
Agent-based Adaptive Selection and Interaction to Z39.50 Servers

Camino Fernández Llamas Ignacio Aedo Cuevas Paloma Dı́az Pérez
Universidad Carlos III de Madrid

DEI - Laboratory
Av. Universidad 30, E-28911 Spain

�cfl,aedo,pdp�@inf.uc3m.es

Vicente Matellán Olivera
Universidad Rey Juan Carlos

Systems and Communications Group (GSyC)
C/ Tulipán s/n. Móstoles E-28933 Spain

vmo@gsyc.escet.urjc.es

Abstract

Digital libraries and OPACs are offering an enormous
collection of information resources which can be accessed
through Internet by quite different users thanks to the exis-
tence of standard protocols for information retrieval such
as Z39.50. However, some users may find difficult to get
the items they are looking for in such a huge bulk of het-
erogeneous resources since they have to know where and
how they have to search for. Thus, one of the main rea-
sons for the disregard of the Z39.50 service has tradition-
ally been the absence of appropriate interfaces and the cost
of making alternative searches. WAY-Z39.50 tries to help
spreading the use of these servers by providing easy web
access to them, as well as, by facilitating the access to mul-
tiple servers at once. The prototype described implements
the WAY general model based on an agent-based architec-
ture that provides adaptive searching in different servers
through an adaptive interface.

Keywords: Z39.50, adaptive information access, adap-
tive interface, adaptive searches, agent technologies, Java

1 Introduction

Digital libraries and OPACs (Online Public Access Cat-
alogue) are offering an enormous collection of information
resources which can be accessed through Internet by quite
different users thanks to the existence of standard protocols
for information retrieval such as Z39.50 [19]. Z.39.50 is a
session-oriented and stateful network protocol whose devel-

opment began in the early 80’s. It has evolved from its first
version, Z39.50-1988, that was the basis of the WAIS [5]
(Wide Area Information Systems) protocol, to the current
one: Z39.50-1995 (Version 3). This protocol provides a
unified access to structured information catalogs (mainly li-
braries’ catalogs) and supports sophisticated searches in the
catalogs.

However, some users may find difficult to get the items
they are looking for in such a huge bulk of heterogeneous
resources. First, users have to decide which ones are the
most appropriate information servers for their queries and,
therefore, they need to know which are the available choices
for every particular server. Second, users have to deal with
different interfaces, and even though the idea of providing a
unified interface widely accessible, as the web is, has been
a goal in the Z39.50 community [12], the interfaces to these
servers have not been really accessible [18] or easy to use.
Indeed, different servers provide different search fields and
they also may use different languages to interact with the
user. In order to solve these problems, several approaches
can be taken dealing with issues as multilinguality [8] and
the use of adaptivity [21].

In this context, a web-browser accessible prototype
named WAY-Z39.50 of adaptive system to access Z39.50
servers is presented. WAY-Z39.50 is an implementation of
WAY model [9], which is a general model of architecture
whose main goal is to improve information access systems
[4] through the fulfillment of three tasks: adaptation of the
interface to the user, adaptation of the searching process and
extraction and maintenance of updated information about
the available information servers.

Next section describes the software architecture of WAY-
Z39.50, making special emphasis on design an implemen-

tation issues. The last section describes the evaluation pro-
cess of the prototype implemented, as well as the main con-
clusions obtained.

2 Providing adaptive access to information
through WAY-Z39.50

WAY-Z39.50 is a particular implementation of a general
model for adaptive information access called WAY. Thus,
before describing the prototype we will introduce the main
features of the model.

2.1 The WAY model

WAY is a general model for adaptive information access
that is based on a net of intelligent agents whose mail goal
is to make easier both the searching and the interaction pro-
cesses. On the one hand, given a user’s query on a specific
server, the agents have to take into account the informa-
tion about previous users sessions to decide which are the
best alternative servers for that query and to perform paral-
lel searches to that servers. On the other, user interactions
are kept and analyzed to improve the interface adapting it to
the preferences and needs of each user.

The term “agent” in WAY terminology has to be under-
stood in the same way as the Carl Hewitt ACTORS [1],
that is, computer programs (objects in actors terminol-
ogy) capable of concurrent execution, capable of keeping
their internal state from one execution to another (persis-
tence), and that show interactive behavior both with humans
and with other agents by using messages; augmented by
Henry Lieberman definition of the capabilities desired for
agents [15], and that can be summarized in adaptivity.

Agents defined in WAY model both execute in the same
machine, or in different machines, depending on the user
location. In case of remote location of users, which is the
normal situation, the agents will use network infrastructure
to interchange messages. In particular, WAY-Z39.50agents
have been implemented from scratch, that is, without using
any commercially available libraries for these kind of soft-
ware, in Java, and take advantage of Java-RMI facilities for
their intercommunication.

The model organizes the agents into three modules (see
Figure 1), which are in charge of each of the system tasks:
the interaction with the user, the communication with the
servers and the acquisition, verification and maintenance
of updated information about the location and services of
available information servers. These modules are explained
below.

1. The user interaction with the interface comprises the
communication with the user and the interface adapta-
tion. These tasks are performed by two agents:

� The user communication agent that builds and
manages the interface depending on information
about the user and her environment such as her
location, the hardware and software platform be-
ing used, etc. and also the information provided
by the interface adaptation agent.

� The interface adaptation agent that analyses the
user’s actions to decide which interface modifica-
tions to propose. For instance, the fields used to
make queries can be used to suggest a change in
the order of the searching fields beginning with
those most frequently used.

2. The user interaction with the searching process
adapts the searching process by assigning every server
a mark for every user, depending on the server per-
formance and the response of the user to the previ-
ous results obtained from that server, generates parallel
searches adapted to the user and manages the commu-
nication with the information servers. These tasks are
performed by two agents:

� The searching collaboration agent that produces
the list of the preferred servers for every user,
generates parallel searches on the more appro-
priate servers for that user (the ones more vis-
ited, with best results, with best performance,
etc). It also decides how many parallel searches
to launch depending on several parameters, such
as the machine load or the response of the user to
previous offered alternative searches.

� The information retrieval agent that implements
the client part of the information retrieval pro-
tocol (for instance, Z39.50 in the WAY-Z39.50
prototype). It is in charge of the communication
with this kind of servers to obtain both the results
of the user’s queries and additional information
concerning information servers services.

3. The information about servers is obtained, verified
and maintained by:

� The servers searching agent that looks for infor-
mation sources, as web pages or news groups,
and consults them searching for possible in-
formation servers locations that the information
servers maintenance agent will try to verify.

� The servers information maintenance agent that
receives information about possible servers loca-
tion and verifies their performances. It repeats
the operation with a higher or lower frequency
depending on the amount of changes in the data
obtained.

USER
(Web browser)

with the Interface
User Interaction

searching process
User Interaction

Users
Profiles

User
Communication

Agent

Servers

Agent
Communication

Search
collaboration

Agent

User Interface
Adaptation

Agent

Servers
Information

Processes
running in
the client

in the server

Processes
running

Z39.50
Server

Z39.50
Server

Searching
Agent

Servers

Servers
Information

WAY-Z39.50

NET

Code located in the server

Code located in the client

....

.

Figure 1. The WAY model

The first implementation of the WAY model is WAY-
Z39.50 which provides adaptive access to Z39.50 servers.

There are few other approaches trying to make easier
the process of accessing libraries catalogs through Z39.50
protocol. The commercial products are focused on other
problems. For instance, the CARLweb system from CARL
Corporation 1 provides a customizable version of the tra-
ditional OPAC; the Millenium system from III (Innovative
Interfaces Inc.) 2) is focused on scalability; others are inter-
ested on integration of different information sources, on the
internal design for its easy adaptation to existing catalogs,
etc.

In this point, it is important to distinguish between adapt-
able systems (i.e. Millenium, CARLweb), and adaptive sys-
tems (WAY-Z39.50). Systems that allow the user to change
certain system parameters, and adapt their behavior accord-
ingly, are called adaptable. Systems that adapt to users auto-
matically based on their assumptions about them are called
adaptive.

Adaptivity in information access can still be considered
to be in the research stage. The majority of projects on adap-
tivity in information access are focused on web browsing
assistants [17] as Letizia [14], FAB[3], or Butterfly [16].

1http://www.carl.org
2http://www.iii.com

However, the application of these techniques to the struc-
tured catalogues access domain is still scarce, mainly be-
cause of the lack of standardization in the access protocols
(the equivalent to HTTP for web). In this way, projects as
EUROPAGETE3 [7] that intends to provide software tools
through which users can access ANSI Z39.50 and ISO SR
servers, funded by European Union 4 Telematics Libraries
Programme are spreading the use of Z39.50

Projects whose goals can be considered close to WAY-
Z39.50 are very few. OASIS (Otlet’s Adaptive Search
Information Service) [6], is a long-term research program
funded by Berkeley’s Digital Library Project, exploring
how to improve the retrieval process by providing simul-
taneous searches to multiple databases, and combining di-
verse retrieval results to provide narrow result sets. How-
ever, OASIS was fit to MELVYL online catalog, instead of
using Z39.50.

Similar goals has BOPAC2 [2], a project funded by the
British Library Research and Innovation Center, which pro-
vides a World Wide Web front-end that allows simultane-
ous access to different library catalogues, in this case via
Z39.50. The results obtained are clustered together and
retrievals may be sorted in a number of way by different

3http://europagate.dtv.dk
4http://www.cordis.lu/libraries/

criteria. The main disadvantage when compared to WAY-
Z39.50 is that the clustering, that is, the organization of the
results, and their presentation is made in a predefined and
unchangeable way.

2.2 WAY-Z39.50 software architecture

Since the main goal of the WAY model is to make easier
for the user to access information, the applications based
on the model should themselves offer, as long as possible,
the easiest way to be accessed. In order to accomplish this
feature, WAY-Z39.50 interface is based on a web page.

However, a static interface is not enough to support the
complexity of the Z39.50 protocol. One of the main differ-
ences between HTTP and Z39.50 protocol is that the first
one is stateless, whereas the searches in the second one are
kept in the servers while the connection keeps opened. This
makes it hard to deal with an HTML-based system, spe-
cially if searches in multiple servers are required. One op-
tion could be the use of cookies to emulate state, for instance
when making parallel searches. However, other features
required in WAY specification, such as the interface adap-
tation, cannot be managed (or hardly can be) by cookies,
because they require the server to manage the whole adap-
tation process: users’ actions tracking, evaluation of their
actions, modifications in the interface, etc.

In order to deal with this complexity a Java implementa-
tion of the WAY architecture was chosen to implement the
WAY-Z39.50 system. Using this web based Java powered
approach, some important goals are achieved:

� the environment is already familiar to the user, un-
doubtly web browsers are probable the most widely
used software products nowadays,

� the user needs to install nothing new in his/her com-
puter (apart from the web browser) but connecting to a
web site, and

� the execution of the application takes place mainly at
the user’s computer although no software has to be lo-
cally stored.

The last one greatly influences the design of the soft-
ware architecture of the platform. In fact, forcing it to be
distributed. One part of the application will be running in
the client computer (as a Java applet), and another part will
be running in the WAY-Z39.50 server.

In Figure 2, the distributed characteristics of the applica-
tion are shown. Some of the agents described in the previ-
ous section are transfered via HTTP (in form of a Java ap-
plet) to the user’s computer. One instance of each of these
agents exists for each user. These agents are: the user com-
munication agent, the interface adaptation agent, the search-
ing collaboration agent, and the information retrieval agent.

The other two agents are kept in the server and there are just
one instance of each one for the whole system, as they are
not related to the interaction of any particular user, but they
provide a service for all the other agents.

The four agents running in the client machine, neither
have access to local storing facilities, nor have access to
the communication resources. The reason is that, in order
to protect web users from dangerous programs, the usual
implementation of the Java virtual machine made for web
browsers only allows Java applets to establish connections
with the machine where their code came from, and do not
let them access the local disk (except for leaving cookies).

The first problem is where to store the information that
the agents need, as for example their state, the user pref-
erences, etc. Due to the fact that there are different kinds
of information and that the information has to be accessed
in a structured way, it was decided that a SQL database, as
shown in Figure 2, will be the best option to keep the data
easily accessible. The database is accessed via Java-RMI
(Remote Method Invocation) and JDBC (Java Data Base
Connection).

The second problem is how to access the Z39.50 servers,
how to make the queries, and how to retrieve the results to
the client. In this case, the answer was again the use of Java-
RMI, the distributed part of Java programming language.
This way, agents running on the user’s machine could ac-
cess the server side, and the server side could access the
Z39.50-servers and give the user the data back. This solu-
tion offered also the possibility of storing the user session
in order to obtain valuable data for the evaluation phase of
the prototype.

This means that agents need to ask WAY-Z39.50 for
those resources: communication and storage. This makes
the WAY-Z39.50 server the key element of the system. Due
to the different kind of services to be provided, the server it-
self has been decomposed into three “servers”, each of them
in charge of a different set of tasks. The internal structure
of the WAY-Z39.50 server, as well as the relationship with
the agents of the system are shown in Figure 3.

These relations among WAY-Z39.50 agents and the
servers can be shown in the figure and can be summarized
into:

1. Both the retrieval and the searching agent use files. Al-
though this is not compulsory, it has been added as an
optimization for the temporal storage of the results of
previous searches, so that they do not have to be re-
peated when they are revisited.

2. All agents, except for the retrieval one, need to store
some kind of information into the database. Retrieval
agent is just in charge of managing Z39.50 connec-
tions, using files to temporarily store the results ob-
tained.

User-Comunication-Ag_1
Interface-Adaptation-Ag_1

Searching-Collaboration-Ag_1
Information-Retrieval-Ag_1

User-Comunication-Ag_2
Interface-Adaptation-Ag_2

Searching-Collaboration-Ag_2
Information-Retrieval-Ag_2

Information-Servers-Searching-Ag
Information-Servers-Maintenance-Ag

SQL

Client_1

Client_1

Client_2

WAY-Z39.50
Server

Client_2
....

Net

HTTP
RMI

Figure 2. WAY-Z39.50 software architecture

3. The interface related agents (user communication and
interface ones) do not use Z39.50 service directly. The
other agents, for one or another reason, use those ser-
vices, so there are lines connecting them to the Z39.50
clients server in the Figure 3.

Functions and goals of WAY-Z39.50 agents have been
described in the previous section. Their implementation has
been made attending those requirements, using Java as the
programming language, and fuzzy rules [22] as the adapta-
tion mechanism, both in the interface modifications, in the
information searching process, and in the classification of
the Z39.50 servers available. This means, that there is a
set of human designed rules for each of these functions that
defines each agent behavior.

The three servers which comprise the WAY-Z39.50
server were not described in the WAY model section, since
they are application dependent. These servers are:

Files server: Its mission is to manage the auxiliary files of
the system that are generated by the agents. Those
files can be grouped into two categories, the first one
is made by the temporal files generated by the agents
running in the client machines. For instance, one file
is generated for each search made in a server by a user.
In addition to this user-generated search, the searching
collaboration agent will generate parallel searches in
the Z39.50 servers, that would result into new files.
These files will be used to speed up the process of
changing from one server to another one, to refine
searches, etc. All the files generated for a user will
be removed when that user had finished the session.

The second category of files kept in the server are the
log files one. In order to evaluate the system perfor-
mance, as well as to correlate the user answers to the
tests made to evaluate the system; the actions of the
user can be stored in a log file. In these log-files every
action of the user, as well as every decision made by
the agents, are stored.

There is a last category of files managed by the server,
the configuration files for the decision making mecha-
nism used by the agents to reason about the adaptation
process, the classification of the servers, etc. These
decisions are taken by a fuzzy inference motor, also
implemented in Java. The difference among the agents
are the rules that guide the decision process, and the
input and output variables. The definition of these
rules and variables are kept in independent files (one
for each type of agent) to make their modification eas-
ier.

Data base server: is in charge of controlling the access
to the SQL database. The database used is Post-
gresSQL 5, an open-source object relational DBMS
(Data Base Managing System) supporting almost all
SQL constructs. There are many different informa-
tions stored in this database, as for instance the state
of the agents running in the client machine, each user’s
preferences (language, colors, preferred servers, etc.),
and the information about servers (localization, port,
services, speed, timetable, etc.).

5http://www.postgreSQL.org

Files
Server

Z39.50
Client

Z39.50
Client

Z39.50
Client

Interface
Agent

User-Com
Agent

DataBase
Server

DB

Agent
Maintenance

Agent
Servers search Retrieval

Agent

Server
Z39.50

WAY-Z39.50 Server

Agent
Searching

WAY-Z39.50
Client Agents Server-side Agents

WAY-Z39.50

Figure 3. WAY-Z39.50 server architecture

The agents, both the local ones (the information
servers searching agent and the information servers
maintenance agent) and the remote ones (the interface
adaptation agent and the searching agent) use JDBC
to access the database, using also Java-RMI for the re-
mote invocation of the methods. The access to the ob-
jects is synchronized using the Java facilities for multi-
threading, to avoid problems among agents when ac-
cessing the same information.

Z39.50 server: creates objects that implement the client
part of the Z39.50 protocol upon request by the agents
running in the client machine. For instance, when the
user fills the searching form, the information retrieval
agent needs to open a Z39.50 connection to the se-
lected server. This agent asks the Z39.50 client server
to create an object capable of managing a Z39.50 con-
nection to the server. A reference to this object is re-
turned to the agent, who will manage the communi-
cation. In the same way, the searching collaboration
agent will ask the Z39.50 server for additional objects,
one for each parallel search.

The objects created by the Z39.50 server are managed
by the agent that asks for their creation through Java-
RMI. This means that the agent will consider these ob-
jects as internal structures. The objects will be de-
stroyed when the agent asks for, or when the user
leaves the application. While active, the object will
keep the state of the connection, which means that the

agent itself keeps the state of the connection and can
use it to refine searches, access results, sort the results,
etc.

The design of the software developed for the WAY-
Z39.50 prototype was made using design patterns [11] as
the main philosophy, UML [13] as the basic design tool, and
reutilisation as the major design goal (in order to make eas-
ier the modification of the system according to suggestions
made in the evaluation process). The resulting implemen-
tation of WAY-Z39.50 prototype is an object-oriented dis-
tributed system written in Java (using Java Development Kit
v. 1.1.5) made up by around 30,000 Java lines, organized in
the following packages:

Patterns: This package is an auxiliary one for the construc-
tion of the elements of WAY-Z39.50 prototype. Some
of the patterns implemented are the iterator, the ob-
server, etc. The number of lines is around 2,500.

Interface: In this package, all the graphic elements of the
system interface are implemented. These elements are
used by the interface communication agent to build the
user interface. The total number of lines is around
15.000 in the current version of this package.

Agents: This package contains the implementation of the
agents that perform most of the system tasks. One of
the main sub-packages is the one that implements the
mind of the agents. Their mind has been implemented

Figure 4. A WAY-Z39.50 snapshot

using fuzzy logic, see [10] for a detailed description
of this issue. The number of code lines in this sub-
package is 3,000, in the whole package there are 8,000
lines.

Z39.50: The primitives that the Z39.50 protocol specifies
for the client side of a Z39.50 client are included in
this package, counting around 5,000 lines.

3 Evaluation and conclusions

WAY-Z39.50 is a prototype built chiefly to demonstrate
that the WAY general model is implementable as well as to
assess the model properties. WAY-Z39.50 prototype is still
in a Beta phase, however it can already be used and tested in
http://way.uc3m.es under request. Figure 4 shows
the current aspect of the prototype.

In this way, the evaluation of the model has been one of
the major concerns since the beginning of the WAY project.
The evaluation of the WAY-Z39.50 prototype has been di-
vided into three stages:

1.- Evaluation of the interface: This phase consisted in

the evaluation of the default interface, previous to any
adaptation. The goal of this test was to check the in-
terface, to identify which aspects of the interface were
susceptible of adaptation to the user, etc. The evalua-
tion was made as a test for an homogeneous group of
20 people, using a non-adaptive version of the proto-
type, during the 1999 autumn.

The interface evaluation phase was organized as a
“guided” session with the interface module of WAY-
Z39.50 (without the adaptation facilities). “Guided”
means that some basic tasks, as locating books written
by some authors, refinements of the searches, change
of server,. . . , were assigned to the evaluators. All these
tasks have to be accomplished through WAY-Z39.50
graphic and text interface. The evaluation itself con-
sisted on filling a questionnaire about the evaluator
opinion about the interface.

2.- Evaluation of the architecture: Consisted in the ana-
lytical evaluation [20] of the architectural principles
of WAY model. It was implemented as an open test
where a set of experts of different areas (librarians,
user interface designers, distributed systems architects,

etc.) were asked to assess the model features using
its formal specification. This phase was performed in
November 1999 and it is still being processed. Any-
way, the first results can be anticipated as globally pos-
itives.

3.- Evaluation of the prototype: The major concern of
the last evaluation phase is to check the viability of the
proposed model, this means checking whether WAY

can be implemented and helps designers. The best way
of checking this is by performing empirical evaluation
[20] of an implementation as WAY-Z39.50. The eval-
uation will be organized as the interface evaluation in
order to compare it with the interface evaluation. This
evaluation is currently being made.

In the evaluation of the prototype, performance re-
quirements are not the primary concern. However, they
can clearly influence evaluators opinions. In order to
avoid this kind of biased opinions, the evaluation ques-
tions will be focused in the adaptive part rather than in
the speed.

In summary, the results obtained from the evaluations
made till now show that one of the main advantages that the
evaluators have found is the adaptation to the user prefer-
ences. The open question currently is whether this adapta-
tion will be supervised or not supervised, that is, if it will
be made with or without consulting the user. In the current
version, all modifications in the user interface, for instance
the order in searching fields, are made in a not supervised
mode. According to the evaluator responses it will be con-
sidered which adaptations are made with or without user
supervision by default, as the user can always change this
behaviour.

The remaining work in the evaluation phase is just fin-
ishing the users interviews of the third phase and complet-
ing the analysis of the data obtained. Anyway, it is already
possible to anticipate that both the evaluation of the model,
and the evaluation of the prototype consider them as useful,
viable and usable.

References

[1] G. Agha. ACTORS: A model of concurrent computation in
distributed systems. MIT Press, 1986.

[2] F. Ayres and M. Ridley. BOPAC2: a new dimension in
OPAC display. VINE, (114):50–55, 1999.

[3] M. Balabanovic. An adaptive web page recommendation
service. In Proceedings of the First International Confer-
ence on Autonomous Agents, Marina del Rey, CA, feb 1997.

[4] D. Benyon and P. Palanque. Critical Issues in User Interface
System Engineering. Springer-Verlag, 1996.

[5] B.Kahle and A. Medlar. An information system for cor-
parate users: Wide area information servers. Technical Re-
port TMC-199, Thinking Machines, April 1991.

[6] M. K. Buckland and C. Plaunt. Selecting libraries, selecting
documents, selecting data. In Proceedings of the Interna-
tional Symposium on Research, Development and Practice
in Digital Libraries, pages 18–21, 1997.

[7] S. . Ciardhuáin and M. Sandfær. The EUROPAGATE
project. VINE, (97), 1994.

[8] P. Dı́az, I. Aedo, C. Fernández, A. Plaza, A. Ribagorda, and
C. Dı́ez-Hoyo. Multilingual tools for accessing a spanish
library catalogue. Libri, December 1997.

[9] C. Fernández, P. Dı́az, and I. Aedo. WAY: An architecture
for user adapted access to z39.50 servers based on intelli-
gent agents. In Proceedings of the European Conference on
Digital Libraries 98, 1998.

[10] C. Fernández, V. Matellán, P. Dı́az, and I. Aedo. Using fuzzy
logic to implement adaptability in WAY-Z39.50. In Pro-
ceedings of the 1999 EUSFLAT-ESTYLF Joint Conference,
pages 291–294, September 1999.

[11] E. Gamma. Design Patterns: elements of reusable object-
oriented software. Addison-Wesley, 1995.

[12] S. Hammer and J. Favaro. Z39.50 and the world wide web.
D-Lib Magazine, March 1996.

[13] C. Larman. Applying UML and patterns: an introduction to
object-oriented analysis and design. Prentice Hall, 1998.

[14] H. Lieberman. Letizia: An agent that assists web browsing.
In International Joint Conference on Artificial Intelligence,
Montreal, August 1995.

[15] H. Lieberman. Autonomous interface agents. In ACM
Conference on Human-Computer Interface, Atlanta, March
1997.

[16] H. Lieberman, N. V. Dyke, and P. Maes. Butterfly: A
conversation-finding agent for internet relay chat. In In-
ternational Conference on Intelligent User Interfaces, Los
Angeles, January 1999.

[17] P. Maes. Reflections of agents that reduce work and informa-
tion overloa d. In M. T. Maybury and W. Wahlster, editors,
Readings in Intelligent User Interfaces. Morgan Kaufmann
Press, 1998.

[18] P. Marshall. WAIS: The wide area information server or
anonymous what? Computing and Communications Ser-
vices, 1992.

[19] J. J. Michael and M. Hinnebusch. From A to Z39.50: A
Networking Primer. Mecklermedia, 1995.

[20] J. Rubin. Handbook of Usability Testing. John Wiley &
Sons. Inc., 1995.

[21] B. Shneiderman. Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction. Addison-
Wesley Publishing Company, third edition edition, 1998.

[22] H.-J. Zimmermann. Fuzzy Sets. Theory and its Application.
Kluwer Academic Publishers, Boston, MA (USA), 1990.

