-
casionally) and passive users [4, 5].
This position paper shows how to better understand the

evolution of the most active group of developers contribut-
ing to a libre software project. A specific methodology
has been designed to quantitatively characterize a project in
the spectrum between these two scenarios, and to visualize
more in detail the evolution of the core team. The first steps
of this methodology, applied to a few projects, are explained

1In this paper we will use the term “libre software” to refer both to “free
software” and “open source software”.

in [6]. An extension and refinement of the methodology is
presented here.

2. Methodology

The methodology used in this study is based on retriev-
ing data about the activity of developers from source code
management repositories, which are mined using CVS-
AnalY [7]. This tool retrieves information about every com-
mit to the repository, and inserts it into a database where it
can be conveniently analyzed.
To characterize the evolution of the core team, first the

life of the project is split in periods of equal duration. Then
for every period i, the most active developers are identified
as CoreTeami. This is done by calculating the number of
commits during that period for the most active developers.
For each CoreTeami, its activity is tracked for the rest of
the life of the project (before and after period i). Hence,
for each period j, the number of commits is calculated for
all the developers in CoreTeami. Finally, the resulting
data (that represents the activity of the each CoreTeami

for all periods) is plotted in several formats, and collapsed
into some indexes that allow comparison and classification.
Because of several trade-offs, we have not considered a

single time span for periods. For the purposes of the study,
usually the most significant results are obtained by dividing
the history of the project into 10 or 20 periods.
After considering several alternatives, we have found

that fractions of 0.1 and 0.2 (that is, the top 10% and 20%)
are large enough to capture developers producing most of
the activity (usually more than 50%, reaching in many cases
as much as 90% or 95% of the total number of commits).

3. Outputs of the methodology

Our methodology provides both some graphs that help
to visualize the results and some data (in the form of arrays
and indexes).
The main output of the methodology is the

AbsoluteMatrix: a squared two dimensional array,
with the number of periods as range. Values for each

MSR 2009978-1-4244-3493-0/09/$25.00 © 2009 IEEE 167

the corresponding repository. Fortunately, this is the case
for a large fraction of libre software projects, including the
most relevant ones.

The methodology can be used to rank projects according
to their distance to the two extreme cases of “code gods”
and “series of generations”, using the produced indexes.
But it provides also a lot of insight on the evolution of the
core teams, by showing visually (both in graphs and maps)
the activity patterns of the developers forming the core team
in each period of the life of a project. This information can
be used to identify levels of smoothness in transitions, to
detect break points in the evolution of the core team, to un-
derstand the differences in activity of the core team in differ-
ent periods, or to estimate unevenness in the contributions
of the most active developers when compared to the rest of
them.

We have applied the methodology to a relevant case
study, using a well-known libre software project. Some fac-
tors not specifically discussed in this paper could influence
the appropriateness of the methodology. Among them, the
relevance of using the number of commits as a proxy for
the activity and importance of developers. For validating it,
we have studied some other parameters, such as the number
of changed lines, without finding meaningful differences.
However, an important problem remains open: to which ex-
tent other, non-coding activities (such as discussion, writing
of documentation, or even mediation between developers)
should be considered to better identify the core team of de-
velopers. This should be the focus of further research.

Another open field for research is the use of the method-
ology in classical (non-libre) software projects. The fact
that many developers in libre software projects are volun-
teers can provide very interesting information about the nat-
ural behavior of programmers, as these developers are self-
selected (i.e., there is no traditional, mandatory task assign-
ment as it can be found in the commercial world). In this
regard, one of the findings that should be further researched
is the amount of time for turnover. From our limited set
of projects we have seen that, for those projects with sev-
eral generations, the time span for a generation ranges from
three to five years. This could be indicative for a program-
mers moving to a different project to keep his motivation
and interest on his work high. Having developers enrolled
in companies (such as the cases of Mozilla and Evolution)
and volunteer developers in these projects could give further
insight to this question in subsequent research.

In any case, from our work we can conclude that the
study of the behavior of human resources in libre software
projects and in software engineering in general, and the re-
lationship between its join/leave patterns and the evolution
of the project, is a field worth to explore. This paper tries to
be a first step in this direction, focused on studying its dy-

namics, and on finding how projects cope with the changes
caused by it.

6. Acknowledgments

This work has been funded in part by the European
Commission, through projects FLOSSMetrics, FP6-IST-
5-033982, QUALOSS, FP6-IST-5-033547, and Qualipso,
FP6-IST-034763, and by the Spanish CICyT, project Sobre-
Salto (TIN2007-66172)

References

[1] B. W. Boehm, Ed., Software risk management. Piscat-
away, NJ, USA: IEEE Press, 1989.

[2] D. M. Germn, “The GNOME project: a case study of
open source, global software development,” Journal of
Software Process: Improvement and Practice, vol. 8,
no. 4, pp. 201–215, 2004.

[3] K. Crowston and J. Howison, “The social structure
of free and open source software development,” First
Monday, vol. 10, no. 2, February 2005.

[4] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two
case studies of Open Source software development:
Apache and Mozilla,” ACM Transactions on Software
Engineering and Methodology, vol. 11, no. 3, pp. 309–
346, 2002.

[5] T. Dinh-Trong and J. M. Bieman, “Open source soft-
ware development: A case study of freebsd,” in Pro-
ceedings of the 10th International Software Metrics
Symposium, Chicago, IL, USA, 2004.

[6] G. Robles and J. M. González-Barahona, “Contribu-
tor turnover in libre software projects,” in Open Source
Systems Conference, June 8-10, 2006, Como, Italy,
2006, pp. 273–286.

[7] G. Robles, S. Koch, and J. M. Gonzlez-Barahona, “Re-
mote analysis and measurement of libre software sys-
tems by means of the CVSAnalY tool,” in Proceed-
ings of the 2nd ICSE Workshop on Remote Analysis
and Measurement of Software Systems (RAMSS), Ed-
inburgh, Scotland, UK, 2004, pp. 51–56.

170

Jesus M. Gonzalez-
Barahona

[PDF] from urjc.es

Authors

Publication date

Conference

Pages

Publisher

Description

Total citations

Scholar articles

Evolution of the core team of developers in libre software projects

Gregorio Robles, Jesus M Gonzalez-Barahona, Israel Herraiz

2009/5/16

Mining Software Repositories, 2009. MSR'09. 6th IEEE International Working Conference on

167-170

IEEE

Abstract In many libre (free, open source) software projects, most of the development is
performed by a relatively small number of persons, the “core team”. The stability and
permanence of this group of most active developers is of great importance for the evolution
and sustainability of the project. In this position paper we propose a quantitative
methodology to study the evolution of core teams by analyzing information from source code
management repositories. The most active developers in different periods are identified, ...

Cited by 34

Evolution of the core team of developers in libre software projects
G Robles, JM Gonzalez-Barahona, I Herraiz - Mining Software Repositories, 2009. MSR'09. 6th IEEE …, 2009
Cited by 34 - Related articles - All 16 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2009 2010 2011 2012 2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/30/2014 08:09 PM

A Comprehensive Study of Software Forks:

Dates, Reasons and Outcomes

Gregorio Robles and Jesús M. González-Barahona

GSyC/Libresoft, Universidad Rey Juan Carlos
{gregorio.robles,jesus.gonzalez.barahona}@urjc.es

Summary. In general it is assumed that a software product evolves
within the authoring company or group of developers that develop the
project. However, in some cases different groups of developers make the
software evolve in different directions, a situation which is commonly
known as a fork. In the case of free software, although forking is a practice
that is considered as a last resort, it is inherent to the four freedoms.
This paper tries to shed some light on the practice of forking. Therefore,
we have identified significant forks, several hundreds in total, and have
studied them in depth. Among the issues that have been analyzed for
each fork is the date when the forking occurred, the reason of the fork,
and the outcome of the fork, i.e., if the original or the forking project are
still developed. Our investigation shows, among other results, that forks
occur in every software domain, that they have become more frequent in
recent years, and that very few forks merge with the original project.

Keywords: free software, open source, forks, forking, social, legal,
sustainability, software evolution.

1 Introduction

Issues related to the sustainability of software projects have historically been
studied in software engineering in the field of software evolution. However, re-
search on software evolution has always implicitly assumed that development
and maintenance of a software is performed by the same organization or group
of developers. It is a task of the creators of the software to make it evolve [13].

But in some cases a software project evolves in parallel, lead by different de-
velopment teams. This is known as ”forking”. The term fork is derived from
the POSIX standard for operating systems: the system call used so that a pro-
cess generates a copy of itself is called fork(). As a consequence, there exist
two copies of the process that run independently and may perform different
tasks. In analogy to this situation, a software fork happens when there exist
two independent software projects, deriving both from the same software source
code base.

Forking may happen in proprietary environments, but it is natural in free soft-
ware as the freedom to modify a software and redistribute modifications is part

I. Hammouda et al. (Eds.): OSS 2012, IFIP AICT 378, pp. 1–14, 2012.
c© IFIP International Federation for Information Processing 2012

14 G. Robles and J.M. González-Barahona

16. Neville-Neil, G.V.: Think before you fork. Commun. ACM 54, 34–35 (2011)
17. Raymond, E.S.: The New Hacker’s Dictionary, 3rd edn. MIT Press, Cambridge

(1996)
18. Raymond, E.S.: The Cathedral and the Bazaar. In: Raymond, E.S. (ed.) Musings

on Linux and Open Source by an Accidental Revolutionary pp. 79–135. O’Reilly
(1999)

19. Scacchi, W.: Computer game mods, modders, modding, and the mod scene. First
Monday 15(5) (2010)

20. Schweik, C.M., English, R., Paienjton, Q., Haire, S.: Success and Abandonment
in Open Source Commons: Selected Findings from an Empirical Study of Source-
forge.net Projects. In: Proceedings of the Sixth International Conference on Open
Source Systems 2010, pp. 91–101 (2010)

21. Weber, S.: The Success of Open Source. Harvard University Press (April 2004)
22. Xie, G., Chen, J., Neamtiu, I.: Towards a better understanding of software evolu-

tion: An empirical study on open source software. In: Proceedings of the Interna-
cional Conference on Software Maintenance, pp. 51–60. IEEE (2009)

23. Yamamoto, T., Matsushita, M., Kamiya, T., Inoue, K.: Measuring Similarity of
Large Software Systems Based on Source Code Correspondence. In: Bomarius, F.,
Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547, pp. 530–544. Springer,
Heidelberg (2005)

24. Yu, L., Schach, S.R., Chen, K., Heller, G.Z., Offutt, A.J.: Maintainability of the
kernels of open-source operating systems: A comparison of Linux with FreeBSD,
NetBSD, and OpenBSD. Journal of Systems and Software 79(6), 807–815 (2006)

Jesus M. Gonzalez-
Barahona

[TXT] from msidllc.com

Authors

Publication date

Book

Pages

Publisher

Description

Total citations

Scholar articles

A comprehensive study of software forks: Dates, reasons and outcomes

Gregorio Robles, Jesús M González-Barahona

2012/1/1

Open Source Systems: Long-Term Sustainability

1-14

Springer Berlin Heidelberg

Summary In general it is assumed that a software product evolves within the authoring
company or group of developers that develop the project. However, in some cases different
groups of developers make the software evolve in different directions, a situation which is
commonly known as a fork. In the case of free software, although forking is a practice that is
considered as a last resort, it is inherent to the four freedoms. This paper tries to shed some
light on the practice of forking. Therefore, we have identified significant forks, several ...

Cited by 16

A comprehensive study of software forks: Dates, reasons and outcomes
G Robles, JM González-Barahona - Open Source Systems: Long-Term Sustainability, 2012
Cited by 16 - Related articles - All 7 versions

Dates and citation counts are estimated and are determined automatically by a computer program.

Help Privacy Terms Provide feedback My Citations

2013 2014

Scholar Edit Export

Web Images More… jgbarah@gmail.com

Google Scholar Citations http://scholar.google.es/citations?view_op=view_...

1 of 1 12/31/2014 01:01 PM

