
A client-server teleoperator for the EyeBot micro-robot

Esther Garćıa Morata
egarcia@infotool.es
Infotool Computer

José M. Cañas
jmplaza@gsyc.escet.urjc.es

tel: 916 647 468
Universidad Rey Juan Carlos

Vicente Matellán
vmo@gsyc.escet.urjc.es

tel: 916 647 472
Universidad Rey Juan Carlos

Abstract

This paper describes a teleoperator system developed
for the EyeBot robot under a client-server architec-
ture. The teleoperator is made up of two different pro-
grams: a server, running on robot’s microprocessor,
and a client running on a PC. They talk to each other
through a serial connection following an specific proto-
col. The server gathers sensor information required by
the client, sends it and executes movement commands.
The client asks for sensor data to the server on behalf
of the human operator and sends motion orders. It
also shows her a graphical interface, so she can see
the values from all robot sensors and she can request
different movements to its motors and servomotors.

1 Introduction

The main target of this work was to develop a com-
plete teleoperator for the EyeBot1 [2] microrobot.
Teleoperators are man-machine systems that augment
and extend human sensory and manipulative abilities
to remote or dangerous places [1]. In this way teleop-
eration has encountered application in space programs
like Sojourner robot and industrial environments like
nuclear plants operation. In our context a teleoperator
is a useful tool for microrobot demos and the building
of the teleoperator made the research group familiar
with the new robot, its capabilities and its program-
ming environment.

The main advantages of this EyeBot robot[2] over
other small models like Lego or Khepera are the lo-
cal camera, the radio link and a higher computing
speed. These features make it suitable for autonomous
behavior development, and even for playing in the
Robocup2. EyeBot is endowed with three infrared
sensors, a digital camera and two encoders for dead
reckoning. In the actuators side, it has two DC mo-
tors for differential steering and two servomotors, one
for a kicker and another for the camera movement, as
shown in figure 1. Additionally it has a serial port
offering 115200 bauds and a radio link providing 9600
bauds in a wireless way for communication purposes.

1http://www.ee.uwa.edu.au/~braunl/eyebot
2http://www.robocup.org

Figure 1: EyeBot robot

For interaction with human user the robot has an LCD
and four buttons in a row. All these devices are con-
nected to a motherboard with a Motorola 68332 mi-
crocontroller, running at 35 Mhz.

The operating system of the robot and user’s pro-
grams run in this platform using its 512KB of flash
ROM and 1MB of RAM. Its OS is called RoBIOS
(Robot Basic I/O System) and has three main compo-
nents: a console for program downloading and execu-
tion; a table with hardware devices; and a application
program interface which provides user programs with
access to robot resources. These programs are written
in ANSI-C in a PC, compiled using a cross-compiler
and their executables are downloaded into the robot
through the serial port.

Several teleoperators have been developed for differ-
ent indoor and outdoor robots [3][5][8]. For instance
Xavier robot3 [5] from Carnegie Mellon University and
Hermes robot [8] from Instituto de Automática Indus-
trial have the teleoperators shown in figure 2. Such
teleoperators include graphical interfaces to see the
robot sensors values, like sonar data, bumpers, dead
reckoning, etc. In addition to telesensing the interfaces
also allow the teleactuation of the robot. As shown
in left part of figure 2, Xavier can be commanded to
move left, right, forward, backward using graphical
buttons. Human operator can also click on any point
of top right joystick window in Hermes teleoperator’s

3http://www.cs.cmu.edu/~xavier

1 / 6



Figure 2: Teleoperator GUIs for Xavier (left) and Hermes (right) indoor robots

display (right part of figure 2) to make it move at cer-
tain translation and rotation speeds.

2 Client-server teleoperator

The teleoperator is compound of two different pro-
cesses, client and server, communicating each other,
as shown in the figure 3. The server runs on board
the robot and its main function is to send required
sensor information to the client and to implement mo-
tor movements as ordered. The client runs on the PC
and shows a graphical interface to the human opera-
tor, who can observe and ask for different sensor values
and command different movements to the robot.

This client-server distribution has been followed by
several robots in the robotics community. For in-
stance, Saphira architecture comes with a server pro-
gram running in the Pioneer robot [6]. In TCA archi-
tecture developed on Xavier robot all control programs
are rooted in a server called CTR [5] running inside
one of the robot computers. This distribution allow
different clients, maybe running in different machines,
to connect concurrently to such module using com-
munication facilities. The main advantage of this dis-
tribution is than client programs can run everywhere,
as far as connection to the server is provided. This
way, the limitation to on board computing power can
be overcome distributing the clients to other off board
machines.

The server developed in this work, as is, can be at-
tached to the teleoperator client, but also to any other
potential client holding the communications protocol.
For instance, an autonomous controller which needs
to obtain sensor readings and closes the control loop
off board sending back movement commands. This is

Figure 3: Client-server architecture for teleoperator

very convenient in the small league of the Robocup. In
that scenario computing power of small robots usually
is very short, and information coming from a birdeye
camera is received and processed on an outer PC. For
example [7] developed fast local control loops, which
are continuosly activated and parameterized from an
off board machine depending on its analysis of the cur-
rent image.

2.1 Communications protocol

A communication protocol has been developed to rule
the dialogue between server and client. It has been
specially designed to fit teleoperator requirements.
There are three kinds of data: short sensor readings,
movement commands and images. Each type has its
own size and timing, and so three different types of
transmissions were developed, as shown in figure 4.

1. Infrared values and encoders data are short sen-

2 / 6



Figure 4: Three protocol transfers

Online message format Description Sender

INFRAREDSUBSCRIBE\n PSD subscription client
INFRAREDUNSUBSCRIBE\n PSD unsubscription client
INFRARED LEFT (l,%d) RIGHT (r,%d) FRONT (f,%d)\n PSD readings server
ENCODERSSUBSCRIBE\n encoders subscription client
ENCODERSUNSUBSCRIBE\n encoders unsubscription client
ENCODERS LEFT (l,%d) RIGHT (r,%d)\n encoders readings server
GREYIMAGEREQUEST\n Grey image request client
GREYIMAGE (rows,%d) (cols,%d) (Bpp,%d) (max,%d)\n Grey image server
COLORIMAGEREQUEST\n Color image request client
COLORIMAGE (rows,%d) (cols,%d) (Bpp,%d) (max,%d)\n Color image server
COMMANDED DRIVE SPEED (ds,%f) STEER SPEED (ss,%f)\n traslation and rotation speeds command client
STOP\n stop EyeBot movement client
SERVOKICK (angle,%d)\n angle command for kicker servo client
SERVOCAM (angle,%d)\n angle command for camera servo client
HELLO\n start message client
GOODBYE\n closing connection both

Table 1: Protocol messages

sor readings generated in the server and they are
sent through simple messages following the pat-
tern ‘‘header body \n’’. Client can subscribe
to such readings (sending a subscription message)
and the server sends them as new data are avail-
able, without continuous requests by the client.

2. Motor commands are generated in the client.
They are sent using another similar short message
with a different header. There is no subscription
here.

3. Images are produced in the robot at a higher rate
than can be sent through serial port, so we chose
on demand transmission for them: for every im-
age an explicit request must be issued. The max-
imum serial speed reaches 115200 bauds, such
bandwidth is not enough to transmit 80x60x3
bytes per image, at 4 fps.

All allowed messages are presented in table 1. The
online messages are sequences of ASCII characters
which make the protocol even more machine indepen-
dent, suitable to little-endian and big-endian systems.
In this way integer and real numbers are translated
into the ASCII codes for their hundreds, tens and
units. The first characters of the short messages forms
the header, which helps to develop receiver routines

and to decode the body of the message accordingly.
Images are transmitted as a sequence of pixel values,
with no compression. One single byte per pixel in
greyscale images, and three bytes per pixel for RGB
images. They are always preceded with a header mes-
sage specifying the type of image and its size in pixels.

3 Client in the PC

The client runs on the PC and shows a graphical user
interface (GUI) to the human operator, as shown in
figure 5. From it she can ask for any sensor value: im-
ages from the camera, encoders data or infrared read-
ings. The client displays them in the interface, in a
visual and very intuitive way. The GUI allows to tele-
operate the robot movement, so it can be commanded
to rotate or advance from the PC. Also the camera and
kicker angles can be set at will. It has been written
using the Xforms library [9] for X-Window, which is
the most extended window system for Linux machines.

The GUI has several elements, the main one is a can-
vas showing the space around the robot from birdeye
point of view. The scale of this canvas and its po-
sition in the bidimensional world can be customized,
and even put in a follow-robot mode. A robot sketch
is continuously displayed in the canvas and it is moved

3 / 6



Figure 5: Teleoperator graphical interface

accordingly to encoders data, reflecting any displace-
ment or turn of the real robot. Obstacles close to the
EyeBot are detected with its three infrared sensors.
Their readings are represented with three green rays
showing their last value. They depart from the sensor
positions in the robot sketch and their length is pro-
portional to the measured distance. At the end of the
line a red point is displayed to show that an obstacle
was detected there. There is a short term memory
of such points to observe wall and obstacle profiles.
This objective visualization improves the subjective
one chosen for Xavier and Hermes robots in figure 2,
always centered on the robot. It shows robot move-
ment inside its environment in a more intuitive way.
The client can also display the images obtained with
EyeBot camera, both in color or in greyscale. Their
real size is 80x60, so every image pixel is extended to
a 2x2 pixels in the GUI, for better display. Visualiza-
tion of all elements is optional, and can be activated
pushing GUI buttons.

Using the GUI the human operator can move the
robot at will, make it turn, advance or both at the
same time. GUI provides a bidimensional control win-
dow called joystick window (botton right window in
the figure 5). Its center means no motion. Horizontal
axis is used for turns, implementing a position control
of the angle. Vertical axis is used for traslation, imple-
menting a speed control of the motors. The higher or-
dinate, the faster the robot movement. For emergency
halts a big stop button is provided. Position of the
servos devoted to the kicker and to the camera can be
selected at will using two linear dials , placed around

joystick window in figure 5. To finish the teleopera-
tor there is an exit button. When pressed the client
closes the GUI, unsubscription and goodbye messages
are sent to the server.

Figure 6: Client multithreaded implementation

Client side is implemented as five concurrent threads
which start after an initialization phase, as shown in
right side of figure 6. In the initialization phase the
GUI is started, the connection to the server is es-
tablished and the client automatically subscribes to
encoders data. First thread manages communication
with server and runs asynchronously, it is activated
every time there are new data at the server port. It
receives the data, compounds the messages, analyzes
them and acts accordingly. Actually it has two opera-
tion modes, short message receiving mode and image
receiving one. In the first one it searches for the header
of the message, an integer number as shown previously,
and looks for an end-of-line character to complete the
message. In the second one it receives an specified

4 / 6



amount of bytes, which can then take any value. This
way data transparency is provided in the communi-
cation. Second thread checks every 250 ms whether
the human operator has clicked on any graphical ele-
ment. Third thread periodically displays all interface
elements, updating output window. A fourth thread
sends motor commands to the server every 730 ms if
needed.

To avoid communications stall, fifth thread asks for
images at a suitable frequency. The images and their
requests have been separated from other sensor data
because they consume more communications band-
width due to their bigger size. The protocol forces
on demand transmission, putting the flow control in
the client side. This way the fifth thread asks for a
new image every 4 seconds, in case of the human op-
erator wants it and the last image has been completely
processed. This frequency allows a slow update of im-
ages in the display without saturating the channel and
letting the other sensor data to be exchanged at the
speed they are obtained.

4 Server in the EyeBot

The server runs on board the robot and its main func-
tion is to send required sensor information to the client
and to implement motor movements as ordered. It
starts initializing all the robot devices that are to be
used, like serial port, sensors and actuators. Then
three concurrent threads are launched to serve sensors,
execute motor movements and check the exit button
respectively, as shown in figure 7.

Figure 7: Server multithreaded implementation

First thread detects the opening and closing of client
connections, collects sensor readings and is in charge
of sending/receiving data to/from the serial port. Ac-
tually it runs an infinite loop: (a) checks for new data
in the serial port, in non blocking way (b) captures the
current encoders and infrared readings and (c) sends
sensor values to the client if subscribed. Second thread
controls motors movement. This one checks if the
robot received a movement command, and if so, calls
the primitive functions for motor activation. Current
functionality includes simultaneous speed control for

traction and position control for rotation. Once the
robot has started to move, it will keep on doing so un-
til the client issue a stop message or a new movement
command. Third thread is a service one, which checks
whether the human operator struck the exit button or
not. In such a case it kills the other threads, frees all
robot resources and ends the program.

5 Conclusions

A teleoperator system has been developed for an
EyeBot micro-robot using a client-server architecture.
Client and server have been implemented with multi-
threading programming and both communicate each
other through a serial port following an specific proto-
col. The system allows the remote visualization of sen-
sor data from the robot, and to move the robot from
the PC using the mouse in a intuitive way. Teleopera-
tor code, a video demo and a more detailed technical
report[4] are available in the web4.

Making the teleoperator let us to get familiar with
the robot capabilities and its programming environ-
ment. That way, we have now the background and
the required know-how to develop new behaviors with
the same platform.

As a future extension of the teleoperator already
presented here we are working in replacing the se-
rial cable with a wireless radio connection through a
radio port, changing low level communication primi-
tives. The serial cable imposes a physical limitation on
the movements of the EyeBot, so using the radio will
provide more movement freedom to the teleoperated
robot. Nevertheless it has to be taken into account
that lower bandwidth is available through the radio
link. A second future line is to expand the movements
repertoire with speed control for turns and position
control for traction.

References

[1] Antonio Barrientos, Carlos Balaguer, Luis Fe-
lipe Peñ́ın, and Rafael Aracil. Fundamentos de
robótica. McGrawHill, 1997.

[2] Thomas Braünl. EyeBot: a family of autonomous
mobile robots. In Proceedings of 6th Interna-
tional Conference on Neural Information Process-
ing (ICONIP’99), pages 645–649a, Perth (Aus-
tralia), 1999.

[3] Leandro Fernández Garćıa. Desarrollo de una in-
terfaz gráfica para el control teleoperado del robot
escalador ROMA. Proyecto fin de carrera, Univer-
sidad Carlos III, Madrid, 2000.

4http://gsyc.escet.urjc.es/robotica/pfc-teleoperador.html

5 / 6



[4] Esther Garćıa Morata. Construcción de un tele-
operador para el robot EyeBot. Proyecto fin de
carrera, Universidad Carlos III, Madrid, 2002.

[5] J. J. O’Sullivan, G.D. Armstrong, and Karen Zita
Haigh. Xavier- The manual v0.4. Technical report,
Computer Science Department, Carnegie Mellon
University, April 1997.

[6] Kurt Konolige and Karen L. Myers. The Saphira
architecture for autonomous mobile robots. In
David Kortenkamp, R. Peter Bonasso, and Robin
Murphy, editors, Artificial Intelligence and Mobile
Robots: case studies of successful robot systems,
pages 211–242. MIT Press, AAAI Press, 1998.
ISBN: 0-262-61137-6.

[7] A. Oller, J.L. de la Rosa, R. Garćıa, J.A. Ramón,
and A. Figueras. Micro-robots playing soccer
games: a real implementation based on a multi-
agent decision-making structure. International
Journal of Intelligent Automation and Soft Com-
puting, 6(1):65–74, 2000. Special Issue on Soccer
Robotics: Micro-robot WorldCup Soccer Tourna-
ment’97.

[8] C. Vázquez Regueiro, J.M Cañas, and M.C.
Garćıa-Alegre. Real time visualization of robot-
environment states in local piloting. Technical re-
port, Instituto de Automática Industrial (CSIC),
March 1997.

[9] T.C. Zhao and Mark Overmars. Forms Li-
brary: a graphical user interface toolkit for X.
http://world.std.com/ xforms/, 2000.

6 / 6


	Introduction
	Client-server teleoperator
	Communications protocol

	Client in the PC
	Server in the EyeBot
	Conclusions

