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Abstract. This paper is concerned with the learning of basic behaviors in autonomous robots. In

this way, we present a method for the adaptation of basic reactive behaviors implemented as fuzzy

controllers applying a genetic algorithm to the evolution of the fuzzy rule system. In this sense, we

show our experiments in the evolution of control rules based on symbolic concepts represented as

linguistic labels. The rules will be formulated in a fuzzy way and in order to test the rules obtained

in each generation of the genetic algorithm a real robot has been used. The individual with the best

performance is chosen to generate a new population: the elite strategy. All the new individuals were

tested in the same real environment. In conclusion, the individuals of the last generation offer a set

of rules that provides better performance than the ones designed by a non-expert designer.
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1 Introduction

Artificial Life has been defined as “a scientific
discipline that studies how behavior of agent
emerges and becomes intelligent and adaptative”
(?). Many experiments have been made using
neural networks, finite state machines, etc. show-
ing how these behaviors can emerge. However, ar-
tificial life community has not been very concerned
about the emergence of symbolic concepts. On the
other hand, the machine learning community has
been mainly focussed on the improvement of the
symbolic knowledge that a machine has about the
world and how to operate in it. From this point
of view, it has been forgotten how this symbolic
knowledge can be obtained from raw data per-
ceived in the real world. In this paper we present
our work on the sub-symbolic learning of basic
reactive behaviors implemented using a symbolic
paradigm as a fuzzy controller (using IF-THEN
rules and symbolic labels).

We have chosen fuzzy controllers as symbolic rep-
resentation to study this emergence for many reas-
ons. First, because fuzzy rules and fuzzy linguistic
labels are close to the human way of expressing be-
havior rules. This means that we can easily evalu-
ate the rules that have been obtained in a genetic
way. Secondly, because fuzzy theories are suscept-
ible to be shared among different agents, which is
interesting in our further work. Thirdly, because
fuzzy sets theory is a well-suited paradigm that

has shown its efectiveness in many autonomous
systems. And finally, fuzzy controllers are very
flexible, which makes them adaptative easily.

This paper presents a genetic approach to the ad-
aptation of fuzzy controllers in autonomous ro-
bots. In such controllers there are two main
parts. The first one are linguistic labels and the
second one are fuzzy rules. Linguistic labels can be
viewed as low level ideas or symbolic concepts that
can be interpreted in different ways. For instance,
the concept near will not have the same physical
meaning for a one meter diameter robot as for a 5
cm one. Rules express the relations among these
concepts. In this paper we present a method for
adapting these rules using genetic programming.

Our robot starts up with no information about the
right rules to move around. From this situation,
the robot is able to evolve to reach a set of rules
that represent the highest adaptability grade to
the sensors information. The only previous and
fixed data are: the number of inputs (number of
robot sensors), the partitions of the input domain
(the range of the sensors), the number of outputs
(number of robot motors) and its descriptions but
it has no information about how do they relate to
each other. This knowledge is obtained through
the evolution of several generations.

The rest of this paper is organized as follows:
The second section is concerned with the fuzzy



description of the problem and the particularities
of evolving a fuzzy controller. The third section
deals with the description of our experiment. In
the fourth section the result of these experiments
is discussed and our future work is presented.

2 Problem Description

Fuzzy controllers have been widely used for con-
trolling different autonomous robots. For in-
stance, in (?) the LIFIA architecture is presented.
It is a hierarchy of layers, each one working asyn-
chronously with its own level of data abstraction,
in which the navigation module consists of a react-
ive module based on fuzzy logic. Another classical
example of an autonomous system controlled us-
ing fuzzy behaviors is (?). This system consists of
a car which navigates autonomously thanks to a
group of fuzzy rules sets.

In order to present the learning mechanism used
to adapt the fuzzy control rules, we introduce in a
first subsection the basic concepts of the fuzzy lo-
gic controllers. In a second subsection the strategy
of design is presented and in the third one the ad-
aptation process is described.

2.1 Fuzzy Controller

The first step in the design of a fuzzy controller
shoud be to select adequate descriptions of the rel-
evant inputs for the control, such as the distance

to obstacles, “analogous” to those formulated by
humans when they describe the perceived features.
So, given the numerical distance di to an obstacle
perceived by a sensor, Di is defined as the range
of all possible values of the computed distance di.
To better cope with the intrinsic uncertainty that
underlies the appearance of perceptual inputs (dis-
torted after the acquisition process), the numer-
ical values of the distances di can be mapped into
qualitative symbolic labels through a fuzzification
process (?), transforming the computed distances
into linguistic variables.

A linguistic variable (?) is a variable whose val-
ues are sentences in a natural or artificial lan-
guage, that is, a concatenation of atomic terms:
labels (adjetives), hedges (modifiers such as very,
much, slightly, etc.), the negation and makers (par-
entheses). The meaning of a linguistic variable is
defined to be the fuzzy subset for which the value
of the linguistic variable serves as a label. A fuzzy
subset A of a universe of discourse U is charac-
terized by a membership function µ : U → [0, 1]
which associates with each element y of U , a num-
ber µA(y) which represents the degree of member-
ship of y in A. The operation of fuzzification (ap-

plication dependent) has the effect of transforming
a nonfuzzy set or quantity into a fuzzy set. It is
worth noting at this point, that the value of, for
instance, the linguistic variable distance (a natural
label such as near) represents a much less precise
meaning than the numerical value of the inches to
the obstacle.

Using these concepts, for each di, a linguistic vari-
able Ldi is introduced together with its set of
values ldi1, ldi2, . . . ldimi

, whose cardinality is mi.
Each term ldij in the set, labels a fuzzy subset
in the universe of discourse Di, with membership
function µldij(di). Values of the membership func-
tion of a label are related to the difficulty of attrib-
uting this label to a numerical value di obtained
from the sensors of the robot. The fuzzyfication
operation adopted, affecting the numerical values
di, will result in their transformation into a fuzzy
singleton (?) or fuzzy subset whose support is a
single point in Di, with membership function equal
to one.

A Fuzzy Relational Algorithm (?) (FRA) will
store the knowledge required to control the
autonomous robot through a fuzzy reasoning pro-
cess, based on the linguistic labels of the inputs.
The FRA will be composed of a finite set of fuzzy
conditional statements of the form IF Ldi IS ldij

THEN LMOTi IS lmk, where their antecedent
can be conjunctions and/or disjunctions about
the linguistic variables Ldi; and their fuzzy state-
ments consequents about LMOT , the linguistic
speed to apply to motor i, whose value set is
lm1, lm2, . . . lmn. The Mamdani implication (?)
has been chosen to assign the meaning to these
fuzzy conditional statements: the fuzzy subset of
ordered pairs (di, s), with di ∈ Di and m ∈ MOT ,
of the Cartesian product of (ldij×lmk) with degree
of membership given by min(µldij

(di), µlmk
(s)).

Where s is the defuzzification of LMOT and MOT
represents its numerical domain (universe of dis-
course of LMOT ).

The final aspect that has to be considered is the
inference strategy to manipulate the knowledge
contained in the FRA. The compositional rule of
inference (CRI) proposed by (?), (approximate
extension of the familiar rule of modus ponens),
serves as inference mechanism to obtain the fuzzy
subset induced in MOT by a fuzzy statement of
the form (Ldi is ldir) through each conditional
statement of the FRA. That is the fuzzy subset
of MOT whose membership function is obtained
after max − min product of discretized versions
of µldir

(di) and µldij
(di) × lsk(di, s), represented

as (relational) matrices (?). As there can be sev-
eral conditional statements forming the FRA, the
meaning of LMOT will be the intersection of the
intermediate meanings resulting from each applic-
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Figure 1 Robot for example 1.

ation of the CRI (min of all the induced con-
sequent membership functions). Finally, the ad-
opted defuzzification process on LMOT will be a
modified version of the Centre of Gravity proced-
ure. This method treats the rules separately. Each
rule produces a level of activation in the output la-
bels λi. Let Clsk

the numerical representatives of
each label, lsk (e.g. the centres of gravity). Then,
the output is taken as a type of weighted sum:
sum = (

∑
λiClsk

)/(
∑

λi).

2.2 Designing a FRA

The design of the rules to control an autonomous
system using a FRA is not a trivial issue. Let us
consider a system, similar to the robot we have
used, with eight input signals (sensors) and two
outputs (motors), codifying each one of the sensors
inputs with only two linguistic labels (near, far),
and each one of the outputs with five labels (fast-
advance, advance, stop, back, fast-back); the num-
ber of possible fuzzy rules is 6,400. But if we had
used a high level of granularity in our system, for
instance, if every variable would had been codi-
fied with five linguistic labels, the number of rules
would have been 9,765,625. Using a typical eight
linguistic labels for variable, the number of rules
would be in the range of billions (1,073,741,824).

Of course, only a few rules are needed (typically
less than a hundred) to get a sophisticated be-
havior. The problem is how to choose the rules.
Until now, the most commonly used method has
been asking human experts the rules. But humans
usually think in an antropomorphical way, which
can cause some problems.

Let us consider a simple autonomous robot such
as the one in Figure 1. This robot has only got two

proximity sensors (sensor1 and sensor2), and two
motors (Motor1 and Motor2). When a human is
asked to write some rules that let the robot wander
through the world without crashing, the obtained
rules would be something like IF sensor1 IS near
THEN Motor1 IS fast. This means that when
an obstacle is perceived by the left sensor, the left
motor speed is increased in order to go away from
the obstacles by turning right. The symmetric rule
will be written in the same way.

If this group of rules is tested on a robot, it would
be proved that the robot begins to continuously
increase its speed. The problem can be defined as
a continuous increase of entropy. It can be easily
corrected by writing the rules in an opposite way
-IF sensor1 IS near THEN M2 IS slow- and
adding a new rule to increase the speed when there
are no obstacles. As a first goal, we want to test
whether this problem would appear if the rules
were obtained by genetic evolution.

Another problem with human rules is that they
are designed in a theoretical world: the human
mind. This means the rules and the linguistic la-
bels have to be tuned many times till they reach
an acceptable performance. This is caused by the
differences among sensors due to the differences in
the manufacturing process.

3 Adaptation of Fuzzy Behaviors

Some works can be bou about the use of genetic
methods to learn plans for autonomous, for in-
stance in (?) a genetic method to formulate new
sets of low-level decision rules for robot move-
ments and pushing techniques. Each rule checks to
see that certain conditions are true (obstacles de-
tected, goal position, etc.), and executes a number
of corresponding operators (move forward, move
backward, turn left or turn right). The genetic
competition occurs among sets of behavior rules
(plan) after testing the plans.

Some works have also been made in the genetic
evolution of fuzzy rules. For instance, in (?) a
genetic algorithm for the design of the fuzzy rules
is presented to center a cart by applying a single
force. Another example appears in (?) where the
application of this method to three different phys-
ical systems is presented: a liquid-level system, a
pH system and a satellite-rendezvous system. In
each of these applications the genetically designed
fuzzy controllers outperforms the human designed
ones. However, few experiments have been made
in the evolution of fuzzy linguistic labels. In (?)
a genetic method that determines for a TSK fuzzy
model each membership functions, the number of
fuzzy rules and the rule consequent parameters;



Figure 2 Khepera mini-robot.

this system is applied to the classical inverted pen-
dulum control problem.

Finally, some works have been proposed in the
evolution of fuzzy controllers applying to the con-
trol of autonomous vehicles. For instance, in (?)
a general method for the evolution of rule-based
fuzzy controllers in presented. Another methodo-
logy based in a hierarchical prioritized structure
using a messy genetic algorithm is applied to the
control of an autonomous vehicle, (?).

In the rest of this section we will briefly describe
the robot used in our experiments, and then we
will discuss our work: genetic evolution of a fuzzy
controller for the control of the robot.

3.1 The Mini-Robot Khepera

The robot that has been used is the mini-robot
KHEPERA (?), see Figure 2, which is a com-
mercial mini-robot developed at LAMI (EPFL,
Lausane Switzerland). This robot has a circular
shape with a diameter of 5.5 cm., an height of 3
cm and a weight of 70 gr. It moves through two
wheels and two small Teflon balls. The wheels are
controlled by two motors that let the former move
in both directions. The robot also has eight infra-
red proximity sensors.

The heart of the robot is the Motorola 68331 con-
troller with 256 Kbytes of RAM and 512 Kbytes of
ROM which manages all the input-output routines
and can communicate via serial port with a host
computer. It also has its own batteries which let
it work autonomously. It is also possible for it
to work attached to a workstation via the serial
port. This lets the robot use the resources of the
workstation.

We have preferred to use a real robot instead of a
simulation for two reasons. First, because a per-
fect simulation of a simple robot as Khepera re-
quires hard computations. For instance, the simu-
lation of the sensors, taking care of the lab lighten-
ing, orientation of robot, etc; would require huge

Figure 3 Experimental Enviroment.

calculations. Second, even a very good simulation
is unable to consider all the physical laws of a real
robot such as inertia, friction, failures of the hard-
ware, etc.

3.2 Adaptation of Fuzzy Rules

Our first goal was to test if the rules obtained by
means of genetic evolution were able to control suc-
cesfully an autonomous robot. So, the robot was
given some fixed concepts such as near, far, etc.
for the sensors and slow and fast for the motors.
The genetic program should be able to successfully
combine these concepts. The robot was located in
a simple environment. It consisted of a rectangu-
lar area with two obstacles situated as shown in
figure 3. The walls were made of cardboard and
the floor was the surface of a wooden table. This
table was situated in an always artificially illumin-
ated laboratory.

Each of the sensors of the robot returns an in-
teger, whose range goes from 0 (no obstacle de-
tected) to 1023 (an obstacle just in front of the
sensor). The speed of both motors is also fixed by
an integer. In this case, the range we have used
goes from -10 (maximun speed backwards) to 10
(maximun speed forward). Though the robot has
eight sensors, we have groupped some of them in
two. So, the robot used in this experiment can be
considered as equivalent to the one in Figure 1.

For this experiment we have chosen five fuzzy par-
titions of each one of the four variables (sensor1,
sensor2, motor1 and motor2). The fuzzy parti-
tions for the parameters have been chosen as in-
dicated in Figure 4. In this way, the individual
control strategies are two 5 x 5 tables, one for
each motor. Each table relates the membership
functions of both sensors with a motor one. The
tables are coded as chromosomes with alleles {0, 1,
2, 3, 4, 5} corresponding to the membership func-
tions Far-Backward, Backward, Quiet, Forward,

FarForward and blank. The last one indicates that
there is no relation between the two membership
functions.



Forward Very-Forward

-10 10
0

1

StopBackVery-Back

0 1023

1
V-NearNearMediumV-Far Far

Sensors’ membership function

Motors’ membership functions

Figure 4 Fuzzy partions for sensors and motors

We consider both tables as a genotype. So, each
individual has got a chromosome whose length is
fifty. The alleles are the five fuzzy membership
functions over the domain of the motors plus the
blank code. The phenotype is the behavior that
the fuzzy controller produces. The behavior is
obtained applying the usual operations: fuzzific-
ation, max-composition and centroid defuzzifica-
tion. Our fitness criterion, Θ, is function of three
variables directly measured on the robot Khepera
and another one on the genotype.

Θ =
V (1 −

√
D)(1 − I)

rules

The variable I represents the normalized value of
the sensor wich presents the highest level of activ-
ation:

I =
sensor

1023

V is the rotation average speed of the two wheels:

V =
average

10

and D is the normalized absolute value of the dif-
ference between the speed of the two wheels:

D =
| v1 − v2 |

20

This makes function Θ be maximized by obstacle
avoidance, straight direction, speed and few rules.

The evolutionary training was a standard genetic
algorithm. It consists of 100 generations with a
population of 100 individuals each. The mutation
operator changes a fuzzy code either up or down a
level, or to the blank code. The crossover operator
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Figure 5 Average vs. Best fitness.

is the standard two-point crossover. The life time
of each individual has been set to 30 seconds. We
have used an elite strategy, meaning that the best
individual is automatically promoted to the next
generation.

In Figure 5 we can see the evolution of the aver-
age fitness of each generation and also the fitness
of the best individual of each generation in an ex-
periment using the following configuration:

Obstacles 1
Mutation 0.2
Crossover 0.2

Figure 5 lets us evaluate the learning process. We
have appreciated that, although we allow 100 gen-
erations, around the 60th generation in most of the
experiments, the population has learned to avoid
obstacles and that most of the individuals in the
latest generations use less than 40 rules.

Figure 6 shows the same using a different config-
uration:

Obstacles 1
Mutation 0.4
Crossover 0.4

This figure shows that if both the probabilities of
mutation and crossover rise, then the speed of the
learning process increases. We have also made ex-
periments increasing only one of these factors and
varing the number of individuals in each genera-
tion and the number of generations.

In figure 7 whe show the contribution of the three
different parts of the function Θ versus the total
fitness. Both values (parts and total) showed in
the figure correspond to the average of the indi-
viduals of each population. We have also tested
the consequences of using a factor to improve one
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of the abilities, for instance, “to run faster” against
“to keep safe”.

4 Conclusion

In this paper we have proposed a method to
evolve high level rules using classical genetic al-
gorithms. Through these evolutionary processes
the mini-robot Khepera has been able to develop
an autonomous behavior which allows it to survive
in its environment. The role of investigators has
been limited to provide the survival criterion and
the structure of the fuzzy controller.

The average set of rules of the individuals in the
last generation shows that this method provides
solutions that are another main result is based on
the number of rules, which has turned out to be
lower than it was expected.

Our current work is aimed at using the same ap-

proach in the emergence of the fuzzy member-
ship functions and in the evolution of both parts
of the fuzzy controllers at the same time. We
have already obtained some interesting results in
the isolated evolution of the membership func-
tions. We are also confident about the possibil-
ity of evolving both at the same time. We are also
studying the possibility of mixing human designed
controllers with genetically obtained ones.


